/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2 - (show annotations) (download)
Sat Oct 25 20:15:04 2003 UTC (20 years, 5 months ago) by schoenebeck
File size: 49829 byte(s)
Initial revision

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 namespace gig {
27
28 // *************** Sample ***************
29 // *
30
31 unsigned int Sample::Instances = 0;
32 void* Sample::pDecompressionBuffer = NULL;
33 unsigned long Sample::DecompressionBufferSize = 0;
34
35 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
36 Instances++;
37
38 RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
39 if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
40 SampleGroup = _3gix->ReadInt16();
41
42 RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
43 if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
44 Manufacturer = smpl->ReadInt32();
45 Product = smpl->ReadInt32();
46 SamplePeriod = smpl->ReadInt32();
47 MIDIUnityNote = smpl->ReadInt32();
48 MIDIPitchFraction = smpl->ReadInt32();
49 smpl->Read(&SMPTEFormat, 1, 4);
50 SMPTEOffset = smpl->ReadInt32();
51 Loops = smpl->ReadInt32();
52 LoopID = smpl->ReadInt32();
53 smpl->Read(&LoopType, 1, 4);
54 LoopStart = smpl->ReadInt32();
55 LoopEnd = smpl->ReadInt32();
56 LoopFraction = smpl->ReadInt32();
57 LoopPlayCount = smpl->ReadInt32();
58
59 FrameTable = NULL;
60 SamplePos = 0;
61 RAMCache.Size = 0;
62 RAMCache.pStart = NULL;
63 RAMCache.NullExtensionSize = 0;
64
65 Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));
66 if (Compressed) {
67 ScanCompressedSample();
68 if (!pDecompressionBuffer) {
69 pDecompressionBuffer = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];
70 DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;
71 }
72 }
73 FrameOffset = 0; // just for streaming compressed samples
74 }
75
76 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
77 void Sample::ScanCompressedSample() {
78 //TODO: we have to add some more scans here (e.g. determine compression rate)
79 this->SamplesTotal = 0;
80 std::list<unsigned long> frameOffsets;
81
82 // Scanning
83 pCkData->SetPos(0);
84 while (pCkData->GetState() == RIFF::stream_ready) {
85 frameOffsets.push_back(pCkData->GetPos());
86 int16_t compressionmode = pCkData->ReadInt16();
87 this->SamplesTotal += 2048;
88 switch (compressionmode) {
89 case 1: // left channel compressed
90 case 256: // right channel compressed
91 pCkData->SetPos(6148, RIFF::stream_curpos);
92 break;
93 case 257: // both channels compressed
94 pCkData->SetPos(4104, RIFF::stream_curpos);
95 break;
96 default: // both channels uncompressed
97 pCkData->SetPos(8192, RIFF::stream_curpos);
98 }
99 }
100 pCkData->SetPos(0);
101
102 //FIXME: only seen compressed samples with 16 bit stereo so far
103 this->FrameSize = 4;
104 this->BitDepth = 16;
105
106 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
107 if (FrameTable) delete[] FrameTable;
108 FrameTable = new unsigned long[frameOffsets.size()];
109 std::list<unsigned long>::iterator end = frameOffsets.end();
110 std::list<unsigned long>::iterator iter = frameOffsets.begin();
111 for (int i = 0; iter != end; i++, iter++) {
112 FrameTable[i] = *iter;
113 }
114 }
115
116 /**
117 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
118 * ReleaseSampleData() to free the memory if you don't need the cached
119 * sample data anymore.
120 *
121 * @returns buffer_t structure with start address and size of the buffer
122 * in bytes
123 * @see ReleaseSampleData(), Read(), SetPos()
124 */
125 buffer_t Sample::LoadSampleData() {
126 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
127 }
128
129 /**
130 * Reads (uncompresses if needed) and caches the first \a SampleCount
131 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
132 * memory space if you don't need the cached samples anymore. There is no
133 * guarantee that exactly \a SampleCount samples will be cached; this is
134 * not an error. The size will be eventually truncated e.g. to the
135 * beginning of a frame of a compressed sample. This is done for
136 * efficiency reasons while streaming the wave by your sampler engine
137 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
138 * that will be returned to determine the actual cached samples, but note
139 * that the size is given in bytes! You get the number of actually cached
140 * samples by dividing it by the frame size of the sample:
141 *
142 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
143 * long cachedsamples = buf.Size / pSample->FrameSize;
144 *
145 * @param SampleCount - number of sample points to load into RAM
146 * @returns buffer_t structure with start address and size of
147 * the cached sample data in bytes
148 * @see ReleaseSampleData(), Read(), SetPos()
149 */
150 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
151 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
152 }
153
154 /**
155 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
156 * ReleaseSampleData() to free the memory if you don't need the cached
157 * sample data anymore.
158 * The method will add \a NullSamplesCount silence samples past the
159 * official buffer end (this won't affect the 'Size' member of the
160 * buffer_t structure, that means 'Size' always reflects the size of the
161 * actual sample data, the buffer might be bigger though). Silence
162 * samples past the official buffer are needed for differential
163 * algorithms that always have to take subsequent samples into account
164 * (resampling/interpolation would be an important example) and avoids
165 * memory access faults in such cases.
166 *
167 * @param NullSamplesCount - number of silence samples the buffer should
168 * be extended past it's data end
169 * @returns buffer_t structure with start address and
170 * size of the buffer in bytes
171 * @see ReleaseSampleData(), Read(), SetPos()
172 */
173 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
174 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
175 }
176
177 /**
178 * Reads (uncompresses if needed) and caches the first \a SampleCount
179 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
180 * memory space if you don't need the cached samples anymore. There is no
181 * guarantee that exactly \a SampleCount samples will be cached; this is
182 * not an error. The size will be eventually truncated e.g. to the
183 * beginning of a frame of a compressed sample. This is done for
184 * efficiency reasons while streaming the wave by your sampler engine
185 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
186 * that will be returned to determine the actual cached samples, but note
187 * that the size is given in bytes! You get the number of actually cached
188 * samples by dividing it by the frame size of the sample:
189 *
190 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
191 * long cachedsamples = buf.Size / pSample->FrameSize;
192 *
193 * The method will add \a NullSamplesCount silence samples past the
194 * official buffer end (this won't affect the 'Size' member of the
195 * buffer_t structure, that means 'Size' always reflects the size of the
196 * actual sample data, the buffer might be bigger though). Silence
197 * samples past the official buffer are needed for differential
198 * algorithms that always have to take subsequent samples into account
199 * (resampling/interpolation would be an important example) and avoids
200 * memory access faults in such cases.
201 *
202 * @param SampleCount - number of sample points to load into RAM
203 * @param NullSamplesCount - number of silence samples the buffer should
204 * be extended past it's data end
205 * @returns buffer_t structure with start address and
206 * size of the cached sample data in bytes
207 * @see ReleaseSampleData(), Read(), SetPos()
208 */
209 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
210 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
211 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
212 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
213 RAMCache.pStart = new int8_t[allocationsize];
214 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
215 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
216 // fill the remaining buffer space with silence samples
217 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
218 return GetCache();
219 }
220
221 /**
222 * Returns current cached sample points. A buffer_t structure will be
223 * returned which contains address pointer to the begin of the cache and
224 * the size of the cached sample data in bytes. Use
225 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
226 * RAM.
227 *
228 * @returns buffer_t structure with current cached sample points
229 * @see LoadSampleData();
230 */
231 buffer_t Sample::GetCache() {
232 // return a copy of the buffer_t structure
233 buffer_t result;
234 result.Size = this->RAMCache.Size;
235 result.pStart = this->RAMCache.pStart;
236 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
237 return result;
238 }
239
240 /**
241 * Frees the cached sample from RAM if loaded with
242 * <i>LoadSampleData()</i> previously.
243 *
244 * @see LoadSampleData();
245 */
246 void Sample::ReleaseSampleData() {
247 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
248 RAMCache.pStart = NULL;
249 RAMCache.Size = 0;
250 }
251
252 /**
253 * Sets the position within the sample (in sample points, not in
254 * bytes). Use this method and <i>Read()</i> if you don't want to load
255 * the sample into RAM, thus for disk streaming.
256 *
257 * Although the original Gigasampler engine doesn't allow positioning
258 * within compressed samples, I decided to implement it. Even though
259 * the Gigasampler format doesn't allow to define loops for compressed
260 * samples at the moment, positioning within compressed samples might be
261 * interesting for some sampler engines though. The only drawback about
262 * my decision is that it takes longer to load compressed gig Files on
263 * startup, because it's neccessary to scan the samples for some
264 * mandatory informations. But I think as it doesn't affect the runtime
265 * efficiency, nobody will have a problem with that.
266 *
267 * @param SampleCount number of sample points to jump
268 * @param Whence optional: to which relation \a SampleCount refers
269 * to, if omited <i>RIFF::stream_start</i> is assumed
270 * @returns the new sample position
271 * @see Read()
272 */
273 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
274 if (Compressed) {
275 switch (Whence) {
276 case RIFF::stream_curpos:
277 this->SamplePos += SampleCount;
278 break;
279 case RIFF::stream_end:
280 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
281 break;
282 case RIFF::stream_backward:
283 this->SamplePos -= SampleCount;
284 break;
285 case RIFF::stream_start: default:
286 this->SamplePos = SampleCount;
287 break;
288 }
289 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
290
291 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
292 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
293 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
294 return this->SamplePos;
295 }
296 else { // not compressed
297 unsigned long orderedBytes = SampleCount * this->FrameSize;
298 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
299 return (result == orderedBytes) ? SampleCount
300 : result / this->FrameSize;
301 }
302 }
303
304 /**
305 * Returns the current position in the sample (in sample points).
306 */
307 unsigned long Sample::GetPos() {
308 if (Compressed) return SamplePos;
309 else return pCkData->GetPos() / FrameSize;
310 }
311
312 /**
313 * Reads \a SampleCount number of sample points from the current
314 * position into the buffer pointed by \a pBuffer and increments the
315 * position within the sample. The sample wave stream will be
316 * decompressed on the fly if using a compressed sample. Use this method
317 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
318 * thus for disk streaming.
319 *
320 * @param pBuffer destination buffer
321 * @param SampleCount number of sample points to read
322 * @returns number of successfully read sample points
323 * @see SetPos()
324 */
325 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {
326 if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize);
327 else { //FIXME: no support for mono compressed samples yet, are there any?
328 //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate
329 // best case needed buffer size (all frames compressed)
330 unsigned long assumedsize = (SampleCount << 1) + // *2 (16 Bit, stereo, but assume all frames compressed)
331 (SampleCount >> 10) + // 10 bytes header per 2048 sample points
332 8194, // at least one worst case sample frame
333 remainingbytes = 0, // remaining bytes in the local buffer
334 remainingsamples = SampleCount,
335 copysamples;
336 int currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
337 this->FrameOffset = 0;
338
339 if (assumedsize > this->DecompressionBufferSize) {
340 // local buffer reallocation - hope this won't happen
341 if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;
342 this->pDecompressionBuffer = new int8_t[assumedsize << 1]; // double of current needed size
343 this->DecompressionBufferSize = assumedsize;
344 }
345
346 int16_t compressionmode, left, dleft, right, dright;
347 int8_t* pSrc = (int8_t*) this->pDecompressionBuffer;
348 int16_t* pDst = (int16_t*) pBuffer;
349 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
350
351 while (remainingsamples) {
352
353 // reload from disk to local buffer if needed
354 if (remainingbytes < 8194) {
355 if (pCkData->GetState() != RIFF::stream_ready) {
356 this->SamplePos += (SampleCount - remainingsamples);
357 //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
358 return (SampleCount - remainingsamples);
359 }
360 assumedsize = remainingsamples;
361 assumedsize = (assumedsize << 1) + // *2 (16 Bit, stereo, but assume all frames compressed)
362 (assumedsize >> 10) + // 10 bytes header per 2048 sample points
363 8194; // at least one worst case sample frame
364 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
365 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
366 remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);
367 pSrc = (int8_t*) this->pDecompressionBuffer;
368 }
369
370 // determine how many samples in this frame to skip and read
371 if (remainingsamples >= 2048) {
372 copysamples = 2048 - currentframeoffset;
373 remainingsamples -= copysamples;
374 }
375 else {
376 copysamples = remainingsamples;
377 if (currentframeoffset + copysamples > 2048) {
378 copysamples = 2048 - currentframeoffset;
379 remainingsamples -= copysamples;
380 }
381 else {
382 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
383 remainingsamples = 0;
384 this->FrameOffset = currentframeoffset + copysamples;
385 }
386 }
387
388 // decompress and copy current frame from local buffer to destination buffer
389 compressionmode = *(int16_t*)pSrc; pSrc+=2;
390 switch (compressionmode) {
391 case 1: // left channel compressed
392 remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)
393 if (!remainingsamples && copysamples == 2048)
394 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
395
396 left = *(int16_t*)pSrc; pSrc+=2;
397 dleft = *(int16_t*)pSrc; pSrc+=2;
398 while (currentframeoffset) {
399 dleft -= *pSrc;
400 left -= dleft;
401 pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)
402 currentframeoffset--;
403 }
404 while (copysamples) {
405 dleft -= *pSrc; pSrc++;
406 left -= dleft;
407 *pDst = left; pDst++;
408 *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;
409 copysamples--;
410 }
411 break;
412 case 256: // right channel compressed
413 remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)
414 if (!remainingsamples && copysamples == 2048)
415 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
416
417 right = *(int16_t*)pSrc; pSrc+=2;
418 dright = *(int16_t*)pSrc; pSrc+=2;
419 if (currentframeoffset) {
420 pSrc+=2; // skip uncompressed left channel, now we can increment by 3
421 while (currentframeoffset) {
422 dright -= *pSrc;
423 right -= dright;
424 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)
425 currentframeoffset--;
426 }
427 pSrc-=2; // back aligned to left channel
428 }
429 while (copysamples) {
430 *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;
431 dright -= *pSrc; pSrc++;
432 right -= dright;
433 *pDst = right; pDst++;
434 copysamples--;
435 }
436 break;
437 case 257: // both channels compressed
438 remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)
439 if (!remainingsamples && copysamples == 2048)
440 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
441
442 left = *(int16_t*)pSrc; pSrc+=2;
443 dleft = *(int16_t*)pSrc; pSrc+=2;
444 right = *(int16_t*)pSrc; pSrc+=2;
445 dright = *(int16_t*)pSrc; pSrc+=2;
446 while (currentframeoffset) {
447 dleft -= *pSrc; pSrc++;
448 left -= dleft;
449 dright -= *pSrc; pSrc++;
450 right -= dright;
451 currentframeoffset--;
452 }
453 while (copysamples) {
454 dleft -= *pSrc; pSrc++;
455 left -= dleft;
456 dright -= *pSrc; pSrc++;
457 right -= dright;
458 *pDst = left; pDst++;
459 *pDst = right; pDst++;
460 copysamples--;
461 }
462 break;
463 default: // both channels uncompressed
464 remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)
465 if (!remainingsamples && copysamples == 2048)
466 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
467
468 pSrc += currentframeoffset << 2;
469 currentframeoffset = 0;
470 memcpy(pDst, pSrc, copysamples << 2);
471 pDst += copysamples << 1;
472 pSrc += copysamples << 2;
473 break;
474 }
475 }
476 this->SamplePos += (SampleCount - remainingsamples);
477 //if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
478 return (SampleCount - remainingsamples);
479 }
480 }
481
482 Sample::~Sample() {
483 Instances--;
484 if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;
485 if (FrameTable) delete[] FrameTable;
486 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
487 }
488
489
490
491 // *************** DimensionRegion ***************
492 // *
493
494 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
495 memcpy(&Crossfade, &SamplerOptions, 4);
496
497 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
498 _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?
499 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
500 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
501 _3ewa->ReadInt16(); // unknown
502 LFO1InternalDepth = _3ewa->ReadUint16();
503 _3ewa->ReadInt16(); // unknown
504 LFO3InternalDepth = _3ewa->ReadInt16();
505 _3ewa->ReadInt16(); // unknown
506 LFO1ControlDepth = _3ewa->ReadUint16();
507 _3ewa->ReadInt16(); // unknown
508 LFO3ControlDepth = _3ewa->ReadInt16();
509 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
510 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
511 _3ewa->ReadInt16(); // unknown
512 EG1Sustain = _3ewa->ReadUint16();
513 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
514 EG1Controller = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());
515 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
516 EG1ControllerInvert = eg1ctrloptions & 0x01;
517 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
518 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
519 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
520 EG2Controller = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());
521 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
522 EG2ControllerInvert = eg2ctrloptions & 0x01;
523 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
524 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
525 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
526 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
527 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
528 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
529 _3ewa->ReadInt16(); // unknown
530 EG2Sustain = _3ewa->ReadUint16();
531 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
532 _3ewa->ReadInt16(); // unknown
533 LFO2ControlDepth = _3ewa->ReadUint16();
534 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
535 _3ewa->ReadInt16(); // unknown
536 LFO2InternalDepth = _3ewa->ReadUint16();
537 int32_t eg1decay2 = _3ewa->ReadInt32();
538 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
539 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
540 _3ewa->ReadInt16(); // unknown
541 EG1PreAttack = _3ewa->ReadUint16();
542 int32_t eg2decay2 = _3ewa->ReadInt32();
543 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
544 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
545 _3ewa->ReadInt16(); // unknown
546 EG2PreAttack = _3ewa->ReadUint16();
547 uint8_t velocityresponse = _3ewa->ReadUint8();
548 if (velocityresponse < 5) {
549 VelocityResponseCurve = curve_type_nonlinear;
550 VelocityResponseDepth = velocityresponse;
551 }
552 else if (velocityresponse < 10) {
553 VelocityResponseCurve = curve_type_linear;
554 VelocityResponseDepth = velocityresponse - 5;
555 }
556 else if (velocityresponse < 15) {
557 VelocityResponseCurve = curve_type_special;
558 VelocityResponseDepth = velocityresponse - 10;
559 }
560 else {
561 VelocityResponseCurve = curve_type_unknown;
562 VelocityResponseDepth = 0;
563 }
564 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
565 if (releasevelocityresponse < 5) {
566 ReleaseVelocityResponseCurve = curve_type_nonlinear;
567 ReleaseVelocityResponseDepth = releasevelocityresponse;
568 }
569 else if (releasevelocityresponse < 10) {
570 ReleaseVelocityResponseCurve = curve_type_linear;
571 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
572 }
573 else if (releasevelocityresponse < 15) {
574 ReleaseVelocityResponseCurve = curve_type_special;
575 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
576 }
577 else {
578 ReleaseVelocityResponseCurve = curve_type_unknown;
579 ReleaseVelocityResponseDepth = 0;
580 }
581 VelocityResponseCurveScaling = _3ewa->ReadUint8();
582 AttenuationControlTreshold = _3ewa->ReadInt8();
583 _3ewa->ReadInt32(); // unknown
584 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
585 _3ewa->ReadInt16(); // unknown
586 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
587 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
588 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
589 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
590 else DimensionBypass = dim_bypass_ctrl_none;
591 uint8_t pan = _3ewa->ReadUint8();
592 Pan = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;
593 SelfMask = _3ewa->ReadInt8() & 0x01;
594 _3ewa->ReadInt8(); // unknown
595 uint8_t lfo3ctrl = _3ewa->ReadUint8();
596 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
597 LFO3Sync = lfo3ctrl & 0x20; // bit 5
598 InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7
599 if (VCFType == vcf_type_lowpass) {
600 if (lfo3ctrl & 0x40) // bit 6
601 VCFType = vcf_type_lowpassturbo;
602 }
603 AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());
604 uint8_t lfo2ctrl = _3ewa->ReadUint8();
605 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
606 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
607 LFO2Sync = lfo2ctrl & 0x20; // bit 5
608 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
609 uint8_t lfo1ctrl = _3ewa->ReadUint8();
610 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
611 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
612 LFO1Sync = lfo1ctrl & 0x40; // bit 6
613 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
614 : vcf_res_ctrl_none;
615 uint16_t eg3depth = _3ewa->ReadUint16();
616 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
617 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
618 _3ewa->ReadInt16(); // unknown
619 ChannelOffset = _3ewa->ReadUint8() / 4;
620 uint8_t regoptions = _3ewa->ReadUint8();
621 MSDecode = regoptions & 0x01; // bit 0
622 SustainDefeat = regoptions & 0x02; // bit 1
623 _3ewa->ReadInt16(); // unknown
624 VelocityUpperLimit = _3ewa->ReadInt8();
625 _3ewa->ReadInt8(); // unknown
626 _3ewa->ReadInt16(); // unknown
627 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
628 _3ewa->ReadInt8(); // unknown
629 _3ewa->ReadInt8(); // unknown
630 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
631 uint8_t vcfcutoff = _3ewa->ReadUint8();
632 VCFEnabled = vcfcutoff & 0x80; // bit 7
633 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
634 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
635 VCFVelocityScale = _3ewa->ReadUint8();
636 _3ewa->ReadInt8(); // unknown
637 uint8_t vcfresonance = _3ewa->ReadUint8();
638 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
639 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
640 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
641 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
642 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
643 uint8_t vcfvelocity = _3ewa->ReadUint8();
644 VCFVelocityDynamicRange = vcfvelocity % 5;
645 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
646 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
647 }
648
649
650
651 // *************** Region ***************
652 // *
653
654 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
655 // Initialization
656 Dimensions = 0;
657 for (int i = 0; i < 32; i++) {
658 pDimensionRegions[i] = NULL;
659 }
660
661 // Actual Loading
662
663 LoadDimensionRegions(rgnList);
664
665 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
666 if (_3lnk) {
667 DimensionRegions = _3lnk->ReadUint32();
668 for (int i = 0; i < 5; i++) {
669 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
670 uint8_t bits = _3lnk->ReadUint8();
671 if (dimension == dimension_none) { // inactive dimension
672 pDimensionDefinitions[i].dimension = dimension_none;
673 pDimensionDefinitions[i].bits = 0;
674 pDimensionDefinitions[i].zones = 0;
675 pDimensionDefinitions[i].split_type = split_type_bit;
676 pDimensionDefinitions[i].ranges = NULL;
677 pDimensionDefinitions[i].zone_size = 0;
678 }
679 else { // active dimension
680 pDimensionDefinitions[i].dimension = dimension;
681 pDimensionDefinitions[i].bits = bits;
682 pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
683 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
684 dimension == dimension_samplechannel) ? split_type_bit
685 : split_type_normal;
686 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
687 pDimensionDefinitions[i].zone_size =
688 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
689 : 0;
690 Dimensions++;
691 }
692 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
693 }
694
695 // check velocity dimension (if there is one) for custom defined zone ranges
696 for (uint i = 0; i < Dimensions; i++) {
697 dimension_def_t* pDimDef = pDimensionDefinitions + i;
698 if (pDimDef->dimension == dimension_velocity) {
699 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
700 // no custom defined ranges
701 pDimDef->split_type = split_type_normal;
702 pDimDef->ranges = NULL;
703 }
704 else { // custom defined ranges
705 pDimDef->split_type = split_type_customvelocity;
706 pDimDef->ranges = new range_t[pDimDef->zones];
707 unsigned int bits[5] = {0,0,0,0,0};
708 int previousUpperLimit = -1;
709 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
710 bits[i] = velocityZone;
711 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);
712
713 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
714 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
715 previousUpperLimit = pDimDef->ranges[velocityZone].high;
716 // fill velocity table
717 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
718 VelocityTable[i] = velocityZone;
719 }
720 }
721 }
722 }
723 }
724
725 // load sample references
726 _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)
727 for (uint i = 0; i < DimensionRegions; i++) {
728 uint32_t wavepoolindex = _3lnk->ReadUint32();
729 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
730 }
731 }
732 else throw gig::Exception("Mandatory <3lnk> chunk not found.");
733 }
734
735 void Region::LoadDimensionRegions(RIFF::List* rgn) {
736 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
737 if (_3prg) {
738 int dimensionRegionNr = 0;
739 RIFF::List* _3ewl = _3prg->GetFirstSubList();
740 while (_3ewl) {
741 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
742 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
743 dimensionRegionNr++;
744 }
745 _3ewl = _3prg->GetNextSubList();
746 }
747 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
748 }
749 }
750
751 Region::~Region() {
752 for (uint i = 0; i < Dimensions; i++) {
753 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
754 }
755 for (int i = 0; i < 32; i++) {
756 if (pDimensionRegions[i]) delete pDimensionRegions[i];
757 }
758 }
759
760 /**
761 * Use this method in your audio engine to get the appropriate dimension
762 * region with it's articulation data for the current situation. Just
763 * call the method with the current MIDI controller values and you'll get
764 * the DimensionRegion with the appropriate articulation data for the
765 * current situation (for this Region of course only). To do that you'll
766 * first have to look which dimensions with which controllers and in
767 * which order are defined for this Region when you load the .gig file.
768 * Special cases are e.g. layer or channel dimensions where you just put
769 * in the index numbers instead of a MIDI controller value (means 0 for
770 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
771 * etc.).
772 *
773 * @param Dim4Val MIDI controller value (0-127) for dimension 4
774 * @param Dim3Val MIDI controller value (0-127) for dimension 3
775 * @param Dim2Val MIDI controller value (0-127) for dimension 2
776 * @param Dim1Val MIDI controller value (0-127) for dimension 1
777 * @param Dim0Val MIDI controller value (0-127) for dimension 0
778 * @returns adress to the DimensionRegion for the given situation
779 * @see pDimensionDefinitions
780 * @see Dimensions
781 */
782 DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {
783 unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};
784 for (uint i = 0; i < Dimensions; i++) {
785 switch (pDimensionDefinitions[i].split_type) {
786 case split_type_normal:
787 bits[i] /= pDimensionDefinitions[i].zone_size;
788 break;
789 case split_type_customvelocity:
790 bits[i] = VelocityTable[bits[i]];
791 break;
792 // else the value is already the sought dimension bit number
793 }
794 }
795 return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);
796 }
797
798 /**
799 * Returns the appropriate DimensionRegion for the given dimension bit
800 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
801 * instead of calling this method directly!
802 *
803 * @param Dim4Bit Bit number for dimension 4
804 * @param Dim3Bit Bit number for dimension 3
805 * @param Dim2Bit Bit number for dimension 2
806 * @param Dim1Bit Bit number for dimension 1
807 * @param Dim0Bit Bit number for dimension 0
808 * @returns adress to the DimensionRegion for the given dimension
809 * bit numbers
810 * @see GetDimensionRegionByValue()
811 */
812 DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {
813 return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)
814 << pDimensionDefinitions[2].bits) | Dim2Bit)
815 << pDimensionDefinitions[1].bits) | Dim1Bit)
816 << pDimensionDefinitions[0].bits) | Dim0Bit) );
817 }
818
819 /**
820 * Returns pointer address to the Sample referenced with this region.
821 * This is the global Sample for the entire Region (not sure if this is
822 * actually used by the Gigasampler engine - I would only use the Sample
823 * referenced by the appropriate DimensionRegion instead of this sample).
824 *
825 * @returns address to Sample or NULL if there is no reference to a
826 * sample saved in the .gig file
827 */
828 Sample* Region::GetSample() {
829 if (pSample) return static_cast<gig::Sample*>(pSample);
830 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
831 }
832
833 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {
834 File* file = (File*) GetParent()->GetParent();
835 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
836 Sample* sample = file->GetFirstSample();
837 while (sample) {
838 if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);
839 sample = file->GetNextSample();
840 }
841 return NULL;
842 }
843
844
845
846 // *************** Instrument ***************
847 // *
848
849 Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {
850 // Initialization
851 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
852 RegionIndex = -1;
853
854 // Loading
855 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
856 if (lart) {
857 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
858 if (_3ewg) {
859 EffectSend = _3ewg->ReadUint16();
860 Attenuation = _3ewg->ReadInt32();
861 FineTune = _3ewg->ReadInt16();
862 PitchbendRange = _3ewg->ReadInt16();
863 uint8_t dimkeystart = _3ewg->ReadUint8();
864 PianoReleaseMode = dimkeystart & 0x01;
865 DimensionKeyRange.low = dimkeystart >> 1;
866 DimensionKeyRange.high = _3ewg->ReadUint8();
867 }
868 else throw gig::Exception("Mandatory <3ewg> chunk not found.");
869 }
870 else throw gig::Exception("Mandatory <lart> list chunk not found.");
871
872 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
873 if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
874 pRegions = new Region*[Regions];
875 RIFF::List* rgn = lrgn->GetFirstSubList();
876 unsigned int iRegion = 0;
877 while (rgn) {
878 if (rgn->GetListType() == LIST_TYPE_RGN) {
879 pRegions[iRegion] = new Region(this, rgn);
880 iRegion++;
881 }
882 rgn = lrgn->GetNextSubList();
883 }
884
885 // Creating Region Key Table for fast lookup
886 for (uint iReg = 0; iReg < Regions; iReg++) {
887 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
888 RegionKeyTable[iKey] = pRegions[iReg];
889 }
890 }
891 }
892
893 Instrument::~Instrument() {
894 for (uint i = 0; i < Regions; i++) {
895 if (pRegions) {
896 if (pRegions[i]) delete (pRegions[i]);
897 }
898 delete[] pRegions;
899 }
900 }
901
902 /**
903 * Returns the appropriate Region for a triggered note.
904 *
905 * @param Key MIDI Key number of triggered note / key (0 - 127)
906 * @returns pointer adress to the appropriate Region or NULL if there
907 * there is no Region defined for the given \a Key
908 */
909 Region* Instrument::GetRegion(unsigned int Key) {
910 if (!pRegions || Key > 127) return NULL;
911 return RegionKeyTable[Key];
912 /*for (int i = 0; i < Regions; i++) {
913 if (Key <= pRegions[i]->KeyRange.high &&
914 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
915 }
916 return NULL;*/
917 }
918
919 /**
920 * Returns the first Region of the instrument. You have to call this
921 * method once before you use GetNextRegion().
922 *
923 * @returns pointer address to first region or NULL if there is none
924 * @see GetNextRegion()
925 */
926 Region* Instrument::GetFirstRegion() {
927 if (!Regions) return NULL;
928 RegionIndex = 1;
929 return pRegions[0];
930 }
931
932 /**
933 * Returns the next Region of the instrument. You have to call
934 * GetFirstRegion() once before you can use this method. By calling this
935 * method multiple times it iterates through the available Regions.
936 *
937 * @returns pointer address to the next region or NULL if end reached
938 * @see GetFirstRegion()
939 */
940 Region* Instrument::GetNextRegion() {
941 if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;
942 return pRegions[RegionIndex++];
943 }
944
945
946
947 // *************** File ***************
948 // *
949
950 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
951 pSamples = NULL;
952 pInstruments = NULL;
953 }
954
955 Sample* File::GetFirstSample() {
956 if (!pSamples) LoadSamples();
957 if (!pSamples) return NULL;
958 SamplesIterator = pSamples->begin();
959 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
960 }
961
962 Sample* File::GetNextSample() {
963 if (!pSamples) return NULL;
964 SamplesIterator++;
965 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
966 }
967
968 void File::LoadSamples() {
969 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
970 if (wvpl) {
971 unsigned long wvplFileOffset = wvpl->GetFilePos();
972 RIFF::List* wave = wvpl->GetFirstSubList();
973 while (wave) {
974 if (wave->GetListType() == LIST_TYPE_WAVE) {
975 if (!pSamples) pSamples = new SampleList;
976 unsigned long waveFileOffset = wave->GetFilePos();
977 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));
978 }
979 wave = wvpl->GetNextSubList();
980 }
981 }
982 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
983 }
984
985 Instrument* File::GetFirstInstrument() {
986 if (!pInstruments) LoadInstruments();
987 if (!pInstruments) return NULL;
988 InstrumentsIterator = pInstruments->begin();
989 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
990 }
991
992 Instrument* File::GetNextInstrument() {
993 if (!pInstruments) return NULL;
994 InstrumentsIterator++;
995 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
996 }
997
998 void File::LoadInstruments() {
999 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1000 if (lstInstruments) {
1001 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1002 while (lstInstr) {
1003 if (lstInstr->GetListType() == LIST_TYPE_INS) {
1004 if (!pInstruments) pInstruments = new InstrumentList;
1005 pInstruments->push_back(new Instrument(this, lstInstr));
1006 }
1007 lstInstr = lstInstruments->GetNextSubList();
1008 }
1009 }
1010 else throw gig::Exception("Mandatory <lins> list chunk not found.");
1011 }
1012
1013
1014
1015 // *************** Exception ***************
1016 // *
1017
1018 Exception::Exception(String Message) : DLS::Exception(Message) {
1019 }
1020
1021 void Exception::PrintMessage() {
1022 std::cout << "gig::Exception: " << Message << std::endl;
1023 }
1024
1025 } // namespace gig

  ViewVC Help
Powered by ViewVC