/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1678 - (show annotations) (download)
Sun Feb 10 16:07:22 2008 UTC (11 years, 9 months ago) by persson
File size: 174537 byte(s)
* bugfix: saving to the same file after the file size had been
  increased made the file corrupt (#82)
* bugfix: removed another iterator invalidation in DeleteSample
* changed the functions for midi rules, to get rid of the iterator

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
259 // *
260
261 static uint32_t* __initCRCTable() {
262 static uint32_t res[256];
263
264 for (int i = 0 ; i < 256 ; i++) {
265 uint32_t c = i;
266 for (int j = 0 ; j < 8 ; j++) {
267 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
268 }
269 res[i] = c;
270 }
271 return res;
272 }
273
274 static const uint32_t* __CRCTable = __initCRCTable();
275
276 /**
277 * Initialize a CRC variable.
278 *
279 * @param crc - variable to be initialized
280 */
281 inline static void __resetCRC(uint32_t& crc) {
282 crc = 0xffffffff;
283 }
284
285 /**
286 * Used to calculate checksums of the sample data in a gig file. The
287 * checksums are stored in the 3crc chunk of the gig file and
288 * automatically updated when a sample is written with Sample::Write().
289 *
290 * One should call __resetCRC() to initialize the CRC variable to be
291 * used before calling this function the first time.
292 *
293 * After initializing the CRC variable one can call this function
294 * arbitrary times, i.e. to split the overall CRC calculation into
295 * steps.
296 *
297 * Once the whole data was processed by __calculateCRC(), one should
298 * call __encodeCRC() to get the final CRC result.
299 *
300 * @param buf - pointer to data the CRC shall be calculated of
301 * @param bufSize - size of the data to be processed
302 * @param crc - variable the CRC sum shall be stored to
303 */
304 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
305 for (int i = 0 ; i < bufSize ; i++) {
306 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
307 }
308 }
309
310 /**
311 * Returns the final CRC result.
312 *
313 * @param crc - variable previously passed to __calculateCRC()
314 */
315 inline static uint32_t __encodeCRC(const uint32_t& crc) {
316 return crc ^ 0xffffffff;
317 }
318
319
320
321 // *************** Other Internal functions ***************
322 // *
323
324 static split_type_t __resolveSplitType(dimension_t dimension) {
325 return (
326 dimension == dimension_layer ||
327 dimension == dimension_samplechannel ||
328 dimension == dimension_releasetrigger ||
329 dimension == dimension_keyboard ||
330 dimension == dimension_roundrobin ||
331 dimension == dimension_random ||
332 dimension == dimension_smartmidi ||
333 dimension == dimension_roundrobinkeyboard
334 ) ? split_type_bit : split_type_normal;
335 }
336
337 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
338 return (dimension_definition.split_type == split_type_normal)
339 ? int(128.0 / dimension_definition.zones) : 0;
340 }
341
342
343
344 // *************** Sample ***************
345 // *
346
347 unsigned int Sample::Instances = 0;
348 buffer_t Sample::InternalDecompressionBuffer;
349
350 /** @brief Constructor.
351 *
352 * Load an existing sample or create a new one. A 'wave' list chunk must
353 * be given to this constructor. In case the given 'wave' list chunk
354 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355 * format and sample data will be loaded from there, otherwise default
356 * values will be used and those chunks will be created when
357 * File::Save() will be called later on.
358 *
359 * @param pFile - pointer to gig::File where this sample is
360 * located (or will be located)
361 * @param waveList - pointer to 'wave' list chunk which is (or
362 * will be) associated with this sample
363 * @param WavePoolOffset - offset of this sample data from wave pool
364 * ('wvpl') list chunk
365 * @param fileNo - number of an extension file where this sample
366 * is located, 0 otherwise
367 */
368 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
369 static const DLS::Info::string_length_t fixedStringLengths[] = {
370 { CHUNK_ID_INAM, 64 },
371 { 0, 0 }
372 };
373 pInfo->SetFixedStringLengths(fixedStringLengths);
374 Instances++;
375 FileNo = fileNo;
376
377 __resetCRC(crc);
378
379 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
380 if (pCk3gix) {
381 uint16_t iSampleGroup = pCk3gix->ReadInt16();
382 pGroup = pFile->GetGroup(iSampleGroup);
383 } else { // '3gix' chunk missing
384 // by default assigned to that mandatory "Default Group"
385 pGroup = pFile->GetGroup(0);
386 }
387
388 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
389 if (pCkSmpl) {
390 Manufacturer = pCkSmpl->ReadInt32();
391 Product = pCkSmpl->ReadInt32();
392 SamplePeriod = pCkSmpl->ReadInt32();
393 MIDIUnityNote = pCkSmpl->ReadInt32();
394 FineTune = pCkSmpl->ReadInt32();
395 pCkSmpl->Read(&SMPTEFormat, 1, 4);
396 SMPTEOffset = pCkSmpl->ReadInt32();
397 Loops = pCkSmpl->ReadInt32();
398 pCkSmpl->ReadInt32(); // manufByt
399 LoopID = pCkSmpl->ReadInt32();
400 pCkSmpl->Read(&LoopType, 1, 4);
401 LoopStart = pCkSmpl->ReadInt32();
402 LoopEnd = pCkSmpl->ReadInt32();
403 LoopFraction = pCkSmpl->ReadInt32();
404 LoopPlayCount = pCkSmpl->ReadInt32();
405 } else { // 'smpl' chunk missing
406 // use default values
407 Manufacturer = 0;
408 Product = 0;
409 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
410 MIDIUnityNote = 60;
411 FineTune = 0;
412 SMPTEFormat = smpte_format_no_offset;
413 SMPTEOffset = 0;
414 Loops = 0;
415 LoopID = 0;
416 LoopType = loop_type_normal;
417 LoopStart = 0;
418 LoopEnd = 0;
419 LoopFraction = 0;
420 LoopPlayCount = 0;
421 }
422
423 FrameTable = NULL;
424 SamplePos = 0;
425 RAMCache.Size = 0;
426 RAMCache.pStart = NULL;
427 RAMCache.NullExtensionSize = 0;
428
429 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
430
431 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
432 Compressed = ewav;
433 Dithered = false;
434 TruncatedBits = 0;
435 if (Compressed) {
436 uint32_t version = ewav->ReadInt32();
437 if (version == 3 && BitDepth == 24) {
438 Dithered = ewav->ReadInt32();
439 ewav->SetPos(Channels == 2 ? 84 : 64);
440 TruncatedBits = ewav->ReadInt32();
441 }
442 ScanCompressedSample();
443 }
444
445 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
446 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
447 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
448 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
449 }
450 FrameOffset = 0; // just for streaming compressed samples
451
452 LoopSize = LoopEnd - LoopStart + 1;
453 }
454
455 /**
456 * Apply sample and its settings to the respective RIFF chunks. You have
457 * to call File::Save() to make changes persistent.
458 *
459 * Usually there is absolutely no need to call this method explicitly.
460 * It will be called automatically when File::Save() was called.
461 *
462 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
463 * was provided yet
464 * @throws gig::Exception if there is any invalid sample setting
465 */
466 void Sample::UpdateChunks() {
467 // first update base class's chunks
468 DLS::Sample::UpdateChunks();
469
470 // make sure 'smpl' chunk exists
471 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
472 if (!pCkSmpl) {
473 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
474 memset(pCkSmpl->LoadChunkData(), 0, 60);
475 }
476 // update 'smpl' chunk
477 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
478 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
479 store32(&pData[0], Manufacturer);
480 store32(&pData[4], Product);
481 store32(&pData[8], SamplePeriod);
482 store32(&pData[12], MIDIUnityNote);
483 store32(&pData[16], FineTune);
484 store32(&pData[20], SMPTEFormat);
485 store32(&pData[24], SMPTEOffset);
486 store32(&pData[28], Loops);
487
488 // we skip 'manufByt' for now (4 bytes)
489
490 store32(&pData[36], LoopID);
491 store32(&pData[40], LoopType);
492 store32(&pData[44], LoopStart);
493 store32(&pData[48], LoopEnd);
494 store32(&pData[52], LoopFraction);
495 store32(&pData[56], LoopPlayCount);
496
497 // make sure '3gix' chunk exists
498 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
499 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
500 // determine appropriate sample group index (to be stored in chunk)
501 uint16_t iSampleGroup = 0; // 0 refers to default sample group
502 File* pFile = static_cast<File*>(pParent);
503 if (pFile->pGroups) {
504 std::list<Group*>::iterator iter = pFile->pGroups->begin();
505 std::list<Group*>::iterator end = pFile->pGroups->end();
506 for (int i = 0; iter != end; i++, iter++) {
507 if (*iter == pGroup) {
508 iSampleGroup = i;
509 break; // found
510 }
511 }
512 }
513 // update '3gix' chunk
514 pData = (uint8_t*) pCk3gix->LoadChunkData();
515 store16(&pData[0], iSampleGroup);
516 }
517
518 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
519 void Sample::ScanCompressedSample() {
520 //TODO: we have to add some more scans here (e.g. determine compression rate)
521 this->SamplesTotal = 0;
522 std::list<unsigned long> frameOffsets;
523
524 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
525 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
526
527 // Scanning
528 pCkData->SetPos(0);
529 if (Channels == 2) { // Stereo
530 for (int i = 0 ; ; i++) {
531 // for 24 bit samples every 8:th frame offset is
532 // stored, to save some memory
533 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
534
535 const int mode_l = pCkData->ReadUint8();
536 const int mode_r = pCkData->ReadUint8();
537 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
538 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
539
540 if (pCkData->RemainingBytes() <= frameSize) {
541 SamplesInLastFrame =
542 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
543 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
544 SamplesTotal += SamplesInLastFrame;
545 break;
546 }
547 SamplesTotal += SamplesPerFrame;
548 pCkData->SetPos(frameSize, RIFF::stream_curpos);
549 }
550 }
551 else { // Mono
552 for (int i = 0 ; ; i++) {
553 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
554
555 const int mode = pCkData->ReadUint8();
556 if (mode > 5) throw gig::Exception("Unknown compression mode");
557 const unsigned long frameSize = bytesPerFrame[mode];
558
559 if (pCkData->RemainingBytes() <= frameSize) {
560 SamplesInLastFrame =
561 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
562 SamplesTotal += SamplesInLastFrame;
563 break;
564 }
565 SamplesTotal += SamplesPerFrame;
566 pCkData->SetPos(frameSize, RIFF::stream_curpos);
567 }
568 }
569 pCkData->SetPos(0);
570
571 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
572 if (FrameTable) delete[] FrameTable;
573 FrameTable = new unsigned long[frameOffsets.size()];
574 std::list<unsigned long>::iterator end = frameOffsets.end();
575 std::list<unsigned long>::iterator iter = frameOffsets.begin();
576 for (int i = 0; iter != end; i++, iter++) {
577 FrameTable[i] = *iter;
578 }
579 }
580
581 /**
582 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
583 * ReleaseSampleData() to free the memory if you don't need the cached
584 * sample data anymore.
585 *
586 * @returns buffer_t structure with start address and size of the buffer
587 * in bytes
588 * @see ReleaseSampleData(), Read(), SetPos()
589 */
590 buffer_t Sample::LoadSampleData() {
591 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
592 }
593
594 /**
595 * Reads (uncompresses if needed) and caches the first \a SampleCount
596 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
597 * memory space if you don't need the cached samples anymore. There is no
598 * guarantee that exactly \a SampleCount samples will be cached; this is
599 * not an error. The size will be eventually truncated e.g. to the
600 * beginning of a frame of a compressed sample. This is done for
601 * efficiency reasons while streaming the wave by your sampler engine
602 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
603 * that will be returned to determine the actual cached samples, but note
604 * that the size is given in bytes! You get the number of actually cached
605 * samples by dividing it by the frame size of the sample:
606 * @code
607 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
608 * long cachedsamples = buf.Size / pSample->FrameSize;
609 * @endcode
610 *
611 * @param SampleCount - number of sample points to load into RAM
612 * @returns buffer_t structure with start address and size of
613 * the cached sample data in bytes
614 * @see ReleaseSampleData(), Read(), SetPos()
615 */
616 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
617 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
618 }
619
620 /**
621 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
622 * ReleaseSampleData() to free the memory if you don't need the cached
623 * sample data anymore.
624 * The method will add \a NullSamplesCount silence samples past the
625 * official buffer end (this won't affect the 'Size' member of the
626 * buffer_t structure, that means 'Size' always reflects the size of the
627 * actual sample data, the buffer might be bigger though). Silence
628 * samples past the official buffer are needed for differential
629 * algorithms that always have to take subsequent samples into account
630 * (resampling/interpolation would be an important example) and avoids
631 * memory access faults in such cases.
632 *
633 * @param NullSamplesCount - number of silence samples the buffer should
634 * be extended past it's data end
635 * @returns buffer_t structure with start address and
636 * size of the buffer in bytes
637 * @see ReleaseSampleData(), Read(), SetPos()
638 */
639 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
640 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
641 }
642
643 /**
644 * Reads (uncompresses if needed) and caches the first \a SampleCount
645 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
646 * memory space if you don't need the cached samples anymore. There is no
647 * guarantee that exactly \a SampleCount samples will be cached; this is
648 * not an error. The size will be eventually truncated e.g. to the
649 * beginning of a frame of a compressed sample. This is done for
650 * efficiency reasons while streaming the wave by your sampler engine
651 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
652 * that will be returned to determine the actual cached samples, but note
653 * that the size is given in bytes! You get the number of actually cached
654 * samples by dividing it by the frame size of the sample:
655 * @code
656 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
657 * long cachedsamples = buf.Size / pSample->FrameSize;
658 * @endcode
659 * The method will add \a NullSamplesCount silence samples past the
660 * official buffer end (this won't affect the 'Size' member of the
661 * buffer_t structure, that means 'Size' always reflects the size of the
662 * actual sample data, the buffer might be bigger though). Silence
663 * samples past the official buffer are needed for differential
664 * algorithms that always have to take subsequent samples into account
665 * (resampling/interpolation would be an important example) and avoids
666 * memory access faults in such cases.
667 *
668 * @param SampleCount - number of sample points to load into RAM
669 * @param NullSamplesCount - number of silence samples the buffer should
670 * be extended past it's data end
671 * @returns buffer_t structure with start address and
672 * size of the cached sample data in bytes
673 * @see ReleaseSampleData(), Read(), SetPos()
674 */
675 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
676 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
677 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
678 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
679 RAMCache.pStart = new int8_t[allocationsize];
680 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
681 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
682 // fill the remaining buffer space with silence samples
683 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
684 return GetCache();
685 }
686
687 /**
688 * Returns current cached sample points. A buffer_t structure will be
689 * returned which contains address pointer to the begin of the cache and
690 * the size of the cached sample data in bytes. Use
691 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
692 * RAM.
693 *
694 * @returns buffer_t structure with current cached sample points
695 * @see LoadSampleData();
696 */
697 buffer_t Sample::GetCache() {
698 // return a copy of the buffer_t structure
699 buffer_t result;
700 result.Size = this->RAMCache.Size;
701 result.pStart = this->RAMCache.pStart;
702 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
703 return result;
704 }
705
706 /**
707 * Frees the cached sample from RAM if loaded with
708 * <i>LoadSampleData()</i> previously.
709 *
710 * @see LoadSampleData();
711 */
712 void Sample::ReleaseSampleData() {
713 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
714 RAMCache.pStart = NULL;
715 RAMCache.Size = 0;
716 }
717
718 /** @brief Resize sample.
719 *
720 * Resizes the sample's wave form data, that is the actual size of
721 * sample wave data possible to be written for this sample. This call
722 * will return immediately and just schedule the resize operation. You
723 * should call File::Save() to actually perform the resize operation(s)
724 * "physically" to the file. As this can take a while on large files, it
725 * is recommended to call Resize() first on all samples which have to be
726 * resized and finally to call File::Save() to perform all those resize
727 * operations in one rush.
728 *
729 * The actual size (in bytes) is dependant to the current FrameSize
730 * value. You may want to set FrameSize before calling Resize().
731 *
732 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
733 * enlarged samples before calling File::Save() as this might exceed the
734 * current sample's boundary!
735 *
736 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
737 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
738 * other formats will fail!
739 *
740 * @param iNewSize - new sample wave data size in sample points (must be
741 * greater than zero)
742 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
743 * or if \a iNewSize is less than 1
744 * @throws gig::Exception if existing sample is compressed
745 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
746 * DLS::Sample::FormatTag, File::Save()
747 */
748 void Sample::Resize(int iNewSize) {
749 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
750 DLS::Sample::Resize(iNewSize);
751 }
752
753 /**
754 * Sets the position within the sample (in sample points, not in
755 * bytes). Use this method and <i>Read()</i> if you don't want to load
756 * the sample into RAM, thus for disk streaming.
757 *
758 * Although the original Gigasampler engine doesn't allow positioning
759 * within compressed samples, I decided to implement it. Even though
760 * the Gigasampler format doesn't allow to define loops for compressed
761 * samples at the moment, positioning within compressed samples might be
762 * interesting for some sampler engines though. The only drawback about
763 * my decision is that it takes longer to load compressed gig Files on
764 * startup, because it's neccessary to scan the samples for some
765 * mandatory informations. But I think as it doesn't affect the runtime
766 * efficiency, nobody will have a problem with that.
767 *
768 * @param SampleCount number of sample points to jump
769 * @param Whence optional: to which relation \a SampleCount refers
770 * to, if omited <i>RIFF::stream_start</i> is assumed
771 * @returns the new sample position
772 * @see Read()
773 */
774 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
775 if (Compressed) {
776 switch (Whence) {
777 case RIFF::stream_curpos:
778 this->SamplePos += SampleCount;
779 break;
780 case RIFF::stream_end:
781 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
782 break;
783 case RIFF::stream_backward:
784 this->SamplePos -= SampleCount;
785 break;
786 case RIFF::stream_start: default:
787 this->SamplePos = SampleCount;
788 break;
789 }
790 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
791
792 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
793 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
794 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
795 return this->SamplePos;
796 }
797 else { // not compressed
798 unsigned long orderedBytes = SampleCount * this->FrameSize;
799 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
800 return (result == orderedBytes) ? SampleCount
801 : result / this->FrameSize;
802 }
803 }
804
805 /**
806 * Returns the current position in the sample (in sample points).
807 */
808 unsigned long Sample::GetPos() {
809 if (Compressed) return SamplePos;
810 else return pCkData->GetPos() / FrameSize;
811 }
812
813 /**
814 * Reads \a SampleCount number of sample points from the position stored
815 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
816 * the position within the sample respectively, this method honors the
817 * looping informations of the sample (if any). The sample wave stream
818 * will be decompressed on the fly if using a compressed sample. Use this
819 * method if you don't want to load the sample into RAM, thus for disk
820 * streaming. All this methods needs to know to proceed with streaming
821 * for the next time you call this method is stored in \a pPlaybackState.
822 * You have to allocate and initialize the playback_state_t structure by
823 * yourself before you use it to stream a sample:
824 * @code
825 * gig::playback_state_t playbackstate;
826 * playbackstate.position = 0;
827 * playbackstate.reverse = false;
828 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
829 * @endcode
830 * You don't have to take care of things like if there is actually a loop
831 * defined or if the current read position is located within a loop area.
832 * The method already handles such cases by itself.
833 *
834 * <b>Caution:</b> If you are using more than one streaming thread, you
835 * have to use an external decompression buffer for <b>EACH</b>
836 * streaming thread to avoid race conditions and crashes!
837 *
838 * @param pBuffer destination buffer
839 * @param SampleCount number of sample points to read
840 * @param pPlaybackState will be used to store and reload the playback
841 * state for the next ReadAndLoop() call
842 * @param pDimRgn dimension region with looping information
843 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
844 * @returns number of successfully read sample points
845 * @see CreateDecompressionBuffer()
846 */
847 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
848 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
849 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
850 uint8_t* pDst = (uint8_t*) pBuffer;
851
852 SetPos(pPlaybackState->position); // recover position from the last time
853
854 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
855
856 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
857 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
858
859 if (GetPos() <= loopEnd) {
860 switch (loop.LoopType) {
861
862 case loop_type_bidirectional: { //TODO: not tested yet!
863 do {
864 // if not endless loop check if max. number of loop cycles have been passed
865 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
866
867 if (!pPlaybackState->reverse) { // forward playback
868 do {
869 samplestoloopend = loopEnd - GetPos();
870 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
871 samplestoread -= readsamples;
872 totalreadsamples += readsamples;
873 if (readsamples == samplestoloopend) {
874 pPlaybackState->reverse = true;
875 break;
876 }
877 } while (samplestoread && readsamples);
878 }
879 else { // backward playback
880
881 // as we can only read forward from disk, we have to
882 // determine the end position within the loop first,
883 // read forward from that 'end' and finally after
884 // reading, swap all sample frames so it reflects
885 // backward playback
886
887 unsigned long swapareastart = totalreadsamples;
888 unsigned long loopoffset = GetPos() - loop.LoopStart;
889 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
890 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
891
892 SetPos(reverseplaybackend);
893
894 // read samples for backward playback
895 do {
896 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
897 samplestoreadinloop -= readsamples;
898 samplestoread -= readsamples;
899 totalreadsamples += readsamples;
900 } while (samplestoreadinloop && readsamples);
901
902 SetPos(reverseplaybackend); // pretend we really read backwards
903
904 if (reverseplaybackend == loop.LoopStart) {
905 pPlaybackState->loop_cycles_left--;
906 pPlaybackState->reverse = false;
907 }
908
909 // reverse the sample frames for backward playback
910 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
911 }
912 } while (samplestoread && readsamples);
913 break;
914 }
915
916 case loop_type_backward: { // TODO: not tested yet!
917 // forward playback (not entered the loop yet)
918 if (!pPlaybackState->reverse) do {
919 samplestoloopend = loopEnd - GetPos();
920 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
921 samplestoread -= readsamples;
922 totalreadsamples += readsamples;
923 if (readsamples == samplestoloopend) {
924 pPlaybackState->reverse = true;
925 break;
926 }
927 } while (samplestoread && readsamples);
928
929 if (!samplestoread) break;
930
931 // as we can only read forward from disk, we have to
932 // determine the end position within the loop first,
933 // read forward from that 'end' and finally after
934 // reading, swap all sample frames so it reflects
935 // backward playback
936
937 unsigned long swapareastart = totalreadsamples;
938 unsigned long loopoffset = GetPos() - loop.LoopStart;
939 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
940 : samplestoread;
941 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
942
943 SetPos(reverseplaybackend);
944
945 // read samples for backward playback
946 do {
947 // if not endless loop check if max. number of loop cycles have been passed
948 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
949 samplestoloopend = loopEnd - GetPos();
950 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
951 samplestoreadinloop -= readsamples;
952 samplestoread -= readsamples;
953 totalreadsamples += readsamples;
954 if (readsamples == samplestoloopend) {
955 pPlaybackState->loop_cycles_left--;
956 SetPos(loop.LoopStart);
957 }
958 } while (samplestoreadinloop && readsamples);
959
960 SetPos(reverseplaybackend); // pretend we really read backwards
961
962 // reverse the sample frames for backward playback
963 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964 break;
965 }
966
967 default: case loop_type_normal: {
968 do {
969 // if not endless loop check if max. number of loop cycles have been passed
970 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
971 samplestoloopend = loopEnd - GetPos();
972 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
973 samplestoread -= readsamples;
974 totalreadsamples += readsamples;
975 if (readsamples == samplestoloopend) {
976 pPlaybackState->loop_cycles_left--;
977 SetPos(loop.LoopStart);
978 }
979 } while (samplestoread && readsamples);
980 break;
981 }
982 }
983 }
984 }
985
986 // read on without looping
987 if (samplestoread) do {
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 } while (readsamples && samplestoread);
992
993 // store current position
994 pPlaybackState->position = GetPos();
995
996 return totalreadsamples;
997 }
998
999 /**
1000 * Reads \a SampleCount number of sample points from the current
1001 * position into the buffer pointed by \a pBuffer and increments the
1002 * position within the sample. The sample wave stream will be
1003 * decompressed on the fly if using a compressed sample. Use this method
1004 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1005 * thus for disk streaming.
1006 *
1007 * <b>Caution:</b> If you are using more than one streaming thread, you
1008 * have to use an external decompression buffer for <b>EACH</b>
1009 * streaming thread to avoid race conditions and crashes!
1010 *
1011 * For 16 bit samples, the data in the buffer will be int16_t
1012 * (using native endianness). For 24 bit, the buffer will
1013 * contain three bytes per sample, little-endian.
1014 *
1015 * @param pBuffer destination buffer
1016 * @param SampleCount number of sample points to read
1017 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1018 * @returns number of successfully read sample points
1019 * @see SetPos(), CreateDecompressionBuffer()
1020 */
1021 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1022 if (SampleCount == 0) return 0;
1023 if (!Compressed) {
1024 if (BitDepth == 24) {
1025 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1026 }
1027 else { // 16 bit
1028 // (pCkData->Read does endian correction)
1029 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1030 : pCkData->Read(pBuffer, SampleCount, 2);
1031 }
1032 }
1033 else {
1034 if (this->SamplePos >= this->SamplesTotal) return 0;
1035 //TODO: efficiency: maybe we should test for an average compression rate
1036 unsigned long assumedsize = GuessSize(SampleCount),
1037 remainingbytes = 0, // remaining bytes in the local buffer
1038 remainingsamples = SampleCount,
1039 copysamples, skipsamples,
1040 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1041 this->FrameOffset = 0;
1042
1043 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1044
1045 // if decompression buffer too small, then reduce amount of samples to read
1046 if (pDecompressionBuffer->Size < assumedsize) {
1047 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1048 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1049 remainingsamples = SampleCount;
1050 assumedsize = GuessSize(SampleCount);
1051 }
1052
1053 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1054 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1055 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1056 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1057
1058 while (remainingsamples && remainingbytes) {
1059 unsigned long framesamples = SamplesPerFrame;
1060 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1061
1062 int mode_l = *pSrc++, mode_r = 0;
1063
1064 if (Channels == 2) {
1065 mode_r = *pSrc++;
1066 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1067 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1068 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1069 if (remainingbytes < framebytes) { // last frame in sample
1070 framesamples = SamplesInLastFrame;
1071 if (mode_l == 4 && (framesamples & 1)) {
1072 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1073 }
1074 else {
1075 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1076 }
1077 }
1078 }
1079 else {
1080 framebytes = bytesPerFrame[mode_l] + 1;
1081 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1082 if (remainingbytes < framebytes) {
1083 framesamples = SamplesInLastFrame;
1084 }
1085 }
1086
1087 // determine how many samples in this frame to skip and read
1088 if (currentframeoffset + remainingsamples >= framesamples) {
1089 if (currentframeoffset <= framesamples) {
1090 copysamples = framesamples - currentframeoffset;
1091 skipsamples = currentframeoffset;
1092 }
1093 else {
1094 copysamples = 0;
1095 skipsamples = framesamples;
1096 }
1097 }
1098 else {
1099 // This frame has enough data for pBuffer, but not
1100 // all of the frame is needed. Set file position
1101 // to start of this frame for next call to Read.
1102 copysamples = remainingsamples;
1103 skipsamples = currentframeoffset;
1104 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1105 this->FrameOffset = currentframeoffset + copysamples;
1106 }
1107 remainingsamples -= copysamples;
1108
1109 if (remainingbytes > framebytes) {
1110 remainingbytes -= framebytes;
1111 if (remainingsamples == 0 &&
1112 currentframeoffset + copysamples == framesamples) {
1113 // This frame has enough data for pBuffer, and
1114 // all of the frame is needed. Set file
1115 // position to start of next frame for next
1116 // call to Read. FrameOffset is 0.
1117 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1118 }
1119 }
1120 else remainingbytes = 0;
1121
1122 currentframeoffset -= skipsamples;
1123
1124 if (copysamples == 0) {
1125 // skip this frame
1126 pSrc += framebytes - Channels;
1127 }
1128 else {
1129 const unsigned char* const param_l = pSrc;
1130 if (BitDepth == 24) {
1131 if (mode_l != 2) pSrc += 12;
1132
1133 if (Channels == 2) { // Stereo
1134 const unsigned char* const param_r = pSrc;
1135 if (mode_r != 2) pSrc += 12;
1136
1137 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1138 skipsamples, copysamples, TruncatedBits);
1139 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1140 skipsamples, copysamples, TruncatedBits);
1141 pDst24 += copysamples * 6;
1142 }
1143 else { // Mono
1144 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1145 skipsamples, copysamples, TruncatedBits);
1146 pDst24 += copysamples * 3;
1147 }
1148 }
1149 else { // 16 bit
1150 if (mode_l) pSrc += 4;
1151
1152 int step;
1153 if (Channels == 2) { // Stereo
1154 const unsigned char* const param_r = pSrc;
1155 if (mode_r) pSrc += 4;
1156
1157 step = (2 - mode_l) + (2 - mode_r);
1158 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1159 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1160 skipsamples, copysamples);
1161 pDst += copysamples << 1;
1162 }
1163 else { // Mono
1164 step = 2 - mode_l;
1165 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1166 pDst += copysamples;
1167 }
1168 }
1169 pSrc += nextFrameOffset;
1170 }
1171
1172 // reload from disk to local buffer if needed
1173 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1174 assumedsize = GuessSize(remainingsamples);
1175 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1176 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1177 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1178 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1179 }
1180 } // while
1181
1182 this->SamplePos += (SampleCount - remainingsamples);
1183 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1184 return (SampleCount - remainingsamples);
1185 }
1186 }
1187
1188 /** @brief Write sample wave data.
1189 *
1190 * Writes \a SampleCount number of sample points from the buffer pointed
1191 * by \a pBuffer and increments the position within the sample. Use this
1192 * method to directly write the sample data to disk, i.e. if you don't
1193 * want or cannot load the whole sample data into RAM.
1194 *
1195 * You have to Resize() the sample to the desired size and call
1196 * File::Save() <b>before</b> using Write().
1197 *
1198 * Note: there is currently no support for writing compressed samples.
1199 *
1200 * For 16 bit samples, the data in the source buffer should be
1201 * int16_t (using native endianness). For 24 bit, the buffer
1202 * should contain three bytes per sample, little-endian.
1203 *
1204 * @param pBuffer - source buffer
1205 * @param SampleCount - number of sample points to write
1206 * @throws DLS::Exception if current sample size is too small
1207 * @throws gig::Exception if sample is compressed
1208 * @see DLS::LoadSampleData()
1209 */
1210 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1211 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1212
1213 // if this is the first write in this sample, reset the
1214 // checksum calculator
1215 if (pCkData->GetPos() == 0) {
1216 __resetCRC(crc);
1217 }
1218 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1219 unsigned long res;
1220 if (BitDepth == 24) {
1221 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1222 } else { // 16 bit
1223 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1224 : pCkData->Write(pBuffer, SampleCount, 2);
1225 }
1226 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1227
1228 // if this is the last write, update the checksum chunk in the
1229 // file
1230 if (pCkData->GetPos() == pCkData->GetSize()) {
1231 File* pFile = static_cast<File*>(GetParent());
1232 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1233 }
1234 return res;
1235 }
1236
1237 /**
1238 * Allocates a decompression buffer for streaming (compressed) samples
1239 * with Sample::Read(). If you are using more than one streaming thread
1240 * in your application you <b>HAVE</b> to create a decompression buffer
1241 * for <b>EACH</b> of your streaming threads and provide it with the
1242 * Sample::Read() call in order to avoid race conditions and crashes.
1243 *
1244 * You should free the memory occupied by the allocated buffer(s) once
1245 * you don't need one of your streaming threads anymore by calling
1246 * DestroyDecompressionBuffer().
1247 *
1248 * @param MaxReadSize - the maximum size (in sample points) you ever
1249 * expect to read with one Read() call
1250 * @returns allocated decompression buffer
1251 * @see DestroyDecompressionBuffer()
1252 */
1253 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1254 buffer_t result;
1255 const double worstCaseHeaderOverhead =
1256 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1257 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1258 result.pStart = new int8_t[result.Size];
1259 result.NullExtensionSize = 0;
1260 return result;
1261 }
1262
1263 /**
1264 * Free decompression buffer, previously created with
1265 * CreateDecompressionBuffer().
1266 *
1267 * @param DecompressionBuffer - previously allocated decompression
1268 * buffer to free
1269 */
1270 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1271 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1272 delete[] (int8_t*) DecompressionBuffer.pStart;
1273 DecompressionBuffer.pStart = NULL;
1274 DecompressionBuffer.Size = 0;
1275 DecompressionBuffer.NullExtensionSize = 0;
1276 }
1277 }
1278
1279 /**
1280 * Returns pointer to the Group this Sample belongs to. In the .gig
1281 * format a sample always belongs to one group. If it wasn't explicitly
1282 * assigned to a certain group, it will be automatically assigned to a
1283 * default group.
1284 *
1285 * @returns Sample's Group (never NULL)
1286 */
1287 Group* Sample::GetGroup() const {
1288 return pGroup;
1289 }
1290
1291 Sample::~Sample() {
1292 Instances--;
1293 if (!Instances && InternalDecompressionBuffer.Size) {
1294 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1295 InternalDecompressionBuffer.pStart = NULL;
1296 InternalDecompressionBuffer.Size = 0;
1297 }
1298 if (FrameTable) delete[] FrameTable;
1299 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1300 }
1301
1302
1303
1304 // *************** DimensionRegion ***************
1305 // *
1306
1307 uint DimensionRegion::Instances = 0;
1308 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1309
1310 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1311 Instances++;
1312
1313 pSample = NULL;
1314 pRegion = pParent;
1315
1316 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1317 else memset(&Crossfade, 0, 4);
1318
1319 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1320
1321 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1322 if (_3ewa) { // if '3ewa' chunk exists
1323 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1324 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1325 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326 _3ewa->ReadInt16(); // unknown
1327 LFO1InternalDepth = _3ewa->ReadUint16();
1328 _3ewa->ReadInt16(); // unknown
1329 LFO3InternalDepth = _3ewa->ReadInt16();
1330 _3ewa->ReadInt16(); // unknown
1331 LFO1ControlDepth = _3ewa->ReadUint16();
1332 _3ewa->ReadInt16(); // unknown
1333 LFO3ControlDepth = _3ewa->ReadInt16();
1334 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1335 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336 _3ewa->ReadInt16(); // unknown
1337 EG1Sustain = _3ewa->ReadUint16();
1338 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1340 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1341 EG1ControllerInvert = eg1ctrloptions & 0x01;
1342 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1343 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1344 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1345 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1346 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1347 EG2ControllerInvert = eg2ctrloptions & 0x01;
1348 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1349 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1350 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1351 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1352 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354 _3ewa->ReadInt16(); // unknown
1355 EG2Sustain = _3ewa->ReadUint16();
1356 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357 _3ewa->ReadInt16(); // unknown
1358 LFO2ControlDepth = _3ewa->ReadUint16();
1359 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1360 _3ewa->ReadInt16(); // unknown
1361 LFO2InternalDepth = _3ewa->ReadUint16();
1362 int32_t eg1decay2 = _3ewa->ReadInt32();
1363 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1364 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1365 _3ewa->ReadInt16(); // unknown
1366 EG1PreAttack = _3ewa->ReadUint16();
1367 int32_t eg2decay2 = _3ewa->ReadInt32();
1368 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1369 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1370 _3ewa->ReadInt16(); // unknown
1371 EG2PreAttack = _3ewa->ReadUint16();
1372 uint8_t velocityresponse = _3ewa->ReadUint8();
1373 if (velocityresponse < 5) {
1374 VelocityResponseCurve = curve_type_nonlinear;
1375 VelocityResponseDepth = velocityresponse;
1376 } else if (velocityresponse < 10) {
1377 VelocityResponseCurve = curve_type_linear;
1378 VelocityResponseDepth = velocityresponse - 5;
1379 } else if (velocityresponse < 15) {
1380 VelocityResponseCurve = curve_type_special;
1381 VelocityResponseDepth = velocityresponse - 10;
1382 } else {
1383 VelocityResponseCurve = curve_type_unknown;
1384 VelocityResponseDepth = 0;
1385 }
1386 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1387 if (releasevelocityresponse < 5) {
1388 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1389 ReleaseVelocityResponseDepth = releasevelocityresponse;
1390 } else if (releasevelocityresponse < 10) {
1391 ReleaseVelocityResponseCurve = curve_type_linear;
1392 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1393 } else if (releasevelocityresponse < 15) {
1394 ReleaseVelocityResponseCurve = curve_type_special;
1395 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1396 } else {
1397 ReleaseVelocityResponseCurve = curve_type_unknown;
1398 ReleaseVelocityResponseDepth = 0;
1399 }
1400 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1401 AttenuationControllerThreshold = _3ewa->ReadInt8();
1402 _3ewa->ReadInt32(); // unknown
1403 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1404 _3ewa->ReadInt16(); // unknown
1405 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1406 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1407 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1408 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1409 else DimensionBypass = dim_bypass_ctrl_none;
1410 uint8_t pan = _3ewa->ReadUint8();
1411 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1412 SelfMask = _3ewa->ReadInt8() & 0x01;
1413 _3ewa->ReadInt8(); // unknown
1414 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1415 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1416 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1417 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1418 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1420 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1421 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1422 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1423 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1424 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1425 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1426 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1427 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1428 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1429 : vcf_res_ctrl_none;
1430 uint16_t eg3depth = _3ewa->ReadUint16();
1431 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1432 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1433 _3ewa->ReadInt16(); // unknown
1434 ChannelOffset = _3ewa->ReadUint8() / 4;
1435 uint8_t regoptions = _3ewa->ReadUint8();
1436 MSDecode = regoptions & 0x01; // bit 0
1437 SustainDefeat = regoptions & 0x02; // bit 1
1438 _3ewa->ReadInt16(); // unknown
1439 VelocityUpperLimit = _3ewa->ReadInt8();
1440 _3ewa->ReadInt8(); // unknown
1441 _3ewa->ReadInt16(); // unknown
1442 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1443 _3ewa->ReadInt8(); // unknown
1444 _3ewa->ReadInt8(); // unknown
1445 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1446 uint8_t vcfcutoff = _3ewa->ReadUint8();
1447 VCFEnabled = vcfcutoff & 0x80; // bit 7
1448 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1449 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1450 uint8_t vcfvelscale = _3ewa->ReadUint8();
1451 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1452 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1453 _3ewa->ReadInt8(); // unknown
1454 uint8_t vcfresonance = _3ewa->ReadUint8();
1455 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1456 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1457 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1458 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1459 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1460 uint8_t vcfvelocity = _3ewa->ReadUint8();
1461 VCFVelocityDynamicRange = vcfvelocity % 5;
1462 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1463 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1464 if (VCFType == vcf_type_lowpass) {
1465 if (lfo3ctrl & 0x40) // bit 6
1466 VCFType = vcf_type_lowpassturbo;
1467 }
1468 if (_3ewa->RemainingBytes() >= 8) {
1469 _3ewa->Read(DimensionUpperLimits, 1, 8);
1470 } else {
1471 memset(DimensionUpperLimits, 0, 8);
1472 }
1473 } else { // '3ewa' chunk does not exist yet
1474 // use default values
1475 LFO3Frequency = 1.0;
1476 EG3Attack = 0.0;
1477 LFO1InternalDepth = 0;
1478 LFO3InternalDepth = 0;
1479 LFO1ControlDepth = 0;
1480 LFO3ControlDepth = 0;
1481 EG1Attack = 0.0;
1482 EG1Decay1 = 0.005;
1483 EG1Sustain = 1000;
1484 EG1Release = 0.3;
1485 EG1Controller.type = eg1_ctrl_t::type_none;
1486 EG1Controller.controller_number = 0;
1487 EG1ControllerInvert = false;
1488 EG1ControllerAttackInfluence = 0;
1489 EG1ControllerDecayInfluence = 0;
1490 EG1ControllerReleaseInfluence = 0;
1491 EG2Controller.type = eg2_ctrl_t::type_none;
1492 EG2Controller.controller_number = 0;
1493 EG2ControllerInvert = false;
1494 EG2ControllerAttackInfluence = 0;
1495 EG2ControllerDecayInfluence = 0;
1496 EG2ControllerReleaseInfluence = 0;
1497 LFO1Frequency = 1.0;
1498 EG2Attack = 0.0;
1499 EG2Decay1 = 0.005;
1500 EG2Sustain = 1000;
1501 EG2Release = 0.3;
1502 LFO2ControlDepth = 0;
1503 LFO2Frequency = 1.0;
1504 LFO2InternalDepth = 0;
1505 EG1Decay2 = 0.0;
1506 EG1InfiniteSustain = true;
1507 EG1PreAttack = 0;
1508 EG2Decay2 = 0.0;
1509 EG2InfiniteSustain = true;
1510 EG2PreAttack = 0;
1511 VelocityResponseCurve = curve_type_nonlinear;
1512 VelocityResponseDepth = 3;
1513 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1514 ReleaseVelocityResponseDepth = 3;
1515 VelocityResponseCurveScaling = 32;
1516 AttenuationControllerThreshold = 0;
1517 SampleStartOffset = 0;
1518 PitchTrack = true;
1519 DimensionBypass = dim_bypass_ctrl_none;
1520 Pan = 0;
1521 SelfMask = true;
1522 LFO3Controller = lfo3_ctrl_modwheel;
1523 LFO3Sync = false;
1524 InvertAttenuationController = false;
1525 AttenuationController.type = attenuation_ctrl_t::type_none;
1526 AttenuationController.controller_number = 0;
1527 LFO2Controller = lfo2_ctrl_internal;
1528 LFO2FlipPhase = false;
1529 LFO2Sync = false;
1530 LFO1Controller = lfo1_ctrl_internal;
1531 LFO1FlipPhase = false;
1532 LFO1Sync = false;
1533 VCFResonanceController = vcf_res_ctrl_none;
1534 EG3Depth = 0;
1535 ChannelOffset = 0;
1536 MSDecode = false;
1537 SustainDefeat = false;
1538 VelocityUpperLimit = 0;
1539 ReleaseTriggerDecay = 0;
1540 EG1Hold = false;
1541 VCFEnabled = false;
1542 VCFCutoff = 0;
1543 VCFCutoffController = vcf_cutoff_ctrl_none;
1544 VCFCutoffControllerInvert = false;
1545 VCFVelocityScale = 0;
1546 VCFResonance = 0;
1547 VCFResonanceDynamic = false;
1548 VCFKeyboardTracking = false;
1549 VCFKeyboardTrackingBreakpoint = 0;
1550 VCFVelocityDynamicRange = 0x04;
1551 VCFVelocityCurve = curve_type_linear;
1552 VCFType = vcf_type_lowpass;
1553 memset(DimensionUpperLimits, 127, 8);
1554 }
1555
1556 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1557 VelocityResponseDepth,
1558 VelocityResponseCurveScaling);
1559
1560 pVelocityReleaseTable = GetReleaseVelocityTable(
1561 ReleaseVelocityResponseCurve,
1562 ReleaseVelocityResponseDepth
1563 );
1564
1565 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1566 VCFVelocityDynamicRange,
1567 VCFVelocityScale,
1568 VCFCutoffController);
1569
1570 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1571 VelocityTable = 0;
1572 }
1573
1574 /*
1575 * Constructs a DimensionRegion by copying all parameters from
1576 * another DimensionRegion
1577 */
1578 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1579 Instances++;
1580 *this = src; // default memberwise shallow copy of all parameters
1581 pParentList = _3ewl; // restore the chunk pointer
1582
1583 // deep copy of owned structures
1584 if (src.VelocityTable) {
1585 VelocityTable = new uint8_t[128];
1586 for (int k = 0 ; k < 128 ; k++)
1587 VelocityTable[k] = src.VelocityTable[k];
1588 }
1589 if (src.pSampleLoops) {
1590 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1591 for (int k = 0 ; k < src.SampleLoops ; k++)
1592 pSampleLoops[k] = src.pSampleLoops[k];
1593 }
1594 }
1595
1596 /**
1597 * Updates the respective member variable and updates @c SampleAttenuation
1598 * which depends on this value.
1599 */
1600 void DimensionRegion::SetGain(int32_t gain) {
1601 DLS::Sampler::SetGain(gain);
1602 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1603 }
1604
1605 /**
1606 * Apply dimension region settings to the respective RIFF chunks. You
1607 * have to call File::Save() to make changes persistent.
1608 *
1609 * Usually there is absolutely no need to call this method explicitly.
1610 * It will be called automatically when File::Save() was called.
1611 */
1612 void DimensionRegion::UpdateChunks() {
1613 // first update base class's chunk
1614 DLS::Sampler::UpdateChunks();
1615
1616 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1617 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1618 pData[12] = Crossfade.in_start;
1619 pData[13] = Crossfade.in_end;
1620 pData[14] = Crossfade.out_start;
1621 pData[15] = Crossfade.out_end;
1622
1623 // make sure '3ewa' chunk exists
1624 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1625 if (!_3ewa) {
1626 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1627 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1628 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1629 }
1630 pData = (uint8_t*) _3ewa->LoadChunkData();
1631
1632 // update '3ewa' chunk with DimensionRegion's current settings
1633
1634 const uint32_t chunksize = _3ewa->GetNewSize();
1635 store32(&pData[0], chunksize); // unknown, always chunk size?
1636
1637 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1638 store32(&pData[4], lfo3freq);
1639
1640 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1641 store32(&pData[8], eg3attack);
1642
1643 // next 2 bytes unknown
1644
1645 store16(&pData[14], LFO1InternalDepth);
1646
1647 // next 2 bytes unknown
1648
1649 store16(&pData[18], LFO3InternalDepth);
1650
1651 // next 2 bytes unknown
1652
1653 store16(&pData[22], LFO1ControlDepth);
1654
1655 // next 2 bytes unknown
1656
1657 store16(&pData[26], LFO3ControlDepth);
1658
1659 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1660 store32(&pData[28], eg1attack);
1661
1662 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1663 store32(&pData[32], eg1decay1);
1664
1665 // next 2 bytes unknown
1666
1667 store16(&pData[38], EG1Sustain);
1668
1669 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1670 store32(&pData[40], eg1release);
1671
1672 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1673 pData[44] = eg1ctl;
1674
1675 const uint8_t eg1ctrloptions =
1676 (EG1ControllerInvert ? 0x01 : 0x00) |
1677 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1678 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1679 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1680 pData[45] = eg1ctrloptions;
1681
1682 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1683 pData[46] = eg2ctl;
1684
1685 const uint8_t eg2ctrloptions =
1686 (EG2ControllerInvert ? 0x01 : 0x00) |
1687 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1688 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1689 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1690 pData[47] = eg2ctrloptions;
1691
1692 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1693 store32(&pData[48], lfo1freq);
1694
1695 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1696 store32(&pData[52], eg2attack);
1697
1698 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1699 store32(&pData[56], eg2decay1);
1700
1701 // next 2 bytes unknown
1702
1703 store16(&pData[62], EG2Sustain);
1704
1705 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1706 store32(&pData[64], eg2release);
1707
1708 // next 2 bytes unknown
1709
1710 store16(&pData[70], LFO2ControlDepth);
1711
1712 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1713 store32(&pData[72], lfo2freq);
1714
1715 // next 2 bytes unknown
1716
1717 store16(&pData[78], LFO2InternalDepth);
1718
1719 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1720 store32(&pData[80], eg1decay2);
1721
1722 // next 2 bytes unknown
1723
1724 store16(&pData[86], EG1PreAttack);
1725
1726 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1727 store32(&pData[88], eg2decay2);
1728
1729 // next 2 bytes unknown
1730
1731 store16(&pData[94], EG2PreAttack);
1732
1733 {
1734 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1735 uint8_t velocityresponse = VelocityResponseDepth;
1736 switch (VelocityResponseCurve) {
1737 case curve_type_nonlinear:
1738 break;
1739 case curve_type_linear:
1740 velocityresponse += 5;
1741 break;
1742 case curve_type_special:
1743 velocityresponse += 10;
1744 break;
1745 case curve_type_unknown:
1746 default:
1747 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1748 }
1749 pData[96] = velocityresponse;
1750 }
1751
1752 {
1753 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1754 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1755 switch (ReleaseVelocityResponseCurve) {
1756 case curve_type_nonlinear:
1757 break;
1758 case curve_type_linear:
1759 releasevelocityresponse += 5;
1760 break;
1761 case curve_type_special:
1762 releasevelocityresponse += 10;
1763 break;
1764 case curve_type_unknown:
1765 default:
1766 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1767 }
1768 pData[97] = releasevelocityresponse;
1769 }
1770
1771 pData[98] = VelocityResponseCurveScaling;
1772
1773 pData[99] = AttenuationControllerThreshold;
1774
1775 // next 4 bytes unknown
1776
1777 store16(&pData[104], SampleStartOffset);
1778
1779 // next 2 bytes unknown
1780
1781 {
1782 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1783 switch (DimensionBypass) {
1784 case dim_bypass_ctrl_94:
1785 pitchTrackDimensionBypass |= 0x10;
1786 break;
1787 case dim_bypass_ctrl_95:
1788 pitchTrackDimensionBypass |= 0x20;
1789 break;
1790 case dim_bypass_ctrl_none:
1791 //FIXME: should we set anything here?
1792 break;
1793 default:
1794 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1795 }
1796 pData[108] = pitchTrackDimensionBypass;
1797 }
1798
1799 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1800 pData[109] = pan;
1801
1802 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1803 pData[110] = selfmask;
1804
1805 // next byte unknown
1806
1807 {
1808 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1809 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1810 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1811 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1812 pData[112] = lfo3ctrl;
1813 }
1814
1815 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1816 pData[113] = attenctl;
1817
1818 {
1819 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1820 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1821 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1822 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1823 pData[114] = lfo2ctrl;
1824 }
1825
1826 {
1827 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1828 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1829 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1830 if (VCFResonanceController != vcf_res_ctrl_none)
1831 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1832 pData[115] = lfo1ctrl;
1833 }
1834
1835 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1836 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1837 pData[116] = eg3depth;
1838
1839 // next 2 bytes unknown
1840
1841 const uint8_t channeloffset = ChannelOffset * 4;
1842 pData[120] = channeloffset;
1843
1844 {
1845 uint8_t regoptions = 0;
1846 if (MSDecode) regoptions |= 0x01; // bit 0
1847 if (SustainDefeat) regoptions |= 0x02; // bit 1
1848 pData[121] = regoptions;
1849 }
1850
1851 // next 2 bytes unknown
1852
1853 pData[124] = VelocityUpperLimit;
1854
1855 // next 3 bytes unknown
1856
1857 pData[128] = ReleaseTriggerDecay;
1858
1859 // next 2 bytes unknown
1860
1861 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1862 pData[131] = eg1hold;
1863
1864 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1865 (VCFCutoff & 0x7f); /* lower 7 bits */
1866 pData[132] = vcfcutoff;
1867
1868 pData[133] = VCFCutoffController;
1869
1870 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1871 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1872 pData[134] = vcfvelscale;
1873
1874 // next byte unknown
1875
1876 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1877 (VCFResonance & 0x7f); /* lower 7 bits */
1878 pData[136] = vcfresonance;
1879
1880 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1881 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1882 pData[137] = vcfbreakpoint;
1883
1884 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1885 VCFVelocityCurve * 5;
1886 pData[138] = vcfvelocity;
1887
1888 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1889 pData[139] = vcftype;
1890
1891 if (chunksize >= 148) {
1892 memcpy(&pData[140], DimensionUpperLimits, 8);
1893 }
1894 }
1895
1896 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1897 curve_type_t curveType = releaseVelocityResponseCurve;
1898 uint8_t depth = releaseVelocityResponseDepth;
1899 // this models a strange behaviour or bug in GSt: two of the
1900 // velocity response curves for release time are not used even
1901 // if specified, instead another curve is chosen.
1902 if ((curveType == curve_type_nonlinear && depth == 0) ||
1903 (curveType == curve_type_special && depth == 4)) {
1904 curveType = curve_type_nonlinear;
1905 depth = 3;
1906 }
1907 return GetVelocityTable(curveType, depth, 0);
1908 }
1909
1910 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1911 uint8_t vcfVelocityDynamicRange,
1912 uint8_t vcfVelocityScale,
1913 vcf_cutoff_ctrl_t vcfCutoffController)
1914 {
1915 curve_type_t curveType = vcfVelocityCurve;
1916 uint8_t depth = vcfVelocityDynamicRange;
1917 // even stranger GSt: two of the velocity response curves for
1918 // filter cutoff are not used, instead another special curve
1919 // is chosen. This curve is not used anywhere else.
1920 if ((curveType == curve_type_nonlinear && depth == 0) ||
1921 (curveType == curve_type_special && depth == 4)) {
1922 curveType = curve_type_special;
1923 depth = 5;
1924 }
1925 return GetVelocityTable(curveType, depth,
1926 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1927 ? vcfVelocityScale : 0);
1928 }
1929
1930 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1931 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1932 {
1933 double* table;
1934 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1935 if (pVelocityTables->count(tableKey)) { // if key exists
1936 table = (*pVelocityTables)[tableKey];
1937 }
1938 else {
1939 table = CreateVelocityTable(curveType, depth, scaling);
1940 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1941 }
1942 return table;
1943 }
1944
1945 Region* DimensionRegion::GetParent() const {
1946 return pRegion;
1947 }
1948
1949 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1950 leverage_ctrl_t decodedcontroller;
1951 switch (EncodedController) {
1952 // special controller
1953 case _lev_ctrl_none:
1954 decodedcontroller.type = leverage_ctrl_t::type_none;
1955 decodedcontroller.controller_number = 0;
1956 break;
1957 case _lev_ctrl_velocity:
1958 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1959 decodedcontroller.controller_number = 0;
1960 break;
1961 case _lev_ctrl_channelaftertouch:
1962 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1963 decodedcontroller.controller_number = 0;
1964 break;
1965
1966 // ordinary MIDI control change controller
1967 case _lev_ctrl_modwheel:
1968 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1969 decodedcontroller.controller_number = 1;
1970 break;
1971 case _lev_ctrl_breath:
1972 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973 decodedcontroller.controller_number = 2;
1974 break;
1975 case _lev_ctrl_foot:
1976 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977 decodedcontroller.controller_number = 4;
1978 break;
1979 case _lev_ctrl_effect1:
1980 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981 decodedcontroller.controller_number = 12;
1982 break;
1983 case _lev_ctrl_effect2:
1984 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985 decodedcontroller.controller_number = 13;
1986 break;
1987 case _lev_ctrl_genpurpose1:
1988 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989 decodedcontroller.controller_number = 16;
1990 break;
1991 case _lev_ctrl_genpurpose2:
1992 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993 decodedcontroller.controller_number = 17;
1994 break;
1995 case _lev_ctrl_genpurpose3:
1996 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997 decodedcontroller.controller_number = 18;
1998 break;
1999 case _lev_ctrl_genpurpose4:
2000 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001 decodedcontroller.controller_number = 19;
2002 break;
2003 case _lev_ctrl_portamentotime:
2004 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005 decodedcontroller.controller_number = 5;
2006 break;
2007 case _lev_ctrl_sustainpedal:
2008 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009 decodedcontroller.controller_number = 64;
2010 break;
2011 case _lev_ctrl_portamento:
2012 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013 decodedcontroller.controller_number = 65;
2014 break;
2015 case _lev_ctrl_sostenutopedal:
2016 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017 decodedcontroller.controller_number = 66;
2018 break;
2019 case _lev_ctrl_softpedal:
2020 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021 decodedcontroller.controller_number = 67;
2022 break;
2023 case _lev_ctrl_genpurpose5:
2024 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025 decodedcontroller.controller_number = 80;
2026 break;
2027 case _lev_ctrl_genpurpose6:
2028 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029 decodedcontroller.controller_number = 81;
2030 break;
2031 case _lev_ctrl_genpurpose7:
2032 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033 decodedcontroller.controller_number = 82;
2034 break;
2035 case _lev_ctrl_genpurpose8:
2036 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037 decodedcontroller.controller_number = 83;
2038 break;
2039 case _lev_ctrl_effect1depth:
2040 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041 decodedcontroller.controller_number = 91;
2042 break;
2043 case _lev_ctrl_effect2depth:
2044 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045 decodedcontroller.controller_number = 92;
2046 break;
2047 case _lev_ctrl_effect3depth:
2048 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049 decodedcontroller.controller_number = 93;
2050 break;
2051 case _lev_ctrl_effect4depth:
2052 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053 decodedcontroller.controller_number = 94;
2054 break;
2055 case _lev_ctrl_effect5depth:
2056 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057 decodedcontroller.controller_number = 95;
2058 break;
2059
2060 // unknown controller type
2061 default:
2062 throw gig::Exception("Unknown leverage controller type.");
2063 }
2064 return decodedcontroller;
2065 }
2066
2067 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2068 _lev_ctrl_t encodedcontroller;
2069 switch (DecodedController.type) {
2070 // special controller
2071 case leverage_ctrl_t::type_none:
2072 encodedcontroller = _lev_ctrl_none;
2073 break;
2074 case leverage_ctrl_t::type_velocity:
2075 encodedcontroller = _lev_ctrl_velocity;
2076 break;
2077 case leverage_ctrl_t::type_channelaftertouch:
2078 encodedcontroller = _lev_ctrl_channelaftertouch;
2079 break;
2080
2081 // ordinary MIDI control change controller
2082 case leverage_ctrl_t::type_controlchange:
2083 switch (DecodedController.controller_number) {
2084 case 1:
2085 encodedcontroller = _lev_ctrl_modwheel;
2086 break;
2087 case 2:
2088 encodedcontroller = _lev_ctrl_breath;
2089 break;
2090 case 4:
2091 encodedcontroller = _lev_ctrl_foot;
2092 break;
2093 case 12:
2094 encodedcontroller = _lev_ctrl_effect1;
2095 break;
2096 case 13:
2097 encodedcontroller = _lev_ctrl_effect2;
2098 break;
2099 case 16:
2100 encodedcontroller = _lev_ctrl_genpurpose1;
2101 break;
2102 case 17:
2103 encodedcontroller = _lev_ctrl_genpurpose2;
2104 break;
2105 case 18:
2106 encodedcontroller = _lev_ctrl_genpurpose3;
2107 break;
2108 case 19:
2109 encodedcontroller = _lev_ctrl_genpurpose4;
2110 break;
2111 case 5:
2112 encodedcontroller = _lev_ctrl_portamentotime;
2113 break;
2114 case 64:
2115 encodedcontroller = _lev_ctrl_sustainpedal;
2116 break;
2117 case 65:
2118 encodedcontroller = _lev_ctrl_portamento;
2119 break;
2120 case 66:
2121 encodedcontroller = _lev_ctrl_sostenutopedal;
2122 break;
2123 case 67:
2124 encodedcontroller = _lev_ctrl_softpedal;
2125 break;
2126 case 80:
2127 encodedcontroller = _lev_ctrl_genpurpose5;
2128 break;
2129 case 81:
2130 encodedcontroller = _lev_ctrl_genpurpose6;
2131 break;
2132 case 82:
2133 encodedcontroller = _lev_ctrl_genpurpose7;
2134 break;
2135 case 83:
2136 encodedcontroller = _lev_ctrl_genpurpose8;
2137 break;
2138 case 91:
2139 encodedcontroller = _lev_ctrl_effect1depth;
2140 break;
2141 case 92:
2142 encodedcontroller = _lev_ctrl_effect2depth;
2143 break;
2144 case 93:
2145 encodedcontroller = _lev_ctrl_effect3depth;
2146 break;
2147 case 94:
2148 encodedcontroller = _lev_ctrl_effect4depth;
2149 break;
2150 case 95:
2151 encodedcontroller = _lev_ctrl_effect5depth;
2152 break;
2153 default:
2154 throw gig::Exception("leverage controller number is not supported by the gig format");
2155 }
2156 break;
2157 default:
2158 throw gig::Exception("Unknown leverage controller type.");
2159 }
2160 return encodedcontroller;
2161 }
2162
2163 DimensionRegion::~DimensionRegion() {
2164 Instances--;
2165 if (!Instances) {
2166 // delete the velocity->volume tables
2167 VelocityTableMap::iterator iter;
2168 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2169 double* pTable = iter->second;
2170 if (pTable) delete[] pTable;
2171 }
2172 pVelocityTables->clear();
2173 delete pVelocityTables;
2174 pVelocityTables = NULL;
2175 }
2176 if (VelocityTable) delete[] VelocityTable;
2177 }
2178
2179 /**
2180 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2181 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2182 * and VelocityResponseCurveScaling) involved are taken into account to
2183 * calculate the amplitude factor. Use this method when a key was
2184 * triggered to get the volume with which the sample should be played
2185 * back.
2186 *
2187 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2188 * @returns amplitude factor (between 0.0 and 1.0)
2189 */
2190 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2191 return pVelocityAttenuationTable[MIDIKeyVelocity];
2192 }
2193
2194 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2195 return pVelocityReleaseTable[MIDIKeyVelocity];
2196 }
2197
2198 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2199 return pVelocityCutoffTable[MIDIKeyVelocity];
2200 }
2201
2202 /**
2203 * Updates the respective member variable and the lookup table / cache
2204 * that depends on this value.
2205 */
2206 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2207 pVelocityAttenuationTable =
2208 GetVelocityTable(
2209 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2210 );
2211 VelocityResponseCurve = curve;
2212 }
2213
2214 /**
2215 * Updates the respective member variable and the lookup table / cache
2216 * that depends on this value.
2217 */
2218 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2219 pVelocityAttenuationTable =
2220 GetVelocityTable(
2221 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2222 );
2223 VelocityResponseDepth = depth;
2224 }
2225
2226 /**
2227 * Updates the respective member variable and the lookup table / cache
2228 * that depends on this value.
2229 */
2230 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2231 pVelocityAttenuationTable =
2232 GetVelocityTable(
2233 VelocityResponseCurve, VelocityResponseDepth, scaling
2234 );
2235 VelocityResponseCurveScaling = scaling;
2236 }
2237
2238 /**
2239 * Updates the respective member variable and the lookup table / cache
2240 * that depends on this value.
2241 */
2242 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2243 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2244 ReleaseVelocityResponseCurve = curve;
2245 }
2246
2247 /**
2248 * Updates the respective member variable and the lookup table / cache
2249 * that depends on this value.
2250 */
2251 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2252 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2253 ReleaseVelocityResponseDepth = depth;
2254 }
2255
2256 /**
2257 * Updates the respective member variable and the lookup table / cache
2258 * that depends on this value.
2259 */
2260 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2261 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2262 VCFCutoffController = controller;
2263 }
2264
2265 /**
2266 * Updates the respective member variable and the lookup table / cache
2267 * that depends on this value.
2268 */
2269 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2270 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2271 VCFVelocityCurve = curve;
2272 }
2273
2274 /**
2275 * Updates the respective member variable and the lookup table / cache
2276 * that depends on this value.
2277 */
2278 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2279 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2280 VCFVelocityDynamicRange = range;
2281 }
2282
2283 /**
2284 * Updates the respective member variable and the lookup table / cache
2285 * that depends on this value.
2286 */
2287 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2288 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2289 VCFVelocityScale = scaling;
2290 }
2291
2292 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2293
2294 // line-segment approximations of the 15 velocity curves
2295
2296 // linear
2297 const int lin0[] = { 1, 1, 127, 127 };
2298 const int lin1[] = { 1, 21, 127, 127 };
2299 const int lin2[] = { 1, 45, 127, 127 };
2300 const int lin3[] = { 1, 74, 127, 127 };
2301 const int lin4[] = { 1, 127, 127, 127 };
2302
2303 // non-linear
2304 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2305 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2306 127, 127 };
2307 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2308 127, 127 };
2309 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2310 127, 127 };
2311 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2312
2313 // special
2314 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2315 113, 127, 127, 127 };
2316 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2317 118, 127, 127, 127 };
2318 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2319 85, 90, 91, 127, 127, 127 };
2320 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2321 117, 127, 127, 127 };
2322 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2323 127, 127 };
2324
2325 // this is only used by the VCF velocity curve
2326 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2327 91, 127, 127, 127 };
2328
2329 const int* const curves[] = { non0, non1, non2, non3, non4,
2330 lin0, lin1, lin2, lin3, lin4,
2331 spe0, spe1, spe2, spe3, spe4, spe5 };
2332
2333 double* const table = new double[128];
2334
2335 const int* curve = curves[curveType * 5 + depth];
2336 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2337
2338 table[0] = 0;
2339 for (int x = 1 ; x < 128 ; x++) {
2340
2341 if (x > curve[2]) curve += 2;
2342 double y = curve[1] + (x - curve[0]) *
2343 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2344 y = y / 127;
2345
2346 // Scale up for s > 20, down for s < 20. When
2347 // down-scaling, the curve still ends at 1.0.
2348 if (s < 20 && y >= 0.5)
2349 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2350 else
2351 y = y * (s / 20.0);
2352 if (y > 1) y = 1;
2353
2354 table[x] = y;
2355 }
2356 return table;
2357 }
2358
2359
2360 // *************** Region ***************
2361 // *
2362
2363 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2364 // Initialization
2365 Dimensions = 0;
2366 for (int i = 0; i < 256; i++) {
2367 pDimensionRegions[i] = NULL;
2368 }
2369 Layers = 1;
2370 File* file = (File*) GetParent()->GetParent();
2371 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2372
2373 // Actual Loading
2374
2375 if (!file->GetAutoLoad()) return;
2376
2377 LoadDimensionRegions(rgnList);
2378
2379 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2380 if (_3lnk) {
2381 DimensionRegions = _3lnk->ReadUint32();
2382 for (int i = 0; i < dimensionBits; i++) {
2383 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2384 uint8_t bits = _3lnk->ReadUint8();
2385 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2386 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2387 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2388 if (dimension == dimension_none) { // inactive dimension
2389 pDimensionDefinitions[i].dimension = dimension_none;
2390 pDimensionDefinitions[i].bits = 0;
2391 pDimensionDefinitions[i].zones = 0;
2392 pDimensionDefinitions[i].split_type = split_type_bit;
2393 pDimensionDefinitions[i].zone_size = 0;
2394 }
2395 else { // active dimension
2396 pDimensionDefinitions[i].dimension = dimension;
2397 pDimensionDefinitions[i].bits = bits;
2398 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2399 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2400 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2401 Dimensions++;
2402
2403 // if this is a layer dimension, remember the amount of layers
2404 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2405 }
2406 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2407 }
2408 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2409
2410 // if there's a velocity dimension and custom velocity zone splits are used,
2411 // update the VelocityTables in the dimension regions
2412 UpdateVelocityTable();
2413
2414 // jump to start of the wave pool indices (if not already there)
2415 if (file->pVersion && file->pVersion->major == 3)
2416 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2417 else
2418 _3lnk->SetPos(44);
2419
2420 // load sample references (if auto loading is enabled)
2421 if (file->GetAutoLoad()) {
2422 for (uint i = 0; i < DimensionRegions; i++) {
2423 uint32_t wavepoolindex = _3lnk->ReadUint32();
2424 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2425 }
2426 GetSample(); // load global region sample reference
2427 }
2428 } else {
2429 DimensionRegions = 0;
2430 for (int i = 0 ; i < 8 ; i++) {
2431 pDimensionDefinitions[i].dimension = dimension_none;
2432 pDimensionDefinitions[i].bits = 0;
2433 pDimensionDefinitions[i].zones = 0;
2434 }
2435 }
2436
2437 // make sure there is at least one dimension region
2438 if (!DimensionRegions) {
2439 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2440 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2441 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2442 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2443 DimensionRegions = 1;
2444 }
2445 }
2446
2447 /**
2448 * Apply Region settings and all its DimensionRegions to the respective
2449 * RIFF chunks. You have to call File::Save() to make changes persistent.
2450 *
2451 * Usually there is absolutely no need to call this method explicitly.
2452 * It will be called automatically when File::Save() was called.
2453 *
2454 * @throws gig::Exception if samples cannot be dereferenced
2455 */
2456 void Region::UpdateChunks() {
2457 // in the gig format we don't care about the Region's sample reference
2458 // but we still have to provide some existing one to not corrupt the
2459 // file, so to avoid the latter we simply always assign the sample of
2460 // the first dimension region of this region
2461 pSample = pDimensionRegions[0]->pSample;
2462
2463 // first update base class's chunks
2464 DLS::Region::UpdateChunks();
2465
2466 // update dimension region's chunks
2467 for (int i = 0; i < DimensionRegions; i++) {
2468 pDimensionRegions[i]->UpdateChunks();
2469 }
2470
2471 File* pFile = (File*) GetParent()->GetParent();
2472 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2473 const int iMaxDimensions = version3 ? 8 : 5;
2474 const int iMaxDimensionRegions = version3 ? 256 : 32;
2475
2476 // make sure '3lnk' chunk exists
2477 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2478 if (!_3lnk) {
2479 const int _3lnkChunkSize = version3 ? 1092 : 172;
2480 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2481 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2482
2483 // move 3prg to last position
2484 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2485 }
2486
2487 // update dimension definitions in '3lnk' chunk
2488 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2489 store32(&pData[0], DimensionRegions);
2490 int shift = 0;
2491 for (int i = 0; i < iMaxDimensions; i++) {
2492 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2493 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2494 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2495 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2496 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2497 // next 3 bytes unknown, always zero?
2498
2499 shift += pDimensionDefinitions[i].bits;
2500 }
2501
2502 // update wave pool table in '3lnk' chunk
2503 const int iWavePoolOffset = version3 ? 68 : 44;
2504 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2505 int iWaveIndex = -1;
2506 if (i < DimensionRegions) {
2507 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2508 File::SampleList::iterator iter = pFile->pSamples->begin();
2509 File::SampleList::iterator end = pFile->pSamples->end();
2510 for (int index = 0; iter != end; ++iter, ++index) {
2511 if (*iter == pDimensionRegions[i]->pSample) {
2512 iWaveIndex = index;
2513 break;
2514 }
2515 }
2516 }
2517 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2518 }
2519 }
2520
2521 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2522 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2523 if (_3prg) {
2524 int dimensionRegionNr = 0;
2525 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2526 while (_3ewl) {
2527 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2528 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2529 dimensionRegionNr++;
2530 }
2531 _3ewl = _3prg->GetNextSubList();
2532 }
2533 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2534 }
2535 }
2536
2537 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2538 // update KeyRange struct and make sure regions are in correct order
2539 DLS::Region::SetKeyRange(Low, High);
2540 // update Region key table for fast lookup
2541 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2542 }
2543
2544 void Region::UpdateVelocityTable() {
2545 // get velocity dimension's index
2546 int veldim = -1;
2547 for (int i = 0 ; i < Dimensions ; i++) {
2548 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2549 veldim = i;
2550 break;
2551 }
2552 }
2553 if (veldim == -1) return;
2554
2555 int step = 1;
2556 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2557 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2558 int end = step * pDimensionDefinitions[veldim].zones;
2559
2560 // loop through all dimension regions for all dimensions except the velocity dimension
2561 int dim[8] = { 0 };
2562 for (int i = 0 ; i < DimensionRegions ; i++) {
2563
2564 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2565 pDimensionRegions[i]->VelocityUpperLimit) {
2566 // create the velocity table
2567 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2568 if (!table) {
2569 table = new uint8_t[128];
2570 pDimensionRegions[i]->VelocityTable = table;
2571 }
2572 int tableidx = 0;
2573 int velocityZone = 0;
2574 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2575 for (int k = i ; k < end ; k += step) {
2576 DimensionRegion *d = pDimensionRegions[k];
2577 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2578 velocityZone++;
2579 }
2580 } else { // gig2
2581 for (int k = i ; k < end ; k += step) {
2582 DimensionRegion *d = pDimensionRegions[k];
2583 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2584 velocityZone++;
2585 }
2586 }
2587 } else {
2588 if (pDimensionRegions[i]->VelocityTable) {
2589 delete[] pDimensionRegions[i]->VelocityTable;
2590 pDimensionRegions[i]->VelocityTable = 0;
2591 }
2592 }
2593
2594 int j;
2595 int shift = 0;
2596 for (j = 0 ; j < Dimensions ; j++) {
2597 if (j == veldim) i += skipveldim; // skip velocity dimension
2598 else {
2599 dim[j]++;
2600 if (dim[j] < pDimensionDefinitions[j].zones) break;
2601 else {
2602 // skip unused dimension regions
2603 dim[j] = 0;
2604 i += ((1 << pDimensionDefinitions[j].bits) -
2605 pDimensionDefinitions[j].zones) << shift;
2606 }
2607 }
2608 shift += pDimensionDefinitions[j].bits;
2609 }
2610 if (j == Dimensions) break;
2611 }
2612 }
2613
2614 /** @brief Einstein would have dreamed of it - create a new dimension.
2615 *
2616 * Creates a new dimension with the dimension definition given by
2617 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2618 * There is a hard limit of dimensions and total amount of "bits" all
2619 * dimensions can have. This limit is dependant to what gig file format
2620 * version this file refers to. The gig v2 (and lower) format has a
2621 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2622 * format has a limit of 8.
2623 *
2624 * @param pDimDef - defintion of the new dimension
2625 * @throws gig::Exception if dimension of the same type exists already
2626 * @throws gig::Exception if amount of dimensions or total amount of
2627 * dimension bits limit is violated
2628 */
2629 void Region::AddDimension(dimension_def_t* pDimDef) {
2630 // check if max. amount of dimensions reached
2631 File* file = (File*) GetParent()->GetParent();
2632 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2633 if (Dimensions >= iMaxDimensions)
2634 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2635 // check if max. amount of dimension bits reached
2636 int iCurrentBits = 0;
2637 for (int i = 0; i < Dimensions; i++)
2638 iCurrentBits += pDimensionDefinitions[i].bits;
2639 if (iCurrentBits >= iMaxDimensions)
2640 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2641 const int iNewBits = iCurrentBits + pDimDef->bits;
2642 if (iNewBits > iMaxDimensions)
2643 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2644 // check if there's already a dimensions of the same type
2645 for (int i = 0; i < Dimensions; i++)
2646 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2647 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2648
2649 // pos is where the new dimension should be placed, normally
2650 // last in list, except for the samplechannel dimension which
2651 // has to be first in list
2652 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2653 int bitpos = 0;
2654 for (int i = 0 ; i < pos ; i++)
2655 bitpos += pDimensionDefinitions[i].bits;
2656
2657 // make room for the new dimension
2658 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2659 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2660 for (int j = Dimensions ; j > pos ; j--) {
2661 pDimensionRegions[i]->DimensionUpperLimits[j] =
2662 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2663 }
2664 }
2665
2666 // assign definition of new dimension
2667 pDimensionDefinitions[pos] = *pDimDef;
2668
2669 // auto correct certain dimension definition fields (where possible)
2670 pDimensionDefinitions[pos].split_type =
2671 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2672 pDimensionDefinitions[pos].zone_size =
2673 __resolveZoneSize(pDimensionDefinitions[pos]);
2674
2675 // create new dimension region(s) for this new dimension, and make
2676 // sure that the dimension regions are placed correctly in both the
2677 // RIFF list and the pDimensionRegions array
2678 RIFF::Chunk* moveTo = NULL;
2679 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2680 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2681 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2682 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2683 }
2684 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2685 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2687 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2688 // create a new dimension region and copy all parameter values from
2689 // an existing dimension region
2690 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2691 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2692
2693 DimensionRegions++;
2694 }
2695 }
2696 moveTo = pDimensionRegions[i]->pParentList;
2697 }
2698
2699 // initialize the upper limits for this dimension
2700 int mask = (1 << bitpos) - 1;
2701 for (int z = 0 ; z < pDimDef->zones ; z++) {
2702 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2703 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2704 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2705 (z << bitpos) |
2706 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2707 }
2708 }
2709
2710 Dimensions++;
2711
2712 // if this is a layer dimension, update 'Layers' attribute
2713 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2714
2715 UpdateVelocityTable();
2716 }
2717
2718 /** @brief Delete an existing dimension.
2719 *
2720 * Deletes the dimension given by \a pDimDef and deletes all respective
2721 * dimension regions, that is all dimension regions where the dimension's
2722 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2723 * for example this would delete all dimension regions for the case(s)
2724 * where the sustain pedal is pressed down.
2725 *
2726 * @param pDimDef - dimension to delete
2727 * @throws gig::Exception if given dimension cannot be found
2728 */
2729 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2730 // get dimension's index
2731 int iDimensionNr = -1;
2732 for (int i = 0; i < Dimensions; i++) {
2733 if (&pDimensionDefinitions[i] == pDimDef) {
2734 iDimensionNr = i;
2735 break;
2736 }
2737 }
2738 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2739
2740 // get amount of bits below the dimension to delete
2741 int iLowerBits = 0;
2742 for (int i = 0; i < iDimensionNr; i++)
2743 iLowerBits += pDimensionDefinitions[i].bits;
2744
2745 // get amount ot bits above the dimension to delete
2746 int iUpperBits = 0;
2747 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2748 iUpperBits += pDimensionDefinitions[i].bits;
2749
2750 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2751
2752 // delete dimension regions which belong to the given dimension
2753 // (that is where the dimension's bit > 0)
2754 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2755 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2756 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2757 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2758 iObsoleteBit << iLowerBits |
2759 iLowerBit;
2760
2761 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2762 delete pDimensionRegions[iToDelete];
2763 pDimensionRegions[iToDelete] = NULL;
2764 DimensionRegions--;
2765 }
2766 }
2767 }
2768
2769 // defrag pDimensionRegions array
2770 // (that is remove the NULL spaces within the pDimensionRegions array)
2771 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2772 if (!pDimensionRegions[iTo]) {
2773 if (iFrom <= iTo) iFrom = iTo + 1;
2774 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2775 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2776 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2777 pDimensionRegions[iFrom] = NULL;
2778 }
2779 }
2780 }
2781
2782 // remove the this dimension from the upper limits arrays
2783 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2784 DimensionRegion* d = pDimensionRegions[j];
2785 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2786 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2787 }
2788 d->DimensionUpperLimits[Dimensions - 1] = 127;
2789 }
2790
2791 // 'remove' dimension definition
2792 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2793 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2794 }
2795 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2796 pDimensionDefinitions[Dimensions - 1].bits = 0;
2797 pDimensionDefinitions[Dimensions - 1].zones = 0;
2798
2799 Dimensions--;
2800
2801 // if this was a layer dimension, update 'Layers' attribute
2802 if (pDimDef->dimension == dimension_layer) Layers = 1;
2803 }
2804
2805 Region::~Region() {
2806 for (int i = 0; i < 256; i++) {
2807 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2808 }
2809 }
2810
2811 /**
2812 * Use this method in your audio engine to get the appropriate dimension
2813 * region with it's articulation data for the current situation. Just
2814 * call the method with the current MIDI controller values and you'll get
2815 * the DimensionRegion with the appropriate articulation data for the
2816 * current situation (for this Region of course only). To do that you'll
2817 * first have to look which dimensions with which controllers and in
2818 * which order are defined for this Region when you load the .gig file.
2819 * Special cases are e.g. layer or channel dimensions where you just put
2820 * in the index numbers instead of a MIDI controller value (means 0 for
2821 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2822 * etc.).
2823 *
2824 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2825 * @returns adress to the DimensionRegion for the given situation
2826 * @see pDimensionDefinitions
2827 * @see Dimensions
2828 */
2829 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2830 uint8_t bits;
2831 int veldim = -1;
2832 int velbitpos;
2833 int bitpos = 0;
2834 int dimregidx = 0;
2835 for (uint i = 0; i < Dimensions; i++) {
2836 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2837 // the velocity dimension must be handled after the other dimensions
2838 veldim = i;
2839 velbitpos = bitpos;
2840 } else {
2841 switch (pDimensionDefinitions[i].split_type) {
2842 case split_type_normal:
2843 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2844 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2845 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2846 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2847 }
2848 } else {
2849 // gig2: evenly sized zones
2850 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2851 }
2852 break;
2853 case split_type_bit: // the value is already the sought dimension bit number
2854 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2855 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2856 break;
2857 }
2858 dimregidx |= bits << bitpos;
2859 }
2860 bitpos += pDimensionDefinitions[i].bits;
2861 }
2862 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2863 if (veldim != -1) {
2864 // (dimreg is now the dimension region for the lowest velocity)
2865 if (dimreg->VelocityTable) // custom defined zone ranges
2866 bits = dimreg->VelocityTable[DimValues[veldim]];
2867 else // normal split type
2868 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2869
2870 dimregidx |= bits << velbitpos;
2871 dimreg = pDimensionRegions[dimregidx];
2872 }
2873 return dimreg;
2874 }
2875
2876 /**
2877 * Returns the appropriate DimensionRegion for the given dimension bit
2878 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2879 * instead of calling this method directly!
2880 *
2881 * @param DimBits Bit numbers for dimension 0 to 7
2882 * @returns adress to the DimensionRegion for the given dimension
2883 * bit numbers
2884 * @see GetDimensionRegionByValue()
2885 */
2886 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2887 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2888 << pDimensionDefinitions[5].bits | DimBits[5])
2889 << pDimensionDefinitions[4].bits | DimBits[4])
2890 << pDimensionDefinitions[3].bits | DimBits[3])
2891 << pDimensionDefinitions[2].bits | DimBits[2])
2892 << pDimensionDefinitions[1].bits | DimBits[1])
2893 << pDimensionDefinitions[0].bits | DimBits[0]];
2894 }
2895
2896 /**
2897 * Returns pointer address to the Sample referenced with this region.
2898 * This is the global Sample for the entire Region (not sure if this is
2899 * actually used by the Gigasampler engine - I would only use the Sample
2900 * referenced by the appropriate DimensionRegion instead of this sample).
2901 *
2902 * @returns address to Sample or NULL if there is no reference to a
2903 * sample saved in the .gig file
2904 */
2905 Sample* Region::GetSample() {
2906 if (pSample) return static_cast<gig::Sample*>(pSample);
2907 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2908 }
2909
2910 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2911 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2912 File* file = (File*) GetParent()->GetParent();
2913 if (!file->pWavePoolTable) return NULL;
2914 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2915 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2916 Sample* sample = file->GetFirstSample(pProgress);
2917 while (sample) {
2918 if (sample->ulWavePoolOffset == soughtoffset &&
2919 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2920 sample = file->GetNextSample();
2921 }
2922 return NULL;
2923 }
2924
2925
2926 // *************** MidiRule ***************
2927 // *
2928
2929 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2930 _3ewg->SetPos(36);
2931 Triggers = _3ewg->ReadUint8();
2932 _3ewg->SetPos(40);
2933 ControllerNumber = _3ewg->ReadUint8();
2934 _3ewg->SetPos(46);
2935 for (int i = 0 ; i < Triggers ; i++) {
2936 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2937 pTriggers[i].Descending = _3ewg->ReadUint8();
2938 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2939 pTriggers[i].Key = _3ewg->ReadUint8();
2940 pTriggers[i].NoteOff = _3ewg->ReadUint8();
2941 pTriggers[i].Velocity = _3ewg->ReadUint8();
2942 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2943 _3ewg->ReadUint8();
2944 }
2945 }
2946
2947
2948 // *************** Instrument ***************
2949 // *
2950
2951 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2952 static const DLS::Info::string_length_t fixedStringLengths[] = {
2953 { CHUNK_ID_INAM, 64 },
2954 { CHUNK_ID_ISFT, 12 },
2955 { 0, 0 }
2956 };
2957 pInfo->SetFixedStringLengths(fixedStringLengths);
2958
2959 // Initialization
2960 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2961 EffectSend = 0;
2962 Attenuation = 0;
2963 FineTune = 0;
2964 PitchbendRange = 0;
2965 PianoReleaseMode = false;
2966 DimensionKeyRange.low = 0;
2967 DimensionKeyRange.high = 0;
2968 pMidiRules = new MidiRule*[3];
2969 pMidiRules[0] = NULL;
2970
2971 // Loading
2972 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2973 if (lart) {
2974 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2975 if (_3ewg) {
2976 EffectSend = _3ewg->ReadUint16();
2977 Attenuation = _3ewg->ReadInt32();
2978 FineTune = _3ewg->ReadInt16();
2979 PitchbendRange = _3ewg->ReadInt16();
2980 uint8_t dimkeystart = _3ewg->ReadUint8();
2981 PianoReleaseMode = dimkeystart & 0x01;
2982 DimensionKeyRange.low = dimkeystart >> 1;
2983 DimensionKeyRange.high = _3ewg->ReadUint8();
2984
2985 if (_3ewg->GetSize() > 32) {
2986 // read MIDI rules
2987 int i = 0;
2988 _3ewg->SetPos(32);
2989 uint8_t id1 = _3ewg->ReadUint8();
2990 uint8_t id2 = _3ewg->ReadUint8();
2991
2992 if (id1 == 4 && id2 == 16) {
2993 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2994 }
2995 //TODO: all the other types of rules
2996
2997 pMidiRules[i] = NULL;
2998 }
2999 }
3000 }
3001
3002 if (pFile->GetAutoLoad()) {
3003 if (!pRegions) pRegions = new RegionList;
3004 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3005 if (lrgn) {
3006 RIFF::List* rgn = lrgn->GetFirstSubList();
3007 while (rgn) {
3008 if (rgn->GetListType() == LIST_TYPE_RGN) {
3009 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3010 pRegions->push_back(new Region(this, rgn));
3011 }
3012 rgn = lrgn->GetNextSubList();
3013 }
3014 // Creating Region Key Table for fast lookup
3015 UpdateRegionKeyTable();
3016 }
3017 }
3018
3019 __notify_progress(pProgress, 1.0f); // notify done
3020 }
3021
3022 void Instrument::UpdateRegionKeyTable() {
3023 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3024 RegionList::iterator iter = pRegions->begin();
3025 RegionList::iterator end = pRegions->end();
3026 for (; iter != end; ++iter) {
3027 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3028 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3029 RegionKeyTable[iKey] = pRegion;
3030 }
3031 }
3032 }
3033
3034 Instrument::~Instrument() {
3035 delete[] pMidiRules;
3036 }
3037
3038 /**
3039 * Apply Instrument with all its Regions to the respective RIFF chunks.
3040 * You have to call File::Save() to make changes persistent.
3041 *
3042 * Usually there is absolutely no need to call this method explicitly.
3043 * It will be called automatically when File::Save() was called.
3044 *
3045 * @throws gig::Exception if samples cannot be dereferenced
3046 */
3047 void Instrument::UpdateChunks() {
3048 // first update base classes' chunks
3049 DLS::Instrument::UpdateChunks();
3050
3051 // update Regions' chunks