/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1713 - (show annotations) (download)
Thu Mar 6 20:42:22 2008 UTC (16 years ago) by persson
File size: 174558 byte(s)
* fixed compilation with gcc 4.3

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Apply sample and its settings to the respective RIFF chunks. You have
458 * to call File::Save() to make changes persistent.
459 *
460 * Usually there is absolutely no need to call this method explicitly.
461 * It will be called automatically when File::Save() was called.
462 *
463 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 * was provided yet
465 * @throws gig::Exception if there is any invalid sample setting
466 */
467 void Sample::UpdateChunks() {
468 // first update base class's chunks
469 DLS::Sample::UpdateChunks();
470
471 // make sure 'smpl' chunk exists
472 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 if (!pCkSmpl) {
474 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475 memset(pCkSmpl->LoadChunkData(), 0, 60);
476 }
477 // update 'smpl' chunk
478 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 store32(&pData[0], Manufacturer);
481 store32(&pData[4], Product);
482 store32(&pData[8], SamplePeriod);
483 store32(&pData[12], MIDIUnityNote);
484 store32(&pData[16], FineTune);
485 store32(&pData[20], SMPTEFormat);
486 store32(&pData[24], SMPTEOffset);
487 store32(&pData[28], Loops);
488
489 // we skip 'manufByt' for now (4 bytes)
490
491 store32(&pData[36], LoopID);
492 store32(&pData[40], LoopType);
493 store32(&pData[44], LoopStart);
494 store32(&pData[48], LoopEnd);
495 store32(&pData[52], LoopFraction);
496 store32(&pData[56], LoopPlayCount);
497
498 // make sure '3gix' chunk exists
499 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 // determine appropriate sample group index (to be stored in chunk)
502 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 File* pFile = static_cast<File*>(pParent);
504 if (pFile->pGroups) {
505 std::list<Group*>::iterator iter = pFile->pGroups->begin();
506 std::list<Group*>::iterator end = pFile->pGroups->end();
507 for (int i = 0; iter != end; i++, iter++) {
508 if (*iter == pGroup) {
509 iSampleGroup = i;
510 break; // found
511 }
512 }
513 }
514 // update '3gix' chunk
515 pData = (uint8_t*) pCk3gix->LoadChunkData();
516 store16(&pData[0], iSampleGroup);
517 }
518
519 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520 void Sample::ScanCompressedSample() {
521 //TODO: we have to add some more scans here (e.g. determine compression rate)
522 this->SamplesTotal = 0;
523 std::list<unsigned long> frameOffsets;
524
525 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527
528 // Scanning
529 pCkData->SetPos(0);
530 if (Channels == 2) { // Stereo
531 for (int i = 0 ; ; i++) {
532 // for 24 bit samples every 8:th frame offset is
533 // stored, to save some memory
534 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535
536 const int mode_l = pCkData->ReadUint8();
537 const int mode_r = pCkData->ReadUint8();
538 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540
541 if (pCkData->RemainingBytes() <= frameSize) {
542 SamplesInLastFrame =
543 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545 SamplesTotal += SamplesInLastFrame;
546 break;
547 }
548 SamplesTotal += SamplesPerFrame;
549 pCkData->SetPos(frameSize, RIFF::stream_curpos);
550 }
551 }
552 else { // Mono
553 for (int i = 0 ; ; i++) {
554 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555
556 const int mode = pCkData->ReadUint8();
557 if (mode > 5) throw gig::Exception("Unknown compression mode");
558 const unsigned long frameSize = bytesPerFrame[mode];
559
560 if (pCkData->RemainingBytes() <= frameSize) {
561 SamplesInLastFrame =
562 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563 SamplesTotal += SamplesInLastFrame;
564 break;
565 }
566 SamplesTotal += SamplesPerFrame;
567 pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 }
569 }
570 pCkData->SetPos(0);
571
572 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573 if (FrameTable) delete[] FrameTable;
574 FrameTable = new unsigned long[frameOffsets.size()];
575 std::list<unsigned long>::iterator end = frameOffsets.end();
576 std::list<unsigned long>::iterator iter = frameOffsets.begin();
577 for (int i = 0; iter != end; i++, iter++) {
578 FrameTable[i] = *iter;
579 }
580 }
581
582 /**
583 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584 * ReleaseSampleData() to free the memory if you don't need the cached
585 * sample data anymore.
586 *
587 * @returns buffer_t structure with start address and size of the buffer
588 * in bytes
589 * @see ReleaseSampleData(), Read(), SetPos()
590 */
591 buffer_t Sample::LoadSampleData() {
592 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593 }
594
595 /**
596 * Reads (uncompresses if needed) and caches the first \a SampleCount
597 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598 * memory space if you don't need the cached samples anymore. There is no
599 * guarantee that exactly \a SampleCount samples will be cached; this is
600 * not an error. The size will be eventually truncated e.g. to the
601 * beginning of a frame of a compressed sample. This is done for
602 * efficiency reasons while streaming the wave by your sampler engine
603 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604 * that will be returned to determine the actual cached samples, but note
605 * that the size is given in bytes! You get the number of actually cached
606 * samples by dividing it by the frame size of the sample:
607 * @code
608 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609 * long cachedsamples = buf.Size / pSample->FrameSize;
610 * @endcode
611 *
612 * @param SampleCount - number of sample points to load into RAM
613 * @returns buffer_t structure with start address and size of
614 * the cached sample data in bytes
615 * @see ReleaseSampleData(), Read(), SetPos()
616 */
617 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619 }
620
621 /**
622 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623 * ReleaseSampleData() to free the memory if you don't need the cached
624 * sample data anymore.
625 * The method will add \a NullSamplesCount silence samples past the
626 * official buffer end (this won't affect the 'Size' member of the
627 * buffer_t structure, that means 'Size' always reflects the size of the
628 * actual sample data, the buffer might be bigger though). Silence
629 * samples past the official buffer are needed for differential
630 * algorithms that always have to take subsequent samples into account
631 * (resampling/interpolation would be an important example) and avoids
632 * memory access faults in such cases.
633 *
634 * @param NullSamplesCount - number of silence samples the buffer should
635 * be extended past it's data end
636 * @returns buffer_t structure with start address and
637 * size of the buffer in bytes
638 * @see ReleaseSampleData(), Read(), SetPos()
639 */
640 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642 }
643
644 /**
645 * Reads (uncompresses if needed) and caches the first \a SampleCount
646 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647 * memory space if you don't need the cached samples anymore. There is no
648 * guarantee that exactly \a SampleCount samples will be cached; this is
649 * not an error. The size will be eventually truncated e.g. to the
650 * beginning of a frame of a compressed sample. This is done for
651 * efficiency reasons while streaming the wave by your sampler engine
652 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653 * that will be returned to determine the actual cached samples, but note
654 * that the size is given in bytes! You get the number of actually cached
655 * samples by dividing it by the frame size of the sample:
656 * @code
657 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658 * long cachedsamples = buf.Size / pSample->FrameSize;
659 * @endcode
660 * The method will add \a NullSamplesCount silence samples past the
661 * official buffer end (this won't affect the 'Size' member of the
662 * buffer_t structure, that means 'Size' always reflects the size of the
663 * actual sample data, the buffer might be bigger though). Silence
664 * samples past the official buffer are needed for differential
665 * algorithms that always have to take subsequent samples into account
666 * (resampling/interpolation would be an important example) and avoids
667 * memory access faults in such cases.
668 *
669 * @param SampleCount - number of sample points to load into RAM
670 * @param NullSamplesCount - number of silence samples the buffer should
671 * be extended past it's data end
672 * @returns buffer_t structure with start address and
673 * size of the cached sample data in bytes
674 * @see ReleaseSampleData(), Read(), SetPos()
675 */
676 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 RAMCache.pStart = new int8_t[allocationsize];
681 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
682 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
683 // fill the remaining buffer space with silence samples
684 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
685 return GetCache();
686 }
687
688 /**
689 * Returns current cached sample points. A buffer_t structure will be
690 * returned which contains address pointer to the begin of the cache and
691 * the size of the cached sample data in bytes. Use
692 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
693 * RAM.
694 *
695 * @returns buffer_t structure with current cached sample points
696 * @see LoadSampleData();
697 */
698 buffer_t Sample::GetCache() {
699 // return a copy of the buffer_t structure
700 buffer_t result;
701 result.Size = this->RAMCache.Size;
702 result.pStart = this->RAMCache.pStart;
703 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
704 return result;
705 }
706
707 /**
708 * Frees the cached sample from RAM if loaded with
709 * <i>LoadSampleData()</i> previously.
710 *
711 * @see LoadSampleData();
712 */
713 void Sample::ReleaseSampleData() {
714 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
715 RAMCache.pStart = NULL;
716 RAMCache.Size = 0;
717 }
718
719 /** @brief Resize sample.
720 *
721 * Resizes the sample's wave form data, that is the actual size of
722 * sample wave data possible to be written for this sample. This call
723 * will return immediately and just schedule the resize operation. You
724 * should call File::Save() to actually perform the resize operation(s)
725 * "physically" to the file. As this can take a while on large files, it
726 * is recommended to call Resize() first on all samples which have to be
727 * resized and finally to call File::Save() to perform all those resize
728 * operations in one rush.
729 *
730 * The actual size (in bytes) is dependant to the current FrameSize
731 * value. You may want to set FrameSize before calling Resize().
732 *
733 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
734 * enlarged samples before calling File::Save() as this might exceed the
735 * current sample's boundary!
736 *
737 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
738 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
739 * other formats will fail!
740 *
741 * @param iNewSize - new sample wave data size in sample points (must be
742 * greater than zero)
743 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
744 * or if \a iNewSize is less than 1
745 * @throws gig::Exception if existing sample is compressed
746 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
747 * DLS::Sample::FormatTag, File::Save()
748 */
749 void Sample::Resize(int iNewSize) {
750 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
751 DLS::Sample::Resize(iNewSize);
752 }
753
754 /**
755 * Sets the position within the sample (in sample points, not in
756 * bytes). Use this method and <i>Read()</i> if you don't want to load
757 * the sample into RAM, thus for disk streaming.
758 *
759 * Although the original Gigasampler engine doesn't allow positioning
760 * within compressed samples, I decided to implement it. Even though
761 * the Gigasampler format doesn't allow to define loops for compressed
762 * samples at the moment, positioning within compressed samples might be
763 * interesting for some sampler engines though. The only drawback about
764 * my decision is that it takes longer to load compressed gig Files on
765 * startup, because it's neccessary to scan the samples for some
766 * mandatory informations. But I think as it doesn't affect the runtime
767 * efficiency, nobody will have a problem with that.
768 *
769 * @param SampleCount number of sample points to jump
770 * @param Whence optional: to which relation \a SampleCount refers
771 * to, if omited <i>RIFF::stream_start</i> is assumed
772 * @returns the new sample position
773 * @see Read()
774 */
775 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
776 if (Compressed) {
777 switch (Whence) {
778 case RIFF::stream_curpos:
779 this->SamplePos += SampleCount;
780 break;
781 case RIFF::stream_end:
782 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
783 break;
784 case RIFF::stream_backward:
785 this->SamplePos -= SampleCount;
786 break;
787 case RIFF::stream_start: default:
788 this->SamplePos = SampleCount;
789 break;
790 }
791 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
792
793 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
794 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
795 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
796 return this->SamplePos;
797 }
798 else { // not compressed
799 unsigned long orderedBytes = SampleCount * this->FrameSize;
800 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
801 return (result == orderedBytes) ? SampleCount
802 : result / this->FrameSize;
803 }
804 }
805
806 /**
807 * Returns the current position in the sample (in sample points).
808 */
809 unsigned long Sample::GetPos() {
810 if (Compressed) return SamplePos;
811 else return pCkData->GetPos() / FrameSize;
812 }
813
814 /**
815 * Reads \a SampleCount number of sample points from the position stored
816 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
817 * the position within the sample respectively, this method honors the
818 * looping informations of the sample (if any). The sample wave stream
819 * will be decompressed on the fly if using a compressed sample. Use this
820 * method if you don't want to load the sample into RAM, thus for disk
821 * streaming. All this methods needs to know to proceed with streaming
822 * for the next time you call this method is stored in \a pPlaybackState.
823 * You have to allocate and initialize the playback_state_t structure by
824 * yourself before you use it to stream a sample:
825 * @code
826 * gig::playback_state_t playbackstate;
827 * playbackstate.position = 0;
828 * playbackstate.reverse = false;
829 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
830 * @endcode
831 * You don't have to take care of things like if there is actually a loop
832 * defined or if the current read position is located within a loop area.
833 * The method already handles such cases by itself.
834 *
835 * <b>Caution:</b> If you are using more than one streaming thread, you
836 * have to use an external decompression buffer for <b>EACH</b>
837 * streaming thread to avoid race conditions and crashes!
838 *
839 * @param pBuffer destination buffer
840 * @param SampleCount number of sample points to read
841 * @param pPlaybackState will be used to store and reload the playback
842 * state for the next ReadAndLoop() call
843 * @param pDimRgn dimension region with looping information
844 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
845 * @returns number of successfully read sample points
846 * @see CreateDecompressionBuffer()
847 */
848 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
849 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
850 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
851 uint8_t* pDst = (uint8_t*) pBuffer;
852
853 SetPos(pPlaybackState->position); // recover position from the last time
854
855 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
856
857 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
858 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
859
860 if (GetPos() <= loopEnd) {
861 switch (loop.LoopType) {
862
863 case loop_type_bidirectional: { //TODO: not tested yet!
864 do {
865 // if not endless loop check if max. number of loop cycles have been passed
866 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
867
868 if (!pPlaybackState->reverse) { // forward playback
869 do {
870 samplestoloopend = loopEnd - GetPos();
871 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
872 samplestoread -= readsamples;
873 totalreadsamples += readsamples;
874 if (readsamples == samplestoloopend) {
875 pPlaybackState->reverse = true;
876 break;
877 }
878 } while (samplestoread && readsamples);
879 }
880 else { // backward playback
881
882 // as we can only read forward from disk, we have to
883 // determine the end position within the loop first,
884 // read forward from that 'end' and finally after
885 // reading, swap all sample frames so it reflects
886 // backward playback
887
888 unsigned long swapareastart = totalreadsamples;
889 unsigned long loopoffset = GetPos() - loop.LoopStart;
890 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
891 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
892
893 SetPos(reverseplaybackend);
894
895 // read samples for backward playback
896 do {
897 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
898 samplestoreadinloop -= readsamples;
899 samplestoread -= readsamples;
900 totalreadsamples += readsamples;
901 } while (samplestoreadinloop && readsamples);
902
903 SetPos(reverseplaybackend); // pretend we really read backwards
904
905 if (reverseplaybackend == loop.LoopStart) {
906 pPlaybackState->loop_cycles_left--;
907 pPlaybackState->reverse = false;
908 }
909
910 // reverse the sample frames for backward playback
911 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
912 }
913 } while (samplestoread && readsamples);
914 break;
915 }
916
917 case loop_type_backward: { // TODO: not tested yet!
918 // forward playback (not entered the loop yet)
919 if (!pPlaybackState->reverse) do {
920 samplestoloopend = loopEnd - GetPos();
921 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
922 samplestoread -= readsamples;
923 totalreadsamples += readsamples;
924 if (readsamples == samplestoloopend) {
925 pPlaybackState->reverse = true;
926 break;
927 }
928 } while (samplestoread && readsamples);
929
930 if (!samplestoread) break;
931
932 // as we can only read forward from disk, we have to
933 // determine the end position within the loop first,
934 // read forward from that 'end' and finally after
935 // reading, swap all sample frames so it reflects
936 // backward playback
937
938 unsigned long swapareastart = totalreadsamples;
939 unsigned long loopoffset = GetPos() - loop.LoopStart;
940 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
941 : samplestoread;
942 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
943
944 SetPos(reverseplaybackend);
945
946 // read samples for backward playback
947 do {
948 // if not endless loop check if max. number of loop cycles have been passed
949 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
950 samplestoloopend = loopEnd - GetPos();
951 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
952 samplestoreadinloop -= readsamples;
953 samplestoread -= readsamples;
954 totalreadsamples += readsamples;
955 if (readsamples == samplestoloopend) {
956 pPlaybackState->loop_cycles_left--;
957 SetPos(loop.LoopStart);
958 }
959 } while (samplestoreadinloop && readsamples);
960
961 SetPos(reverseplaybackend); // pretend we really read backwards
962
963 // reverse the sample frames for backward playback
964 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
965 break;
966 }
967
968 default: case loop_type_normal: {
969 do {
970 // if not endless loop check if max. number of loop cycles have been passed
971 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
972 samplestoloopend = loopEnd - GetPos();
973 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974 samplestoread -= readsamples;
975 totalreadsamples += readsamples;
976 if (readsamples == samplestoloopend) {
977 pPlaybackState->loop_cycles_left--;
978 SetPos(loop.LoopStart);
979 }
980 } while (samplestoread && readsamples);
981 break;
982 }
983 }
984 }
985 }
986
987 // read on without looping
988 if (samplestoread) do {
989 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
990 samplestoread -= readsamples;
991 totalreadsamples += readsamples;
992 } while (readsamples && samplestoread);
993
994 // store current position
995 pPlaybackState->position = GetPos();
996
997 return totalreadsamples;
998 }
999
1000 /**
1001 * Reads \a SampleCount number of sample points from the current
1002 * position into the buffer pointed by \a pBuffer and increments the
1003 * position within the sample. The sample wave stream will be
1004 * decompressed on the fly if using a compressed sample. Use this method
1005 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1006 * thus for disk streaming.
1007 *
1008 * <b>Caution:</b> If you are using more than one streaming thread, you
1009 * have to use an external decompression buffer for <b>EACH</b>
1010 * streaming thread to avoid race conditions and crashes!
1011 *
1012 * For 16 bit samples, the data in the buffer will be int16_t
1013 * (using native endianness). For 24 bit, the buffer will
1014 * contain three bytes per sample, little-endian.
1015 *
1016 * @param pBuffer destination buffer
1017 * @param SampleCount number of sample points to read
1018 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1019 * @returns number of successfully read sample points
1020 * @see SetPos(), CreateDecompressionBuffer()
1021 */
1022 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1023 if (SampleCount == 0) return 0;
1024 if (!Compressed) {
1025 if (BitDepth == 24) {
1026 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1027 }
1028 else { // 16 bit
1029 // (pCkData->Read does endian correction)
1030 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1031 : pCkData->Read(pBuffer, SampleCount, 2);
1032 }
1033 }
1034 else {
1035 if (this->SamplePos >= this->SamplesTotal) return 0;
1036 //TODO: efficiency: maybe we should test for an average compression rate
1037 unsigned long assumedsize = GuessSize(SampleCount),
1038 remainingbytes = 0, // remaining bytes in the local buffer
1039 remainingsamples = SampleCount,
1040 copysamples, skipsamples,
1041 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1042 this->FrameOffset = 0;
1043
1044 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1045
1046 // if decompression buffer too small, then reduce amount of samples to read
1047 if (pDecompressionBuffer->Size < assumedsize) {
1048 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1049 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1050 remainingsamples = SampleCount;
1051 assumedsize = GuessSize(SampleCount);
1052 }
1053
1054 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1055 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1056 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1057 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1058
1059 while (remainingsamples && remainingbytes) {
1060 unsigned long framesamples = SamplesPerFrame;
1061 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1062
1063 int mode_l = *pSrc++, mode_r = 0;
1064
1065 if (Channels == 2) {
1066 mode_r = *pSrc++;
1067 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1068 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1069 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1070 if (remainingbytes < framebytes) { // last frame in sample
1071 framesamples = SamplesInLastFrame;
1072 if (mode_l == 4 && (framesamples & 1)) {
1073 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1074 }
1075 else {
1076 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1077 }
1078 }
1079 }
1080 else {
1081 framebytes = bytesPerFrame[mode_l] + 1;
1082 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1083 if (remainingbytes < framebytes) {
1084 framesamples = SamplesInLastFrame;
1085 }
1086 }
1087
1088 // determine how many samples in this frame to skip and read
1089 if (currentframeoffset + remainingsamples >= framesamples) {
1090 if (currentframeoffset <= framesamples) {
1091 copysamples = framesamples - currentframeoffset;
1092 skipsamples = currentframeoffset;
1093 }
1094 else {
1095 copysamples = 0;
1096 skipsamples = framesamples;
1097 }
1098 }
1099 else {
1100 // This frame has enough data for pBuffer, but not
1101 // all of the frame is needed. Set file position
1102 // to start of this frame for next call to Read.
1103 copysamples = remainingsamples;
1104 skipsamples = currentframeoffset;
1105 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1106 this->FrameOffset = currentframeoffset + copysamples;
1107 }
1108 remainingsamples -= copysamples;
1109
1110 if (remainingbytes > framebytes) {
1111 remainingbytes -= framebytes;
1112 if (remainingsamples == 0 &&
1113 currentframeoffset + copysamples == framesamples) {
1114 // This frame has enough data for pBuffer, and
1115 // all of the frame is needed. Set file
1116 // position to start of next frame for next
1117 // call to Read. FrameOffset is 0.
1118 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1119 }
1120 }
1121 else remainingbytes = 0;
1122
1123 currentframeoffset -= skipsamples;
1124
1125 if (copysamples == 0) {
1126 // skip this frame
1127 pSrc += framebytes - Channels;
1128 }
1129 else {
1130 const unsigned char* const param_l = pSrc;
1131 if (BitDepth == 24) {
1132 if (mode_l != 2) pSrc += 12;
1133
1134 if (Channels == 2) { // Stereo
1135 const unsigned char* const param_r = pSrc;
1136 if (mode_r != 2) pSrc += 12;
1137
1138 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1139 skipsamples, copysamples, TruncatedBits);
1140 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1141 skipsamples, copysamples, TruncatedBits);
1142 pDst24 += copysamples * 6;
1143 }
1144 else { // Mono
1145 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1146 skipsamples, copysamples, TruncatedBits);
1147 pDst24 += copysamples * 3;
1148 }
1149 }
1150 else { // 16 bit
1151 if (mode_l) pSrc += 4;
1152
1153 int step;
1154 if (Channels == 2) { // Stereo
1155 const unsigned char* const param_r = pSrc;
1156 if (mode_r) pSrc += 4;
1157
1158 step = (2 - mode_l) + (2 - mode_r);
1159 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1160 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1161 skipsamples, copysamples);
1162 pDst += copysamples << 1;
1163 }
1164 else { // Mono
1165 step = 2 - mode_l;
1166 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1167 pDst += copysamples;
1168 }
1169 }
1170 pSrc += nextFrameOffset;
1171 }
1172
1173 // reload from disk to local buffer if needed
1174 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1175 assumedsize = GuessSize(remainingsamples);
1176 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1177 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1178 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1179 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1180 }
1181 } // while
1182
1183 this->SamplePos += (SampleCount - remainingsamples);
1184 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1185 return (SampleCount - remainingsamples);
1186 }
1187 }
1188
1189 /** @brief Write sample wave data.
1190 *
1191 * Writes \a SampleCount number of sample points from the buffer pointed
1192 * by \a pBuffer and increments the position within the sample. Use this
1193 * method to directly write the sample data to disk, i.e. if you don't
1194 * want or cannot load the whole sample data into RAM.
1195 *
1196 * You have to Resize() the sample to the desired size and call
1197 * File::Save() <b>before</b> using Write().
1198 *
1199 * Note: there is currently no support for writing compressed samples.
1200 *
1201 * For 16 bit samples, the data in the source buffer should be
1202 * int16_t (using native endianness). For 24 bit, the buffer
1203 * should contain three bytes per sample, little-endian.
1204 *
1205 * @param pBuffer - source buffer
1206 * @param SampleCount - number of sample points to write
1207 * @throws DLS::Exception if current sample size is too small
1208 * @throws gig::Exception if sample is compressed
1209 * @see DLS::LoadSampleData()
1210 */
1211 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1212 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1213
1214 // if this is the first write in this sample, reset the
1215 // checksum calculator
1216 if (pCkData->GetPos() == 0) {
1217 __resetCRC(crc);
1218 }
1219 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1220 unsigned long res;
1221 if (BitDepth == 24) {
1222 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1223 } else { // 16 bit
1224 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1225 : pCkData->Write(pBuffer, SampleCount, 2);
1226 }
1227 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1228
1229 // if this is the last write, update the checksum chunk in the
1230 // file
1231 if (pCkData->GetPos() == pCkData->GetSize()) {
1232 File* pFile = static_cast<File*>(GetParent());
1233 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1234 }
1235 return res;
1236 }
1237
1238 /**
1239 * Allocates a decompression buffer for streaming (compressed) samples
1240 * with Sample::Read(). If you are using more than one streaming thread
1241 * in your application you <b>HAVE</b> to create a decompression buffer
1242 * for <b>EACH</b> of your streaming threads and provide it with the
1243 * Sample::Read() call in order to avoid race conditions and crashes.
1244 *
1245 * You should free the memory occupied by the allocated buffer(s) once
1246 * you don't need one of your streaming threads anymore by calling
1247 * DestroyDecompressionBuffer().
1248 *
1249 * @param MaxReadSize - the maximum size (in sample points) you ever
1250 * expect to read with one Read() call
1251 * @returns allocated decompression buffer
1252 * @see DestroyDecompressionBuffer()
1253 */
1254 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1255 buffer_t result;
1256 const double worstCaseHeaderOverhead =
1257 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1258 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1259 result.pStart = new int8_t[result.Size];
1260 result.NullExtensionSize = 0;
1261 return result;
1262 }
1263
1264 /**
1265 * Free decompression buffer, previously created with
1266 * CreateDecompressionBuffer().
1267 *
1268 * @param DecompressionBuffer - previously allocated decompression
1269 * buffer to free
1270 */
1271 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1272 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1273 delete[] (int8_t*) DecompressionBuffer.pStart;
1274 DecompressionBuffer.pStart = NULL;
1275 DecompressionBuffer.Size = 0;
1276 DecompressionBuffer.NullExtensionSize = 0;
1277 }
1278 }
1279
1280 /**
1281 * Returns pointer to the Group this Sample belongs to. In the .gig
1282 * format a sample always belongs to one group. If it wasn't explicitly
1283 * assigned to a certain group, it will be automatically assigned to a
1284 * default group.
1285 *
1286 * @returns Sample's Group (never NULL)
1287 */
1288 Group* Sample::GetGroup() const {
1289 return pGroup;
1290 }
1291
1292 Sample::~Sample() {
1293 Instances--;
1294 if (!Instances && InternalDecompressionBuffer.Size) {
1295 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1296 InternalDecompressionBuffer.pStart = NULL;
1297 InternalDecompressionBuffer.Size = 0;
1298 }
1299 if (FrameTable) delete[] FrameTable;
1300 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1301 }
1302
1303
1304
1305 // *************** DimensionRegion ***************
1306 // *
1307
1308 uint DimensionRegion::Instances = 0;
1309 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1310
1311 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1312 Instances++;
1313
1314 pSample = NULL;
1315 pRegion = pParent;
1316
1317 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1318 else memset(&Crossfade, 0, 4);
1319
1320 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1321
1322 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1323 if (_3ewa) { // if '3ewa' chunk exists
1324 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1325 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1326 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1327 _3ewa->ReadInt16(); // unknown
1328 LFO1InternalDepth = _3ewa->ReadUint16();
1329 _3ewa->ReadInt16(); // unknown
1330 LFO3InternalDepth = _3ewa->ReadInt16();
1331 _3ewa->ReadInt16(); // unknown
1332 LFO1ControlDepth = _3ewa->ReadUint16();
1333 _3ewa->ReadInt16(); // unknown
1334 LFO3ControlDepth = _3ewa->ReadInt16();
1335 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1336 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1337 _3ewa->ReadInt16(); // unknown
1338 EG1Sustain = _3ewa->ReadUint16();
1339 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1341 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1342 EG1ControllerInvert = eg1ctrloptions & 0x01;
1343 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1344 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1345 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1346 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1347 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1348 EG2ControllerInvert = eg2ctrloptions & 0x01;
1349 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1350 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1351 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1352 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1353 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1354 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1355 _3ewa->ReadInt16(); // unknown
1356 EG2Sustain = _3ewa->ReadUint16();
1357 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358 _3ewa->ReadInt16(); // unknown
1359 LFO2ControlDepth = _3ewa->ReadUint16();
1360 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361 _3ewa->ReadInt16(); // unknown
1362 LFO2InternalDepth = _3ewa->ReadUint16();
1363 int32_t eg1decay2 = _3ewa->ReadInt32();
1364 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1365 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1366 _3ewa->ReadInt16(); // unknown
1367 EG1PreAttack = _3ewa->ReadUint16();
1368 int32_t eg2decay2 = _3ewa->ReadInt32();
1369 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1370 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1371 _3ewa->ReadInt16(); // unknown
1372 EG2PreAttack = _3ewa->ReadUint16();
1373 uint8_t velocityresponse = _3ewa->ReadUint8();
1374 if (velocityresponse < 5) {
1375 VelocityResponseCurve = curve_type_nonlinear;
1376 VelocityResponseDepth = velocityresponse;
1377 } else if (velocityresponse < 10) {
1378 VelocityResponseCurve = curve_type_linear;
1379 VelocityResponseDepth = velocityresponse - 5;
1380 } else if (velocityresponse < 15) {
1381 VelocityResponseCurve = curve_type_special;
1382 VelocityResponseDepth = velocityresponse - 10;
1383 } else {
1384 VelocityResponseCurve = curve_type_unknown;
1385 VelocityResponseDepth = 0;
1386 }
1387 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1388 if (releasevelocityresponse < 5) {
1389 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1390 ReleaseVelocityResponseDepth = releasevelocityresponse;
1391 } else if (releasevelocityresponse < 10) {
1392 ReleaseVelocityResponseCurve = curve_type_linear;
1393 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1394 } else if (releasevelocityresponse < 15) {
1395 ReleaseVelocityResponseCurve = curve_type_special;
1396 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1397 } else {
1398 ReleaseVelocityResponseCurve = curve_type_unknown;
1399 ReleaseVelocityResponseDepth = 0;
1400 }
1401 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1402 AttenuationControllerThreshold = _3ewa->ReadInt8();
1403 _3ewa->ReadInt32(); // unknown
1404 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1405 _3ewa->ReadInt16(); // unknown
1406 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1407 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1408 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1409 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1410 else DimensionBypass = dim_bypass_ctrl_none;
1411 uint8_t pan = _3ewa->ReadUint8();
1412 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1413 SelfMask = _3ewa->ReadInt8() & 0x01;
1414 _3ewa->ReadInt8(); // unknown
1415 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1416 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1417 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1418 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1419 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1421 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1422 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1423 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1424 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1425 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1426 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1427 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1428 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1429 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1430 : vcf_res_ctrl_none;
1431 uint16_t eg3depth = _3ewa->ReadUint16();
1432 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1433 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1434 _3ewa->ReadInt16(); // unknown
1435 ChannelOffset = _3ewa->ReadUint8() / 4;
1436 uint8_t regoptions = _3ewa->ReadUint8();
1437 MSDecode = regoptions & 0x01; // bit 0
1438 SustainDefeat = regoptions & 0x02; // bit 1
1439 _3ewa->ReadInt16(); // unknown
1440 VelocityUpperLimit = _3ewa->ReadInt8();
1441 _3ewa->ReadInt8(); // unknown
1442 _3ewa->ReadInt16(); // unknown
1443 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1444 _3ewa->ReadInt8(); // unknown
1445 _3ewa->ReadInt8(); // unknown
1446 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1447 uint8_t vcfcutoff = _3ewa->ReadUint8();
1448 VCFEnabled = vcfcutoff & 0x80; // bit 7
1449 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1450 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1451 uint8_t vcfvelscale = _3ewa->ReadUint8();
1452 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1453 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1454 _3ewa->ReadInt8(); // unknown
1455 uint8_t vcfresonance = _3ewa->ReadUint8();
1456 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1457 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1458 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1459 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1460 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1461 uint8_t vcfvelocity = _3ewa->ReadUint8();
1462 VCFVelocityDynamicRange = vcfvelocity % 5;
1463 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1464 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1465 if (VCFType == vcf_type_lowpass) {
1466 if (lfo3ctrl & 0x40) // bit 6
1467 VCFType = vcf_type_lowpassturbo;
1468 }
1469 if (_3ewa->RemainingBytes() >= 8) {
1470 _3ewa->Read(DimensionUpperLimits, 1, 8);
1471 } else {
1472 memset(DimensionUpperLimits, 0, 8);
1473 }
1474 } else { // '3ewa' chunk does not exist yet
1475 // use default values
1476 LFO3Frequency = 1.0;
1477 EG3Attack = 0.0;
1478 LFO1InternalDepth = 0;
1479 LFO3InternalDepth = 0;
1480 LFO1ControlDepth = 0;
1481 LFO3ControlDepth = 0;
1482 EG1Attack = 0.0;
1483 EG1Decay1 = 0.005;
1484 EG1Sustain = 1000;
1485 EG1Release = 0.3;
1486 EG1Controller.type = eg1_ctrl_t::type_none;
1487 EG1Controller.controller_number = 0;
1488 EG1ControllerInvert = false;
1489 EG1ControllerAttackInfluence = 0;
1490 EG1ControllerDecayInfluence = 0;
1491 EG1ControllerReleaseInfluence = 0;
1492 EG2Controller.type = eg2_ctrl_t::type_none;
1493 EG2Controller.controller_number = 0;
1494 EG2ControllerInvert = false;
1495 EG2ControllerAttackInfluence = 0;
1496 EG2ControllerDecayInfluence = 0;
1497 EG2ControllerReleaseInfluence = 0;
1498 LFO1Frequency = 1.0;
1499 EG2Attack = 0.0;
1500 EG2Decay1 = 0.005;
1501 EG2Sustain = 1000;
1502 EG2Release = 0.3;
1503 LFO2ControlDepth = 0;
1504 LFO2Frequency = 1.0;
1505 LFO2InternalDepth = 0;
1506 EG1Decay2 = 0.0;
1507 EG1InfiniteSustain = true;
1508 EG1PreAttack = 0;
1509 EG2Decay2 = 0.0;
1510 EG2InfiniteSustain = true;
1511 EG2PreAttack = 0;
1512 VelocityResponseCurve = curve_type_nonlinear;
1513 VelocityResponseDepth = 3;
1514 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1515 ReleaseVelocityResponseDepth = 3;
1516 VelocityResponseCurveScaling = 32;
1517 AttenuationControllerThreshold = 0;
1518 SampleStartOffset = 0;
1519 PitchTrack = true;
1520 DimensionBypass = dim_bypass_ctrl_none;
1521 Pan = 0;
1522 SelfMask = true;
1523 LFO3Controller = lfo3_ctrl_modwheel;
1524 LFO3Sync = false;
1525 InvertAttenuationController = false;
1526 AttenuationController.type = attenuation_ctrl_t::type_none;
1527 AttenuationController.controller_number = 0;
1528 LFO2Controller = lfo2_ctrl_internal;
1529 LFO2FlipPhase = false;
1530 LFO2Sync = false;
1531 LFO1Controller = lfo1_ctrl_internal;
1532 LFO1FlipPhase = false;
1533 LFO1Sync = false;
1534 VCFResonanceController = vcf_res_ctrl_none;
1535 EG3Depth = 0;
1536 ChannelOffset = 0;
1537 MSDecode = false;
1538 SustainDefeat = false;
1539 VelocityUpperLimit = 0;
1540 ReleaseTriggerDecay = 0;
1541 EG1Hold = false;
1542 VCFEnabled = false;
1543 VCFCutoff = 0;
1544 VCFCutoffController = vcf_cutoff_ctrl_none;
1545 VCFCutoffControllerInvert = false;
1546 VCFVelocityScale = 0;
1547 VCFResonance = 0;
1548 VCFResonanceDynamic = false;
1549 VCFKeyboardTracking = false;
1550 VCFKeyboardTrackingBreakpoint = 0;
1551 VCFVelocityDynamicRange = 0x04;
1552 VCFVelocityCurve = curve_type_linear;
1553 VCFType = vcf_type_lowpass;
1554 memset(DimensionUpperLimits, 127, 8);
1555 }
1556
1557 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1558 VelocityResponseDepth,
1559 VelocityResponseCurveScaling);
1560
1561 pVelocityReleaseTable = GetReleaseVelocityTable(
1562 ReleaseVelocityResponseCurve,
1563 ReleaseVelocityResponseDepth
1564 );
1565
1566 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1567 VCFVelocityDynamicRange,
1568 VCFVelocityScale,
1569 VCFCutoffController);
1570
1571 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1572 VelocityTable = 0;
1573 }
1574
1575 /*
1576 * Constructs a DimensionRegion by copying all parameters from
1577 * another DimensionRegion
1578 */
1579 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1580 Instances++;
1581 *this = src; // default memberwise shallow copy of all parameters
1582 pParentList = _3ewl; // restore the chunk pointer
1583
1584 // deep copy of owned structures
1585 if (src.VelocityTable) {
1586 VelocityTable = new uint8_t[128];
1587 for (int k = 0 ; k < 128 ; k++)
1588 VelocityTable[k] = src.VelocityTable[k];
1589 }
1590 if (src.pSampleLoops) {
1591 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1592 for (int k = 0 ; k < src.SampleLoops ; k++)
1593 pSampleLoops[k] = src.pSampleLoops[k];
1594 }
1595 }
1596
1597 /**
1598 * Updates the respective member variable and updates @c SampleAttenuation
1599 * which depends on this value.
1600 */
1601 void DimensionRegion::SetGain(int32_t gain) {
1602 DLS::Sampler::SetGain(gain);
1603 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1604 }
1605
1606 /**
1607 * Apply dimension region settings to the respective RIFF chunks. You
1608 * have to call File::Save() to make changes persistent.
1609 *
1610 * Usually there is absolutely no need to call this method explicitly.
1611 * It will be called automatically when File::Save() was called.
1612 */
1613 void DimensionRegion::UpdateChunks() {
1614 // first update base class's chunk
1615 DLS::Sampler::UpdateChunks();
1616
1617 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1618 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1619 pData[12] = Crossfade.in_start;
1620 pData[13] = Crossfade.in_end;
1621 pData[14] = Crossfade.out_start;
1622 pData[15] = Crossfade.out_end;
1623
1624 // make sure '3ewa' chunk exists
1625 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1626 if (!_3ewa) {
1627 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1628 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1629 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1630 }
1631 pData = (uint8_t*) _3ewa->LoadChunkData();
1632
1633 // update '3ewa' chunk with DimensionRegion's current settings
1634
1635 const uint32_t chunksize = _3ewa->GetNewSize();
1636 store32(&pData[0], chunksize); // unknown, always chunk size?
1637
1638 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1639 store32(&pData[4], lfo3freq);
1640
1641 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1642 store32(&pData[8], eg3attack);
1643
1644 // next 2 bytes unknown
1645
1646 store16(&pData[14], LFO1InternalDepth);
1647
1648 // next 2 bytes unknown
1649
1650 store16(&pData[18], LFO3InternalDepth);
1651
1652 // next 2 bytes unknown
1653
1654 store16(&pData[22], LFO1ControlDepth);
1655
1656 // next 2 bytes unknown
1657
1658 store16(&pData[26], LFO3ControlDepth);
1659
1660 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1661 store32(&pData[28], eg1attack);
1662
1663 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1664 store32(&pData[32], eg1decay1);
1665
1666 // next 2 bytes unknown
1667
1668 store16(&pData[38], EG1Sustain);
1669
1670 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1671 store32(&pData[40], eg1release);
1672
1673 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1674 pData[44] = eg1ctl;
1675
1676 const uint8_t eg1ctrloptions =
1677 (EG1ControllerInvert ? 0x01 : 0x00) |
1678 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1679 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1680 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1681 pData[45] = eg1ctrloptions;
1682
1683 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1684 pData[46] = eg2ctl;
1685
1686 const uint8_t eg2ctrloptions =
1687 (EG2ControllerInvert ? 0x01 : 0x00) |
1688 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1689 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1690 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1691 pData[47] = eg2ctrloptions;
1692
1693 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1694 store32(&pData[48], lfo1freq);
1695
1696 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1697 store32(&pData[52], eg2attack);
1698
1699 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1700 store32(&pData[56], eg2decay1);
1701
1702 // next 2 bytes unknown
1703
1704 store16(&pData[62], EG2Sustain);
1705
1706 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1707 store32(&pData[64], eg2release);
1708
1709 // next 2 bytes unknown
1710
1711 store16(&pData[70], LFO2ControlDepth);
1712
1713 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1714 store32(&pData[72], lfo2freq);
1715
1716 // next 2 bytes unknown
1717
1718 store16(&pData[78], LFO2InternalDepth);
1719
1720 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1721 store32(&pData[80], eg1decay2);
1722
1723 // next 2 bytes unknown
1724
1725 store16(&pData[86], EG1PreAttack);
1726
1727 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1728 store32(&pData[88], eg2decay2);
1729
1730 // next 2 bytes unknown
1731
1732 store16(&pData[94], EG2PreAttack);
1733
1734 {
1735 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1736 uint8_t velocityresponse = VelocityResponseDepth;
1737 switch (VelocityResponseCurve) {
1738 case curve_type_nonlinear:
1739 break;
1740 case curve_type_linear:
1741 velocityresponse += 5;
1742 break;
1743 case curve_type_special:
1744 velocityresponse += 10;
1745 break;
1746 case curve_type_unknown:
1747 default:
1748 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1749 }
1750 pData[96] = velocityresponse;
1751 }
1752
1753 {
1754 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1755 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1756 switch (ReleaseVelocityResponseCurve) {
1757 case curve_type_nonlinear:
1758 break;
1759 case curve_type_linear:
1760 releasevelocityresponse += 5;
1761 break;
1762 case curve_type_special:
1763 releasevelocityresponse += 10;
1764 break;
1765 case curve_type_unknown:
1766 default:
1767 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1768 }
1769 pData[97] = releasevelocityresponse;
1770 }
1771
1772 pData[98] = VelocityResponseCurveScaling;
1773
1774 pData[99] = AttenuationControllerThreshold;
1775
1776 // next 4 bytes unknown
1777
1778 store16(&pData[104], SampleStartOffset);
1779
1780 // next 2 bytes unknown
1781
1782 {
1783 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1784 switch (DimensionBypass) {
1785 case dim_bypass_ctrl_94:
1786 pitchTrackDimensionBypass |= 0x10;
1787 break;
1788 case dim_bypass_ctrl_95:
1789 pitchTrackDimensionBypass |= 0x20;
1790 break;
1791 case dim_bypass_ctrl_none:
1792 //FIXME: should we set anything here?
1793 break;
1794 default:
1795 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1796 }
1797 pData[108] = pitchTrackDimensionBypass;
1798 }
1799
1800 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1801 pData[109] = pan;
1802
1803 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1804 pData[110] = selfmask;
1805
1806 // next byte unknown
1807
1808 {
1809 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1810 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1811 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1812 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1813 pData[112] = lfo3ctrl;
1814 }
1815
1816 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1817 pData[113] = attenctl;
1818
1819 {
1820 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1821 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1822 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1823 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1824 pData[114] = lfo2ctrl;
1825 }
1826
1827 {
1828 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1829 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1830 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1831 if (VCFResonanceController != vcf_res_ctrl_none)
1832 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1833 pData[115] = lfo1ctrl;
1834 }
1835
1836 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1837 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1838 pData[116] = eg3depth;
1839
1840 // next 2 bytes unknown
1841
1842 const uint8_t channeloffset = ChannelOffset * 4;
1843 pData[120] = channeloffset;
1844
1845 {
1846 uint8_t regoptions = 0;
1847 if (MSDecode) regoptions |= 0x01; // bit 0
1848 if (SustainDefeat) regoptions |= 0x02; // bit 1
1849 pData[121] = regoptions;
1850 }
1851
1852 // next 2 bytes unknown
1853
1854 pData[124] = VelocityUpperLimit;
1855
1856 // next 3 bytes unknown
1857
1858 pData[128] = ReleaseTriggerDecay;
1859
1860 // next 2 bytes unknown
1861
1862 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1863 pData[131] = eg1hold;
1864
1865 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1866 (VCFCutoff & 0x7f); /* lower 7 bits */
1867 pData[132] = vcfcutoff;
1868
1869 pData[133] = VCFCutoffController;
1870
1871 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1872 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1873 pData[134] = vcfvelscale;
1874
1875 // next byte unknown
1876
1877 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1878 (VCFResonance & 0x7f); /* lower 7 bits */
1879 pData[136] = vcfresonance;
1880
1881 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1882 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1883 pData[137] = vcfbreakpoint;
1884
1885 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1886 VCFVelocityCurve * 5;
1887 pData[138] = vcfvelocity;
1888
1889 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1890 pData[139] = vcftype;
1891
1892 if (chunksize >= 148) {
1893 memcpy(&pData[140], DimensionUpperLimits, 8);
1894 }
1895 }
1896
1897 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1898 curve_type_t curveType = releaseVelocityResponseCurve;
1899 uint8_t depth = releaseVelocityResponseDepth;
1900 // this models a strange behaviour or bug in GSt: two of the
1901 // velocity response curves for release time are not used even
1902 // if specified, instead another curve is chosen.
1903 if ((curveType == curve_type_nonlinear && depth == 0) ||
1904 (curveType == curve_type_special && depth == 4)) {
1905 curveType = curve_type_nonlinear;
1906 depth = 3;
1907 }
1908 return GetVelocityTable(curveType, depth, 0);
1909 }
1910
1911 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1912 uint8_t vcfVelocityDynamicRange,
1913 uint8_t vcfVelocityScale,
1914 vcf_cutoff_ctrl_t vcfCutoffController)
1915 {
1916 curve_type_t curveType = vcfVelocityCurve;
1917 uint8_t depth = vcfVelocityDynamicRange;
1918 // even stranger GSt: two of the velocity response curves for
1919 // filter cutoff are not used, instead another special curve
1920 // is chosen. This curve is not used anywhere else.
1921 if ((curveType == curve_type_nonlinear && depth == 0) ||
1922 (curveType == curve_type_special && depth == 4)) {
1923 curveType = curve_type_special;
1924 depth = 5;
1925 }
1926 return GetVelocityTable(curveType, depth,
1927 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1928 ? vcfVelocityScale : 0);
1929 }
1930
1931 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1932 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1933 {
1934 double* table;
1935 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1936 if (pVelocityTables->count(tableKey)) { // if key exists
1937 table = (*pVelocityTables)[tableKey];
1938 }
1939 else {
1940 table = CreateVelocityTable(curveType, depth, scaling);
1941 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1942 }
1943 return table;
1944 }
1945
1946 Region* DimensionRegion::GetParent() const {
1947 return pRegion;
1948 }
1949
1950 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1951 leverage_ctrl_t decodedcontroller;
1952 switch (EncodedController) {
1953 // special controller
1954 case _lev_ctrl_none:
1955 decodedcontroller.type = leverage_ctrl_t::type_none;
1956 decodedcontroller.controller_number = 0;
1957 break;
1958 case _lev_ctrl_velocity:
1959 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1960 decodedcontroller.controller_number = 0;
1961 break;
1962 case _lev_ctrl_channelaftertouch:
1963 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1964 decodedcontroller.controller_number = 0;
1965 break;
1966
1967 // ordinary MIDI control change controller
1968 case _lev_ctrl_modwheel:
1969 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1970 decodedcontroller.controller_number = 1;
1971 break;
1972 case _lev_ctrl_breath:
1973 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1974 decodedcontroller.controller_number = 2;
1975 break;
1976 case _lev_ctrl_foot:
1977 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1978 decodedcontroller.controller_number = 4;
1979 break;
1980 case _lev_ctrl_effect1:
1981 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1982 decodedcontroller.controller_number = 12;
1983 break;
1984 case _lev_ctrl_effect2:
1985 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1986 decodedcontroller.controller_number = 13;
1987 break;
1988 case _lev_ctrl_genpurpose1:
1989 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1990 decodedcontroller.controller_number = 16;
1991 break;
1992 case _lev_ctrl_genpurpose2:
1993 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1994 decodedcontroller.controller_number = 17;
1995 break;
1996 case _lev_ctrl_genpurpose3:
1997 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1998 decodedcontroller.controller_number = 18;
1999 break;
2000 case _lev_ctrl_genpurpose4:
2001 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2002 decodedcontroller.controller_number = 19;
2003 break;
2004 case _lev_ctrl_portamentotime:
2005 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2006 decodedcontroller.controller_number = 5;
2007 break;
2008 case _lev_ctrl_sustainpedal:
2009 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2010 decodedcontroller.controller_number = 64;
2011 break;
2012 case _lev_ctrl_portamento:
2013 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2014 decodedcontroller.controller_number = 65;
2015 break;
2016 case _lev_ctrl_sostenutopedal:
2017 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2018 decodedcontroller.controller_number = 66;
2019 break;
2020 case _lev_ctrl_softpedal:
2021 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2022 decodedcontroller.controller_number = 67;
2023 break;
2024 case _lev_ctrl_genpurpose5:
2025 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2026 decodedcontroller.controller_number = 80;
2027 break;
2028 case _lev_ctrl_genpurpose6:
2029 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2030 decodedcontroller.controller_number = 81;
2031 break;
2032 case _lev_ctrl_genpurpose7:
2033 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2034 decodedcontroller.controller_number = 82;
2035 break;
2036 case _lev_ctrl_genpurpose8:
2037 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2038 decodedcontroller.controller_number = 83;
2039 break;
2040 case _lev_ctrl_effect1depth:
2041 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2042 decodedcontroller.controller_number = 91;
2043 break;
2044 case _lev_ctrl_effect2depth:
2045 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2046 decodedcontroller.controller_number = 92;
2047 break;
2048 case _lev_ctrl_effect3depth:
2049 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2050 decodedcontroller.controller_number = 93;
2051 break;
2052 case _lev_ctrl_effect4depth:
2053 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2054 decodedcontroller.controller_number = 94;
2055 break;
2056 case _lev_ctrl_effect5depth:
2057 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2058 decodedcontroller.controller_number = 95;
2059 break;
2060
2061 // unknown controller type
2062 default:
2063 throw gig::Exception("Unknown leverage controller type.");
2064 }
2065 return decodedcontroller;
2066 }
2067
2068 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2069 _lev_ctrl_t encodedcontroller;
2070 switch (DecodedController.type) {
2071 // special controller
2072 case leverage_ctrl_t::type_none:
2073 encodedcontroller = _lev_ctrl_none;
2074 break;
2075 case leverage_ctrl_t::type_velocity:
2076 encodedcontroller = _lev_ctrl_velocity;
2077 break;
2078 case leverage_ctrl_t::type_channelaftertouch:
2079 encodedcontroller = _lev_ctrl_channelaftertouch;
2080 break;
2081
2082 // ordinary MIDI control change controller
2083 case leverage_ctrl_t::type_controlchange:
2084 switch (DecodedController.controller_number) {
2085 case 1:
2086 encodedcontroller = _lev_ctrl_modwheel;
2087 break;
2088 case 2:
2089 encodedcontroller = _lev_ctrl_breath;
2090 break;
2091 case 4:
2092 encodedcontroller = _lev_ctrl_foot;
2093 break;
2094 case 12:
2095 encodedcontroller = _lev_ctrl_effect1;
2096 break;
2097 case 13:
2098 encodedcontroller = _lev_ctrl_effect2;
2099 break;
2100 case 16:
2101 encodedcontroller = _lev_ctrl_genpurpose1;
2102 break;
2103 case 17:
2104 encodedcontroller = _lev_ctrl_genpurpose2;
2105 break;
2106 case 18:
2107 encodedcontroller = _lev_ctrl_genpurpose3;
2108 break;
2109 case 19:
2110 encodedcontroller = _lev_ctrl_genpurpose4;
2111 break;
2112 case 5:
2113 encodedcontroller = _lev_ctrl_portamentotime;
2114 break;
2115 case 64:
2116 encodedcontroller = _lev_ctrl_sustainpedal;
2117 break;
2118 case 65:
2119 encodedcontroller = _lev_ctrl_portamento;
2120 break;
2121 case 66:
2122 encodedcontroller = _lev_ctrl_sostenutopedal;
2123 break;
2124 case 67:
2125 encodedcontroller = _lev_ctrl_softpedal;
2126 break;
2127 case 80:
2128 encodedcontroller = _lev_ctrl_genpurpose5;
2129 break;
2130 case 81:
2131 encodedcontroller = _lev_ctrl_genpurpose6;
2132 break;
2133 case 82:
2134 encodedcontroller = _lev_ctrl_genpurpose7;
2135 break;
2136 case 83:
2137 encodedcontroller = _lev_ctrl_genpurpose8;
2138 break;
2139 case 91:
2140 encodedcontroller = _lev_ctrl_effect1depth;
2141 break;
2142 case 92:
2143 encodedcontroller = _lev_ctrl_effect2depth;
2144 break;
2145 case 93:
2146 encodedcontroller = _lev_ctrl_effect3depth;
2147 break;
2148 case 94:
2149 encodedcontroller = _lev_ctrl_effect4depth;
2150 break;
2151 case 95:
2152 encodedcontroller = _lev_ctrl_effect5depth;
2153 break;
2154 default:
2155 throw gig::Exception("leverage controller number is not supported by the gig format");
2156 }
2157 break;
2158 default:
2159 throw gig::Exception("Unknown leverage controller type.");
2160 }
2161 return encodedcontroller;
2162 }
2163
2164 DimensionRegion::~DimensionRegion() {
2165 Instances--;
2166 if (!Instances) {
2167 // delete the velocity->volume tables
2168 VelocityTableMap::iterator iter;
2169 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2170 double* pTable = iter->second;
2171 if (pTable) delete[] pTable;
2172 }
2173 pVelocityTables->clear();
2174 delete pVelocityTables;
2175 pVelocityTables = NULL;
2176 }
2177 if (VelocityTable) delete[] VelocityTable;
2178 }
2179
2180 /**
2181 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2182 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2183 * and VelocityResponseCurveScaling) involved are taken into account to
2184 * calculate the amplitude factor. Use this method when a key was
2185 * triggered to get the volume with which the sample should be played
2186 * back.
2187 *
2188 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2189 * @returns amplitude factor (between 0.0 and 1.0)
2190 */
2191 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2192 return pVelocityAttenuationTable[MIDIKeyVelocity];
2193 }
2194
2195 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2196 return pVelocityReleaseTable[MIDIKeyVelocity];
2197 }
2198
2199 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2200 return pVelocityCutoffTable[MIDIKeyVelocity];
2201 }
2202
2203 /**
2204 * Updates the respective member variable and the lookup table / cache
2205 * that depends on this value.
2206 */
2207 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2208 pVelocityAttenuationTable =
2209 GetVelocityTable(
2210 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2211 );
2212 VelocityResponseCurve = curve;
2213 }
2214
2215 /**
2216 * Updates the respective member variable and the lookup table / cache
2217 * that depends on this value.
2218 */
2219 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2220 pVelocityAttenuationTable =
2221 GetVelocityTable(
2222 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2223 );
2224 VelocityResponseDepth = depth;
2225 }
2226
2227 /**
2228 * Updates the respective member variable and the lookup table / cache
2229 * that depends on this value.
2230 */
2231 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2232 pVelocityAttenuationTable =
2233 GetVelocityTable(
2234 VelocityResponseCurve, VelocityResponseDepth, scaling
2235 );
2236 VelocityResponseCurveScaling = scaling;
2237 }
2238
2239 /**
2240 * Updates the respective member variable and the lookup table / cache
2241 * that depends on this value.
2242 */
2243 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2244 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2245 ReleaseVelocityResponseCurve = curve;
2246 }
2247
2248 /**
2249 * Updates the respective member variable and the lookup table / cache
2250 * that depends on this value.
2251 */
2252 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2253 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2254 ReleaseVelocityResponseDepth = depth;
2255 }
2256
2257 /**
2258 * Updates the respective member variable and the lookup table / cache
2259 * that depends on this value.
2260 */
2261 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2262 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2263 VCFCutoffController = controller;
2264 }
2265
2266 /**
2267 * Updates the respective member variable and the lookup table / cache
2268 * that depends on this value.
2269 */
2270 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2271 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2272 VCFVelocityCurve = curve;
2273 }
2274
2275 /**
2276 * Updates the respective member variable and the lookup table / cache
2277 * that depends on this value.
2278 */
2279 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2280 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2281 VCFVelocityDynamicRange = range;
2282 }
2283
2284 /**
2285 * Updates the respective member variable and the lookup table / cache
2286 * that depends on this value.
2287 */
2288 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2289 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2290 VCFVelocityScale = scaling;
2291 }
2292
2293 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2294
2295 // line-segment approximations of the 15 velocity curves
2296
2297 // linear
2298 const int lin0[] = { 1, 1, 127, 127 };
2299 const int lin1[] = { 1, 21, 127, 127 };
2300 const int lin2[] = { 1, 45, 127, 127 };
2301 const int lin3[] = { 1, 74, 127, 127 };
2302 const int lin4[] = { 1, 127, 127, 127 };
2303
2304 // non-linear
2305 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2306 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2307 127, 127 };
2308 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2309 127, 127 };
2310 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2311 127, 127 };
2312 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2313
2314 // special
2315 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2316 113, 127, 127, 127 };
2317 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2318 118, 127, 127, 127 };
2319 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2320 85, 90, 91, 127, 127, 127 };
2321 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2322 117, 127, 127, 127 };
2323 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2324 127, 127 };
2325
2326 // this is only used by the VCF velocity curve
2327 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2328 91, 127, 127, 127 };
2329
2330 const int* const curves[] = { non0, non1, non2, non3, non4,
2331 lin0, lin1, lin2, lin3, lin4,
2332 spe0, spe1, spe2, spe3, spe4, spe5 };
2333
2334 double* const table = new double[128];
2335
2336 const int* curve = curves[curveType * 5 + depth];
2337 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2338
2339 table[0] = 0;
2340 for (int x = 1 ; x < 128 ; x++) {
2341
2342 if (x > curve[2]) curve += 2;
2343 double y = curve[1] + (x - curve[0]) *
2344 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2345 y = y / 127;
2346
2347 // Scale up for s > 20, down for s < 20. When
2348 // down-scaling, the curve still ends at 1.0.
2349 if (s < 20 && y >= 0.5)
2350 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2351 else
2352 y = y * (s / 20.0);
2353 if (y > 1) y = 1;
2354
2355 table[x] = y;
2356 }
2357 return table;
2358 }
2359
2360
2361 // *************** Region ***************
2362 // *
2363
2364 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2365 // Initialization
2366 Dimensions = 0;
2367 for (int i = 0; i < 256; i++) {
2368 pDimensionRegions[i] = NULL;
2369 }
2370 Layers = 1;
2371 File* file = (File*) GetParent()->GetParent();
2372 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2373
2374 // Actual Loading
2375
2376 if (!file->GetAutoLoad()) return;
2377
2378 LoadDimensionRegions(rgnList);
2379
2380 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2381 if (_3lnk) {
2382 DimensionRegions = _3lnk->ReadUint32();
2383 for (int i = 0; i < dimensionBits; i++) {
2384 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2385 uint8_t bits = _3lnk->ReadUint8();
2386 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2387 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2388 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2389 if (dimension == dimension_none) { // inactive dimension
2390 pDimensionDefinitions[i].dimension = dimension_none;
2391 pDimensionDefinitions[i].bits = 0;
2392 pDimensionDefinitions[i].zones = 0;
2393 pDimensionDefinitions[i].split_type = split_type_bit;
2394 pDimensionDefinitions[i].zone_size = 0;
2395 }
2396 else { // active dimension
2397 pDimensionDefinitions[i].dimension = dimension;
2398 pDimensionDefinitions[i].bits = bits;
2399 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2400 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2401 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2402 Dimensions++;
2403
2404 // if this is a layer dimension, remember the amount of layers
2405 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2406 }
2407 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2408 }
2409 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2410
2411 // if there's a velocity dimension and custom velocity zone splits are used,
2412 // update the VelocityTables in the dimension regions
2413 UpdateVelocityTable();
2414
2415 // jump to start of the wave pool indices (if not already there)
2416 if (file->pVersion && file->pVersion->major == 3)
2417 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2418 else
2419 _3lnk->SetPos(44);
2420
2421 // load sample references (if auto loading is enabled)
2422 if (file->GetAutoLoad()) {
2423 for (uint i = 0; i < DimensionRegions; i++) {
2424 uint32_t wavepoolindex = _3lnk->ReadUint32();
2425 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2426 }
2427 GetSample(); // load global region sample reference
2428 }
2429 } else {
2430 DimensionRegions = 0;
2431 for (int i = 0 ; i < 8 ; i++) {
2432 pDimensionDefinitions[i].dimension = dimension_none;
2433 pDimensionDefinitions[i].bits = 0;
2434 pDimensionDefinitions[i].zones = 0;
2435 }
2436 }
2437
2438 // make sure there is at least one dimension region
2439 if (!DimensionRegions) {
2440 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2441 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2442 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2443 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2444 DimensionRegions = 1;
2445 }
2446 }
2447
2448 /**
2449 * Apply Region settings and all its DimensionRegions to the respective
2450 * RIFF chunks. You have to call File::Save() to make changes persistent.
2451 *
2452 * Usually there is absolutely no need to call this method explicitly.
2453 * It will be called automatically when File::Save() was called.
2454 *
2455 * @throws gig::Exception if samples cannot be dereferenced
2456 */
2457 void Region::UpdateChunks() {
2458 // in the gig format we don't care about the Region's sample reference
2459 // but we still have to provide some existing one to not corrupt the
2460 // file, so to avoid the latter we simply always assign the sample of
2461 // the first dimension region of this region
2462 pSample = pDimensionRegions[0]->pSample;
2463
2464 // first update base class's chunks
2465 DLS::Region::UpdateChunks();
2466
2467 // update dimension region's chunks
2468 for (int i = 0; i < DimensionRegions; i++) {
2469 pDimensionRegions[i]->UpdateChunks();
2470 }
2471
2472 File* pFile = (File*) GetParent()->GetParent();
2473 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2474 const int iMaxDimensions = version3 ? 8 : 5;
2475 const int iMaxDimensionRegions = version3 ? 256 : 32;
2476
2477 // make sure '3lnk' chunk exists
2478 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2479 if (!_3lnk) {
2480 const int _3lnkChunkSize = version3 ? 1092 : 172;
2481 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2482 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2483
2484 // move 3prg to last position
2485 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2486 }
2487
2488 // update dimension definitions in '3lnk' chunk
2489 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2490 store32(&pData[0], DimensionRegions);
2491 int shift = 0;
2492 for (int i = 0; i < iMaxDimensions; i++) {
2493 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2494 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2495 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2496 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2497 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2498 // next 3 bytes unknown, always zero?
2499
2500 shift += pDimensionDefinitions[i].bits;
2501 }
2502
2503 // update wave pool table in '3lnk' chunk
2504 const int iWavePoolOffset = version3 ? 68 : 44;
2505 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2506 int iWaveIndex = -1;
2507 if (i < DimensionRegions) {
2508 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2509 File::SampleList::iterator iter = pFile->pSamples->begin();
2510 File::SampleList::iterator end = pFile->pSamples->end();
2511 for (int index = 0; iter != end; ++iter, ++index) {
2512 if (*iter == pDimensionRegions[i]->pSample) {
2513 iWaveIndex = index;
2514 break;
2515 }
2516 }
2517 }
2518 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2519 }
2520 }
2521
2522 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2523 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2524 if (_3prg) {
2525 int dimensionRegionNr = 0;
2526 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2527 while (_3ewl) {
2528 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2529 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2530 dimensionRegionNr++;
2531 }
2532 _3ewl = _3prg->GetNextSubList();
2533 }
2534 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2535 }
2536 }
2537
2538 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2539 // update KeyRange struct and make sure regions are in correct order
2540 DLS::Region::SetKeyRange(Low, High);
2541 // update Region key table for fast lookup
2542 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2543 }
2544
2545 void Region::UpdateVelocityTable() {
2546 // get velocity dimension's index
2547 int veldim = -1;
2548 for (int i = 0 ; i < Dimensions ; i++) {
2549 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2550 veldim = i;
2551 break;
2552 }
2553 }
2554 if (veldim == -1) return;
2555
2556 int step = 1;
2557 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2558 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2559 int end = step * pDimensionDefinitions[veldim].zones;
2560
2561 // loop through all dimension regions for all dimensions except the velocity dimension
2562 int dim[8] = { 0 };
2563 for (int i = 0 ; i < DimensionRegions ; i++) {
2564
2565 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2566 pDimensionRegions[i]->VelocityUpperLimit) {
2567 // create the velocity table
2568 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2569 if (!table) {
2570 table = new uint8_t[128];
2571 pDimensionRegions[i]->VelocityTable = table;
2572 }
2573 int tableidx = 0;
2574 int velocityZone = 0;
2575 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2576 for (int k = i ; k < end ; k += step) {
2577 DimensionRegion *d = pDimensionRegions[k];
2578 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2579 velocityZone++;
2580 }
2581 } else { // gig2
2582 for (int k = i ; k < end ; k += step) {
2583 DimensionRegion *d = pDimensionRegions[k];
2584 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2585 velocityZone++;
2586 }
2587 }
2588 } else {
2589 if (pDimensionRegions[i]->VelocityTable) {
2590 delete[] pDimensionRegions[i]->VelocityTable;
2591 pDimensionRegions[i]->VelocityTable = 0;
2592 }
2593 }
2594
2595 int j;
2596 int shift = 0;
2597 for (j = 0 ; j < Dimensions ; j++) {
2598 if (j == veldim) i += skipveldim; // skip velocity dimension
2599 else {
2600 dim[j]++;
2601 if (dim[j] < pDimensionDefinitions[j].zones) break;
2602 else {
2603 // skip unused dimension regions
2604 dim[j] = 0;
2605 i += ((1 << pDimensionDefinitions[j].bits) -
2606 pDimensionDefinitions[j].zones) << shift;
2607 }
2608 }
2609 shift += pDimensionDefinitions[j].bits;
2610 }
2611 if (j == Dimensions) break;
2612 }
2613 }
2614
2615 /** @brief Einstein would have dreamed of it - create a new dimension.
2616 *
2617 * Creates a new dimension with the dimension definition given by
2618 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2619 * There is a hard limit of dimensions and total amount of "bits" all
2620 * dimensions can have. This limit is dependant to what gig file format
2621 * version this file refers to. The gig v2 (and lower) format has a
2622 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2623 * format has a limit of 8.
2624 *
2625 * @param pDimDef - defintion of the new dimension
2626 * @throws gig::Exception if dimension of the same type exists already
2627 * @throws gig::Exception if amount of dimensions or total amount of
2628 * dimension bits limit is violated
2629 */
2630 void Region::AddDimension(dimension_def_t* pDimDef) {
2631 // check if max. amount of dimensions reached
2632 File* file = (File*) GetParent()->GetParent();
2633 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2634 if (Dimensions >= iMaxDimensions)
2635 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2636 // check if max. amount of dimension bits reached
2637 int iCurrentBits = 0;
2638 for (int i = 0; i < Dimensions; i++)
2639 iCurrentBits += pDimensionDefinitions[i].bits;
2640 if (iCurrentBits >= iMaxDimensions)
2641 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2642 const int iNewBits = iCurrentBits + pDimDef->bits;
2643 if (iNewBits > iMaxDimensions)
2644 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2645 // check if there's already a dimensions of the same type
2646 for (int i = 0; i < Dimensions; i++)
2647 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2648 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2649
2650 // pos is where the new dimension should be placed, normally
2651 // last in list, except for the samplechannel dimension which
2652 // has to be first in list
2653 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2654 int bitpos = 0;
2655 for (int i = 0 ; i < pos ; i++)
2656 bitpos += pDimensionDefinitions[i].bits;
2657
2658 // make room for the new dimension
2659 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2660 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2661 for (int j = Dimensions ; j > pos ; j--) {
2662 pDimensionRegions[i]->DimensionUpperLimits[j] =
2663 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2664 }
2665 }
2666
2667 // assign definition of new dimension
2668 pDimensionDefinitions[pos] = *pDimDef;
2669
2670 // auto correct certain dimension definition fields (where possible)
2671 pDimensionDefinitions[pos].split_type =
2672 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2673 pDimensionDefinitions[pos].zone_size =
2674 __resolveZoneSize(pDimensionDefinitions[pos]);
2675
2676 // create new dimension region(s) for this new dimension, and make
2677 // sure that the dimension regions are placed correctly in both the
2678 // RIFF list and the pDimensionRegions array
2679 RIFF::Chunk* moveTo = NULL;
2680 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2681 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2682 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2683 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2684 }
2685 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2686 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2687 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2688 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2689 // create a new dimension region and copy all parameter values from
2690 // an existing dimension region
2691 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2692 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2693
2694 DimensionRegions++;
2695 }
2696 }
2697 moveTo = pDimensionRegions[i]->pParentList;
2698 }
2699
2700 // initialize the upper limits for this dimension
2701 int mask = (1 << bitpos) - 1;
2702 for (int z = 0 ; z < pDimDef->zones ; z++) {
2703 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2704 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2705 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2706 (z << bitpos) |
2707 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2708 }
2709 }
2710
2711 Dimensions++;
2712
2713 // if this is a layer dimension, update 'Layers' attribute
2714 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2715
2716 UpdateVelocityTable();
2717 }
2718
2719 /** @brief Delete an existing dimension.
2720 *
2721 * Deletes the dimension given by \a pDimDef and deletes all respective
2722 * dimension regions, that is all dimension regions where the dimension's
2723 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2724 * for example this would delete all dimension regions for the case(s)
2725 * where the sustain pedal is pressed down.
2726 *
2727 * @param pDimDef - dimension to delete
2728 * @throws gig::Exception if given dimension cannot be found
2729 */
2730 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2731 // get dimension's index
2732 int iDimensionNr = -1;
2733 for (int i = 0; i < Dimensions; i++) {
2734 if (&pDimensionDefinitions[i] == pDimDef) {
2735 iDimensionNr = i;
2736 break;
2737 }
2738 }
2739 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2740
2741 // get amount of bits below the dimension to delete
2742 int iLowerBits = 0;
2743 for (int i = 0; i < iDimensionNr; i++)
2744 iLowerBits += pDimensionDefinitions[i].bits;
2745
2746 // get amount ot bits above the dimension to delete
2747 int iUpperBits = 0;
2748 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2749 iUpperBits += pDimensionDefinitions[i].bits;
2750
2751 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2752
2753 // delete dimension regions which belong to the given dimension
2754 // (that is where the dimension's bit > 0)
2755 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2756 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2757 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2758 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2759 iObsoleteBit << iLowerBits |
2760 iLowerBit;
2761
2762 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2763 delete pDimensionRegions[iToDelete];
2764 pDimensionRegions[iToDelete] = NULL;
2765 DimensionRegions--;
2766 }
2767 }
2768 }
2769
2770 // defrag pDimensionRegions array
2771 // (that is remove the NULL spaces within the pDimensionRegions array)
2772 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2773 if (!pDimensionRegions[iTo]) {
2774 if (iFrom <= iTo) iFrom = iTo + 1;
2775 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2776 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2777 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2778 pDimensionRegions[iFrom] = NULL;
2779 }
2780 }
2781 }
2782
2783 // remove the this dimension from the upper limits arrays
2784 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2785 DimensionRegion* d = pDimensionRegions[j];
2786 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2787 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2788 }
2789 d->DimensionUpperLimits[Dimensions - 1] = 127;
2790 }
2791
2792 // 'remove' dimension definition
2793 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2794 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2795 }
2796 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2797 pDimensionDefinitions[Dimensions - 1].bits = 0;
2798 pDimensionDefinitions[Dimensions - 1].zones = 0;
2799
2800 Dimensions--;
2801
2802 // if this was a layer dimension, update 'Layers' attribute
2803 if (pDimDef->dimension == dimension_layer) Layers = 1;
2804 }
2805
2806 Region::~Region() {
2807 for (int i = 0; i < 256; i++) {
2808 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2809 }
2810 }
2811
2812 /**
2813 * Use this method in your audio engine to get the appropriate dimension
2814 * region with it's articulation data for the current situation. Just
2815 * call the method with the current MIDI controller values and you'll get
2816 * the DimensionRegion with the appropriate articulation data for the
2817 * current situation (for this Region of course only). To do that you'll
2818 * first have to look which dimensions with which controllers and in
2819 * which order are defined for this Region when you load the .gig file.
2820 * Special cases are e.g. layer or channel dimensions where you just put
2821 * in the index numbers instead of a MIDI controller value (means 0 for
2822 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2823 * etc.).
2824 *
2825 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2826 * @returns adress to the DimensionRegion for the given situation
2827 * @see pDimensionDefinitions
2828 * @see Dimensions
2829 */
2830 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2831 uint8_t bits;
2832 int veldim = -1;
2833 int velbitpos;
2834 int bitpos = 0;
2835 int dimregidx = 0;
2836 for (uint i = 0; i < Dimensions; i++) {
2837 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2838 // the velocity dimension must be handled after the other dimensions
2839 veldim = i;
2840 velbitpos = bitpos;
2841 } else {
2842 switch (pDimensionDefinitions[i].split_type) {
2843 case split_type_normal:
2844 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2845 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2846 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2847 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2848 }
2849 } else {
2850 // gig2: evenly sized zones
2851 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2852 }
2853 break;
2854 case split_type_bit: // the value is already the sought dimension bit number
2855 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2856 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2857 break;
2858 }
2859 dimregidx |= bits << bitpos;
2860 }
2861 bitpos += pDimensionDefinitions[i].bits;
2862 }
2863 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2864 if (veldim != -1) {
2865 // (dimreg is now the dimension region for the lowest velocity)
2866 if (dimreg->VelocityTable) // custom defined zone ranges
2867 bits = dimreg->VelocityTable[DimValues[veldim]];
2868 else // normal split type
2869 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2870
2871 dimregidx |= bits << velbitpos;
2872 dimreg = pDimensionRegions[dimregidx];
2873 }
2874 return dimreg;
2875 }
2876
2877 /**
2878 * Returns the appropriate DimensionRegion for the given dimension bit
2879 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2880 * instead of calling this method directly!
2881 *
2882 * @param DimBits Bit numbers for dimension 0 to 7
2883 * @returns adress to the DimensionRegion for the given dimension
2884 * bit numbers
2885 * @see GetDimensionRegionByValue()
2886 */
2887 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2888 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2889 << pDimensionDefinitions[5].bits | DimBits[5])
2890 << pDimensionDefinitions[4].bits | DimBits[4])
2891 << pDimensionDefinitions[3].bits | DimBits[3])
2892 << pDimensionDefinitions[2].bits | DimBits[2])
2893 << pDimensionDefinitions[1].bits | DimBits[1])
2894 << pDimensionDefinitions[0].bits | DimBits[0]];
2895 }
2896
2897 /**
2898 * Returns pointer address to the Sample referenced with this region.
2899 * This is the global Sample for the entire Region (not sure if this is
2900 * actually used by the Gigasampler engine - I would only use the Sample
2901 * referenced by the appropriate DimensionRegion instead of this sample).
2902 *
2903 * @returns address to Sample or NULL if there is no reference to a
2904 * sample saved in the .gig file
2905 */
2906 Sample* Region::GetSample() {
2907 if (pSample) return static_cast<gig::Sample*>(pSample);
2908 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2909 }
2910
2911 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2912 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2913 File* file = (File*) GetParent()->GetParent();
2914 if (!file->pWavePoolTable) return NULL;
2915 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2916 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2917 Sample* sample = file->GetFirstSample(pProgress);
2918 while (sample) {
2919 if (sample->ulWavePoolOffset == soughtoffset &&
2920 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2921 sample = file->GetNextSample();
2922 }
2923 return NULL;
2924 }
2925
2926
2927 // *************** MidiRule ***************
2928 // *
2929
2930 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2931 _3ewg->SetPos(36);
2932 Triggers = _3ewg->ReadUint8();
2933 _3ewg->SetPos(40);
2934 ControllerNumber = _3ewg->ReadUint8();
2935 _3ewg->SetPos(46);
2936 for (int i = 0 ; i < Triggers ; i++) {
2937 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2938 pTriggers[i].Descending = _3ewg->ReadUint8();
2939 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2940 pTriggers[i].Key = _3ewg->ReadUint8();
2941 pTriggers[i].NoteOff = _3ewg->ReadUint8();
2942 pTriggers[i].Velocity = _3ewg->ReadUint8();
2943 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2944 _3ewg->ReadUint8();
2945 }
2946 }
2947
2948
2949 // *************** Instrument ***************
2950 // *
2951
2952 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2953 static const DLS::Info::string_length_t fixedStringLengths[] = {
2954 { CHUNK_ID_INAM, 64 },
2955 { CHUNK_ID_ISFT, 12 },
2956 { 0, 0 }
2957 };
2958 pInfo->SetFixedStringLengths(fixedStringLengths);
2959
2960 // Initialization
2961 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2962 EffectSend = 0;
2963 Attenuation = 0;
2964 FineTune = 0;
2965 PitchbendRange = 0;
2966 PianoReleaseMode = false;
2967 DimensionKeyRange.low = 0;
2968 DimensionKeyRange.high = 0;
2969 pMidiRules = new MidiRule*[3];
2970 pMidiRules[0] = NULL;
2971
2972 // Loading
2973 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2974 if (lart) {
2975 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2976 if (_3ewg) {
2977 EffectSend = _3ewg->ReadUint16();
2978 Attenuation = _3ewg->ReadInt32();
2979 FineTune = _3ewg->ReadInt16();
2980 PitchbendRange = _3ewg->ReadInt16();
2981 uint8_t dimkeystart = _3ewg->ReadUint8();
2982 PianoReleaseMode = dimkeystart & 0x01;
2983 DimensionKeyRange.low = dimkeystart >> 1;
2984 DimensionKeyRange.high = _3ewg->ReadUint8();
2985
2986 if (_3ewg->GetSize() > 32) {
2987 // read MIDI rules
2988 int i = 0;
2989 _3ewg->SetPos(32);
2990 uint8_t id1 = _3ewg->ReadUint8();
2991 uint8_t id2 = _3ewg->ReadUint8();
2992
2993 if (id1 == 4 && id2 == 16) {
2994 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2995 }
2996 //TODO: all the other types of rules
2997
2998 pMidiRules[i] = NULL;
2999 }
3000 }
3001 }
3002
3003 if (pFile->GetAutoLoad()) {
3004 if (!pRegions) pRegions = new RegionList;
3005 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3006 if (lrgn) {
3007 RIFF::List* rgn = lrgn->GetFirstSubList();
3008 while (rgn) {
3009 if (rgn->GetListType() == LIST_TYPE_RGN) {
3010 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3011 pRegions->push_back(new Region(this, rgn));
3012 }
3013 rgn = lrgn->GetNextSubList();
3014 }
3015 // Creating Region Key Table for fast lookup
3016 UpdateRegionKeyTable();
3017 }
3018 }
3019
3020 __notify_progress(pProgress, 1.0f); // notify done
3021 }
3022
3023 void Instrument::UpdateRegionKeyTable() {
3024 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3025 RegionList::iterator iter = pRegions->begin();
3026 RegionList::iterator end = pRegions->end();
3027 for (; iter != end; ++iter) {
3028 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3029 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3030 RegionKeyTable[iKey] = pRegion;
3031 }
3032 }
3033 }
3034
3035 Instrument::~Instrument() {
3036 delete[] pMidiRules;
3037 }
3038
3039 /**
3040 * Apply Instrument with all its Regions to the respective RIFF chunks.
3041 * You have to call File::Save() to make changes persistent.
3042 *
3043 * Usually there is absolutely no need to call this method explicitly.
3044 * It will be called automatically when File::Save() was called.
3045 *
3046 * @throws gig::Exception if samples cannot be dereferenced
3047 */
3048 void Instrument::UpdateChunks() {
3049 // first update base classes' chunks
3050 DLS::Instrument::UpdateChunks();
3051
3052 // update Regions' chunks
3053 {
3054 RegionList::iterator iter = pRegions->begin();
3055 RegionList::iterator end = pRegions->end();
3056 for (; iter != end; ++iter)
3057 (*iter)->UpdateChunks();
3058 }
3059
3060 // make sure 'lart' RIFF list chunk exists
3061 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3062 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3063 // make sure '3ewg' RIFF chunk exists
3064 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3065 if (!_3ewg) {
3066 File* pFile = (File*) GetParent();
3067
3068 // 3ewg is bigger in gig3, as it includes the iMIDI rules
3069 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3070 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3071 memset(_3ewg->LoadChunkData(), 0, size);
3072 }
3073 // update '3ewg' RIFF chunk
3074 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3075 store16(&pData[0], EffectSend);
3076 store32(&pData[2], Attenuation);
3077 store16(&pData[6], FineTune);
3078 store16(&pData[8], PitchbendRange);
3079 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3080 DimensionKeyRange.low << 1;
3081 pData[10] = dimkeystart;
3082 pData[11] = DimensionKeyRange.high;
3083 }
3084
3085 /**
3086 * Returns the appropriate Region for a triggered note.
3087 *
3088 * @param Key MIDI Key number of triggered note / key (0 - 127)
3089 * @returns pointer adress to the appropriate Region or NULL if there
3090 * there is no Region defined for the given \a Key
3091 */
3092 Region* Instrument::GetRegion(unsigned int Key) {
3093 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3094 return RegionKeyTable[Key];
3095
3096 /*for (int i = 0; i < Regions; i++) {
3097 if (Key <= pRegions[i]->KeyRange.high &&
3098 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3099 }
3100 return NULL;*/
3101 }
3102
3103 /**
3104 * Returns the first Region of the instrument. You have to call this
3105 * method once before you use GetNextRegion().
3106 *
3107 * @returns pointer address to first region or NULL if there is none
3108 * @see GetNextRegion()
3109 */
3110 Region* Instrument::GetFirstRegion() {
3111 if (!pRegions) return NULL;
3112 RegionsIterator = pRegions->begin();
3113 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3114 }
3115
3116 /**
3117 * Returns the next Region of the instrument. You have to call
3118 * GetFirstRegion() once before you can use this method. By calling this
3119 * method multiple times it iterates through the available Regions.
3120 *
3121 * @returns pointer address to the next region or NULL if end reached
3122 * @see GetFirstRegion()
3123 */
3124 Region* Instrument::GetNextRegion() {
3125 if (!pRegions) return NULL;
3126 RegionsIterator++;
3127 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3128 }
3129
3130 Region* Instrument::AddRegion() {
3131 // create new Region object (and its RIFF chunks)
3132 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3133 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3134 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3135 Region* pNewRegion = new Region(this, rgn);
3136 pRegions->push_back(pNewRegion);
3137 Regions = pRegions->size();
3138 // update Region key table for fast lookup
3139 UpdateRegionKeyTable();
3140 // done
3141 return pNewRegion;
3142 }
3143
3144 void Instrument::DeleteRegion(Region* pRegion) {
3145 if (!pRegions) return;
3146 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3147 // update Region key table for fast lookup
3148 UpdateRegionKeyTable();
3149 }
3150
3151 /**
3152 * Returns a MIDI rule of the instrument.
3153 *
3154 * The list of MIDI rules, at least in gig v3, always contains at
3155 * most two rules. The second rule can only be the DEF filter
3156 * (which currently isn't supported by libgig).
3157 *
3158 * @param i - MIDI rule number
3159 * @returns pointer address to MIDI rule number i or NULL if there is none
3160 */
3161 MidiRule* Instrument::GetMidiRule(int i) {
3162 return pMidiRules[i];
3163 }
3164
3165
3166 // *************** Group ***************
3167 // *
3168
3169 /** @brief Constructor.
3170 *
3171 * @param file - pointer to the gig::File object
3172 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3173 * NULL if this is a new Group
3174 */
3175 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3176 pFile = file;
3177 pNameChunk = ck3gnm;
3178 ::LoadString(pNameChunk, Name);
3179 }
3180
3181 Group::~Group() {
3182 // remove the chunk associated with this group (if any)
3183 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3184 }
3185
3186 /** @brief Update chunks with current group settings.
3187 *
3188 * Apply current Group field values to the respective chunks. You have
3189 * to call File::Save() to make changes persistent.
3190 *
3191 * Usually there is absolutely no need to call this method explicitly.
3192 * It will be called automatically when File::Save() was called.
3193 */
3194 void Group::UpdateChunks() {
3195 // make sure <3gri> and <3gnl> list chunks exist
3196 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3197 if (!_3gri) {
3198 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3199 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3200 }
3201 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3202 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3203
3204 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3205 // v3 has a fixed list of 128 strings, find a free one
3206 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3207 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3208 pNameChunk = ck;
3209 break;
3210 }
3211 }
3212 }
3213
3214 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3215 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3216 }
3217
3218 /**
3219 * Returns the first Sample of this Group. You have to call this method
3220 * once before you use GetNextSample().
3221 *
3222 * <b>Notice:</b> this method might block for a long time, in case the
3223 * samples of this .gig file were not scanned yet
3224 *
3225 * @returns pointer address to first Sample or NULL if there is none
3226 * applied to this Group
3227 * @see GetNextSample()
3228 */
3229 Sample* Group::GetFirstSample() {
3230 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3231 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3232 if (pSample->GetGroup() == this) return pSample;
3233 }
3234 return NULL;
3235 }
3236
3237 /**
3238 * Returns the next Sample of the Group. You have to call
3239 * GetFirstSample() once before you can use this method. By calling this
3240 * method multiple times it iterates through the Samples assigned to
3241 * this Group.
3242 *
3243 * @returns pointer address to the next Sample of this Group or NULL if
3244 * end reached
3245 * @see GetFirstSample()
3246 */
3247 Sample* Group::GetNextSample() {
3248 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3249 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3250 if (pSample->GetGroup() == this) return pSample;
3251 }
3252 return NULL;
3253 }
3254
3255 /**
3256 * Move Sample given by \a pSample from another Group to this Group.
3257 */
3258 void Group::AddSample(Sample* pSample) {
3259 pSample->pGroup = this;
3260 }
3261
3262 /**
3263 * Move all members of this group to another group (preferably the 1st
3264 * one except this). This method is called explicitly by
3265 * File::DeleteGroup() thus when a Group was deleted. This code was
3266 * intentionally not placed in the destructor!
3267 */
3268 void Group::MoveAll() {
3269 // get "that" other group first
3270 Group* pOtherGroup = NULL;
3271 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3272 if (pOtherGroup != this) break;
3273 }
3274 if (!pOtherGroup) throw Exception(
3275 "Could not move samples to another group, since there is no "
3276 "other Group. This is a bug, report it!"
3277 );
3278 // now move all samples of this group to the other group
3279 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3280 pOtherGroup->AddSample(pSample);
3281 }
3282 }
3283
3284
3285
3286 // *************** File ***************
3287 // *
3288
3289 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3290 const DLS::version_t File::VERSION_2 = {
3291 0, 2, 19980628 & 0xffff, 19980628 >> 16
3292 };
3293
3294 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3295 const DLS::version_t File::VERSION_3 = {
3296 0, 3, 20030331 & 0xffff, 20030331 >> 16
3297 };
3298
3299 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3300 { CHUNK_ID_IARL, 256 },
3301 { CHUNK_ID_IART, 128 },
3302 { CHUNK_ID_ICMS, 128 },
3303 { CHUNK_ID_ICMT, 1024 },
3304 { CHUNK_ID_ICOP, 128 },
3305 { CHUNK_ID_ICRD, 128 },
3306 { CHUNK_ID_IENG, 128 },
3307 { CHUNK_ID_IGNR, 128 },
3308 { CHUNK_ID_IKEY, 128 },
3309 { CHUNK_ID_IMED, 128 },
3310 { CHUNK_ID_INAM, 128 },
3311 { CHUNK_ID_IPRD, 128 },
3312 { CHUNK_ID_ISBJ, 128 },
3313 { CHUNK_ID_ISFT, 128 },
3314 { CHUNK_ID_ISRC, 128 },
3315 { CHUNK_ID_ISRF, 128 },
3316 { CHUNK_ID_ITCH, 128 },
3317 { 0, 0 }
3318 };
3319
3320 File::File() : DLS::File() {
3321 bAutoLoad = true;
3322 *pVersion = VERSION_3;
3323 pGroups = NULL;
3324 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3325 pInfo->ArchivalLocation = String(256, ' ');
3326
3327 // add some mandatory chunks to get the file chunks in right
3328 // order (INFO chunk will be moved to first position later)
3329 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3330 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3331 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3332
3333 GenerateDLSID();
3334 }
3335
3336 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3337 bAutoLoad = true;
3338 pGroups = NULL;
3339 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3340 }
3341
3342 File::~File() {
3343 if (pGroups) {
3344 std::list<Group*>::iterator iter = pGroups->begin();
3345 std::list<Group*>::iterator end = pGroups->end();
3346 while (iter != end) {
3347 delete *iter;
3348 ++iter;
3349 }
3350 delete pGroups;
3351 }
3352 }
3353
3354 Sample* File::GetFirstSample(progress_t* pProgress) {
3355 if (!pSamples) LoadSamples(pProgress);
3356 if (!pSamples) return NULL;
3357 SamplesIterator = pSamples->begin();
3358 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3359 }
3360
3361 Sample* File::GetNextSample() {
3362 if (!pSamples) return NULL;
3363 SamplesIterator++;
3364 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3365 }
3366
3367 /** @brief Add a new sample.
3368 *
3369 * This will create a new Sample object for the gig file. You have to
3370 * call Save() to make this persistent to the file.
3371 *
3372 * @returns pointer to new Sample object
3373 */
3374 Sample* File::AddSample() {
3375 if (!pSamples) LoadSamples();
3376 __ensureMandatoryChunksExist();
3377 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3378 // create new Sample object and its respective 'wave' list chunk
3379 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3380 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3381
3382 // add mandatory chunks to get the chunks in right order
3383 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3384 wave->AddSubList(LIST_TYPE_INFO);
3385
3386 pSamples->push_back(pSample);
3387 return pSample;
3388 }
3389
3390 /** @brief Delete a sample.
3391 *
3392 * This will delete the given Sample object from the gig file. Any
3393 * references to this sample from Regions and DimensionRegions will be
3394 * removed. You have to call Save() to make this persistent to the file.
3395 *
3396 * @param pSample - sample to delete
3397 * @throws gig::Exception if given sample could not be found
3398 */
3399 void File::DeleteSample(Sample* pSample) {
3400 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3401 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3402 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3403 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3404 pSamples->erase(iter);
3405 delete pSample;
3406
3407 SampleList::iterator tmp = SamplesIterator;
3408 // remove all references to the sample
3409 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3410 instrument = GetNextInstrument()) {
3411 for (Region* region = instrument->GetFirstRegion() ; region ;
3412 region = instrument->GetNextRegion()) {
3413
3414 if (region->GetSample() == pSample) region->SetSample(NULL);
3415
3416 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3417 gig::DimensionRegion *d = region->pDimensionRegions[i];
3418 if (d->pSample == pSample) d->pSample = NULL;
3419 }
3420 }
3421 }
3422 SamplesIterator = tmp; // restore iterator
3423 }
3424
3425 void File::LoadSamples() {
3426 LoadSamples(NULL);
3427 }
3428
3429 void File::LoadSamples(progress_t* pProgress) {
3430 // Groups must be loaded before samples, because samples will try
3431 // to resolve the group they belong to
3432 if (!pGroups) LoadGroups();
3433
3434 if (!pSamples) pSamples = new SampleList;
3435
3436 RIFF::File* file = pRIFF;
3437
3438 // just for progress calculation
3439 int iSampleIndex = 0;
3440 int iTotalSamples = WavePoolCount;
3441
3442 // check if samples should be loaded from extension files
3443 int lastFileNo = 0;
3444 for (int i = 0 ; i < WavePoolCount ; i++) {
3445 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3446 }
3447 String name(pRIFF->GetFileName());
3448 int nameLen = name.length();
3449 char suffix[6];
3450 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3451
3452 for (int fileNo = 0 ; ; ) {
3453 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3454 if (wvpl) {
3455 unsigned long wvplFileOffset = wvpl->GetFilePos();
3456 RIFF::List* wave = wvpl->GetFirstSubList();
3457 while (wave) {
3458 if (wave->GetListType() == LIST_TYPE_WAVE) {
3459 // notify current progress
3460 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3461 __notify_progress(pProgress, subprogress);
3462
3463 unsigned long waveFileOffset = wave->GetFilePos();
3464 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3465
3466 iSampleIndex++;
3467 }
3468 wave = wvpl->GetNextSubList();
3469 }
3470
3471 if (fileNo == lastFileNo) break;
3472
3473 // open extension file (*.gx01, *.gx02, ...)
3474 fileNo++;
3475 sprintf(suffix, ".gx%02d", fileNo);
3476 name.replace(nameLen, 5, suffix);
3477 file = new RIFF::File(name);
3478 ExtensionFiles.push_back(file);
3479 } else break;
3480 }
3481
3482 __notify_progress(pProgress, 1.0); // notify done
3483 }
3484
3485 Instrument* File::GetFirstInstrument() {
3486 if (!pInstruments) LoadInstruments();
3487 if (!pInstruments) return NULL;
3488 InstrumentsIterator = pInstruments->begin();
3489 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3490 }
3491
3492 Instrument* File::GetNextInstrument() {
3493 if (!pInstruments) return NULL;
3494 InstrumentsIterator++;
3495 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3496 }
3497
3498 /**
3499 * Returns the instrument with the given index.
3500 *
3501 * @param index - number of the sought instrument (0..n)
3502 * @param pProgress - optional: callback function for progress notification
3503 * @returns sought instrument or NULL if there's no such instrument
3504 */
3505 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3506 if (!pInstruments) {
3507 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3508
3509 // sample loading subtask
3510 progress_t subprogress;
3511 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3512 __notify_progress(&subprogress, 0.0f);
3513 if (GetAutoLoad())
3514 GetFirstSample(&subprogress); // now force all samples to be loaded
3515 __notify_progress(&subprogress, 1.0f);
3516
3517 // instrument loading subtask
3518 if (pProgress && pProgress->callback) {
3519 subprogress.__range_min = subprogress.__range_max;
3520 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3521 }
3522 __notify_progress(&subprogress, 0.0f);
3523 LoadInstruments(&subprogress);
3524 __notify_progress(&subprogress, 1.0f);
3525 }
3526 if (!pInstruments) return NULL;
3527 InstrumentsIterator = pInstruments->begin();
3528 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3529 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3530 InstrumentsIterator++;
3531 }
3532 return NULL;
3533 }
3534
3535 /** @brief Add a new instrument definition.
3536 *
3537 * This will create a new Instrument object for the gig file. You have
3538 * to call Save() to make this persistent to the file.
3539 *
3540 * @returns pointer to new Instrument object
3541 */
3542 Instrument* File::AddInstrument() {
3543 if (!pInstruments) LoadInstruments();
3544 __ensureMandatoryChunksExist();
3545 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3546 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3547
3548 // add mandatory chunks to get the chunks in right order
3549 lstInstr->AddSubList(LIST_TYPE_INFO);
3550 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3551
3552 Instrument* pInstrument = new Instrument(this, lstInstr);
3553 pInstrument->GenerateDLSID();
3554
3555 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3556
3557 // this string is needed for the gig to be loadable in GSt:
3558 pInstrument->pInfo->Software = "Endless Wave";
3559
3560 pInstruments->push_back(pInstrument);
3561 return pInstrument;
3562 }
3563
3564 /** @brief Delete an instrument.
3565 *
3566 * This will delete the given Instrument object from the gig file. You
3567 * have to call Save() to make this persistent to the file.
3568 *
3569 * @param pInstrument - instrument to delete
3570 * @throws gig::Exception if given instrument could not be found
3571 */
3572 void File::DeleteInstrument(Instrument* pInstrument) {
3573 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3574 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3575 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3576 pInstruments->erase(iter);
3577 delete pInstrument;
3578 }
3579
3580 void File::LoadInstruments() {
3581 LoadInstruments(NULL);
3582 }
3583
3584 void File::LoadInstruments(progress_t* pProgress) {
3585 if (!pInstruments) pInstruments = new InstrumentList;
3586 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3587 if (lstInstruments) {
3588 int iInstrumentIndex = 0;
3589 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3590 while (lstInstr) {
3591 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3592 // notify current progress
3593 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3594 __notify_progress(pProgress, localProgress);
3595
3596 // divide local progress into subprogress for loading current Instrument
3597 progress_t subprogress;
3598 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3599
3600 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3601
3602 iInstrumentIndex++;
3603 }
3604 lstInstr = lstInstruments->GetNextSubList();
3605 }
3606 __notify_progress(pProgress, 1.0); // notify done
3607 }
3608 }
3609
3610 /// Updates the 3crc chunk with the checksum of a sample. The
3611 /// update is done directly to disk, as this method is called
3612 /// after File::Save()
3613 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3614 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3615 if (!_3crc) return;
3616
3617 // get the index of the sample
3618 int iWaveIndex = -1;
3619 File::SampleList::iterator iter = pSamples->begin();
3620 File::SampleList::iterator end = pSamples->end();
3621 for (int index = 0; iter != end; ++iter, ++index) {
3622 if (*iter == pSample) {
3623 iWaveIndex = index;
3624 break;
3625 }
3626 }
3627 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3628
3629 // write the CRC-32 checksum to disk
3630 _3crc->SetPos(iWaveIndex * 8);
3631 uint32_t tmp = 1;
3632 _3crc->WriteUint32(&tmp); // unknown, always 1?
3633 _3crc->WriteUint32(&crc);
3634 }
3635
3636 Group* File::GetFirstGroup() {
3637 if (!pGroups) LoadGroups();
3638 // there must always be at least one group
3639 GroupsIterator = pGroups->begin();
3640 return *GroupsIterator;
3641 }
3642
3643 Group* File::GetNextGroup() {
3644 if (!pGroups) return NULL;
3645 ++GroupsIterator;
3646 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3647 }
3648
3649 /**
3650 * Returns the group with the given index.
3651 *
3652 * @param index - number of the sought group (0..n)
3653 * @returns sought group or NULL if there's no such group
3654 */
3655 Group* File::GetGroup(uint index) {
3656 if (!pGroups) LoadGroups();
3657 GroupsIterator = pGroups->begin();
3658 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3659 if (i == index) return *GroupsIterator;
3660 ++GroupsIterator;
3661 }
3662 return NULL;
3663 }
3664
3665 Group* File::AddGroup() {
3666 if (!pGroups) LoadGroups();
3667 // there must always be at least one group
3668 __ensureMandatoryChunksExist();
3669 Group* pGroup = new Group(this, NULL);
3670 pGroups->push_back(pGroup);
3671 return pGroup;
3672 }
3673
3674 /** @brief Delete a group and its samples.
3675 *
3676 * This will delete the given Group object and all the samples that
3677 * belong to this group from the gig file. You have to call Save() to
3678 * make this persistent to the file.
3679 *
3680 * @param pGroup - group to delete
3681 * @throws gig::Exception if given group could not be found
3682 */
3683 void File::DeleteGroup(Group* pGroup) {
3684 if (!pGroups) LoadGroups();
3685 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3686 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3687 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3688 // delete all members of this group
3689 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3690 DeleteSample(pSample);
3691 }
3692 // now delete this group object
3693 pGroups->erase(iter);
3694 delete pGroup;
3695 }
3696
3697 /** @brief Delete a group.
3698 *
3699 * This will delete the given Group object from the gig file. All the
3700 * samples that belong to this group will not be deleted, but instead
3701 * be moved to another group. You have to call Save() to make this
3702 * persistent to the file.
3703 *
3704 * @param pGroup - group to delete
3705 * @throws gig::Exception if given group could not be found
3706 */
3707 void File::DeleteGroupOnly(Group* pGroup) {
3708 if (!pGroups) LoadGroups();
3709 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3710 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3711 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3712 // move all members of this group to another group
3713 pGroup->MoveAll();
3714 pGroups->erase(iter);
3715 delete pGroup;
3716 }
3717
3718 void File::LoadGroups() {
3719 if (!pGroups) pGroups = new std::list<Group*>;
3720 // try to read defined groups from file
3721 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3722 if (lst3gri) {
3723 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3724 if (lst3gnl) {
3725 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3726 while (ck) {
3727 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3728 if (pVersion && pVersion->major == 3 &&
3729 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3730
3731 pGroups->push_back(new Group(this, ck));
3732 }
3733 ck = lst3gnl->GetNextSubChunk();
3734 }
3735 }
3736 }
3737 // if there were no group(s), create at least the mandatory default group
3738 if (!pGroups->size()) {
3739 Group* pGroup = new Group(this, NULL);
3740 pGroup->Name = "Default Group";
3741 pGroups->push_back(pGroup);
3742 }
3743 }
3744
3745 /**
3746 * Apply all the gig file's current instruments, samples, groups and settings
3747 * to the respective RIFF chunks. You have to call Save() to make changes
3748 * persistent.
3749 *
3750 * Usually there is absolutely no need to call this method explicitly.
3751 * It will be called automatically when File::Save() was called.
3752 *
3753 * @throws Exception - on errors
3754 */
3755 void File::UpdateChunks() {
3756 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3757
3758 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3759
3760 // first update base class's chunks
3761 DLS::File::UpdateChunks();
3762
3763 if (newFile) {
3764 // INFO was added by Resource::UpdateChunks - make sure it
3765 // is placed first in file
3766 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3767 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3768 if (first != info) {
3769 pRIFF->MoveSubChunk(info, first);
3770 }
3771 }
3772
3773 // update group's chunks
3774 if (pGroups) {
3775 std::list<Group*>::iterator iter = pGroups->begin();
3776 std::list<Group*>::iterator end = pGroups->end();
3777 for (; iter != end; ++iter) {
3778 (*iter)->UpdateChunks();
3779 }
3780
3781 // v3: make sure the file has 128 3gnm chunks
3782 if (pVersion && pVersion->major == 3) {
3783 RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3784 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3785 for (int i = 0 ; i < 128 ; i++) {
3786 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3787 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3788 }
3789 }
3790 }
3791
3792 // update einf chunk
3793
3794 // The einf chunk contains statistics about the gig file, such
3795 // as the number of regions and samples used by each
3796 // instrument. It is divided in equally sized parts, where the
3797 // first part contains information about the whole gig file,
3798 // and the rest of the parts map to each instrument in the
3799 // file.
3800 //
3801 // At the end of each part there is a bit map of each sample
3802 // in the file, where a set bit means that the sample is used
3803 // by the file/instrument.
3804 //
3805 // Note that there are several fields with unknown use. These
3806 // are set to zero.
3807
3808 int sublen = pSamples->size() / 8 + 49;
3809 int einfSize = (Instruments + 1) * sublen;
3810
3811 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3812 if (einf) {
3813 if (einf->GetSize() != einfSize) {
3814 einf->Resize(einfSize);
3815 memset(einf->LoadChunkData(), 0, einfSize);
3816 }
3817 } else if (newFile) {
3818 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3819 }
3820 if (einf) {
3821 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3822
3823 std::map<gig::Sample*,int> sampleMap;
3824 int sampleIdx = 0;
3825 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3826 sampleMap[pSample] = sampleIdx++;
3827 }
3828
3829 int totnbusedsamples = 0;
3830 int totnbusedchannels = 0;
3831 int totnbregions = 0;
3832 int totnbdimregions = 0;
3833 int totnbloops = 0;
3834 int instrumentIdx = 0;
3835
3836 memset(&pData[48], 0, sublen - 48);
3837
3838 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3839 instrument = GetNextInstrument()) {
3840 int nbusedsamples = 0;
3841 int nbusedchannels = 0;
3842 int nbdimregions = 0;
3843 int nbloops = 0;
3844
3845 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3846
3847 for (Region* region = instrument->GetFirstRegion() ; region ;
3848 region = instrument->GetNextRegion()) {
3849 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3850 gig::DimensionRegion *d = region->pDimensionRegions[i];
3851 if (d->pSample) {
3852 int sampleIdx = sampleMap[d->pSample];
3853 int byte = 48 + sampleIdx / 8;
3854 int bit = 1 << (sampleIdx & 7);
3855 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3856 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3857 nbusedsamples++;
3858 nbusedchannels += d->pSample->Channels;
3859
3860 if ((pData[byte] & bit) == 0) {
3861 pData[byte] |= bit;
3862 totnbusedsamples++;
3863 totnbusedchannels += d->pSample->Channels;
3864 }
3865 }
3866 }
3867 if (d->SampleLoops) nbloops++;
3868 }
3869 nbdimregions += region->DimensionRegions;
3870 }
3871 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3872 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3873 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3874 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3875 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3876 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3877 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3878 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3879 // next 8 bytes unknown
3880 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3881 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3882 // next 4 bytes unknown
3883
3884 totnbregions += instrument->Regions;
3885 totnbdimregions += nbdimregions;
3886 totnbloops += nbloops;
3887 instrumentIdx++;
3888 }
3889 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3890 // store32(&pData[0], sublen);
3891 store32(&pData[4], totnbusedchannels);
3892 store32(&pData[8], totnbusedsamples);
3893 store32(&pData[12], Instruments);
3894 store32(&pData[16], totnbregions);
3895 store32(&pData[20], totnbdimregions);
3896 store32(&pData[24], totnbloops);
3897 // next 8 bytes unknown
3898 // next 4 bytes unknown, not always 0
3899 store32(&pData[40], pSamples->size());
3900 // next 4 bytes unknown
3901 }
3902
3903 // update 3crc chunk
3904
3905 // The 3crc chunk contains CRC-32 checksums for the
3906 // samples. The actual checksum values will be filled in
3907 // later, by Sample::Write.
3908
3909 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3910 if (_3crc) {
3911 _3crc->Resize(pSamples->size() * 8);
3912 } else if (newFile) {
3913 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3914 _3crc->LoadChunkData();
3915
3916 // the order of einf and 3crc is not the same in v2 and v3
3917 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3918 }
3919 }
3920
3921 /**
3922 * Enable / disable automatic loading. By default this properyt is
3923 * enabled and all informations are loaded automatically. However
3924 * loading all Regions, DimensionRegions and especially samples might
3925 * take a long time for large .gig files, and sometimes one might only
3926 * be interested in retrieving very superficial informations like the
3927 * amount of instruments and their names. In this case one might disable
3928 * automatic loading to avoid very slow response times.
3929 *
3930 * @e CAUTION: by disabling this property many pointers (i.e. sample
3931 * references) and informations will have invalid or even undefined
3932 * data! This feature is currently only intended for retrieving very
3933 * superficial informations in a very fast way. Don't use it to retrieve
3934 * details like synthesis informations or even to modify .gig files!
3935 */
3936 void File::SetAutoLoad(bool b) {
3937 bAutoLoad = b;
3938 }
3939
3940 /**
3941 * Returns whether automatic loading is enabled.
3942 * @see SetAutoLoad()
3943 */
3944 bool File::GetAutoLoad() {
3945 return bAutoLoad;
3946 }
3947
3948
3949
3950 // *************** Exception ***************
3951 // *
3952
3953 Exception::Exception(String Message) : DLS::Exception(Message) {
3954 }
3955
3956 void Exception::PrintMessage() {
3957 std::cout << "gig::Exception: " << Message << std::endl;
3958 }
3959
3960
3961 // *************** functions ***************
3962 // *
3963
3964 /**
3965 * Returns the name of this C++ library. This is usually "libgig" of
3966 * course. This call is equivalent to RIFF::libraryName() and
3967 * DLS::libraryName().
3968 */
3969 String libraryName() {
3970 return PACKAGE;
3971 }
3972
3973 /**
3974 * Returns version of this C++ library. This call is equivalent to
3975 * RIFF::libraryVersion() and DLS::libraryVersion().
3976 */
3977 String libraryVersion() {
3978 return VERSION;
3979 }
3980
3981 } // namespace gig

  ViewVC Help
Powered by ViewVC