/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1950 - (show annotations) (download)
Wed Jul 29 08:57:46 2009 UTC (10 years, 2 months ago) by persson
File size: 174999 byte(s)
* fixed a tiny memory leak

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2009 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Apply sample and its settings to the respective RIFF chunks. You have
458 * to call File::Save() to make changes persistent.
459 *
460 * Usually there is absolutely no need to call this method explicitly.
461 * It will be called automatically when File::Save() was called.
462 *
463 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 * was provided yet
465 * @throws gig::Exception if there is any invalid sample setting
466 */
467 void Sample::UpdateChunks() {
468 // first update base class's chunks
469 DLS::Sample::UpdateChunks();
470
471 // make sure 'smpl' chunk exists
472 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 if (!pCkSmpl) {
474 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475 memset(pCkSmpl->LoadChunkData(), 0, 60);
476 }
477 // update 'smpl' chunk
478 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 store32(&pData[0], Manufacturer);
481 store32(&pData[4], Product);
482 store32(&pData[8], SamplePeriod);
483 store32(&pData[12], MIDIUnityNote);
484 store32(&pData[16], FineTune);
485 store32(&pData[20], SMPTEFormat);
486 store32(&pData[24], SMPTEOffset);
487 store32(&pData[28], Loops);
488
489 // we skip 'manufByt' for now (4 bytes)
490
491 store32(&pData[36], LoopID);
492 store32(&pData[40], LoopType);
493 store32(&pData[44], LoopStart);
494 store32(&pData[48], LoopEnd);
495 store32(&pData[52], LoopFraction);
496 store32(&pData[56], LoopPlayCount);
497
498 // make sure '3gix' chunk exists
499 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 // determine appropriate sample group index (to be stored in chunk)
502 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 File* pFile = static_cast<File*>(pParent);
504 if (pFile->pGroups) {
505 std::list<Group*>::iterator iter = pFile->pGroups->begin();
506 std::list<Group*>::iterator end = pFile->pGroups->end();
507 for (int i = 0; iter != end; i++, iter++) {
508 if (*iter == pGroup) {
509 iSampleGroup = i;
510 break; // found
511 }
512 }
513 }
514 // update '3gix' chunk
515 pData = (uint8_t*) pCk3gix->LoadChunkData();
516 store16(&pData[0], iSampleGroup);
517 }
518
519 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520 void Sample::ScanCompressedSample() {
521 //TODO: we have to add some more scans here (e.g. determine compression rate)
522 this->SamplesTotal = 0;
523 std::list<unsigned long> frameOffsets;
524
525 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527
528 // Scanning
529 pCkData->SetPos(0);
530 if (Channels == 2) { // Stereo
531 for (int i = 0 ; ; i++) {
532 // for 24 bit samples every 8:th frame offset is
533 // stored, to save some memory
534 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535
536 const int mode_l = pCkData->ReadUint8();
537 const int mode_r = pCkData->ReadUint8();
538 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540
541 if (pCkData->RemainingBytes() <= frameSize) {
542 SamplesInLastFrame =
543 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545 SamplesTotal += SamplesInLastFrame;
546 break;
547 }
548 SamplesTotal += SamplesPerFrame;
549 pCkData->SetPos(frameSize, RIFF::stream_curpos);
550 }
551 }
552 else { // Mono
553 for (int i = 0 ; ; i++) {
554 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555
556 const int mode = pCkData->ReadUint8();
557 if (mode > 5) throw gig::Exception("Unknown compression mode");
558 const unsigned long frameSize = bytesPerFrame[mode];
559
560 if (pCkData->RemainingBytes() <= frameSize) {
561 SamplesInLastFrame =
562 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563 SamplesTotal += SamplesInLastFrame;
564 break;
565 }
566 SamplesTotal += SamplesPerFrame;
567 pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 }
569 }
570 pCkData->SetPos(0);
571
572 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573 if (FrameTable) delete[] FrameTable;
574 FrameTable = new unsigned long[frameOffsets.size()];
575 std::list<unsigned long>::iterator end = frameOffsets.end();
576 std::list<unsigned long>::iterator iter = frameOffsets.begin();
577 for (int i = 0; iter != end; i++, iter++) {
578 FrameTable[i] = *iter;
579 }
580 }
581
582 /**
583 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584 * ReleaseSampleData() to free the memory if you don't need the cached
585 * sample data anymore.
586 *
587 * @returns buffer_t structure with start address and size of the buffer
588 * in bytes
589 * @see ReleaseSampleData(), Read(), SetPos()
590 */
591 buffer_t Sample::LoadSampleData() {
592 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593 }
594
595 /**
596 * Reads (uncompresses if needed) and caches the first \a SampleCount
597 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598 * memory space if you don't need the cached samples anymore. There is no
599 * guarantee that exactly \a SampleCount samples will be cached; this is
600 * not an error. The size will be eventually truncated e.g. to the
601 * beginning of a frame of a compressed sample. This is done for
602 * efficiency reasons while streaming the wave by your sampler engine
603 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604 * that will be returned to determine the actual cached samples, but note
605 * that the size is given in bytes! You get the number of actually cached
606 * samples by dividing it by the frame size of the sample:
607 * @code
608 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609 * long cachedsamples = buf.Size / pSample->FrameSize;
610 * @endcode
611 *
612 * @param SampleCount - number of sample points to load into RAM
613 * @returns buffer_t structure with start address and size of
614 * the cached sample data in bytes
615 * @see ReleaseSampleData(), Read(), SetPos()
616 */
617 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619 }
620
621 /**
622 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623 * ReleaseSampleData() to free the memory if you don't need the cached
624 * sample data anymore.
625 * The method will add \a NullSamplesCount silence samples past the
626 * official buffer end (this won't affect the 'Size' member of the
627 * buffer_t structure, that means 'Size' always reflects the size of the
628 * actual sample data, the buffer might be bigger though). Silence
629 * samples past the official buffer are needed for differential
630 * algorithms that always have to take subsequent samples into account
631 * (resampling/interpolation would be an important example) and avoids
632 * memory access faults in such cases.
633 *
634 * @param NullSamplesCount - number of silence samples the buffer should
635 * be extended past it's data end
636 * @returns buffer_t structure with start address and
637 * size of the buffer in bytes
638 * @see ReleaseSampleData(), Read(), SetPos()
639 */
640 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642 }
643
644 /**
645 * Reads (uncompresses if needed) and caches the first \a SampleCount
646 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647 * memory space if you don't need the cached samples anymore. There is no
648 * guarantee that exactly \a SampleCount samples will be cached; this is
649 * not an error. The size will be eventually truncated e.g. to the
650 * beginning of a frame of a compressed sample. This is done for
651 * efficiency reasons while streaming the wave by your sampler engine
652 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653 * that will be returned to determine the actual cached samples, but note
654 * that the size is given in bytes! You get the number of actually cached
655 * samples by dividing it by the frame size of the sample:
656 * @code
657 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658 * long cachedsamples = buf.Size / pSample->FrameSize;
659 * @endcode
660 * The method will add \a NullSamplesCount silence samples past the
661 * official buffer end (this won't affect the 'Size' member of the
662 * buffer_t structure, that means 'Size' always reflects the size of the
663 * actual sample data, the buffer might be bigger though). Silence
664 * samples past the official buffer are needed for differential
665 * algorithms that always have to take subsequent samples into account
666 * (resampling/interpolation would be an important example) and avoids
667 * memory access faults in such cases.
668 *
669 * @param SampleCount - number of sample points to load into RAM
670 * @param NullSamplesCount - number of silence samples the buffer should
671 * be extended past it's data end
672 * @returns buffer_t structure with start address and
673 * size of the cached sample data in bytes
674 * @see ReleaseSampleData(), Read(), SetPos()
675 */
676 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 SetPos(0); // reset read position to begin of sample
681 RAMCache.pStart = new int8_t[allocationsize];
682 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684 // fill the remaining buffer space with silence samples
685 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686 return GetCache();
687 }
688
689 /**
690 * Returns current cached sample points. A buffer_t structure will be
691 * returned which contains address pointer to the begin of the cache and
692 * the size of the cached sample data in bytes. Use
693 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694 * RAM.
695 *
696 * @returns buffer_t structure with current cached sample points
697 * @see LoadSampleData();
698 */
699 buffer_t Sample::GetCache() {
700 // return a copy of the buffer_t structure
701 buffer_t result;
702 result.Size = this->RAMCache.Size;
703 result.pStart = this->RAMCache.pStart;
704 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705 return result;
706 }
707
708 /**
709 * Frees the cached sample from RAM if loaded with
710 * <i>LoadSampleData()</i> previously.
711 *
712 * @see LoadSampleData();
713 */
714 void Sample::ReleaseSampleData() {
715 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716 RAMCache.pStart = NULL;
717 RAMCache.Size = 0;
718 RAMCache.NullExtensionSize = 0;
719 }
720
721 /** @brief Resize sample.
722 *
723 * Resizes the sample's wave form data, that is the actual size of
724 * sample wave data possible to be written for this sample. This call
725 * will return immediately and just schedule the resize operation. You
726 * should call File::Save() to actually perform the resize operation(s)
727 * "physically" to the file. As this can take a while on large files, it
728 * is recommended to call Resize() first on all samples which have to be
729 * resized and finally to call File::Save() to perform all those resize
730 * operations in one rush.
731 *
732 * The actual size (in bytes) is dependant to the current FrameSize
733 * value. You may want to set FrameSize before calling Resize().
734 *
735 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736 * enlarged samples before calling File::Save() as this might exceed the
737 * current sample's boundary!
738 *
739 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 * other formats will fail!
742 *
743 * @param iNewSize - new sample wave data size in sample points (must be
744 * greater than zero)
745 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 * or if \a iNewSize is less than 1
747 * @throws gig::Exception if existing sample is compressed
748 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749 * DLS::Sample::FormatTag, File::Save()
750 */
751 void Sample::Resize(int iNewSize) {
752 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753 DLS::Sample::Resize(iNewSize);
754 }
755
756 /**
757 * Sets the position within the sample (in sample points, not in
758 * bytes). Use this method and <i>Read()</i> if you don't want to load
759 * the sample into RAM, thus for disk streaming.
760 *
761 * Although the original Gigasampler engine doesn't allow positioning
762 * within compressed samples, I decided to implement it. Even though
763 * the Gigasampler format doesn't allow to define loops for compressed
764 * samples at the moment, positioning within compressed samples might be
765 * interesting for some sampler engines though. The only drawback about
766 * my decision is that it takes longer to load compressed gig Files on
767 * startup, because it's neccessary to scan the samples for some
768 * mandatory informations. But I think as it doesn't affect the runtime
769 * efficiency, nobody will have a problem with that.
770 *
771 * @param SampleCount number of sample points to jump
772 * @param Whence optional: to which relation \a SampleCount refers
773 * to, if omited <i>RIFF::stream_start</i> is assumed
774 * @returns the new sample position
775 * @see Read()
776 */
777 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778 if (Compressed) {
779 switch (Whence) {
780 case RIFF::stream_curpos:
781 this->SamplePos += SampleCount;
782 break;
783 case RIFF::stream_end:
784 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785 break;
786 case RIFF::stream_backward:
787 this->SamplePos -= SampleCount;
788 break;
789 case RIFF::stream_start: default:
790 this->SamplePos = SampleCount;
791 break;
792 }
793 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794
795 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798 return this->SamplePos;
799 }
800 else { // not compressed
801 unsigned long orderedBytes = SampleCount * this->FrameSize;
802 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803 return (result == orderedBytes) ? SampleCount
804 : result / this->FrameSize;
805 }
806 }
807
808 /**
809 * Returns the current position in the sample (in sample points).
810 */
811 unsigned long Sample::GetPos() {
812 if (Compressed) return SamplePos;
813 else return pCkData->GetPos() / FrameSize;
814 }
815
816 /**
817 * Reads \a SampleCount number of sample points from the position stored
818 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819 * the position within the sample respectively, this method honors the
820 * looping informations of the sample (if any). The sample wave stream
821 * will be decompressed on the fly if using a compressed sample. Use this
822 * method if you don't want to load the sample into RAM, thus for disk
823 * streaming. All this methods needs to know to proceed with streaming
824 * for the next time you call this method is stored in \a pPlaybackState.
825 * You have to allocate and initialize the playback_state_t structure by
826 * yourself before you use it to stream a sample:
827 * @code
828 * gig::playback_state_t playbackstate;
829 * playbackstate.position = 0;
830 * playbackstate.reverse = false;
831 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832 * @endcode
833 * You don't have to take care of things like if there is actually a loop
834 * defined or if the current read position is located within a loop area.
835 * The method already handles such cases by itself.
836 *
837 * <b>Caution:</b> If you are using more than one streaming thread, you
838 * have to use an external decompression buffer for <b>EACH</b>
839 * streaming thread to avoid race conditions and crashes!
840 *
841 * @param pBuffer destination buffer
842 * @param SampleCount number of sample points to read
843 * @param pPlaybackState will be used to store and reload the playback
844 * state for the next ReadAndLoop() call
845 * @param pDimRgn dimension region with looping information
846 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 * @returns number of successfully read sample points
848 * @see CreateDecompressionBuffer()
849 */
850 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853 uint8_t* pDst = (uint8_t*) pBuffer;
854
855 SetPos(pPlaybackState->position); // recover position from the last time
856
857 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858
859 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861
862 if (GetPos() <= loopEnd) {
863 switch (loop.LoopType) {
864
865 case loop_type_bidirectional: { //TODO: not tested yet!
866 do {
867 // if not endless loop check if max. number of loop cycles have been passed
868 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869
870 if (!pPlaybackState->reverse) { // forward playback
871 do {
872 samplestoloopend = loopEnd - GetPos();
873 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874 samplestoread -= readsamples;
875 totalreadsamples += readsamples;
876 if (readsamples == samplestoloopend) {
877 pPlaybackState->reverse = true;
878 break;
879 }
880 } while (samplestoread && readsamples);
881 }
882 else { // backward playback
883
884 // as we can only read forward from disk, we have to
885 // determine the end position within the loop first,
886 // read forward from that 'end' and finally after
887 // reading, swap all sample frames so it reflects
888 // backward playback
889
890 unsigned long swapareastart = totalreadsamples;
891 unsigned long loopoffset = GetPos() - loop.LoopStart;
892 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894
895 SetPos(reverseplaybackend);
896
897 // read samples for backward playback
898 do {
899 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900 samplestoreadinloop -= readsamples;
901 samplestoread -= readsamples;
902 totalreadsamples += readsamples;
903 } while (samplestoreadinloop && readsamples);
904
905 SetPos(reverseplaybackend); // pretend we really read backwards
906
907 if (reverseplaybackend == loop.LoopStart) {
908 pPlaybackState->loop_cycles_left--;
909 pPlaybackState->reverse = false;
910 }
911
912 // reverse the sample frames for backward playback
913 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915 }
916 } while (samplestoread && readsamples);
917 break;
918 }
919
920 case loop_type_backward: { // TODO: not tested yet!
921 // forward playback (not entered the loop yet)
922 if (!pPlaybackState->reverse) do {
923 samplestoloopend = loopEnd - GetPos();
924 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925 samplestoread -= readsamples;
926 totalreadsamples += readsamples;
927 if (readsamples == samplestoloopend) {
928 pPlaybackState->reverse = true;
929 break;
930 }
931 } while (samplestoread && readsamples);
932
933 if (!samplestoread) break;
934
935 // as we can only read forward from disk, we have to
936 // determine the end position within the loop first,
937 // read forward from that 'end' and finally after
938 // reading, swap all sample frames so it reflects
939 // backward playback
940
941 unsigned long swapareastart = totalreadsamples;
942 unsigned long loopoffset = GetPos() - loop.LoopStart;
943 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944 : samplestoread;
945 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946
947 SetPos(reverseplaybackend);
948
949 // read samples for backward playback
950 do {
951 // if not endless loop check if max. number of loop cycles have been passed
952 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953 samplestoloopend = loopEnd - GetPos();
954 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955 samplestoreadinloop -= readsamples;
956 samplestoread -= readsamples;
957 totalreadsamples += readsamples;
958 if (readsamples == samplestoloopend) {
959 pPlaybackState->loop_cycles_left--;
960 SetPos(loop.LoopStart);
961 }
962 } while (samplestoreadinloop && readsamples);
963
964 SetPos(reverseplaybackend); // pretend we really read backwards
965
966 // reverse the sample frames for backward playback
967 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968 break;
969 }
970
971 default: case loop_type_normal: {
972 do {
973 // if not endless loop check if max. number of loop cycles have been passed
974 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975 samplestoloopend = loopEnd - GetPos();
976 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977 samplestoread -= readsamples;
978 totalreadsamples += readsamples;
979 if (readsamples == samplestoloopend) {
980 pPlaybackState->loop_cycles_left--;
981 SetPos(loop.LoopStart);
982 }
983 } while (samplestoread && readsamples);
984 break;
985 }
986 }
987 }
988 }
989
990 // read on without looping
991 if (samplestoread) do {
992 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993 samplestoread -= readsamples;
994 totalreadsamples += readsamples;
995 } while (readsamples && samplestoread);
996
997 // store current position
998 pPlaybackState->position = GetPos();
999
1000 return totalreadsamples;
1001 }
1002
1003 /**
1004 * Reads \a SampleCount number of sample points from the current
1005 * position into the buffer pointed by \a pBuffer and increments the
1006 * position within the sample. The sample wave stream will be
1007 * decompressed on the fly if using a compressed sample. Use this method
1008 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1009 * thus for disk streaming.
1010 *
1011 * <b>Caution:</b> If you are using more than one streaming thread, you
1012 * have to use an external decompression buffer for <b>EACH</b>
1013 * streaming thread to avoid race conditions and crashes!
1014 *
1015 * For 16 bit samples, the data in the buffer will be int16_t
1016 * (using native endianness). For 24 bit, the buffer will
1017 * contain three bytes per sample, little-endian.
1018 *
1019 * @param pBuffer destination buffer
1020 * @param SampleCount number of sample points to read
1021 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1022 * @returns number of successfully read sample points
1023 * @see SetPos(), CreateDecompressionBuffer()
1024 */
1025 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026 if (SampleCount == 0) return 0;
1027 if (!Compressed) {
1028 if (BitDepth == 24) {
1029 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030 }
1031 else { // 16 bit
1032 // (pCkData->Read does endian correction)
1033 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034 : pCkData->Read(pBuffer, SampleCount, 2);
1035 }
1036 }
1037 else {
1038 if (this->SamplePos >= this->SamplesTotal) return 0;
1039 //TODO: efficiency: maybe we should test for an average compression rate
1040 unsigned long assumedsize = GuessSize(SampleCount),
1041 remainingbytes = 0, // remaining bytes in the local buffer
1042 remainingsamples = SampleCount,
1043 copysamples, skipsamples,
1044 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045 this->FrameOffset = 0;
1046
1047 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048
1049 // if decompression buffer too small, then reduce amount of samples to read
1050 if (pDecompressionBuffer->Size < assumedsize) {
1051 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053 remainingsamples = SampleCount;
1054 assumedsize = GuessSize(SampleCount);
1055 }
1056
1057 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061
1062 while (remainingsamples && remainingbytes) {
1063 unsigned long framesamples = SamplesPerFrame;
1064 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065
1066 int mode_l = *pSrc++, mode_r = 0;
1067
1068 if (Channels == 2) {
1069 mode_r = *pSrc++;
1070 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073 if (remainingbytes < framebytes) { // last frame in sample
1074 framesamples = SamplesInLastFrame;
1075 if (mode_l == 4 && (framesamples & 1)) {
1076 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077 }
1078 else {
1079 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080 }
1081 }
1082 }
1083 else {
1084 framebytes = bytesPerFrame[mode_l] + 1;
1085 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086 if (remainingbytes < framebytes) {
1087 framesamples = SamplesInLastFrame;
1088 }
1089 }
1090
1091 // determine how many samples in this frame to skip and read
1092 if (currentframeoffset + remainingsamples >= framesamples) {
1093 if (currentframeoffset <= framesamples) {
1094 copysamples = framesamples - currentframeoffset;
1095 skipsamples = currentframeoffset;
1096 }
1097 else {
1098 copysamples = 0;
1099 skipsamples = framesamples;
1100 }
1101 }
1102 else {
1103 // This frame has enough data for pBuffer, but not
1104 // all of the frame is needed. Set file position
1105 // to start of this frame for next call to Read.
1106 copysamples = remainingsamples;
1107 skipsamples = currentframeoffset;
1108 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109 this->FrameOffset = currentframeoffset + copysamples;
1110 }
1111 remainingsamples -= copysamples;
1112
1113 if (remainingbytes > framebytes) {
1114 remainingbytes -= framebytes;
1115 if (remainingsamples == 0 &&
1116 currentframeoffset + copysamples == framesamples) {
1117 // This frame has enough data for pBuffer, and
1118 // all of the frame is needed. Set file
1119 // position to start of next frame for next
1120 // call to Read. FrameOffset is 0.
1121 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122 }
1123 }
1124 else remainingbytes = 0;
1125
1126 currentframeoffset -= skipsamples;
1127
1128 if (copysamples == 0) {
1129 // skip this frame
1130 pSrc += framebytes - Channels;
1131 }
1132 else {
1133 const unsigned char* const param_l = pSrc;
1134 if (BitDepth == 24) {
1135 if (mode_l != 2) pSrc += 12;
1136
1137 if (Channels == 2) { // Stereo
1138 const unsigned char* const param_r = pSrc;
1139 if (mode_r != 2) pSrc += 12;
1140
1141 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142 skipsamples, copysamples, TruncatedBits);
1143 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144 skipsamples, copysamples, TruncatedBits);
1145 pDst24 += copysamples * 6;
1146 }
1147 else { // Mono
1148 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149 skipsamples, copysamples, TruncatedBits);
1150 pDst24 += copysamples * 3;
1151 }
1152 }
1153 else { // 16 bit
1154 if (mode_l) pSrc += 4;
1155
1156 int step;
1157 if (Channels == 2) { // Stereo
1158 const unsigned char* const param_r = pSrc;
1159 if (mode_r) pSrc += 4;
1160
1161 step = (2 - mode_l) + (2 - mode_r);
1162 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164 skipsamples, copysamples);
1165 pDst += copysamples << 1;
1166 }
1167 else { // Mono
1168 step = 2 - mode_l;
1169 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170 pDst += copysamples;
1171 }
1172 }
1173 pSrc += nextFrameOffset;
1174 }
1175
1176 // reload from disk to local buffer if needed
1177 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178 assumedsize = GuessSize(remainingsamples);
1179 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183 }
1184 } // while
1185
1186 this->SamplePos += (SampleCount - remainingsamples);
1187 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188 return (SampleCount - remainingsamples);
1189 }
1190 }
1191
1192 /** @brief Write sample wave data.
1193 *
1194 * Writes \a SampleCount number of sample points from the buffer pointed
1195 * by \a pBuffer and increments the position within the sample. Use this
1196 * method to directly write the sample data to disk, i.e. if you don't
1197 * want or cannot load the whole sample data into RAM.
1198 *
1199 * You have to Resize() the sample to the desired size and call
1200 * File::Save() <b>before</b> using Write().
1201 *
1202 * Note: there is currently no support for writing compressed samples.
1203 *
1204 * For 16 bit samples, the data in the source buffer should be
1205 * int16_t (using native endianness). For 24 bit, the buffer
1206 * should contain three bytes per sample, little-endian.
1207 *
1208 * @param pBuffer - source buffer
1209 * @param SampleCount - number of sample points to write
1210 * @throws DLS::Exception if current sample size is too small
1211 * @throws gig::Exception if sample is compressed
1212 * @see DLS::LoadSampleData()
1213 */
1214 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216
1217 // if this is the first write in this sample, reset the
1218 // checksum calculator
1219 if (pCkData->GetPos() == 0) {
1220 __resetCRC(crc);
1221 }
1222 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223 unsigned long res;
1224 if (BitDepth == 24) {
1225 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226 } else { // 16 bit
1227 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228 : pCkData->Write(pBuffer, SampleCount, 2);
1229 }
1230 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231
1232 // if this is the last write, update the checksum chunk in the
1233 // file
1234 if (pCkData->GetPos() == pCkData->GetSize()) {
1235 File* pFile = static_cast<File*>(GetParent());
1236 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237 }
1238 return res;
1239 }
1240
1241 /**
1242 * Allocates a decompression buffer for streaming (compressed) samples
1243 * with Sample::Read(). If you are using more than one streaming thread
1244 * in your application you <b>HAVE</b> to create a decompression buffer
1245 * for <b>EACH</b> of your streaming threads and provide it with the
1246 * Sample::Read() call in order to avoid race conditions and crashes.
1247 *
1248 * You should free the memory occupied by the allocated buffer(s) once
1249 * you don't need one of your streaming threads anymore by calling
1250 * DestroyDecompressionBuffer().
1251 *
1252 * @param MaxReadSize - the maximum size (in sample points) you ever
1253 * expect to read with one Read() call
1254 * @returns allocated decompression buffer
1255 * @see DestroyDecompressionBuffer()
1256 */
1257 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258 buffer_t result;
1259 const double worstCaseHeaderOverhead =
1260 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262 result.pStart = new int8_t[result.Size];
1263 result.NullExtensionSize = 0;
1264 return result;
1265 }
1266
1267 /**
1268 * Free decompression buffer, previously created with
1269 * CreateDecompressionBuffer().
1270 *
1271 * @param DecompressionBuffer - previously allocated decompression
1272 * buffer to free
1273 */
1274 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276 delete[] (int8_t*) DecompressionBuffer.pStart;
1277 DecompressionBuffer.pStart = NULL;
1278 DecompressionBuffer.Size = 0;
1279 DecompressionBuffer.NullExtensionSize = 0;
1280 }
1281 }
1282
1283 /**
1284 * Returns pointer to the Group this Sample belongs to. In the .gig
1285 * format a sample always belongs to one group. If it wasn't explicitly
1286 * assigned to a certain group, it will be automatically assigned to a
1287 * default group.
1288 *
1289 * @returns Sample's Group (never NULL)
1290 */
1291 Group* Sample::GetGroup() const {
1292 return pGroup;
1293 }
1294
1295 Sample::~Sample() {
1296 Instances--;
1297 if (!Instances && InternalDecompressionBuffer.Size) {
1298 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1299 InternalDecompressionBuffer.pStart = NULL;
1300 InternalDecompressionBuffer.Size = 0;
1301 }
1302 if (FrameTable) delete[] FrameTable;
1303 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304 }
1305
1306
1307
1308 // *************** DimensionRegion ***************
1309 // *
1310
1311 uint DimensionRegion::Instances = 0;
1312 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313
1314 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315 Instances++;
1316
1317 pSample = NULL;
1318 pRegion = pParent;
1319
1320 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321 else memset(&Crossfade, 0, 4);
1322
1323 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324
1325 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326 if (_3ewa) { // if '3ewa' chunk exists
1327 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330 _3ewa->ReadInt16(); // unknown
1331 LFO1InternalDepth = _3ewa->ReadUint16();
1332 _3ewa->ReadInt16(); // unknown
1333 LFO3InternalDepth = _3ewa->ReadInt16();
1334 _3ewa->ReadInt16(); // unknown
1335 LFO1ControlDepth = _3ewa->ReadUint16();
1336 _3ewa->ReadInt16(); // unknown
1337 LFO3ControlDepth = _3ewa->ReadInt16();
1338 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340 _3ewa->ReadInt16(); // unknown
1341 EG1Sustain = _3ewa->ReadUint16();
1342 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345 EG1ControllerInvert = eg1ctrloptions & 0x01;
1346 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1347 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1348 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1349 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351 EG2ControllerInvert = eg2ctrloptions & 0x01;
1352 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1353 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1354 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1355 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358 _3ewa->ReadInt16(); // unknown
1359 EG2Sustain = _3ewa->ReadUint16();
1360 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361 _3ewa->ReadInt16(); // unknown
1362 LFO2ControlDepth = _3ewa->ReadUint16();
1363 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364 _3ewa->ReadInt16(); // unknown
1365 LFO2InternalDepth = _3ewa->ReadUint16();
1366 int32_t eg1decay2 = _3ewa->ReadInt32();
1367 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369 _3ewa->ReadInt16(); // unknown
1370 EG1PreAttack = _3ewa->ReadUint16();
1371 int32_t eg2decay2 = _3ewa->ReadInt32();
1372 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374 _3ewa->ReadInt16(); // unknown
1375 EG2PreAttack = _3ewa->ReadUint16();
1376 uint8_t velocityresponse = _3ewa->ReadUint8();
1377 if (velocityresponse < 5) {
1378 VelocityResponseCurve = curve_type_nonlinear;
1379 VelocityResponseDepth = velocityresponse;
1380 } else if (velocityresponse < 10) {
1381 VelocityResponseCurve = curve_type_linear;
1382 VelocityResponseDepth = velocityresponse - 5;
1383 } else if (velocityresponse < 15) {
1384 VelocityResponseCurve = curve_type_special;
1385 VelocityResponseDepth = velocityresponse - 10;
1386 } else {
1387 VelocityResponseCurve = curve_type_unknown;
1388 VelocityResponseDepth = 0;
1389 }
1390 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391 if (releasevelocityresponse < 5) {
1392 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1393 ReleaseVelocityResponseDepth = releasevelocityresponse;
1394 } else if (releasevelocityresponse < 10) {
1395 ReleaseVelocityResponseCurve = curve_type_linear;
1396 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397 } else if (releasevelocityresponse < 15) {
1398 ReleaseVelocityResponseCurve = curve_type_special;
1399 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400 } else {
1401 ReleaseVelocityResponseCurve = curve_type_unknown;
1402 ReleaseVelocityResponseDepth = 0;
1403 }
1404 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1405 AttenuationControllerThreshold = _3ewa->ReadInt8();
1406 _3ewa->ReadInt32(); // unknown
1407 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408 _3ewa->ReadInt16(); // unknown
1409 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1413 else DimensionBypass = dim_bypass_ctrl_none;
1414 uint8_t pan = _3ewa->ReadUint8();
1415 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416 SelfMask = _3ewa->ReadInt8() & 0x01;
1417 _3ewa->ReadInt8(); // unknown
1418 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1433 : vcf_res_ctrl_none;
1434 uint16_t eg3depth = _3ewa->ReadUint16();
1435 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1437 _3ewa->ReadInt16(); // unknown
1438 ChannelOffset = _3ewa->ReadUint8() / 4;
1439 uint8_t regoptions = _3ewa->ReadUint8();
1440 MSDecode = regoptions & 0x01; // bit 0
1441 SustainDefeat = regoptions & 0x02; // bit 1
1442 _3ewa->ReadInt16(); // unknown
1443 VelocityUpperLimit = _3ewa->ReadInt8();
1444 _3ewa->ReadInt8(); // unknown
1445 _3ewa->ReadInt16(); // unknown
1446 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447 _3ewa->ReadInt8(); // unknown
1448 _3ewa->ReadInt8(); // unknown
1449 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450 uint8_t vcfcutoff = _3ewa->ReadUint8();
1451 VCFEnabled = vcfcutoff & 0x80; // bit 7
1452 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454 uint8_t vcfvelscale = _3ewa->ReadUint8();
1455 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457 _3ewa->ReadInt8(); // unknown
1458 uint8_t vcfresonance = _3ewa->ReadUint8();
1459 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464 uint8_t vcfvelocity = _3ewa->ReadUint8();
1465 VCFVelocityDynamicRange = vcfvelocity % 5;
1466 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468 if (VCFType == vcf_type_lowpass) {
1469 if (lfo3ctrl & 0x40) // bit 6
1470 VCFType = vcf_type_lowpassturbo;
1471 }
1472 if (_3ewa->RemainingBytes() >= 8) {
1473 _3ewa->Read(DimensionUpperLimits, 1, 8);
1474 } else {
1475 memset(DimensionUpperLimits, 0, 8);
1476 }
1477 } else { // '3ewa' chunk does not exist yet
1478 // use default values
1479 LFO3Frequency = 1.0;
1480 EG3Attack = 0.0;
1481 LFO1InternalDepth = 0;
1482 LFO3InternalDepth = 0;
1483 LFO1ControlDepth = 0;
1484 LFO3ControlDepth = 0;
1485 EG1Attack = 0.0;
1486 EG1Decay1 = 0.005;
1487 EG1Sustain = 1000;
1488 EG1Release = 0.3;
1489 EG1Controller.type = eg1_ctrl_t::type_none;
1490 EG1Controller.controller_number = 0;
1491 EG1ControllerInvert = false;
1492 EG1ControllerAttackInfluence = 0;
1493 EG1ControllerDecayInfluence = 0;
1494 EG1ControllerReleaseInfluence = 0;
1495 EG2Controller.type = eg2_ctrl_t::type_none;
1496 EG2Controller.controller_number = 0;
1497 EG2ControllerInvert = false;
1498 EG2ControllerAttackInfluence = 0;
1499 EG2ControllerDecayInfluence = 0;
1500 EG2ControllerReleaseInfluence = 0;
1501 LFO1Frequency = 1.0;
1502 EG2Attack = 0.0;
1503 EG2Decay1 = 0.005;
1504 EG2Sustain = 1000;
1505 EG2Release = 0.3;
1506 LFO2ControlDepth = 0;
1507 LFO2Frequency = 1.0;
1508 LFO2InternalDepth = 0;
1509 EG1Decay2 = 0.0;
1510 EG1InfiniteSustain = true;
1511 EG1PreAttack = 0;
1512 EG2Decay2 = 0.0;
1513 EG2InfiniteSustain = true;
1514 EG2PreAttack = 0;
1515 VelocityResponseCurve = curve_type_nonlinear;
1516 VelocityResponseDepth = 3;
1517 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1518 ReleaseVelocityResponseDepth = 3;
1519 VelocityResponseCurveScaling = 32;
1520 AttenuationControllerThreshold = 0;
1521 SampleStartOffset = 0;
1522 PitchTrack = true;
1523 DimensionBypass = dim_bypass_ctrl_none;
1524 Pan = 0;
1525 SelfMask = true;
1526 LFO3Controller = lfo3_ctrl_modwheel;
1527 LFO3Sync = false;
1528 InvertAttenuationController = false;
1529 AttenuationController.type = attenuation_ctrl_t::type_none;
1530 AttenuationController.controller_number = 0;
1531 LFO2Controller = lfo2_ctrl_internal;
1532 LFO2FlipPhase = false;
1533 LFO2Sync = false;
1534 LFO1Controller = lfo1_ctrl_internal;
1535 LFO1FlipPhase = false;
1536 LFO1Sync = false;
1537 VCFResonanceController = vcf_res_ctrl_none;
1538 EG3Depth = 0;
1539 ChannelOffset = 0;
1540 MSDecode = false;
1541 SustainDefeat = false;
1542 VelocityUpperLimit = 0;
1543 ReleaseTriggerDecay = 0;
1544 EG1Hold = false;
1545 VCFEnabled = false;
1546 VCFCutoff = 0;
1547 VCFCutoffController = vcf_cutoff_ctrl_none;
1548 VCFCutoffControllerInvert = false;
1549 VCFVelocityScale = 0;
1550 VCFResonance = 0;
1551 VCFResonanceDynamic = false;
1552 VCFKeyboardTracking = false;
1553 VCFKeyboardTrackingBreakpoint = 0;
1554 VCFVelocityDynamicRange = 0x04;
1555 VCFVelocityCurve = curve_type_linear;
1556 VCFType = vcf_type_lowpass;
1557 memset(DimensionUpperLimits, 127, 8);
1558 }
1559
1560 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561 VelocityResponseDepth,
1562 VelocityResponseCurveScaling);
1563
1564 pVelocityReleaseTable = GetReleaseVelocityTable(
1565 ReleaseVelocityResponseCurve,
1566 ReleaseVelocityResponseDepth
1567 );
1568
1569 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570 VCFVelocityDynamicRange,
1571 VCFVelocityScale,
1572 VCFCutoffController);
1573
1574 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575 VelocityTable = 0;
1576 }
1577
1578 /*
1579 * Constructs a DimensionRegion by copying all parameters from
1580 * another DimensionRegion
1581 */
1582 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583 Instances++;
1584 *this = src; // default memberwise shallow copy of all parameters
1585 pParentList = _3ewl; // restore the chunk pointer
1586
1587 // deep copy of owned structures
1588 if (src.VelocityTable) {
1589 VelocityTable = new uint8_t[128];
1590 for (int k = 0 ; k < 128 ; k++)
1591 VelocityTable[k] = src.VelocityTable[k];
1592 }
1593 if (src.pSampleLoops) {
1594 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1595 for (int k = 0 ; k < src.SampleLoops ; k++)
1596 pSampleLoops[k] = src.pSampleLoops[k];
1597 }
1598 }
1599
1600 /**
1601 * Updates the respective member variable and updates @c SampleAttenuation
1602 * which depends on this value.
1603 */
1604 void DimensionRegion::SetGain(int32_t gain) {
1605 DLS::Sampler::SetGain(gain);
1606 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1607 }
1608
1609 /**
1610 * Apply dimension region settings to the respective RIFF chunks. You
1611 * have to call File::Save() to make changes persistent.
1612 *
1613 * Usually there is absolutely no need to call this method explicitly.
1614 * It will be called automatically when File::Save() was called.
1615 */
1616 void DimensionRegion::UpdateChunks() {
1617 // first update base class's chunk
1618 DLS::Sampler::UpdateChunks();
1619
1620 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1621 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1622 pData[12] = Crossfade.in_start;
1623 pData[13] = Crossfade.in_end;
1624 pData[14] = Crossfade.out_start;
1625 pData[15] = Crossfade.out_end;
1626
1627 // make sure '3ewa' chunk exists
1628 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1629 if (!_3ewa) {
1630 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1631 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1632 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1633 }
1634 pData = (uint8_t*) _3ewa->LoadChunkData();
1635
1636 // update '3ewa' chunk with DimensionRegion's current settings
1637
1638 const uint32_t chunksize = _3ewa->GetNewSize();
1639 store32(&pData[0], chunksize); // unknown, always chunk size?
1640
1641 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1642 store32(&pData[4], lfo3freq);
1643
1644 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1645 store32(&pData[8], eg3attack);
1646
1647 // next 2 bytes unknown
1648
1649 store16(&pData[14], LFO1InternalDepth);
1650
1651 // next 2 bytes unknown
1652
1653 store16(&pData[18], LFO3InternalDepth);
1654
1655 // next 2 bytes unknown
1656
1657 store16(&pData[22], LFO1ControlDepth);
1658
1659 // next 2 bytes unknown
1660
1661 store16(&pData[26], LFO3ControlDepth);
1662
1663 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1664 store32(&pData[28], eg1attack);
1665
1666 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1667 store32(&pData[32], eg1decay1);
1668
1669 // next 2 bytes unknown
1670
1671 store16(&pData[38], EG1Sustain);
1672
1673 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1674 store32(&pData[40], eg1release);
1675
1676 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1677 pData[44] = eg1ctl;
1678
1679 const uint8_t eg1ctrloptions =
1680 (EG1ControllerInvert ? 0x01 : 0x00) |
1681 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1682 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1683 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1684 pData[45] = eg1ctrloptions;
1685
1686 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1687 pData[46] = eg2ctl;
1688
1689 const uint8_t eg2ctrloptions =
1690 (EG2ControllerInvert ? 0x01 : 0x00) |
1691 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1692 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1693 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1694 pData[47] = eg2ctrloptions;
1695
1696 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1697 store32(&pData[48], lfo1freq);
1698
1699 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1700 store32(&pData[52], eg2attack);
1701
1702 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1703 store32(&pData[56], eg2decay1);
1704
1705 // next 2 bytes unknown
1706
1707 store16(&pData[62], EG2Sustain);
1708
1709 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1710 store32(&pData[64], eg2release);
1711
1712 // next 2 bytes unknown
1713
1714 store16(&pData[70], LFO2ControlDepth);
1715
1716 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1717 store32(&pData[72], lfo2freq);
1718
1719 // next 2 bytes unknown
1720
1721 store16(&pData[78], LFO2InternalDepth);
1722
1723 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1724 store32(&pData[80], eg1decay2);
1725
1726 // next 2 bytes unknown
1727
1728 store16(&pData[86], EG1PreAttack);
1729
1730 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1731 store32(&pData[88], eg2decay2);
1732
1733 // next 2 bytes unknown
1734
1735 store16(&pData[94], EG2PreAttack);
1736
1737 {
1738 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1739 uint8_t velocityresponse = VelocityResponseDepth;
1740 switch (VelocityResponseCurve) {
1741 case curve_type_nonlinear:
1742 break;
1743 case curve_type_linear:
1744 velocityresponse += 5;
1745 break;
1746 case curve_type_special:
1747 velocityresponse += 10;
1748 break;
1749 case curve_type_unknown:
1750 default:
1751 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1752 }
1753 pData[96] = velocityresponse;
1754 }
1755
1756 {
1757 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1758 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1759 switch (ReleaseVelocityResponseCurve) {
1760 case curve_type_nonlinear:
1761 break;
1762 case curve_type_linear:
1763 releasevelocityresponse += 5;
1764 break;
1765 case curve_type_special:
1766 releasevelocityresponse += 10;
1767 break;
1768 case curve_type_unknown:
1769 default:
1770 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1771 }
1772 pData[97] = releasevelocityresponse;
1773 }
1774
1775 pData[98] = VelocityResponseCurveScaling;
1776
1777 pData[99] = AttenuationControllerThreshold;
1778
1779 // next 4 bytes unknown
1780
1781 store16(&pData[104], SampleStartOffset);
1782
1783 // next 2 bytes unknown
1784
1785 {
1786 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1787 switch (DimensionBypass) {
1788 case dim_bypass_ctrl_94:
1789 pitchTrackDimensionBypass |= 0x10;
1790 break;
1791 case dim_bypass_ctrl_95:
1792 pitchTrackDimensionBypass |= 0x20;
1793 break;
1794 case dim_bypass_ctrl_none:
1795 //FIXME: should we set anything here?
1796 break;
1797 default:
1798 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1799 }
1800 pData[108] = pitchTrackDimensionBypass;
1801 }
1802
1803 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1804 pData[109] = pan;
1805
1806 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1807 pData[110] = selfmask;
1808
1809 // next byte unknown
1810
1811 {
1812 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1813 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1814 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1815 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1816 pData[112] = lfo3ctrl;
1817 }
1818
1819 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1820 pData[113] = attenctl;
1821
1822 {
1823 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1824 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1825 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1826 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1827 pData[114] = lfo2ctrl;
1828 }
1829
1830 {
1831 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1832 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1833 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1834 if (VCFResonanceController != vcf_res_ctrl_none)
1835 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1836 pData[115] = lfo1ctrl;
1837 }
1838
1839 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1840 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1841 store16(&pData[116], eg3depth);
1842
1843 // next 2 bytes unknown
1844
1845 const uint8_t channeloffset = ChannelOffset * 4;
1846 pData[120] = channeloffset;
1847
1848 {
1849 uint8_t regoptions = 0;
1850 if (MSDecode) regoptions |= 0x01; // bit 0
1851 if (SustainDefeat) regoptions |= 0x02; // bit 1
1852 pData[121] = regoptions;
1853 }
1854
1855 // next 2 bytes unknown
1856
1857 pData[124] = VelocityUpperLimit;
1858
1859 // next 3 bytes unknown
1860
1861 pData[128] = ReleaseTriggerDecay;
1862
1863 // next 2 bytes unknown
1864
1865 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1866 pData[131] = eg1hold;
1867
1868 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1869 (VCFCutoff & 0x7f); /* lower 7 bits */
1870 pData[132] = vcfcutoff;
1871
1872 pData[133] = VCFCutoffController;
1873
1874 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1875 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1876 pData[134] = vcfvelscale;
1877
1878 // next byte unknown
1879
1880 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1881 (VCFResonance & 0x7f); /* lower 7 bits */
1882 pData[136] = vcfresonance;
1883
1884 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1885 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1886 pData[137] = vcfbreakpoint;
1887
1888 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1889 VCFVelocityCurve * 5;
1890 pData[138] = vcfvelocity;
1891
1892 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1893 pData[139] = vcftype;
1894
1895 if (chunksize >= 148) {
1896 memcpy(&pData[140], DimensionUpperLimits, 8);
1897 }
1898 }
1899
1900 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1901 curve_type_t curveType = releaseVelocityResponseCurve;
1902 uint8_t depth = releaseVelocityResponseDepth;
1903 // this models a strange behaviour or bug in GSt: two of the
1904 // velocity response curves for release time are not used even
1905 // if specified, instead another curve is chosen.
1906 if ((curveType == curve_type_nonlinear && depth == 0) ||
1907 (curveType == curve_type_special && depth == 4)) {
1908 curveType = curve_type_nonlinear;
1909 depth = 3;
1910 }
1911 return GetVelocityTable(curveType, depth, 0);
1912 }
1913
1914 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1915 uint8_t vcfVelocityDynamicRange,
1916 uint8_t vcfVelocityScale,
1917 vcf_cutoff_ctrl_t vcfCutoffController)
1918 {
1919 curve_type_t curveType = vcfVelocityCurve;
1920 uint8_t depth = vcfVelocityDynamicRange;
1921 // even stranger GSt: two of the velocity response curves for
1922 // filter cutoff are not used, instead another special curve
1923 // is chosen. This curve is not used anywhere else.
1924 if ((curveType == curve_type_nonlinear && depth == 0) ||
1925 (curveType == curve_type_special && depth == 4)) {
1926 curveType = curve_type_special;
1927 depth = 5;
1928 }
1929 return GetVelocityTable(curveType, depth,
1930 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1931 ? vcfVelocityScale : 0);
1932 }
1933
1934 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1935 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1936 {
1937 double* table;
1938 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1939 if (pVelocityTables->count(tableKey)) { // if key exists
1940 table = (*pVelocityTables)[tableKey];
1941 }
1942 else {
1943 table = CreateVelocityTable(curveType, depth, scaling);
1944 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1945 }
1946 return table;
1947 }
1948
1949 Region* DimensionRegion::GetParent() const {
1950 return pRegion;
1951 }
1952
1953 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1954 leverage_ctrl_t decodedcontroller;
1955 switch (EncodedController) {
1956 // special controller
1957 case _lev_ctrl_none:
1958 decodedcontroller.type = leverage_ctrl_t::type_none;
1959 decodedcontroller.controller_number = 0;
1960 break;
1961 case _lev_ctrl_velocity:
1962 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1963 decodedcontroller.controller_number = 0;
1964 break;
1965 case _lev_ctrl_channelaftertouch:
1966 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1967 decodedcontroller.controller_number = 0;
1968 break;
1969
1970 // ordinary MIDI control change controller
1971 case _lev_ctrl_modwheel:
1972 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973 decodedcontroller.controller_number = 1;
1974 break;
1975 case _lev_ctrl_breath:
1976 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977 decodedcontroller.controller_number = 2;
1978 break;
1979 case _lev_ctrl_foot:
1980 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981 decodedcontroller.controller_number = 4;
1982 break;
1983 case _lev_ctrl_effect1:
1984 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985 decodedcontroller.controller_number = 12;
1986 break;
1987 case _lev_ctrl_effect2:
1988 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989 decodedcontroller.controller_number = 13;
1990 break;
1991 case _lev_ctrl_genpurpose1:
1992 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993 decodedcontroller.controller_number = 16;
1994 break;
1995 case _lev_ctrl_genpurpose2:
1996 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997 decodedcontroller.controller_number = 17;
1998 break;
1999 case _lev_ctrl_genpurpose3:
2000 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001 decodedcontroller.controller_number = 18;
2002 break;
2003 case _lev_ctrl_genpurpose4:
2004 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005 decodedcontroller.controller_number = 19;
2006 break;
2007 case _lev_ctrl_portamentotime:
2008 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009 decodedcontroller.controller_number = 5;
2010 break;
2011 case _lev_ctrl_sustainpedal:
2012 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013 decodedcontroller.controller_number = 64;
2014 break;
2015 case _lev_ctrl_portamento:
2016 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017 decodedcontroller.controller_number = 65;
2018 break;
2019 case _lev_ctrl_sostenutopedal:
2020 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021 decodedcontroller.controller_number = 66;
2022 break;
2023 case _lev_ctrl_softpedal:
2024 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025 decodedcontroller.controller_number = 67;
2026 break;
2027 case _lev_ctrl_genpurpose5:
2028 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029 decodedcontroller.controller_number = 80;
2030 break;
2031 case _lev_ctrl_genpurpose6:
2032 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033 decodedcontroller.controller_number = 81;
2034 break;
2035 case _lev_ctrl_genpurpose7:
2036 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037 decodedcontroller.controller_number = 82;
2038 break;
2039 case _lev_ctrl_genpurpose8:
2040 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041 decodedcontroller.controller_number = 83;
2042 break;
2043 case _lev_ctrl_effect1depth:
2044 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045 decodedcontroller.controller_number = 91;
2046 break;
2047 case _lev_ctrl_effect2depth:
2048 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049 decodedcontroller.controller_number = 92;
2050 break;
2051 case _lev_ctrl_effect3depth:
2052 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053 decodedcontroller.controller_number = 93;
2054 break;
2055 case _lev_ctrl_effect4depth:
2056 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057 decodedcontroller.controller_number = 94;
2058 break;
2059 case _lev_ctrl_effect5depth:
2060 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061 decodedcontroller.controller_number = 95;
2062 break;
2063
2064 // unknown controller type
2065 default:
2066 throw gig::Exception("Unknown leverage controller type.");
2067 }
2068 return decodedcontroller;
2069 }
2070
2071 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2072 _lev_ctrl_t encodedcontroller;
2073 switch (DecodedController.type) {
2074 // special controller
2075 case leverage_ctrl_t::type_none:
2076 encodedcontroller = _lev_ctrl_none;
2077 break;
2078 case leverage_ctrl_t::type_velocity:
2079 encodedcontroller = _lev_ctrl_velocity;
2080 break;
2081 case leverage_ctrl_t::type_channelaftertouch:
2082 encodedcontroller = _lev_ctrl_channelaftertouch;
2083 break;
2084
2085 // ordinary MIDI control change controller
2086 case leverage_ctrl_t::type_controlchange:
2087 switch (DecodedController.controller_number) {
2088 case 1:
2089 encodedcontroller = _lev_ctrl_modwheel;
2090 break;
2091 case 2:
2092 encodedcontroller = _lev_ctrl_breath;
2093 break;
2094 case 4:
2095 encodedcontroller = _lev_ctrl_foot;
2096 break;
2097 case 12:
2098 encodedcontroller = _lev_ctrl_effect1;
2099 break;
2100 case 13:
2101 encodedcontroller = _lev_ctrl_effect2;
2102 break;
2103 case 16:
2104 encodedcontroller = _lev_ctrl_genpurpose1;
2105 break;
2106 case 17:
2107 encodedcontroller = _lev_ctrl_genpurpose2;
2108 break;
2109 case 18:
2110 encodedcontroller = _lev_ctrl_genpurpose3;
2111 break;
2112 case 19:
2113 encodedcontroller = _lev_ctrl_genpurpose4;
2114 break;
2115 case 5:
2116 encodedcontroller = _lev_ctrl_portamentotime;
2117 break;
2118 case 64:
2119 encodedcontroller = _lev_ctrl_sustainpedal;
2120 break;
2121 case 65:
2122 encodedcontroller = _lev_ctrl_portamento;
2123 break;
2124 case 66:
2125 encodedcontroller = _lev_ctrl_sostenutopedal;
2126 break;
2127 case 67:
2128 encodedcontroller = _lev_ctrl_softpedal;
2129 break;
2130 case 80:
2131 encodedcontroller = _lev_ctrl_genpurpose5;
2132 break;
2133 case 81:
2134 encodedcontroller = _lev_ctrl_genpurpose6;
2135 break;
2136 case 82:
2137 encodedcontroller = _lev_ctrl_genpurpose7;
2138 break;
2139 case 83:
2140 encodedcontroller = _lev_ctrl_genpurpose8;
2141 break;
2142 case 91:
2143 encodedcontroller = _lev_ctrl_effect1depth;
2144 break;
2145 case 92:
2146 encodedcontroller = _lev_ctrl_effect2depth;
2147 break;
2148 case 93:
2149 encodedcontroller = _lev_ctrl_effect3depth;
2150 break;
2151 case 94:
2152 encodedcontroller = _lev_ctrl_effect4depth;
2153 break;
2154 case 95:
2155 encodedcontroller = _lev_ctrl_effect5depth;
2156 break;
2157 default:
2158 throw gig::Exception("leverage controller number is not supported by the gig format");
2159 }
2160 break;
2161 default:
2162 throw gig::Exception("Unknown leverage controller type.");
2163 }
2164 return encodedcontroller;
2165 }
2166
2167 DimensionRegion::~DimensionRegion() {
2168 Instances--;
2169 if (!Instances) {
2170 // delete the velocity->volume tables
2171 VelocityTableMap::iterator iter;
2172 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2173 double* pTable = iter->second;
2174 if (pTable) delete[] pTable;
2175 }
2176 pVelocityTables->clear();
2177 delete pVelocityTables;
2178 pVelocityTables = NULL;
2179 }
2180 if (VelocityTable) delete[] VelocityTable;
2181 }
2182
2183 /**
2184 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2185 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2186 * and VelocityResponseCurveScaling) involved are taken into account to
2187 * calculate the amplitude factor. Use this method when a key was
2188 * triggered to get the volume with which the sample should be played
2189 * back.
2190 *
2191 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2192 * @returns amplitude factor (between 0.0 and 1.0)
2193 */
2194 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2195 return pVelocityAttenuationTable[MIDIKeyVelocity];
2196 }
2197
2198 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2199 return pVelocityReleaseTable[MIDIKeyVelocity];
2200 }
2201
2202 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2203 return pVelocityCutoffTable[MIDIKeyVelocity];
2204 }
2205
2206 /**
2207 * Updates the respective member variable and the lookup table / cache
2208 * that depends on this value.
2209 */
2210 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2211 pVelocityAttenuationTable =
2212 GetVelocityTable(
2213 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2214 );
2215 VelocityResponseCurve = curve;
2216 }
2217
2218 /**
2219 * Updates the respective member variable and the lookup table / cache
2220 * that depends on this value.
2221 */
2222 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2223 pVelocityAttenuationTable =
2224 GetVelocityTable(
2225 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2226 );
2227 VelocityResponseDepth = depth;
2228 }
2229
2230 /**
2231 * Updates the respective member variable and the lookup table / cache
2232 * that depends on this value.
2233 */
2234 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2235 pVelocityAttenuationTable =
2236 GetVelocityTable(
2237 VelocityResponseCurve, VelocityResponseDepth, scaling
2238 );
2239 VelocityResponseCurveScaling = scaling;
2240 }
2241
2242 /**
2243 * Updates the respective member variable and the lookup table / cache
2244 * that depends on this value.
2245 */
2246 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2247 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2248 ReleaseVelocityResponseCurve = curve;
2249 }
2250
2251 /**
2252 * Updates the respective member variable and the lookup table / cache
2253 * that depends on this value.
2254 */
2255 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2256 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2257 ReleaseVelocityResponseDepth = depth;
2258 }
2259
2260 /**
2261 * Updates the respective member variable and the lookup table / cache
2262 * that depends on this value.
2263 */
2264 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2265 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2266 VCFCutoffController = controller;
2267 }
2268
2269 /**
2270 * Updates the respective member variable and the lookup table / cache
2271 * that depends on this value.
2272 */
2273 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2274 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2275 VCFVelocityCurve = curve;
2276 }
2277
2278 /**
2279 * Updates the respective member variable and the lookup table / cache
2280 * that depends on this value.
2281 */
2282 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2283 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2284 VCFVelocityDynamicRange = range;
2285 }
2286
2287 /**
2288 * Updates the respective member variable and the lookup table / cache
2289 * that depends on this value.
2290 */
2291 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2292 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2293 VCFVelocityScale = scaling;
2294 }
2295
2296 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2297
2298 // line-segment approximations of the 15 velocity curves
2299
2300 // linear
2301 const int lin0[] = { 1, 1, 127, 127 };
2302 const int lin1[] = { 1, 21, 127, 127 };
2303 const int lin2[] = { 1, 45, 127, 127 };
2304 const int lin3[] = { 1, 74, 127, 127 };
2305 const int lin4[] = { 1, 127, 127, 127 };
2306
2307 // non-linear
2308 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2309 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2310 127, 127 };
2311 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2312 127, 127 };
2313 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2314 127, 127 };
2315 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2316
2317 // special
2318 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2319 113, 127, 127, 127 };
2320 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2321 118, 127, 127, 127 };
2322 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2323 85, 90, 91, 127, 127, 127 };
2324 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2325 117, 127, 127, 127 };
2326 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2327 127, 127 };
2328
2329 // this is only used by the VCF velocity curve
2330 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2331 91, 127, 127, 127 };
2332
2333 const int* const curves[] = { non0, non1, non2, non3, non4,
2334 lin0, lin1, lin2, lin3, lin4,
2335 spe0, spe1, spe2, spe3, spe4, spe5 };
2336
2337 double* const table = new double[128];
2338
2339 const int* curve = curves[curveType * 5 + depth];
2340 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2341
2342 table[0] = 0;
2343 for (int x = 1 ; x < 128 ; x++) {
2344
2345 if (x > curve[2]) curve += 2;
2346 double y = curve[1] + (x - curve[0]) *
2347 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2348 y = y / 127;
2349
2350 // Scale up for s > 20, down for s < 20. When
2351 // down-scaling, the curve still ends at 1.0.
2352 if (s < 20 && y >= 0.5)
2353 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2354 else
2355 y = y * (s / 20.0);
2356 if (y > 1) y = 1;
2357
2358 table[x] = y;
2359 }
2360 return table;
2361 }
2362
2363
2364 // *************** Region ***************
2365 // *
2366
2367 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2368 // Initialization
2369 Dimensions = 0;
2370 for (int i = 0; i < 256; i++) {
2371 pDimensionRegions[i] = NULL;
2372 }
2373 Layers = 1;
2374 File* file = (File*) GetParent()->GetParent();
2375 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2376
2377 // Actual Loading
2378
2379 if (!file->GetAutoLoad()) return;
2380
2381 LoadDimensionRegions(rgnList);
2382
2383 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2384 if (_3lnk) {
2385 DimensionRegions = _3lnk->ReadUint32();
2386 for (int i = 0; i < dimensionBits; i++) {
2387 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2388 uint8_t bits = _3lnk->ReadUint8();
2389 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2390 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2391 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2392 if (dimension == dimension_none) { // inactive dimension
2393 pDimensionDefinitions[i].dimension = dimension_none;
2394 pDimensionDefinitions[i].bits = 0;
2395 pDimensionDefinitions[i].zones = 0;
2396 pDimensionDefinitions[i].split_type = split_type_bit;
2397 pDimensionDefinitions[i].zone_size = 0;
2398 }
2399 else { // active dimension
2400 pDimensionDefinitions[i].dimension = dimension;
2401 pDimensionDefinitions[i].bits = bits;
2402 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2403 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2404 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2405 Dimensions++;
2406
2407 // if this is a layer dimension, remember the amount of layers
2408 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2409 }
2410 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2411 }
2412 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2413
2414 // if there's a velocity dimension and custom velocity zone splits are used,
2415 // update the VelocityTables in the dimension regions
2416 UpdateVelocityTable();
2417
2418 // jump to start of the wave pool indices (if not already there)
2419 if (file->pVersion && file->pVersion->major == 3)
2420 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2421 else
2422 _3lnk->SetPos(44);
2423
2424 // load sample references (if auto loading is enabled)
2425 if (file->GetAutoLoad()) {
2426 for (uint i = 0; i < DimensionRegions; i++) {
2427 uint32_t wavepoolindex = _3lnk->ReadUint32();
2428 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2429 }
2430 GetSample(); // load global region sample reference
2431 }
2432 } else {
2433 DimensionRegions = 0;
2434 for (int i = 0 ; i < 8 ; i++) {
2435 pDimensionDefinitions[i].dimension = dimension_none;
2436 pDimensionDefinitions[i].bits = 0;
2437 pDimensionDefinitions[i].zones = 0;
2438 }
2439 }
2440
2441 // make sure there is at least one dimension region
2442 if (!DimensionRegions) {
2443 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2444 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2445 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2446 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2447 DimensionRegions = 1;
2448 }
2449 }
2450
2451 /**
2452 * Apply Region settings and all its DimensionRegions to the respective
2453 * RIFF chunks. You have to call File::Save() to make changes persistent.
2454 *
2455 * Usually there is absolutely no need to call this method explicitly.
2456 * It will be called automatically when File::Save() was called.
2457 *
2458 * @throws gig::Exception if samples cannot be dereferenced
2459 */
2460 void Region::UpdateChunks() {
2461 // in the gig format we don't care about the Region's sample reference
2462 // but we still have to provide some existing one to not corrupt the
2463 // file, so to avoid the latter we simply always assign the sample of
2464 // the first dimension region of this region
2465 pSample = pDimensionRegions[0]->pSample;
2466
2467 // first update base class's chunks
2468 DLS::Region::UpdateChunks();
2469
2470 // update dimension region's chunks
2471 for (int i = 0; i < DimensionRegions; i++) {
2472 pDimensionRegions[i]->UpdateChunks();
2473 }
2474
2475 File* pFile = (File*) GetParent()->GetParent();
2476 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2477 const int iMaxDimensions = version3 ? 8 : 5;
2478 const int iMaxDimensionRegions = version3 ? 256 : 32;
2479
2480 // make sure '3lnk' chunk exists
2481 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2482 if (!_3lnk) {
2483 const int _3lnkChunkSize = version3 ? 1092 : 172;
2484 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2485 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2486
2487 // move 3prg to last position
2488 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2489 }
2490
2491 // update dimension definitions in '3lnk' chunk
2492 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2493 store32(&pData[0], DimensionRegions);
2494 int shift = 0;
2495 for (int i = 0; i < iMaxDimensions; i++) {
2496 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2497 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2498 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2499 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2500 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2501 // next 3 bytes unknown, always zero?
2502
2503 shift += pDimensionDefinitions[i].bits;
2504 }
2505
2506 // update wave pool table in '3lnk' chunk
2507 const int iWavePoolOffset = version3 ? 68 : 44;
2508 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2509 int iWaveIndex = -1;
2510 if (i < DimensionRegions) {
2511 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2512 File::SampleList::iterator iter = pFile->pSamples->begin();
2513 File::SampleList::iterator end = pFile->pSamples->end();
2514 for (int index = 0; iter != end; ++iter, ++index) {
2515 if (*iter == pDimensionRegions[i]->pSample) {
2516 iWaveIndex = index;
2517 break;
2518 }
2519 }
2520 }
2521 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2522 }
2523 }
2524
2525 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2526 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2527 if (_3prg) {
2528 int dimensionRegionNr = 0;
2529 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2530 while (_3ewl) {
2531 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2532 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2533 dimensionRegionNr++;
2534 }
2535 _3ewl = _3prg->GetNextSubList();
2536 }
2537 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2538 }
2539 }
2540
2541 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2542 // update KeyRange struct and make sure regions are in correct order
2543 DLS::Region::SetKeyRange(Low, High);
2544 // update Region key table for fast lookup
2545 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2546 }
2547
2548 void Region::UpdateVelocityTable() {
2549 // get velocity dimension's index
2550 int veldim = -1;
2551 for (int i = 0 ; i < Dimensions ; i++) {
2552 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2553 veldim = i;
2554 break;
2555 }
2556 }
2557 if (veldim == -1) return;
2558
2559 int step = 1;
2560 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2561 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2562 int end = step * pDimensionDefinitions[veldim].zones;
2563
2564 // loop through all dimension regions for all dimensions except the velocity dimension
2565 int dim[8] = { 0 };
2566 for (int i = 0 ; i < DimensionRegions ; i++) {
2567
2568 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2569 pDimensionRegions[i]->VelocityUpperLimit) {
2570 // create the velocity table
2571 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2572 if (!table) {
2573 table = new uint8_t[128];
2574 pDimensionRegions[i]->VelocityTable = table;
2575 }
2576 int tableidx = 0;
2577 int velocityZone = 0;
2578 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2579 for (int k = i ; k < end ; k += step) {
2580 DimensionRegion *d = pDimensionRegions[k];
2581 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2582 velocityZone++;
2583 }
2584 } else { // gig2
2585 for (int k = i ; k < end ; k += step) {
2586 DimensionRegion *d = pDimensionRegions[k];
2587 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2588 velocityZone++;
2589 }
2590 }
2591 } else {
2592 if (pDimensionRegions[i]->VelocityTable) {
2593 delete[] pDimensionRegions[i]->VelocityTable;
2594 pDimensionRegions[i]->VelocityTable = 0;
2595 }
2596 }
2597
2598 int j;
2599 int shift = 0;
2600 for (j = 0 ; j < Dimensions ; j++) {
2601 if (j == veldim) i += skipveldim; // skip velocity dimension
2602 else {
2603 dim[j]++;
2604 if (dim[j] < pDimensionDefinitions[j].zones) break;
2605 else {
2606 // skip unused dimension regions
2607 dim[j] = 0;
2608 i += ((1 << pDimensionDefinitions[j].bits) -
2609 pDimensionDefinitions[j].zones) << shift;
2610 }
2611 }
2612 shift += pDimensionDefinitions[j].bits;
2613 }
2614 if (j == Dimensions) break;
2615 }
2616 }
2617
2618 /** @brief Einstein would have dreamed of it - create a new dimension.
2619 *
2620 * Creates a new dimension with the dimension definition given by
2621 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2622 * There is a hard limit of dimensions and total amount of "bits" all
2623 * dimensions can have. This limit is dependant to what gig file format
2624 * version this file refers to. The gig v2 (and lower) format has a
2625 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2626 * format has a limit of 8.
2627 *
2628 * @param pDimDef - defintion of the new dimension
2629 * @throws gig::Exception if dimension of the same type exists already
2630 * @throws gig::Exception if amount of dimensions or total amount of
2631 * dimension bits limit is violated
2632 */
2633 void Region::AddDimension(dimension_def_t* pDimDef) {
2634 // check if max. amount of dimensions reached
2635 File* file = (File*) GetParent()->GetParent();
2636 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2637 if (Dimensions >= iMaxDimensions)
2638 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2639 // check if max. amount of dimension bits reached
2640 int iCurrentBits = 0;
2641 for (int i = 0; i < Dimensions; i++)
2642 iCurrentBits += pDimensionDefinitions[i].bits;
2643 if (iCurrentBits >= iMaxDimensions)
2644 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2645 const int iNewBits = iCurrentBits + pDimDef->bits;
2646 if (iNewBits > iMaxDimensions)
2647 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2648 // check if there's already a dimensions of the same type
2649 for (int i = 0; i < Dimensions; i++)
2650 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2651 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2652
2653 // pos is where the new dimension should be placed, normally
2654 // last in list, except for the samplechannel dimension which
2655 // has to be first in list
2656 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2657 int bitpos = 0;
2658 for (int i = 0 ; i < pos ; i++)
2659 bitpos += pDimensionDefinitions[i].bits;
2660
2661 // make room for the new dimension
2662 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2663 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2664 for (int j = Dimensions ; j > pos ; j--) {
2665 pDimensionRegions[i]->DimensionUpperLimits[j] =
2666 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2667 }
2668 }
2669
2670 // assign definition of new dimension
2671 pDimensionDefinitions[pos] = *pDimDef;
2672
2673 // auto correct certain dimension definition fields (where possible)
2674 pDimensionDefinitions[pos].split_type =
2675 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2676 pDimensionDefinitions[pos].zone_size =
2677 __resolveZoneSize(pDimensionDefinitions[pos]);
2678
2679 // create new dimension region(s) for this new dimension, and make
2680 // sure that the dimension regions are placed correctly in both the
2681 // RIFF list and the pDimensionRegions array
2682 RIFF::Chunk* moveTo = NULL;
2683 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2684 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2685 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2687 }
2688 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2689 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2690 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2691 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2692 // create a new dimension region and copy all parameter values from
2693 // an existing dimension region
2694 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2695 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2696
2697 DimensionRegions++;
2698 }
2699 }
2700 moveTo = pDimensionRegions[i]->pParentList;
2701 }
2702
2703 // initialize the upper limits for this dimension
2704 int mask = (1 << bitpos) - 1;
2705 for (int z = 0 ; z < pDimDef->zones ; z++) {
2706 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2707 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2708 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2709 (z << bitpos) |
2710 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2711 }
2712 }
2713
2714 Dimensions++;
2715
2716 // if this is a layer dimension, update 'Layers' attribute
2717 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2718
2719 UpdateVelocityTable();
2720 }
2721
2722 /** @brief Delete an existing dimension.
2723 *
2724 * Deletes the dimension given by \a pDimDef and deletes all respective
2725 * dimension regions, that is all dimension regions where the dimension's
2726 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2727 * for example this would delete all dimension regions for the case(s)
2728 * where the sustain pedal is pressed down.
2729 *
2730 * @param pDimDef - dimension to delete
2731 * @throws gig::Exception if given dimension cannot be found
2732 */
2733 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2734 // get dimension's index
2735 int iDimensionNr = -1;
2736 for (int i = 0; i < Dimensions; i++) {
2737 if (&pDimensionDefinitions[i] == pDimDef) {
2738 iDimensionNr = i;
2739 break;
2740 }
2741 }
2742 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2743
2744 // get amount of bits below the dimension to delete
2745 int iLowerBits = 0;
2746 for (int i = 0; i < iDimensionNr; i++)
2747 iLowerBits += pDimensionDefinitions[i].bits;
2748
2749 // get amount ot bits above the dimension to delete
2750 int iUpperBits = 0;
2751 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2752 iUpperBits += pDimensionDefinitions[i].bits;
2753
2754 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2755
2756 // delete dimension regions which belong to the given dimension
2757 // (that is where the dimension's bit > 0)
2758 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2759 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2760 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2761 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2762 iObsoleteBit << iLowerBits |
2763 iLowerBit;
2764
2765 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2766 delete pDimensionRegions[iToDelete];
2767 pDimensionRegions[iToDelete] = NULL;
2768 DimensionRegions--;
2769 }
2770 }
2771 }
2772
2773 // defrag pDimensionRegions array
2774 // (that is remove the NULL spaces within the pDimensionRegions array)
2775 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2776 if (!pDimensionRegions[iTo]) {
2777 if (iFrom <= iTo) iFrom = iTo + 1;
2778 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2779 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2780 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2781 pDimensionRegions[iFrom] = NULL;
2782 }
2783 }
2784 }
2785
2786 // remove the this dimension from the upper limits arrays
2787 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2788 DimensionRegion* d = pDimensionRegions[j];
2789 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2790 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2791 }
2792 d->DimensionUpperLimits[Dimensions - 1] = 127;
2793 }
2794
2795 // 'remove' dimension definition
2796 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2797 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2798 }
2799 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2800 pDimensionDefinitions[Dimensions - 1].bits = 0;
2801 pDimensionDefinitions[Dimensions - 1].zones = 0;
2802
2803 Dimensions--;
2804
2805 // if this was a layer dimension, update 'Layers' attribute
2806 if (pDimDef->dimension == dimension_layer) Layers = 1;
2807 }
2808
2809 Region::~Region() {
2810 for (int i = 0; i < 256; i++) {
2811 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2812 }
2813 }
2814
2815 /**
2816 * Use this method in your audio engine to get the appropriate dimension
2817 * region with it's articulation data for the current situation. Just
2818 * call the method with the current MIDI controller values and you'll get
2819 * the DimensionRegion with the appropriate articulation data for the
2820 * current situation (for this Region of course only). To do that you'll
2821 * first have to look which dimensions with which controllers and in
2822 * which order are defined for this Region when you load the .gig file.
2823 * Special cases are e.g. layer or channel dimensions where you just put
2824 * in the index numbers instead of a MIDI controller value (means 0 for
2825 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2826 * etc.).
2827 *
2828 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2829 * @returns adress to the DimensionRegion for the given situation
2830 * @see pDimensionDefinitions
2831 * @see Dimensions
2832 */
2833 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2834 uint8_t bits;
2835 int veldim = -1;
2836 int velbitpos;
2837 int bitpos = 0;
2838 int dimregidx = 0;
2839 for (uint i = 0; i < Dimensions; i++) {
2840 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2841 // the velocity dimension must be handled after the other dimensions
2842 veldim = i;
2843 velbitpos = bitpos;
2844 } else {
2845 switch (pDimensionDefinitions[i].split_type) {
2846 case split_type_normal:
2847 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2848 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2849 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2850 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2851 }
2852 } else {
2853 // gig2: evenly sized zones
2854 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2855 }
2856 break;
2857 case split_type_bit: // the value is already the sought dimension bit number
2858 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2859 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2860 break;
2861 }
2862 dimregidx |= bits << bitpos;
2863 }
2864 bitpos += pDimensionDefinitions[i].bits;
2865 }
2866 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2867 if (veldim != -1) {
2868 // (dimreg is now the dimension region for the lowest velocity)
2869 if (dimreg->VelocityTable) // custom defined zone ranges
2870 bits = dimreg->VelocityTable[DimValues[veldim]];
2871 else // normal split type
2872 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2873
2874 dimregidx |= bits << velbitpos;
2875 dimreg = pDimensionRegions[dimregidx];
2876 }
2877 return dimreg;
2878 }
2879
2880 /**
2881 * Returns the appropriate DimensionRegion for the given dimension bit
2882 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2883 * instead of calling this method directly!
2884 *
2885 * @param DimBits Bit numbers for dimension 0 to 7
2886 * @returns adress to the DimensionRegion for the given dimension
2887 * bit numbers
2888 * @see GetDimensionRegionByValue()
2889 */
2890 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2891 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2892 << pDimensionDefinitions[5].bits | DimBits[5])
2893 << pDimensionDefinitions[4].bits | DimBits[4])
2894 << pDimensionDefinitions[3].bits | DimBits[3])
2895 << pDimensionDefinitions[2].bits | DimBits[2])
2896 << pDimensionDefinitions[1].bits | DimBits[1])
2897 << pDimensionDefinitions[0].bits | DimBits[0]];
2898 }
2899
2900 /**
2901 * Returns pointer address to the Sample referenced with this region.
2902 * This is the global Sample for the entire Region (not sure if this is
2903 * actually used by the Gigasampler engine - I would only use the Sample
2904 * referenced by the appropriate DimensionRegion instead of this sample).
2905 *
2906 * @returns address to Sample or NULL if there is no reference to a
2907 * sample saved in the .gig file
2908 */
2909 Sample* Region::GetSample() {
2910 if (pSample) return static_cast<gig::Sample*>(pSample);
2911 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2912 }
2913
2914 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2915 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2916 File* file = (File*) GetParent()->GetParent();
2917 if (!file->pWavePoolTable) return NULL;
2918 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2919 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2920 Sample* sample = file->GetFirstSample(pProgress);
2921 while (sample) {
2922 if (sample->ulWavePoolOffset == soughtoffset &&
2923 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2924 sample = file->GetNextSample();
2925 }
2926 return NULL;
2927 }
2928
2929
2930 // *************** MidiRule ***************
2931 // *
2932
2933 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
2934 _3ewg->SetPos(36);
2935 Triggers = _3ewg->ReadUint8();
2936 _3ewg->SetPos(40);
2937 ControllerNumber = _3ewg->ReadUint8();
2938 _3ewg->SetPos(46);
2939 for (int i = 0 ; i < Triggers ; i++) {
2940 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2941 pTriggers[i].Descending = _3ewg->ReadUint8();
2942 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2943 pTriggers[i].Key = _3ewg->ReadUint8();
2944 pTriggers[i].NoteOff = _3ewg->ReadUint8();
2945 pTriggers[i].Velocity = _3ewg->ReadUint8();
2946 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2947 _3ewg->ReadUint8();
2948 }
2949 }
2950
2951
2952 // *************** Instrument ***************
2953 // *
2954
2955 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2956 static const DLS::Info::string_length_t fixedStringLengths[] = {
2957 { CHUNK_ID_INAM, 64 },
2958 { CHUNK_ID_ISFT, 12 },
2959 { 0, 0 }
2960 };
2961 pInfo->SetFixedStringLengths(fixedStringLengths);
2962
2963 // Initialization
2964 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2965 EffectSend = 0;
2966 Attenuation = 0;
2967 FineTune = 0;
2968 PitchbendRange = 0;
2969 PianoReleaseMode = false;
2970 DimensionKeyRange.low = 0;
2971 DimensionKeyRange.high = 0;
2972 pMidiRules = new MidiRule*[3];
2973 pMidiRules[0] = NULL;
2974
2975 // Loading
2976 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2977 if (lart) {
2978 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2979 if (_3ewg) {
2980 EffectSend = _3ewg->ReadUint16();
2981 Attenuation = _3ewg->ReadInt32();
2982 FineTune = _3ewg->ReadInt16();
2983 PitchbendRange = _3ewg->ReadInt16();
2984 uint8_t dimkeystart = _3ewg->ReadUint8();
2985 PianoReleaseMode = dimkeystart & 0x01;
2986 DimensionKeyRange.low = dimkeystart >> 1;
2987 DimensionKeyRange.high = _3ewg->ReadUint8();
2988
2989 if (_3ewg->GetSize() > 32) {
2990 // read MIDI rules
2991 int i = 0;
2992 _3ewg->SetPos(32);
2993 uint8_t id1 = _3ewg->ReadUint8();
2994 uint8_t id2 = _3ewg->ReadUint8();
2995
2996 if (id1 == 4 && id2 == 16) {
2997 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2998 }
2999 //TODO: all the other types of rules
3000
3001 pMidiRules[i] = NULL;
3002 }
3003 }
3004 }
3005
3006 if (pFile->GetAutoLoad()) {
3007 if (!pRegions) pRegions = new RegionList;
3008 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3009 if (lrgn) {
3010 RIFF::List* rgn = lrgn->GetFirstSubList();
3011 while (rgn) {
3012 if (rgn->GetListType() == LIST_TYPE_RGN) {
3013 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3014 pRegions->push_back(new Region(this, rgn));
3015 }
3016 rgn = lrgn->GetNextSubList();
3017 }
3018 // Creating Region Key Table for fast lookup
3019 UpdateRegionKeyTable();
3020 }
3021 }
3022
3023 __notify_progress(pProgress, 1.0f); // notify done
3024 }
3025
3026 void Instrument::UpdateRegionKeyTable() {
3027 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3028 RegionList::iterator iter = pRegions->begin();
3029 RegionList::iterator end = pRegions->end();
3030 for (; iter != end; ++iter) {
3031 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3032 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3033 RegionKeyTable[iKey] = pRegion;
3034 }
3035 }
3036 }
3037
3038 Instrument::~Instrument() {
3039 for (int i = 0 ; pMidiRules[i] ; i++) {
3040 delete pMidiRules[i];
3041 }
3042 delete[] pMidiRules;
3043 }
3044
3045 /**
3046 * Apply Instrument with all its Regions to the respective RIFF chunks.
3047