/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2484 - (show annotations) (download)
Tue Dec 31 00:13:20 2013 UTC (10 years, 2 months ago) by schoenebeck
File size: 196006 byte(s)
* Added new command line tool "gig2mono" (and a new man page for it).
* src/gig.cpp: Delete "ewav" chunk of Sample if "Compression" attribute was
  toggled to false.
* Bumped version to 3.3.0.svn7.

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2013 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Make a (semi) deep copy of the Sample object given by @a orig (without
458 * the actual waveform data) and assign it to this object.
459 *
460 * Discussion: copying .gig samples is a bit tricky. It requires three
461 * steps:
462 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463 * its new sample waveform data size.
464 * 2. Saving the file (done by File::Save()) so that it gains correct size
465 * and layout for writing the actual wave form data directly to disc
466 * in next step.
467 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468 *
469 * @param orig - original Sample object to be copied from
470 */
471 void Sample::CopyAssignMeta(const Sample* orig) {
472 // handle base classes
473 DLS::Sample::CopyAssignCore(orig);
474
475 // handle actual own attributes of this class
476 Manufacturer = orig->Manufacturer;
477 Product = orig->Product;
478 SamplePeriod = orig->SamplePeriod;
479 MIDIUnityNote = orig->MIDIUnityNote;
480 FineTune = orig->FineTune;
481 SMPTEFormat = orig->SMPTEFormat;
482 SMPTEOffset = orig->SMPTEOffset;
483 Loops = orig->Loops;
484 LoopID = orig->LoopID;
485 LoopType = orig->LoopType;
486 LoopStart = orig->LoopStart;
487 LoopEnd = orig->LoopEnd;
488 LoopSize = orig->LoopSize;
489 LoopFraction = orig->LoopFraction;
490 LoopPlayCount = orig->LoopPlayCount;
491
492 // schedule resizing this sample to the given sample's size
493 Resize(orig->GetSize());
494 }
495
496 /**
497 * Should be called after CopyAssignMeta() and File::Save() sequence.
498 * Read more about it in the discussion of CopyAssignMeta(). This method
499 * copies the actual waveform data by disk streaming.
500 *
501 * @e CAUTION: this method is currently not thread safe! During this
502 * operation the sample must not be used for other purposes by other
503 * threads!
504 *
505 * @param orig - original Sample object to be copied from
506 */
507 void Sample::CopyAssignWave(const Sample* orig) {
508 const int iReadAtOnce = 32*1024;
509 char* buf = new char[iReadAtOnce * orig->FrameSize];
510 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511 unsigned long restorePos = pOrig->GetPos();
512 pOrig->SetPos(0);
513 SetPos(0);
514 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515 n = pOrig->Read(buf, iReadAtOnce))
516 {
517 Write(buf, n);
518 }
519 pOrig->SetPos(restorePos);
520 delete [] buf;
521 }
522
523 /**
524 * Apply sample and its settings to the respective RIFF chunks. You have
525 * to call File::Save() to make changes persistent.
526 *
527 * Usually there is absolutely no need to call this method explicitly.
528 * It will be called automatically when File::Save() was called.
529 *
530 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531 * was provided yet
532 * @throws gig::Exception if there is any invalid sample setting
533 */
534 void Sample::UpdateChunks() {
535 // first update base class's chunks
536 DLS::Sample::UpdateChunks();
537
538 // make sure 'smpl' chunk exists
539 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540 if (!pCkSmpl) {
541 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542 memset(pCkSmpl->LoadChunkData(), 0, 60);
543 }
544 // update 'smpl' chunk
545 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547 store32(&pData[0], Manufacturer);
548 store32(&pData[4], Product);
549 store32(&pData[8], SamplePeriod);
550 store32(&pData[12], MIDIUnityNote);
551 store32(&pData[16], FineTune);
552 store32(&pData[20], SMPTEFormat);
553 store32(&pData[24], SMPTEOffset);
554 store32(&pData[28], Loops);
555
556 // we skip 'manufByt' for now (4 bytes)
557
558 store32(&pData[36], LoopID);
559 store32(&pData[40], LoopType);
560 store32(&pData[44], LoopStart);
561 store32(&pData[48], LoopEnd);
562 store32(&pData[52], LoopFraction);
563 store32(&pData[56], LoopPlayCount);
564
565 // make sure '3gix' chunk exists
566 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568 // determine appropriate sample group index (to be stored in chunk)
569 uint16_t iSampleGroup = 0; // 0 refers to default sample group
570 File* pFile = static_cast<File*>(pParent);
571 if (pFile->pGroups) {
572 std::list<Group*>::iterator iter = pFile->pGroups->begin();
573 std::list<Group*>::iterator end = pFile->pGroups->end();
574 for (int i = 0; iter != end; i++, iter++) {
575 if (*iter == pGroup) {
576 iSampleGroup = i;
577 break; // found
578 }
579 }
580 }
581 // update '3gix' chunk
582 pData = (uint8_t*) pCk3gix->LoadChunkData();
583 store16(&pData[0], iSampleGroup);
584
585 // if the library user toggled the "Compressed" attribute from true to
586 // false, then the EWAV chunk associated with compressed samples needs
587 // to be deleted
588 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
589 if (ewav && !Compressed) {
590 pWaveList->DeleteSubChunk(ewav);
591 }
592 }
593
594 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
595 void Sample::ScanCompressedSample() {
596 //TODO: we have to add some more scans here (e.g. determine compression rate)
597 this->SamplesTotal = 0;
598 std::list<unsigned long> frameOffsets;
599
600 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
601 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
602
603 // Scanning
604 pCkData->SetPos(0);
605 if (Channels == 2) { // Stereo
606 for (int i = 0 ; ; i++) {
607 // for 24 bit samples every 8:th frame offset is
608 // stored, to save some memory
609 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
610
611 const int mode_l = pCkData->ReadUint8();
612 const int mode_r = pCkData->ReadUint8();
613 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
614 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
615
616 if (pCkData->RemainingBytes() <= frameSize) {
617 SamplesInLastFrame =
618 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
619 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
620 SamplesTotal += SamplesInLastFrame;
621 break;
622 }
623 SamplesTotal += SamplesPerFrame;
624 pCkData->SetPos(frameSize, RIFF::stream_curpos);
625 }
626 }
627 else { // Mono
628 for (int i = 0 ; ; i++) {
629 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
630
631 const int mode = pCkData->ReadUint8();
632 if (mode > 5) throw gig::Exception("Unknown compression mode");
633 const unsigned long frameSize = bytesPerFrame[mode];
634
635 if (pCkData->RemainingBytes() <= frameSize) {
636 SamplesInLastFrame =
637 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
638 SamplesTotal += SamplesInLastFrame;
639 break;
640 }
641 SamplesTotal += SamplesPerFrame;
642 pCkData->SetPos(frameSize, RIFF::stream_curpos);
643 }
644 }
645 pCkData->SetPos(0);
646
647 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
648 if (FrameTable) delete[] FrameTable;
649 FrameTable = new unsigned long[frameOffsets.size()];
650 std::list<unsigned long>::iterator end = frameOffsets.end();
651 std::list<unsigned long>::iterator iter = frameOffsets.begin();
652 for (int i = 0; iter != end; i++, iter++) {
653 FrameTable[i] = *iter;
654 }
655 }
656
657 /**
658 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
659 * ReleaseSampleData() to free the memory if you don't need the cached
660 * sample data anymore.
661 *
662 * @returns buffer_t structure with start address and size of the buffer
663 * in bytes
664 * @see ReleaseSampleData(), Read(), SetPos()
665 */
666 buffer_t Sample::LoadSampleData() {
667 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
668 }
669
670 /**
671 * Reads (uncompresses if needed) and caches the first \a SampleCount
672 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
673 * memory space if you don't need the cached samples anymore. There is no
674 * guarantee that exactly \a SampleCount samples will be cached; this is
675 * not an error. The size will be eventually truncated e.g. to the
676 * beginning of a frame of a compressed sample. This is done for
677 * efficiency reasons while streaming the wave by your sampler engine
678 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
679 * that will be returned to determine the actual cached samples, but note
680 * that the size is given in bytes! You get the number of actually cached
681 * samples by dividing it by the frame size of the sample:
682 * @code
683 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
684 * long cachedsamples = buf.Size / pSample->FrameSize;
685 * @endcode
686 *
687 * @param SampleCount - number of sample points to load into RAM
688 * @returns buffer_t structure with start address and size of
689 * the cached sample data in bytes
690 * @see ReleaseSampleData(), Read(), SetPos()
691 */
692 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
693 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
694 }
695
696 /**
697 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
698 * ReleaseSampleData() to free the memory if you don't need the cached
699 * sample data anymore.
700 * The method will add \a NullSamplesCount silence samples past the
701 * official buffer end (this won't affect the 'Size' member of the
702 * buffer_t structure, that means 'Size' always reflects the size of the
703 * actual sample data, the buffer might be bigger though). Silence
704 * samples past the official buffer are needed for differential
705 * algorithms that always have to take subsequent samples into account
706 * (resampling/interpolation would be an important example) and avoids
707 * memory access faults in such cases.
708 *
709 * @param NullSamplesCount - number of silence samples the buffer should
710 * be extended past it's data end
711 * @returns buffer_t structure with start address and
712 * size of the buffer in bytes
713 * @see ReleaseSampleData(), Read(), SetPos()
714 */
715 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
716 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
717 }
718
719 /**
720 * Reads (uncompresses if needed) and caches the first \a SampleCount
721 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
722 * memory space if you don't need the cached samples anymore. There is no
723 * guarantee that exactly \a SampleCount samples will be cached; this is
724 * not an error. The size will be eventually truncated e.g. to the
725 * beginning of a frame of a compressed sample. This is done for
726 * efficiency reasons while streaming the wave by your sampler engine
727 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
728 * that will be returned to determine the actual cached samples, but note
729 * that the size is given in bytes! You get the number of actually cached
730 * samples by dividing it by the frame size of the sample:
731 * @code
732 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
733 * long cachedsamples = buf.Size / pSample->FrameSize;
734 * @endcode
735 * The method will add \a NullSamplesCount silence samples past the
736 * official buffer end (this won't affect the 'Size' member of the
737 * buffer_t structure, that means 'Size' always reflects the size of the
738 * actual sample data, the buffer might be bigger though). Silence
739 * samples past the official buffer are needed for differential
740 * algorithms that always have to take subsequent samples into account
741 * (resampling/interpolation would be an important example) and avoids
742 * memory access faults in such cases.
743 *
744 * @param SampleCount - number of sample points to load into RAM
745 * @param NullSamplesCount - number of silence samples the buffer should
746 * be extended past it's data end
747 * @returns buffer_t structure with start address and
748 * size of the cached sample data in bytes
749 * @see ReleaseSampleData(), Read(), SetPos()
750 */
751 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
752 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
753 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
754 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
755 SetPos(0); // reset read position to begin of sample
756 RAMCache.pStart = new int8_t[allocationsize];
757 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
758 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
759 // fill the remaining buffer space with silence samples
760 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
761 return GetCache();
762 }
763
764 /**
765 * Returns current cached sample points. A buffer_t structure will be
766 * returned which contains address pointer to the begin of the cache and
767 * the size of the cached sample data in bytes. Use
768 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
769 * RAM.
770 *
771 * @returns buffer_t structure with current cached sample points
772 * @see LoadSampleData();
773 */
774 buffer_t Sample::GetCache() {
775 // return a copy of the buffer_t structure
776 buffer_t result;
777 result.Size = this->RAMCache.Size;
778 result.pStart = this->RAMCache.pStart;
779 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
780 return result;
781 }
782
783 /**
784 * Frees the cached sample from RAM if loaded with
785 * <i>LoadSampleData()</i> previously.
786 *
787 * @see LoadSampleData();
788 */
789 void Sample::ReleaseSampleData() {
790 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
791 RAMCache.pStart = NULL;
792 RAMCache.Size = 0;
793 RAMCache.NullExtensionSize = 0;
794 }
795
796 /** @brief Resize sample.
797 *
798 * Resizes the sample's wave form data, that is the actual size of
799 * sample wave data possible to be written for this sample. This call
800 * will return immediately and just schedule the resize operation. You
801 * should call File::Save() to actually perform the resize operation(s)
802 * "physically" to the file. As this can take a while on large files, it
803 * is recommended to call Resize() first on all samples which have to be
804 * resized and finally to call File::Save() to perform all those resize
805 * operations in one rush.
806 *
807 * The actual size (in bytes) is dependant to the current FrameSize
808 * value. You may want to set FrameSize before calling Resize().
809 *
810 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
811 * enlarged samples before calling File::Save() as this might exceed the
812 * current sample's boundary!
813 *
814 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
815 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
816 * other formats will fail!
817 *
818 * @param iNewSize - new sample wave data size in sample points (must be
819 * greater than zero)
820 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
821 * or if \a iNewSize is less than 1
822 * @throws gig::Exception if existing sample is compressed
823 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
824 * DLS::Sample::FormatTag, File::Save()
825 */
826 void Sample::Resize(int iNewSize) {
827 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
828 DLS::Sample::Resize(iNewSize);
829 }
830
831 /**
832 * Sets the position within the sample (in sample points, not in
833 * bytes). Use this method and <i>Read()</i> if you don't want to load
834 * the sample into RAM, thus for disk streaming.
835 *
836 * Although the original Gigasampler engine doesn't allow positioning
837 * within compressed samples, I decided to implement it. Even though
838 * the Gigasampler format doesn't allow to define loops for compressed
839 * samples at the moment, positioning within compressed samples might be
840 * interesting for some sampler engines though. The only drawback about
841 * my decision is that it takes longer to load compressed gig Files on
842 * startup, because it's neccessary to scan the samples for some
843 * mandatory informations. But I think as it doesn't affect the runtime
844 * efficiency, nobody will have a problem with that.
845 *
846 * @param SampleCount number of sample points to jump
847 * @param Whence optional: to which relation \a SampleCount refers
848 * to, if omited <i>RIFF::stream_start</i> is assumed
849 * @returns the new sample position
850 * @see Read()
851 */
852 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
853 if (Compressed) {
854 switch (Whence) {
855 case RIFF::stream_curpos:
856 this->SamplePos += SampleCount;
857 break;
858 case RIFF::stream_end:
859 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
860 break;
861 case RIFF::stream_backward:
862 this->SamplePos -= SampleCount;
863 break;
864 case RIFF::stream_start: default:
865 this->SamplePos = SampleCount;
866 break;
867 }
868 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
869
870 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
871 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
872 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
873 return this->SamplePos;
874 }
875 else { // not compressed
876 unsigned long orderedBytes = SampleCount * this->FrameSize;
877 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
878 return (result == orderedBytes) ? SampleCount
879 : result / this->FrameSize;
880 }
881 }
882
883 /**
884 * Returns the current position in the sample (in sample points).
885 */
886 unsigned long Sample::GetPos() const {
887 if (Compressed) return SamplePos;
888 else return pCkData->GetPos() / FrameSize;
889 }
890
891 /**
892 * Reads \a SampleCount number of sample points from the position stored
893 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
894 * the position within the sample respectively, this method honors the
895 * looping informations of the sample (if any). The sample wave stream
896 * will be decompressed on the fly if using a compressed sample. Use this
897 * method if you don't want to load the sample into RAM, thus for disk
898 * streaming. All this methods needs to know to proceed with streaming
899 * for the next time you call this method is stored in \a pPlaybackState.
900 * You have to allocate and initialize the playback_state_t structure by
901 * yourself before you use it to stream a sample:
902 * @code
903 * gig::playback_state_t playbackstate;
904 * playbackstate.position = 0;
905 * playbackstate.reverse = false;
906 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
907 * @endcode
908 * You don't have to take care of things like if there is actually a loop
909 * defined or if the current read position is located within a loop area.
910 * The method already handles such cases by itself.
911 *
912 * <b>Caution:</b> If you are using more than one streaming thread, you
913 * have to use an external decompression buffer for <b>EACH</b>
914 * streaming thread to avoid race conditions and crashes!
915 *
916 * @param pBuffer destination buffer
917 * @param SampleCount number of sample points to read
918 * @param pPlaybackState will be used to store and reload the playback
919 * state for the next ReadAndLoop() call
920 * @param pDimRgn dimension region with looping information
921 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
922 * @returns number of successfully read sample points
923 * @see CreateDecompressionBuffer()
924 */
925 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
926 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
927 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
928 uint8_t* pDst = (uint8_t*) pBuffer;
929
930 SetPos(pPlaybackState->position); // recover position from the last time
931
932 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
933
934 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
935 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
936
937 if (GetPos() <= loopEnd) {
938 switch (loop.LoopType) {
939
940 case loop_type_bidirectional: { //TODO: not tested yet!
941 do {
942 // if not endless loop check if max. number of loop cycles have been passed
943 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
944
945 if (!pPlaybackState->reverse) { // forward playback
946 do {
947 samplestoloopend = loopEnd - GetPos();
948 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
949 samplestoread -= readsamples;
950 totalreadsamples += readsamples;
951 if (readsamples == samplestoloopend) {
952 pPlaybackState->reverse = true;
953 break;
954 }
955 } while (samplestoread && readsamples);
956 }
957 else { // backward playback
958
959 // as we can only read forward from disk, we have to
960 // determine the end position within the loop first,
961 // read forward from that 'end' and finally after
962 // reading, swap all sample frames so it reflects
963 // backward playback
964
965 unsigned long swapareastart = totalreadsamples;
966 unsigned long loopoffset = GetPos() - loop.LoopStart;
967 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
968 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
969
970 SetPos(reverseplaybackend);
971
972 // read samples for backward playback
973 do {
974 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
975 samplestoreadinloop -= readsamples;
976 samplestoread -= readsamples;
977 totalreadsamples += readsamples;
978 } while (samplestoreadinloop && readsamples);
979
980 SetPos(reverseplaybackend); // pretend we really read backwards
981
982 if (reverseplaybackend == loop.LoopStart) {
983 pPlaybackState->loop_cycles_left--;
984 pPlaybackState->reverse = false;
985 }
986
987 // reverse the sample frames for backward playback
988 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
989 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
990 }
991 } while (samplestoread && readsamples);
992 break;
993 }
994
995 case loop_type_backward: { // TODO: not tested yet!
996 // forward playback (not entered the loop yet)
997 if (!pPlaybackState->reverse) do {
998 samplestoloopend = loopEnd - GetPos();
999 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1000 samplestoread -= readsamples;
1001 totalreadsamples += readsamples;
1002 if (readsamples == samplestoloopend) {
1003 pPlaybackState->reverse = true;
1004 break;
1005 }
1006 } while (samplestoread && readsamples);
1007
1008 if (!samplestoread) break;
1009
1010 // as we can only read forward from disk, we have to
1011 // determine the end position within the loop first,
1012 // read forward from that 'end' and finally after
1013 // reading, swap all sample frames so it reflects
1014 // backward playback
1015
1016 unsigned long swapareastart = totalreadsamples;
1017 unsigned long loopoffset = GetPos() - loop.LoopStart;
1018 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1019 : samplestoread;
1020 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1021
1022 SetPos(reverseplaybackend);
1023
1024 // read samples for backward playback
1025 do {
1026 // if not endless loop check if max. number of loop cycles have been passed
1027 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1028 samplestoloopend = loopEnd - GetPos();
1029 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1030 samplestoreadinloop -= readsamples;
1031 samplestoread -= readsamples;
1032 totalreadsamples += readsamples;
1033 if (readsamples == samplestoloopend) {
1034 pPlaybackState->loop_cycles_left--;
1035 SetPos(loop.LoopStart);
1036 }
1037 } while (samplestoreadinloop && readsamples);
1038
1039 SetPos(reverseplaybackend); // pretend we really read backwards
1040
1041 // reverse the sample frames for backward playback
1042 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1043 break;
1044 }
1045
1046 default: case loop_type_normal: {
1047 do {
1048 // if not endless loop check if max. number of loop cycles have been passed
1049 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1050 samplestoloopend = loopEnd - GetPos();
1051 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1052 samplestoread -= readsamples;
1053 totalreadsamples += readsamples;
1054 if (readsamples == samplestoloopend) {
1055 pPlaybackState->loop_cycles_left--;
1056 SetPos(loop.LoopStart);
1057 }
1058 } while (samplestoread && readsamples);
1059 break;
1060 }
1061 }
1062 }
1063 }
1064
1065 // read on without looping
1066 if (samplestoread) do {
1067 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1068 samplestoread -= readsamples;
1069 totalreadsamples += readsamples;
1070 } while (readsamples && samplestoread);
1071
1072 // store current position
1073 pPlaybackState->position = GetPos();
1074
1075 return totalreadsamples;
1076 }
1077
1078 /**
1079 * Reads \a SampleCount number of sample points from the current
1080 * position into the buffer pointed by \a pBuffer and increments the
1081 * position within the sample. The sample wave stream will be
1082 * decompressed on the fly if using a compressed sample. Use this method
1083 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1084 * thus for disk streaming.
1085 *
1086 * <b>Caution:</b> If you are using more than one streaming thread, you
1087 * have to use an external decompression buffer for <b>EACH</b>
1088 * streaming thread to avoid race conditions and crashes!
1089 *
1090 * For 16 bit samples, the data in the buffer will be int16_t
1091 * (using native endianness). For 24 bit, the buffer will
1092 * contain three bytes per sample, little-endian.
1093 *
1094 * @param pBuffer destination buffer
1095 * @param SampleCount number of sample points to read
1096 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1097 * @returns number of successfully read sample points
1098 * @see SetPos(), CreateDecompressionBuffer()
1099 */
1100 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1101 if (SampleCount == 0) return 0;
1102 if (!Compressed) {
1103 if (BitDepth == 24) {
1104 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1105 }
1106 else { // 16 bit
1107 // (pCkData->Read does endian correction)
1108 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1109 : pCkData->Read(pBuffer, SampleCount, 2);
1110 }
1111 }
1112 else {
1113 if (this->SamplePos >= this->SamplesTotal) return 0;
1114 //TODO: efficiency: maybe we should test for an average compression rate
1115 unsigned long assumedsize = GuessSize(SampleCount),
1116 remainingbytes = 0, // remaining bytes in the local buffer
1117 remainingsamples = SampleCount,
1118 copysamples, skipsamples,
1119 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1120 this->FrameOffset = 0;
1121
1122 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1123
1124 // if decompression buffer too small, then reduce amount of samples to read
1125 if (pDecompressionBuffer->Size < assumedsize) {
1126 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1127 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1128 remainingsamples = SampleCount;
1129 assumedsize = GuessSize(SampleCount);
1130 }
1131
1132 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1133 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1134 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1135 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1136
1137 while (remainingsamples && remainingbytes) {
1138 unsigned long framesamples = SamplesPerFrame;
1139 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1140
1141 int mode_l = *pSrc++, mode_r = 0;
1142
1143 if (Channels == 2) {
1144 mode_r = *pSrc++;
1145 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1146 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1147 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1148 if (remainingbytes < framebytes) { // last frame in sample
1149 framesamples = SamplesInLastFrame;
1150 if (mode_l == 4 && (framesamples & 1)) {
1151 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1152 }
1153 else {
1154 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1155 }
1156 }
1157 }
1158 else {
1159 framebytes = bytesPerFrame[mode_l] + 1;
1160 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1161 if (remainingbytes < framebytes) {
1162 framesamples = SamplesInLastFrame;
1163 }
1164 }
1165
1166 // determine how many samples in this frame to skip and read
1167 if (currentframeoffset + remainingsamples >= framesamples) {
1168 if (currentframeoffset <= framesamples) {
1169 copysamples = framesamples - currentframeoffset;
1170 skipsamples = currentframeoffset;
1171 }
1172 else {
1173 copysamples = 0;
1174 skipsamples = framesamples;
1175 }
1176 }
1177 else {
1178 // This frame has enough data for pBuffer, but not
1179 // all of the frame is needed. Set file position
1180 // to start of this frame for next call to Read.
1181 copysamples = remainingsamples;
1182 skipsamples = currentframeoffset;
1183 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184 this->FrameOffset = currentframeoffset + copysamples;
1185 }
1186 remainingsamples -= copysamples;
1187
1188 if (remainingbytes > framebytes) {
1189 remainingbytes -= framebytes;
1190 if (remainingsamples == 0 &&
1191 currentframeoffset + copysamples == framesamples) {
1192 // This frame has enough data for pBuffer, and
1193 // all of the frame is needed. Set file
1194 // position to start of next frame for next
1195 // call to Read. FrameOffset is 0.
1196 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197 }
1198 }
1199 else remainingbytes = 0;
1200
1201 currentframeoffset -= skipsamples;
1202
1203 if (copysamples == 0) {
1204 // skip this frame
1205 pSrc += framebytes - Channels;
1206 }
1207 else {
1208 const unsigned char* const param_l = pSrc;
1209 if (BitDepth == 24) {
1210 if (mode_l != 2) pSrc += 12;
1211
1212 if (Channels == 2) { // Stereo
1213 const unsigned char* const param_r = pSrc;
1214 if (mode_r != 2) pSrc += 12;
1215
1216 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1217 skipsamples, copysamples, TruncatedBits);
1218 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1219 skipsamples, copysamples, TruncatedBits);
1220 pDst24 += copysamples * 6;
1221 }
1222 else { // Mono
1223 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1224 skipsamples, copysamples, TruncatedBits);
1225 pDst24 += copysamples * 3;
1226 }
1227 }
1228 else { // 16 bit
1229 if (mode_l) pSrc += 4;
1230
1231 int step;
1232 if (Channels == 2) { // Stereo
1233 const unsigned char* const param_r = pSrc;
1234 if (mode_r) pSrc += 4;
1235
1236 step = (2 - mode_l) + (2 - mode_r);
1237 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1238 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1239 skipsamples, copysamples);
1240 pDst += copysamples << 1;
1241 }
1242 else { // Mono
1243 step = 2 - mode_l;
1244 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1245 pDst += copysamples;
1246 }
1247 }
1248 pSrc += nextFrameOffset;
1249 }
1250
1251 // reload from disk to local buffer if needed
1252 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1253 assumedsize = GuessSize(remainingsamples);
1254 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1255 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1256 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1257 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1258 }
1259 } // while
1260
1261 this->SamplePos += (SampleCount - remainingsamples);
1262 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1263 return (SampleCount - remainingsamples);
1264 }
1265 }
1266
1267 /** @brief Write sample wave data.
1268 *
1269 * Writes \a SampleCount number of sample points from the buffer pointed
1270 * by \a pBuffer and increments the position within the sample. Use this
1271 * method to directly write the sample data to disk, i.e. if you don't
1272 * want or cannot load the whole sample data into RAM.
1273 *
1274 * You have to Resize() the sample to the desired size and call
1275 * File::Save() <b>before</b> using Write().
1276 *
1277 * Note: there is currently no support for writing compressed samples.
1278 *
1279 * For 16 bit samples, the data in the source buffer should be
1280 * int16_t (using native endianness). For 24 bit, the buffer
1281 * should contain three bytes per sample, little-endian.
1282 *
1283 * @param pBuffer - source buffer
1284 * @param SampleCount - number of sample points to write
1285 * @throws DLS::Exception if current sample size is too small
1286 * @throws gig::Exception if sample is compressed
1287 * @see DLS::LoadSampleData()
1288 */
1289 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1290 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1291
1292 // if this is the first write in this sample, reset the
1293 // checksum calculator
1294 if (pCkData->GetPos() == 0) {
1295 __resetCRC(crc);
1296 }
1297 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1298 unsigned long res;
1299 if (BitDepth == 24) {
1300 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1301 } else { // 16 bit
1302 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1303 : pCkData->Write(pBuffer, SampleCount, 2);
1304 }
1305 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1306
1307 // if this is the last write, update the checksum chunk in the
1308 // file
1309 if (pCkData->GetPos() == pCkData->GetSize()) {
1310 File* pFile = static_cast<File*>(GetParent());
1311 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1312 }
1313 return res;
1314 }
1315
1316 /**
1317 * Allocates a decompression buffer for streaming (compressed) samples
1318 * with Sample::Read(). If you are using more than one streaming thread
1319 * in your application you <b>HAVE</b> to create a decompression buffer
1320 * for <b>EACH</b> of your streaming threads and provide it with the
1321 * Sample::Read() call in order to avoid race conditions and crashes.
1322 *
1323 * You should free the memory occupied by the allocated buffer(s) once
1324 * you don't need one of your streaming threads anymore by calling
1325 * DestroyDecompressionBuffer().
1326 *
1327 * @param MaxReadSize - the maximum size (in sample points) you ever
1328 * expect to read with one Read() call
1329 * @returns allocated decompression buffer
1330 * @see DestroyDecompressionBuffer()
1331 */
1332 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1333 buffer_t result;
1334 const double worstCaseHeaderOverhead =
1335 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1336 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1337 result.pStart = new int8_t[result.Size];
1338 result.NullExtensionSize = 0;
1339 return result;
1340 }
1341
1342 /**
1343 * Free decompression buffer, previously created with
1344 * CreateDecompressionBuffer().
1345 *
1346 * @param DecompressionBuffer - previously allocated decompression
1347 * buffer to free
1348 */
1349 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1350 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1351 delete[] (int8_t*) DecompressionBuffer.pStart;
1352 DecompressionBuffer.pStart = NULL;
1353 DecompressionBuffer.Size = 0;
1354 DecompressionBuffer.NullExtensionSize = 0;
1355 }
1356 }
1357
1358 /**
1359 * Returns pointer to the Group this Sample belongs to. In the .gig
1360 * format a sample always belongs to one group. If it wasn't explicitly
1361 * assigned to a certain group, it will be automatically assigned to a
1362 * default group.
1363 *
1364 * @returns Sample's Group (never NULL)
1365 */
1366 Group* Sample::GetGroup() const {
1367 return pGroup;
1368 }
1369
1370 Sample::~Sample() {
1371 Instances--;
1372 if (!Instances && InternalDecompressionBuffer.Size) {
1373 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1374 InternalDecompressionBuffer.pStart = NULL;
1375 InternalDecompressionBuffer.Size = 0;
1376 }
1377 if (FrameTable) delete[] FrameTable;
1378 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1379 }
1380
1381
1382
1383 // *************** DimensionRegion ***************
1384 // *
1385
1386 uint DimensionRegion::Instances = 0;
1387 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1388
1389 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1390 Instances++;
1391
1392 pSample = NULL;
1393 pRegion = pParent;
1394
1395 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1396 else memset(&Crossfade, 0, 4);
1397
1398 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1399
1400 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1401 if (_3ewa) { // if '3ewa' chunk exists
1402 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1403 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1404 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405 _3ewa->ReadInt16(); // unknown
1406 LFO1InternalDepth = _3ewa->ReadUint16();
1407 _3ewa->ReadInt16(); // unknown
1408 LFO3InternalDepth = _3ewa->ReadInt16();
1409 _3ewa->ReadInt16(); // unknown
1410 LFO1ControlDepth = _3ewa->ReadUint16();
1411 _3ewa->ReadInt16(); // unknown
1412 LFO3ControlDepth = _3ewa->ReadInt16();
1413 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1414 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415 _3ewa->ReadInt16(); // unknown
1416 EG1Sustain = _3ewa->ReadUint16();
1417 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1418 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1420 EG1ControllerInvert = eg1ctrloptions & 0x01;
1421 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1422 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1423 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1424 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1425 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1426 EG2ControllerInvert = eg2ctrloptions & 0x01;
1427 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1428 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1429 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1430 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433 _3ewa->ReadInt16(); // unknown
1434 EG2Sustain = _3ewa->ReadUint16();
1435 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1436 _3ewa->ReadInt16(); // unknown
1437 LFO2ControlDepth = _3ewa->ReadUint16();
1438 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1439 _3ewa->ReadInt16(); // unknown
1440 LFO2InternalDepth = _3ewa->ReadUint16();
1441 int32_t eg1decay2 = _3ewa->ReadInt32();
1442 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1443 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1444 _3ewa->ReadInt16(); // unknown
1445 EG1PreAttack = _3ewa->ReadUint16();
1446 int32_t eg2decay2 = _3ewa->ReadInt32();
1447 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1448 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1449 _3ewa->ReadInt16(); // unknown
1450 EG2PreAttack = _3ewa->ReadUint16();
1451 uint8_t velocityresponse = _3ewa->ReadUint8();
1452 if (velocityresponse < 5) {
1453 VelocityResponseCurve = curve_type_nonlinear;
1454 VelocityResponseDepth = velocityresponse;
1455 } else if (velocityresponse < 10) {
1456 VelocityResponseCurve = curve_type_linear;
1457 VelocityResponseDepth = velocityresponse - 5;
1458 } else if (velocityresponse < 15) {
1459 VelocityResponseCurve = curve_type_special;
1460 VelocityResponseDepth = velocityresponse - 10;
1461 } else {
1462 VelocityResponseCurve = curve_type_unknown;
1463 VelocityResponseDepth = 0;
1464 }
1465 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1466 if (releasevelocityresponse < 5) {
1467 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468 ReleaseVelocityResponseDepth = releasevelocityresponse;
1469 } else if (releasevelocityresponse < 10) {
1470 ReleaseVelocityResponseCurve = curve_type_linear;
1471 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1472 } else if (releasevelocityresponse < 15) {
1473 ReleaseVelocityResponseCurve = curve_type_special;
1474 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1475 } else {
1476 ReleaseVelocityResponseCurve = curve_type_unknown;
1477 ReleaseVelocityResponseDepth = 0;
1478 }
1479 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1480 AttenuationControllerThreshold = _3ewa->ReadInt8();
1481 _3ewa->ReadInt32(); // unknown
1482 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1483 _3ewa->ReadInt16(); // unknown
1484 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1485 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1486 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1487 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1488 else DimensionBypass = dim_bypass_ctrl_none;
1489 uint8_t pan = _3ewa->ReadUint8();
1490 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1491 SelfMask = _3ewa->ReadInt8() & 0x01;
1492 _3ewa->ReadInt8(); // unknown
1493 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1494 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1495 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1496 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1497 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1499 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1500 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1501 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1502 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1503 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1504 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1505 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1506 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1507 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1508 : vcf_res_ctrl_none;
1509 uint16_t eg3depth = _3ewa->ReadUint16();
1510 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1511 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1512 _3ewa->ReadInt16(); // unknown
1513 ChannelOffset = _3ewa->ReadUint8() / 4;
1514 uint8_t regoptions = _3ewa->ReadUint8();
1515 MSDecode = regoptions & 0x01; // bit 0
1516 SustainDefeat = regoptions & 0x02; // bit 1
1517 _3ewa->ReadInt16(); // unknown
1518 VelocityUpperLimit = _3ewa->ReadInt8();
1519 _3ewa->ReadInt8(); // unknown
1520 _3ewa->ReadInt16(); // unknown
1521 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1522 _3ewa->ReadInt8(); // unknown
1523 _3ewa->ReadInt8(); // unknown
1524 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1525 uint8_t vcfcutoff = _3ewa->ReadUint8();
1526 VCFEnabled = vcfcutoff & 0x80; // bit 7
1527 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1528 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1529 uint8_t vcfvelscale = _3ewa->ReadUint8();
1530 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1531 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1532 _3ewa->ReadInt8(); // unknown
1533 uint8_t vcfresonance = _3ewa->ReadUint8();
1534 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1535 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1536 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1537 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1538 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1539 uint8_t vcfvelocity = _3ewa->ReadUint8();
1540 VCFVelocityDynamicRange = vcfvelocity % 5;
1541 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1542 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1543 if (VCFType == vcf_type_lowpass) {
1544 if (lfo3ctrl & 0x40) // bit 6
1545 VCFType = vcf_type_lowpassturbo;
1546 }
1547 if (_3ewa->RemainingBytes() >= 8) {
1548 _3ewa->Read(DimensionUpperLimits, 1, 8);
1549 } else {
1550 memset(DimensionUpperLimits, 0, 8);
1551 }
1552 } else { // '3ewa' chunk does not exist yet
1553 // use default values
1554 LFO3Frequency = 1.0;
1555 EG3Attack = 0.0;
1556 LFO1InternalDepth = 0;
1557 LFO3InternalDepth = 0;
1558 LFO1ControlDepth = 0;
1559 LFO3ControlDepth = 0;
1560 EG1Attack = 0.0;
1561 EG1Decay1 = 0.005;
1562 EG1Sustain = 1000;
1563 EG1Release = 0.3;
1564 EG1Controller.type = eg1_ctrl_t::type_none;
1565 EG1Controller.controller_number = 0;
1566 EG1ControllerInvert = false;
1567 EG1ControllerAttackInfluence = 0;
1568 EG1ControllerDecayInfluence = 0;
1569 EG1ControllerReleaseInfluence = 0;
1570 EG2Controller.type = eg2_ctrl_t::type_none;
1571 EG2Controller.controller_number = 0;
1572 EG2ControllerInvert = false;
1573 EG2ControllerAttackInfluence = 0;
1574 EG2ControllerDecayInfluence = 0;
1575 EG2ControllerReleaseInfluence = 0;
1576 LFO1Frequency = 1.0;
1577 EG2Attack = 0.0;
1578 EG2Decay1 = 0.005;
1579 EG2Sustain = 1000;
1580 EG2Release = 0.3;
1581 LFO2ControlDepth = 0;
1582 LFO2Frequency = 1.0;
1583 LFO2InternalDepth = 0;
1584 EG1Decay2 = 0.0;
1585 EG1InfiniteSustain = true;
1586 EG1PreAttack = 0;
1587 EG2Decay2 = 0.0;
1588 EG2InfiniteSustain = true;
1589 EG2PreAttack = 0;
1590 VelocityResponseCurve = curve_type_nonlinear;
1591 VelocityResponseDepth = 3;
1592 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1593 ReleaseVelocityResponseDepth = 3;
1594 VelocityResponseCurveScaling = 32;
1595 AttenuationControllerThreshold = 0;
1596 SampleStartOffset = 0;
1597 PitchTrack = true;
1598 DimensionBypass = dim_bypass_ctrl_none;
1599 Pan = 0;
1600 SelfMask = true;
1601 LFO3Controller = lfo3_ctrl_modwheel;
1602 LFO3Sync = false;
1603 InvertAttenuationController = false;
1604 AttenuationController.type = attenuation_ctrl_t::type_none;
1605 AttenuationController.controller_number = 0;
1606 LFO2Controller = lfo2_ctrl_internal;
1607 LFO2FlipPhase = false;
1608 LFO2Sync = false;
1609 LFO1Controller = lfo1_ctrl_internal;
1610 LFO1FlipPhase = false;
1611 LFO1Sync = false;
1612 VCFResonanceController = vcf_res_ctrl_none;
1613 EG3Depth = 0;
1614 ChannelOffset = 0;
1615 MSDecode = false;
1616 SustainDefeat = false;
1617 VelocityUpperLimit = 0;
1618 ReleaseTriggerDecay = 0;
1619 EG1Hold = false;
1620 VCFEnabled = false;
1621 VCFCutoff = 0;
1622 VCFCutoffController = vcf_cutoff_ctrl_none;
1623 VCFCutoffControllerInvert = false;
1624 VCFVelocityScale = 0;
1625 VCFResonance = 0;
1626 VCFResonanceDynamic = false;
1627 VCFKeyboardTracking = false;
1628 VCFKeyboardTrackingBreakpoint = 0;
1629 VCFVelocityDynamicRange = 0x04;
1630 VCFVelocityCurve = curve_type_linear;
1631 VCFType = vcf_type_lowpass;
1632 memset(DimensionUpperLimits, 127, 8);
1633 }
1634
1635 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1636 VelocityResponseDepth,
1637 VelocityResponseCurveScaling);
1638
1639 pVelocityReleaseTable = GetReleaseVelocityTable(
1640 ReleaseVelocityResponseCurve,
1641 ReleaseVelocityResponseDepth
1642 );
1643
1644 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1645 VCFVelocityDynamicRange,
1646 VCFVelocityScale,
1647 VCFCutoffController);
1648
1649 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1650 VelocityTable = 0;
1651 }
1652
1653 /*
1654 * Constructs a DimensionRegion by copying all parameters from
1655 * another DimensionRegion
1656 */
1657 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1658 Instances++;
1659 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1660 *this = src; // default memberwise shallow copy of all parameters
1661 pParentList = _3ewl; // restore the chunk pointer
1662
1663 // deep copy of owned structures
1664 if (src.VelocityTable) {
1665 VelocityTable = new uint8_t[128];
1666 for (int k = 0 ; k < 128 ; k++)
1667 VelocityTable[k] = src.VelocityTable[k];
1668 }
1669 if (src.pSampleLoops) {
1670 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1671 for (int k = 0 ; k < src.SampleLoops ; k++)
1672 pSampleLoops[k] = src.pSampleLoops[k];
1673 }
1674 }
1675
1676 /**
1677 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1678 * and assign it to this object.
1679 *
1680 * Note that all sample pointers referenced by @a orig are simply copied as
1681 * memory address. Thus the respective samples are shared, not duplicated!
1682 *
1683 * @param orig - original DimensionRegion object to be copied from
1684 */
1685 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1686 CopyAssign(orig, NULL);
1687 }
1688
1689 /**
1690 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1691 * and assign it to this object.
1692 *
1693 * @param orig - original DimensionRegion object to be copied from
1694 * @param mSamples - crosslink map between the foreign file's samples and
1695 * this file's samples
1696 */
1697 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1698 // delete all allocated data first
1699 if (VelocityTable) delete [] VelocityTable;
1700 if (pSampleLoops) delete [] pSampleLoops;
1701
1702 // backup parent list pointer
1703 RIFF::List* p = pParentList;
1704
1705 gig::Sample* pOriginalSample = pSample;
1706 gig::Region* pOriginalRegion = pRegion;
1707
1708 //NOTE: copy code copied from assignment constructor above, see comment there as well
1709
1710 *this = *orig; // default memberwise shallow copy of all parameters
1711 pParentList = p; // restore the chunk pointer
1712
1713 // only take the raw sample reference & parent region reference if the
1714 // two DimensionRegion objects are part of the same file
1715 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1716 pRegion = pOriginalRegion;
1717 pSample = pOriginalSample;
1718 }
1719
1720 if (mSamples && mSamples->count(orig->pSample)) {
1721 pSample = mSamples->find(orig->pSample)->second;
1722 }
1723
1724 // deep copy of owned structures
1725 if (orig->VelocityTable) {
1726 VelocityTable = new uint8_t[128];
1727 for (int k = 0 ; k < 128 ; k++)
1728 VelocityTable[k] = orig->VelocityTable[k];
1729 }
1730 if (orig->pSampleLoops) {
1731 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1732 for (int k = 0 ; k < orig->SampleLoops ; k++)
1733 pSampleLoops[k] = orig->pSampleLoops[k];
1734 }
1735 }
1736
1737 /**
1738 * Updates the respective member variable and updates @c SampleAttenuation
1739 * which depends on this value.
1740 */
1741 void DimensionRegion::SetGain(int32_t gain) {
1742 DLS::Sampler::SetGain(gain);
1743 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1744 }
1745
1746 /**
1747 * Apply dimension region settings to the respective RIFF chunks. You
1748 * have to call File::Save() to make changes persistent.
1749 *
1750 * Usually there is absolutely no need to call this method explicitly.
1751 * It will be called automatically when File::Save() was called.
1752 */
1753 void DimensionRegion::UpdateChunks() {
1754 // first update base class's chunk
1755 DLS::Sampler::UpdateChunks();
1756
1757 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1758 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1759 pData[12] = Crossfade.in_start;
1760 pData[13] = Crossfade.in_end;
1761 pData[14] = Crossfade.out_start;
1762 pData[15] = Crossfade.out_end;
1763
1764 // make sure '3ewa' chunk exists
1765 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1766 if (!_3ewa) {
1767 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1768 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1769 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1770 }
1771 pData = (uint8_t*) _3ewa->LoadChunkData();
1772
1773 // update '3ewa' chunk with DimensionRegion's current settings
1774
1775 const uint32_t chunksize = _3ewa->GetNewSize();
1776 store32(&pData[0], chunksize); // unknown, always chunk size?
1777
1778 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1779 store32(&pData[4], lfo3freq);
1780
1781 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1782 store32(&pData[8], eg3attack);
1783
1784 // next 2 bytes unknown
1785
1786 store16(&pData[14], LFO1InternalDepth);
1787
1788 // next 2 bytes unknown
1789
1790 store16(&pData[18], LFO3InternalDepth);
1791
1792 // next 2 bytes unknown
1793
1794 store16(&pData[22], LFO1ControlDepth);
1795
1796 // next 2 bytes unknown
1797
1798 store16(&pData[26], LFO3ControlDepth);
1799
1800 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1801 store32(&pData[28], eg1attack);
1802
1803 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1804 store32(&pData[32], eg1decay1);
1805
1806 // next 2 bytes unknown
1807
1808 store16(&pData[38], EG1Sustain);
1809
1810 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1811 store32(&pData[40], eg1release);
1812
1813 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1814 pData[44] = eg1ctl;
1815
1816 const uint8_t eg1ctrloptions =
1817 (EG1ControllerInvert ? 0x01 : 0x00) |
1818 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1819 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1820 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1821 pData[45] = eg1ctrloptions;
1822
1823 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1824 pData[46] = eg2ctl;
1825
1826 const uint8_t eg2ctrloptions =
1827 (EG2ControllerInvert ? 0x01 : 0x00) |
1828 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1829 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1830 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1831 pData[47] = eg2ctrloptions;
1832
1833 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1834 store32(&pData[48], lfo1freq);
1835
1836 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1837 store32(&pData[52], eg2attack);
1838
1839 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1840 store32(&pData[56], eg2decay1);
1841
1842 // next 2 bytes unknown
1843
1844 store16(&pData[62], EG2Sustain);
1845
1846 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1847 store32(&pData[64], eg2release);
1848
1849 // next 2 bytes unknown
1850
1851 store16(&pData[70], LFO2ControlDepth);
1852
1853 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1854 store32(&pData[72], lfo2freq);
1855
1856 // next 2 bytes unknown
1857
1858 store16(&pData[78], LFO2InternalDepth);
1859
1860 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1861 store32(&pData[80], eg1decay2);
1862
1863 // next 2 bytes unknown
1864
1865 store16(&pData[86], EG1PreAttack);
1866
1867 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1868 store32(&pData[88], eg2decay2);
1869
1870 // next 2 bytes unknown
1871
1872 store16(&pData[94], EG2PreAttack);
1873
1874 {
1875 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1876 uint8_t velocityresponse = VelocityResponseDepth;
1877 switch (VelocityResponseCurve) {
1878 case curve_type_nonlinear:
1879 break;
1880 case curve_type_linear:
1881 velocityresponse += 5;
1882 break;
1883 case curve_type_special:
1884 velocityresponse += 10;
1885 break;
1886 case curve_type_unknown:
1887 default:
1888 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1889 }
1890 pData[96] = velocityresponse;
1891 }
1892
1893 {
1894 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1895 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1896 switch (ReleaseVelocityResponseCurve) {
1897 case curve_type_nonlinear:
1898 break;
1899 case curve_type_linear:
1900 releasevelocityresponse += 5;
1901 break;
1902 case curve_type_special:
1903 releasevelocityresponse += 10;
1904 break;
1905 case curve_type_unknown:
1906 default:
1907 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1908 }
1909 pData[97] = releasevelocityresponse;
1910 }
1911
1912 pData[98] = VelocityResponseCurveScaling;
1913
1914 pData[99] = AttenuationControllerThreshold;
1915
1916 // next 4 bytes unknown
1917
1918 store16(&pData[104], SampleStartOffset);
1919
1920 // next 2 bytes unknown
1921
1922 {
1923 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1924 switch (DimensionBypass) {
1925 case dim_bypass_ctrl_94:
1926 pitchTrackDimensionBypass |= 0x10;
1927 break;
1928 case dim_bypass_ctrl_95:
1929 pitchTrackDimensionBypass |= 0x20;
1930 break;
1931 case dim_bypass_ctrl_none:
1932 //FIXME: should we set anything here?
1933 break;
1934 default:
1935 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1936 }
1937 pData[108] = pitchTrackDimensionBypass;
1938 }
1939
1940 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1941 pData[109] = pan;
1942
1943 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1944 pData[110] = selfmask;
1945
1946 // next byte unknown
1947
1948 {
1949 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1950 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1951 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1952 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1953 pData[112] = lfo3ctrl;
1954 }
1955
1956 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1957 pData[113] = attenctl;
1958
1959 {
1960 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1961 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1962 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1963 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1964 pData[114] = lfo2ctrl;
1965 }
1966
1967 {
1968 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1969 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1970 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1971 if (VCFResonanceController != vcf_res_ctrl_none)
1972 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1973 pData[115] = lfo1ctrl;
1974 }
1975
1976 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1977 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1978 store16(&pData[116], eg3depth);
1979
1980 // next 2 bytes unknown
1981
1982 const uint8_t channeloffset = ChannelOffset * 4;
1983 pData[120] = channeloffset;
1984
1985 {
1986 uint8_t regoptions = 0;
1987 if (MSDecode) regoptions |= 0x01; // bit 0
1988 if (SustainDefeat) regoptions |= 0x02; // bit 1
1989 pData[121] = regoptions;
1990 }
1991
1992 // next 2 bytes unknown
1993
1994 pData[124] = VelocityUpperLimit;
1995
1996 // next 3 bytes unknown
1997
1998 pData[128] = ReleaseTriggerDecay;
1999
2000 // next 2 bytes unknown
2001
2002 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2003 pData[131] = eg1hold;
2004
2005 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2006 (VCFCutoff & 0x7f); /* lower 7 bits */
2007 pData[132] = vcfcutoff;
2008
2009 pData[133] = VCFCutoffController;
2010
2011 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2012 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2013 pData[134] = vcfvelscale;
2014
2015 // next byte unknown
2016
2017 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2018 (VCFResonance & 0x7f); /* lower 7 bits */
2019 pData[136] = vcfresonance;
2020
2021 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2022 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2023 pData[137] = vcfbreakpoint;
2024
2025 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2026 VCFVelocityCurve * 5;
2027 pData[138] = vcfvelocity;
2028
2029 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2030 pData[139] = vcftype;
2031
2032 if (chunksize >= 148) {
2033 memcpy(&pData[140], DimensionUpperLimits, 8);
2034 }
2035 }
2036
2037 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2038 curve_type_t curveType = releaseVelocityResponseCurve;
2039 uint8_t depth = releaseVelocityResponseDepth;
2040 // this models a strange behaviour or bug in GSt: two of the
2041 // velocity response curves for release time are not used even
2042 // if specified, instead another curve is chosen.
2043 if ((curveType == curve_type_nonlinear && depth == 0) ||
2044 (curveType == curve_type_special && depth == 4)) {
2045 curveType = curve_type_nonlinear;
2046 depth = 3;
2047 }
2048 return GetVelocityTable(curveType, depth, 0);
2049 }
2050
2051 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2052 uint8_t vcfVelocityDynamicRange,
2053 uint8_t vcfVelocityScale,
2054 vcf_cutoff_ctrl_t vcfCutoffController)
2055 {
2056 curve_type_t curveType = vcfVelocityCurve;
2057 uint8_t depth = vcfVelocityDynamicRange;
2058 // even stranger GSt: two of the velocity response curves for
2059 // filter cutoff are not used, instead another special curve
2060 // is chosen. This curve is not used anywhere else.
2061 if ((curveType == curve_type_nonlinear && depth == 0) ||
2062 (curveType == curve_type_special && depth == 4)) {
2063 curveType = curve_type_special;
2064 depth = 5;
2065 }
2066 return GetVelocityTable(curveType, depth,
2067 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2068 ? vcfVelocityScale : 0);
2069 }
2070
2071 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2072 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2073 {
2074 double* table;
2075 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2076 if (pVelocityTables->count(tableKey)) { // if key exists
2077 table = (*pVelocityTables)[tableKey];
2078 }
2079 else {
2080 table = CreateVelocityTable(curveType, depth, scaling);
2081 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2082 }
2083 return table;
2084 }
2085
2086 Region* DimensionRegion::GetParent() const {
2087 return pRegion;
2088 }
2089
2090 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2091 leverage_ctrl_t decodedcontroller;
2092 switch (EncodedController) {
2093 // special controller
2094 case _lev_ctrl_none:
2095 decodedcontroller.type = leverage_ctrl_t::type_none;
2096 decodedcontroller.controller_number = 0;
2097 break;
2098 case _lev_ctrl_velocity:
2099 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2100 decodedcontroller.controller_number = 0;
2101 break;
2102 case _lev_ctrl_channelaftertouch:
2103 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2104 decodedcontroller.controller_number = 0;
2105 break;
2106
2107 // ordinary MIDI control change controller
2108 case _lev_ctrl_modwheel:
2109 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2110 decodedcontroller.controller_number = 1;
2111 break;
2112 case _lev_ctrl_breath:
2113 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2114 decodedcontroller.controller_number = 2;
2115 break;
2116 case _lev_ctrl_foot:
2117 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118 decodedcontroller.controller_number = 4;
2119 break;
2120 case _lev_ctrl_effect1:
2121 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122 decodedcontroller.controller_number = 12;
2123 break;
2124 case _lev_ctrl_effect2:
2125 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126 decodedcontroller.controller_number = 13;
2127 break;
2128 case _lev_ctrl_genpurpose1:
2129 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130 decodedcontroller.controller_number = 16;
2131 break;
2132 case _lev_ctrl_genpurpose2:
2133 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134 decodedcontroller.controller_number = 17;
2135 break;
2136 case _lev_ctrl_genpurpose3:
2137 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138 decodedcontroller.controller_number = 18;
2139 break;
2140 case _lev_ctrl_genpurpose4:
2141 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142 decodedcontroller.controller_number = 19;
2143 break;
2144 case _lev_ctrl_portamentotime:
2145 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146 decodedcontroller.controller_number = 5;
2147 break;
2148 case _lev_ctrl_sustainpedal:
2149 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150 decodedcontroller.controller_number = 64;
2151 break;
2152 case _lev_ctrl_portamento:
2153 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154 decodedcontroller.controller_number = 65;
2155 break;
2156 case _lev_ctrl_sostenutopedal:
2157 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158 decodedcontroller.controller_number = 66;
2159 break;
2160 case _lev_ctrl_softpedal:
2161 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162 decodedcontroller.controller_number = 67;
2163 break;
2164 case _lev_ctrl_genpurpose5:
2165 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166 decodedcontroller.controller_number = 80;
2167 break;
2168 case _lev_ctrl_genpurpose6:
2169 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170 decodedcontroller.controller_number = 81;
2171 break;
2172 case _lev_ctrl_genpurpose7:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 82;
2175 break;
2176 case _lev_ctrl_genpurpose8:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 83;
2179 break;
2180 case _lev_ctrl_effect1depth:
2181 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182 decodedcontroller.controller_number = 91;
2183 break;
2184 case _lev_ctrl_effect2depth:
2185 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186 decodedcontroller.controller_number = 92;
2187 break;
2188 case _lev_ctrl_effect3depth:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 93;
2191 break;
2192 case _lev_ctrl_effect4depth:
2193 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194 decodedcontroller.controller_number = 94;
2195 break;
2196 case _lev_ctrl_effect5depth:
2197 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198 decodedcontroller.controller_number = 95;
2199 break;
2200
2201 // unknown controller type
2202 default:
2203 throw gig::Exception("Unknown leverage controller type.");
2204 }
2205 return decodedcontroller;
2206 }
2207
2208 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2209 _lev_ctrl_t encodedcontroller;
2210 switch (DecodedController.type) {
2211 // special controller
2212 case leverage_ctrl_t::type_none:
2213 encodedcontroller = _lev_ctrl_none;
2214 break;
2215 case leverage_ctrl_t::type_velocity:
2216 encodedcontroller = _lev_ctrl_velocity;
2217 break;
2218 case leverage_ctrl_t::type_channelaftertouch:
2219 encodedcontroller = _lev_ctrl_channelaftertouch;
2220 break;
2221
2222 // ordinary MIDI control change controller
2223 case leverage_ctrl_t::type_controlchange:
2224 switch (DecodedController.controller_number) {
2225 case 1:
2226 encodedcontroller = _lev_ctrl_modwheel;
2227 break;
2228 case 2:
2229 encodedcontroller = _lev_ctrl_breath;
2230 break;
2231 case 4:
2232 encodedcontroller = _lev_ctrl_foot;
2233 break;
2234 case 12:
2235 encodedcontroller = _lev_ctrl_effect1;
2236 break;
2237 case 13:
2238 encodedcontroller = _lev_ctrl_effect2;
2239 break;
2240 case 16:
2241 encodedcontroller = _lev_ctrl_genpurpose1;
2242 break;
2243 case 17:
2244 encodedcontroller = _lev_ctrl_genpurpose2;
2245 break;
2246 case 18:
2247 encodedcontroller = _lev_ctrl_genpurpose3;
2248 break;
2249 case 19:
2250 encodedcontroller = _lev_ctrl_genpurpose4;
2251 break;
2252 case 5:
2253 encodedcontroller = _lev_ctrl_portamentotime;
2254 break;
2255 case 64:
2256 encodedcontroller = _lev_ctrl_sustainpedal;
2257 break;
2258 case 65:
2259 encodedcontroller = _lev_ctrl_portamento;
2260 break;
2261 case 66:
2262 encodedcontroller = _lev_ctrl_sostenutopedal;
2263 break;
2264 case 67:
2265 encodedcontroller = _lev_ctrl_softpedal;
2266 break;
2267 case 80:
2268 encodedcontroller = _lev_ctrl_genpurpose5;
2269 break;
2270 case 81:
2271 encodedcontroller = _lev_ctrl_genpurpose6;
2272 break;
2273 case 82:
2274 encodedcontroller = _lev_ctrl_genpurpose7;
2275 break;
2276 case 83:
2277 encodedcontroller = _lev_ctrl_genpurpose8;
2278 break;
2279 case 91:
2280 encodedcontroller = _lev_ctrl_effect1depth;
2281 break;
2282 case 92:
2283 encodedcontroller = _lev_ctrl_effect2depth;
2284 break;
2285 case 93:
2286 encodedcontroller = _lev_ctrl_effect3depth;
2287 break;
2288 case 94:
2289 encodedcontroller = _lev_ctrl_effect4depth;
2290 break;
2291 case 95:
2292 encodedcontroller = _lev_ctrl_effect5depth;
2293 break;
2294 default:
2295 throw gig::Exception("leverage controller number is not supported by the gig format");
2296 }
2297 break;
2298 default:
2299 throw gig::Exception("Unknown leverage controller type.");
2300 }
2301 return encodedcontroller;
2302 }
2303
2304 DimensionRegion::~DimensionRegion() {
2305 Instances--;
2306 if (!Instances) {
2307 // delete the velocity->volume tables
2308 VelocityTableMap::iterator iter;
2309 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2310 double* pTable = iter->second;
2311 if (pTable) delete[] pTable;
2312 }
2313 pVelocityTables->clear();
2314 delete pVelocityTables;
2315 pVelocityTables = NULL;
2316 }
2317 if (VelocityTable) delete[] VelocityTable;
2318 }
2319
2320 /**
2321 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2322 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2323 * and VelocityResponseCurveScaling) involved are taken into account to
2324 * calculate the amplitude factor. Use this method when a key was
2325 * triggered to get the volume with which the sample should be played
2326 * back.
2327 *
2328 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2329 * @returns amplitude factor (between 0.0 and 1.0)
2330 */
2331 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2332 return pVelocityAttenuationTable[MIDIKeyVelocity];
2333 }
2334
2335 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2336 return pVelocityReleaseTable[MIDIKeyVelocity];
2337 }
2338
2339 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2340 return pVelocityCutoffTable[MIDIKeyVelocity];
2341 }
2342
2343 /**
2344 * Updates the respective member variable and the lookup table / cache
2345 * that depends on this value.
2346 */
2347 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2348 pVelocityAttenuationTable =
2349 GetVelocityTable(
2350 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2351 );
2352 VelocityResponseCurve = curve;
2353 }
2354
2355 /**
2356 * Updates the respective member variable and the lookup table / cache
2357 * that depends on this value.
2358 */
2359 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2360 pVelocityAttenuationTable =
2361 GetVelocityTable(
2362 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2363 );
2364 VelocityResponseDepth = depth;
2365 }
2366
2367 /**
2368 * Updates the respective member variable and the lookup table / cache
2369 * that depends on this value.
2370 */
2371 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2372 pVelocityAttenuationTable =
2373 GetVelocityTable(
2374 VelocityResponseCurve, VelocityResponseDepth, scaling
2375 );
2376 VelocityResponseCurveScaling = scaling;
2377 }
2378
2379 /**
2380 * Updates the respective member variable and the lookup table / cache
2381 * that depends on this value.
2382 */
2383 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2384 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2385 ReleaseVelocityResponseCurve = curve;
2386 }
2387
2388 /**
2389 * Updates the respective member variable and the lookup table / cache
2390 * that depends on this value.
2391 */
2392 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2393 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2394 ReleaseVelocityResponseDepth = depth;
2395 }
2396
2397 /**
2398 * Updates the respective member variable and the lookup table / cache
2399 * that depends on this value.
2400 */
2401 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2402 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2403 VCFCutoffController = controller;
2404 }
2405
2406 /**
2407 * Updates the respective member variable and the lookup table / cache
2408 * that depends on this value.
2409 */
2410 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2411 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2412 VCFVelocityCurve = curve;
2413 }
2414
2415 /**
2416 * Updates the respective member variable and the lookup table / cache
2417 * that depends on this value.
2418 */
2419 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2420 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2421 VCFVelocityDynamicRange = range;
2422 }
2423
2424 /**
2425 * Updates the respective member variable and the lookup table / cache
2426 * that depends on this value.
2427 */
2428 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2429 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2430 VCFVelocityScale = scaling;
2431 }
2432
2433 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2434
2435 // line-segment approximations of the 15 velocity curves
2436
2437 // linear
2438 const int lin0[] = { 1, 1, 127, 127 };
2439 const int lin1[] = { 1, 21, 127, 127 };
2440 const int lin2[] = { 1, 45, 127, 127 };
2441 const int lin3[] = { 1, 74, 127, 127 };
2442 const int lin4[] = { 1, 127, 127, 127 };
2443
2444 // non-linear
2445 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2446 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2447 127, 127 };
2448 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2449 127, 127 };
2450 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2451 127, 127 };
2452 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2453
2454 // special
2455 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2456 113, 127, 127, 127 };
2457 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2458 118, 127, 127, 127 };
2459 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2460 85, 90, 91, 127, 127, 127 };
2461 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2462 117, 127, 127, 127 };
2463 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2464 127, 127 };
2465
2466 // this is only used by the VCF velocity curve
2467 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2468 91, 127, 127, 127 };
2469
2470 const int* const curves[] = { non0, non1, non2, non3, non4,
2471 lin0, lin1, lin2, lin3, lin4,
2472 spe0, spe1, spe2, spe3, spe4, spe5 };
2473
2474 double* const table = new double[128];
2475
2476 const int* curve = curves[curveType * 5 + depth];
2477 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2478
2479 table[0] = 0;
2480 for (int x = 1 ; x < 128 ; x++) {
2481
2482 if (x > curve[2]) curve += 2;
2483 double y = curve[1] + (x - curve[0]) *
2484 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2485 y = y / 127;
2486
2487 // Scale up for s > 20, down for s < 20. When
2488 // down-scaling, the curve still ends at 1.0.
2489 if (s < 20 && y >= 0.5)
2490 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2491 else
2492 y = y * (s / 20.0);
2493 if (y > 1) y = 1;
2494
2495 table[x] = y;
2496 }
2497 return table;
2498 }
2499
2500
2501 // *************** Region ***************
2502 // *
2503
2504 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2505 // Initialization
2506 Dimensions = 0;
2507 for (int i = 0; i < 256; i++) {
2508 pDimensionRegions[i] = NULL;
2509 }
2510 Layers = 1;
2511 File* file = (File*) GetParent()->GetParent();
2512 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2513
2514 // Actual Loading
2515
2516 if (!file->GetAutoLoad()) return;
2517
2518 LoadDimensionRegions(rgnList);
2519
2520 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2521 if (_3lnk) {
2522 DimensionRegions = _3lnk->ReadUint32();
2523 for (int i = 0; i < dimensionBits; i++) {
2524 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2525 uint8_t bits = _3lnk->ReadUint8();
2526 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2527 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2528 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2529 if (dimension == dimension_none) { // inactive dimension
2530 pDimensionDefinitions[i].dimension = dimension_none;
2531 pDimensionDefinitions[i].bits = 0;
2532 pDimensionDefinitions[i].zones = 0;
2533 pDimensionDefinitions[i].split_type = split_type_bit;
2534 pDimensionDefinitions[i].zone_size = 0;
2535 }
2536 else { // active dimension
2537 pDimensionDefinitions[i].dimension = dimension;
2538 pDimensionDefinitions[i].bits = bits;
2539 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2540 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2541 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2542 Dimensions++;
2543
2544 // if this is a layer dimension, remember the amount of layers
2545 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2546 }
2547 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2548 }
2549 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2550
2551 // if there's a velocity dimension and custom velocity zone splits are used,
2552 // update the VelocityTables in the dimension regions
2553 UpdateVelocityTable();
2554
2555 // jump to start of the wave pool indices (if not already there)
2556 if (file->pVersion && file->pVersion->major == 3)
2557 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2558 else
2559 _3lnk->SetPos(44);
2560
2561 // load sample references (if auto loading is enabled)
2562 if (file->GetAutoLoad()) {
2563 for (uint i = 0; i < DimensionRegions; i++) {
2564 uint32_t wavepoolindex = _3lnk->ReadUint32();
2565 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2566 }
2567 GetSample(); // load global region sample reference
2568 }
2569 } else {
2570 DimensionRegions = 0;
2571 for (int i = 0 ; i < 8 ; i++) {
2572 pDimensionDefinitions[i].dimension = dimension_none;
2573 pDimensionDefinitions[i].bits = 0;
2574 pDimensionDefinitions[i].zones = 0;
2575 }
2576 }
2577
2578 // make sure there is at least one dimension region
2579 if (!DimensionRegions) {
2580 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2581 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2582 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2583 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2584 DimensionRegions = 1;
2585 }
2586 }
2587
2588 /**
2589 * Apply Region settings and all its DimensionRegions to the respective
2590 * RIFF chunks. You have to call File::Save() to make changes persistent.
2591 *
2592 * Usually there is absolutely no need to call this method explicitly.
2593 * It will be called automatically when File::Save() was called.
2594 *
2595 * @throws gig::Exception if samples cannot be dereferenced
2596 */
2597 void Region::UpdateChunks() {
2598 // in the gig format we don't care about the Region's sample reference
2599 // but we still have to provide some existing one to not corrupt the
2600 // file, so to avoid the latter we simply always assign the sample of
2601 // the first dimension region of this region
2602 pSample = pDimensionRegions[0]->pSample;
2603
2604 // first update base class's chunks
2605 DLS::Region::UpdateChunks();
2606
2607 // update dimension region's chunks
2608 for (int i = 0; i < DimensionRegions; i++) {
2609 pDimensionRegions[i]->UpdateChunks();
2610 }
2611
2612 File* pFile = (File*) GetParent()->GetParent();
2613 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2614 const int iMaxDimensions = version3 ? 8 : 5;
2615 const int iMaxDimensionRegions = version3 ? 256 : 32;
2616
2617 // make sure '3lnk' chunk exists
2618 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2619 if (!_3lnk) {
2620 const int _3lnkChunkSize = version3 ? 1092 : 172;
2621 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2622 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2623
2624 // move 3prg to last position
2625 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2626 }
2627
2628 // update dimension definitions in '3lnk' chunk
2629 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2630 store32(&pData[0], DimensionRegions);
2631 int shift = 0;
2632 for (int i = 0; i < iMaxDimensions; i++) {
2633 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2634 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2635 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2636 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2637 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2638 // next 3 bytes unknown, always zero?
2639
2640 shift += pDimensionDefinitions[i].bits;
2641 }
2642
2643 // update wave pool table in '3lnk' chunk
2644 const int iWavePoolOffset = version3 ? 68 : 44;
2645 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2646 int iWaveIndex = -1;
2647 if (i < DimensionRegions) {
2648 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2649 File::SampleList::iterator iter = pFile->pSamples->begin();
2650 File::SampleList::iterator end = pFile->pSamples->end();
2651 for (int index = 0; iter != end; ++iter, ++index) {
2652 if (*iter == pDimensionRegions[i]->pSample) {
2653 iWaveIndex = index;
2654 break;
2655 }
2656 }
2657 }
2658 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2659 }
2660 }
2661
2662 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2663 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2664 if (_3prg) {
2665 int dimensionRegionNr = 0;
2666 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2667 while (_3ewl) {
2668 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2669 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2670 dimensionRegionNr++;
2671 }
2672 _3ewl = _3prg->GetNextSubList();
2673 }
2674 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2675 }
2676 }
2677
2678 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2679 // update KeyRange struct and make sure regions are in correct order
2680 DLS::Region::SetKeyRange(Low, High);
2681 // update Region key table for fast lookup
2682 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2683 }
2684
2685 void Region::UpdateVelocityTable() {
2686 // get velocity dimension's index
2687 int veldim = -1;
2688 for (int i = 0 ; i < Dimensions ; i++) {
2689 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2690 veldim = i;
2691 break;
2692 }
2693 }
2694 if (veldim == -1) return;
2695
2696 int step = 1;
2697 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2698 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2699 int end = step * pDimensionDefinitions[veldim].zones;
2700
2701 // loop through all dimension regions for all dimensions except the velocity dimension
2702 int dim[8] = { 0 };
2703 for (int i = 0 ; i < DimensionRegions ; i++) {
2704
2705 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2706 pDimensionRegions[i]->VelocityUpperLimit) {
2707 // create the velocity table
2708 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2709 if (!table) {
2710 table = new uint8_t[128];
2711 pDimensionRegions[i]->VelocityTable = table;
2712 }
2713 int tableidx = 0;
2714 int velocityZone = 0;
2715 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2716 for (int k = i ; k < end ; k += step) {
2717 DimensionRegion *d = pDimensionRegions[k];
2718 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2719 velocityZone++;
2720 }
2721 } else { // gig2
2722 for (int k = i ; k < end ; k += step) {
2723 DimensionRegion *d = pDimensionRegions[k];
2724 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2725 velocityZone++;
2726 }
2727 }
2728 } else {
2729 if (pDimensionRegions[i]->VelocityTable) {
2730 delete[] pDimensionRegions[i]->VelocityTable;
2731 pDimensionRegions[i]->VelocityTable = 0;
2732 }
2733 }
2734
2735 int j;
2736 int shift = 0;
2737 for (j = 0 ; j < Dimensions ; j++) {
2738 if (j == veldim) i += skipveldim; // skip velocity dimension
2739 else {
2740 dim[j]++;
2741 if (dim[j] < pDimensionDefinitions[j].zones) break;
2742 else {
2743 // skip unused dimension regions
2744 dim[j] = 0;
2745 i += ((1 << pDimensionDefinitions[j].bits) -
2746 pDimensionDefinitions[j].zones) << shift;
2747 }
2748 }
2749 shift += pDimensionDefinitions[j].bits;
2750 }
2751 if (j == Dimensions) break;
2752 }
2753 }
2754
2755 /** @brief Einstein would have dreamed of it - create a new dimension.
2756 *
2757 * Creates a new dimension with the dimension definition given by
2758 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2759 * There is a hard limit of dimensions and total amount of "bits" all
2760 * dimensions can have. This limit is dependant to what gig file format
2761 * version this file refers to. The gig v2 (and lower) format has a
2762 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2763 * format has a limit of 8.
2764 *
2765 * @param pDimDef - defintion of the new dimension
2766 * @throws gig::Exception if dimension of the same type exists already
2767 * @throws gig::Exception if amount of dimensions or total amount of
2768 * dimension bits limit is violated
2769 */
2770 void Region::AddDimension(dimension_def_t* pDimDef) {
2771 // check if max. amount of dimensions reached
2772 File* file = (File*) GetParent()->GetParent();
2773 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2774 if (Dimensions >= iMaxDimensions)
2775 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2776 // check if max. amount of dimension bits reached
2777 int iCurrentBits = 0;
2778 for (int i = 0; i < Dimensions; i++)
2779 iCurrentBits += pDimensionDefinitions[i].bits;
2780 if (iCurrentBits >= iMaxDimensions)
2781 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2782 const int iNewBits = iCurrentBits + pDimDef->bits;
2783 if (iNewBits > iMaxDimensions)
2784 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2785 // check if there's already a dimensions of the same type
2786 for (int i = 0; i < Dimensions; i++)
2787 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2788 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2789
2790 // pos is where the new dimension should be placed, normally
2791 // last in list, except for the samplechannel dimension which
2792 // has to be first in list
2793 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2794 int bitpos = 0;
2795 for (int i = 0 ; i < pos ; i++)
2796 bitpos += pDimensionDefinitions[i].bits;
2797
2798 // make room for the new dimension
2799 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2800 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2801 for (int j = Dimensions ; j > pos ; j--) {
2802 pDimensionRegions[i]->DimensionUpperLimits[j] =
2803 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2804 }
2805 }
2806
2807 // assign definition of new dimension
2808 pDimensionDefinitions[pos] = *pDimDef;
2809
2810 // auto correct certain dimension definition fields (where possible)
2811 pDimensionDefinitions[pos].split_type =
2812 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2813 pDimensionDefinitions[pos].zone_size =
2814 __resolveZoneSize(pDimensionDefinitions[pos]);
2815
2816 // create new dimension region(s) for this new dimension, and make
2817 // sure that the dimension regions are placed correctly in both the
2818 // RIFF list and the pDimensionRegions array
2819 RIFF::Chunk* moveTo = NULL;
2820 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2821 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2822 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2823 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2824 }
2825 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2826 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2827 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2828 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2829 // create a new dimension region and copy all parameter values from
2830 // an existing dimension region
2831 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2832 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2833
2834 DimensionRegions++;
2835 }
2836 }
2837 moveTo = pDimensionRegions[i]->pParentList;
2838 }
2839
2840 // initialize the upper limits for this dimension
2841 int mask = (1 << bitpos) - 1;
2842 for (int z = 0 ; z < pDimDef->zones ; z++) {
2843 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2844 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2845 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2846 (z << bitpos) |
2847 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2848 }
2849 }
2850
2851 Dimensions++;
2852
2853 // if this is a layer dimension, update 'Layers' attribute
2854 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2855
2856 UpdateVelocityTable();
2857 }
2858
2859 /** @brief Delete an existing dimension.
2860 *
2861 * Deletes the dimension given by \a pDimDef and deletes all respective
2862 * dimension regions, that is all dimension regions where the dimension's
2863 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2864 * for example this would delete all dimension regions for the case(s)
2865 * where the sustain pedal is pressed down.
2866 *
2867 * @param pDimDef - dimension to delete
2868 * @throws gig::Exception if given dimension cannot be found
2869 */
2870 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2871 // get dimension's index
2872 int iDimensionNr = -1;
2873 for (int i = 0; i < Dimensions; i++) {
2874 if (&pDimensionDefinitions[i] == pDimDef) {
2875 iDimensionNr = i;
2876 break;
2877 }
2878 }
2879 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2880
2881 // get amount of bits below the dimension to delete
2882 int iLowerBits = 0;
2883 for (int i = 0; i < iDimensionNr; i++)
2884 iLowerBits += pDimensionDefinitions[i].bits;
2885
2886 // get amount ot bits above the dimension to delete
2887 int iUpperBits = 0;
2888 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2889 iUpperBits += pDimensionDefinitions[i].bits;
2890
2891 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2892
2893 // delete dimension regions which belong to the given dimension
2894 // (that is where the dimension's bit > 0)
2895 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2896 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2897 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2898 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2899 iObsoleteBit << iLowerBits |
2900 iLowerBit;
2901
2902 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2903 delete pDimensionRegions[iToDelete];
2904 pDimensionRegions[iToDelete] = NULL;
2905 DimensionRegions--;
2906 }
2907 }
2908 }
2909
2910 // defrag pDimensionRegions array
2911 // (that is remove the NULL spaces within the pDimensionRegions array)
2912 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2913 if (!pDimensionRegions[iTo]) {
2914 if (iFrom <= iTo) iFrom = iTo + 1;
2915 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2916 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2917 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2918 pDimensionRegions[iFrom] = NULL;
2919 }
2920 }
2921 }
2922
2923 // remove the this dimension from the upper limits arrays
2924 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2925 DimensionRegion* d = pDimensionRegions[j];
2926 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2927 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2928 }
2929 d->DimensionUpperLimits[Dimensions - 1] = 127;
2930 }
2931
2932 // 'remove' dimension definition
2933 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2934 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2935 }
2936 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2937 pDimensionDefinitions[Dimensions - 1].bits = 0;
2938 pDimensionDefinitions[Dimensions - 1].zones = 0;
2939
2940 Dimensions--;
2941
2942 // if this was a layer dimension, update 'Layers' attribute
2943 if (pDimDef->dimension == dimension_layer) Layers = 1;
2944 }
2945
2946 Region::~Region() {
2947 for (int i = 0; i < 256; i++) {
2948 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2949 }
2950 }
2951
2952 /**
2953 * Use this method in your audio engine to get the appropriate dimension
2954 * region with it's articulation data for the current situation. Just
2955 * call the method with the current MIDI controller values and you'll get
2956 * the DimensionRegion with the appropriate articulation data for the
2957 * current situation (for this Region of course only). To do that you'll
2958 * first have to look which dimensions with which controllers and in
2959 * which order are defined for this Region when you load the .gig file.
2960 * Special cases are e.g. layer or channel dimensions where you just put
2961 * in the index numbers instead of a MIDI controller value (means 0 for
2962 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2963 * etc.).
2964 *
2965 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2966 * @returns adress to the DimensionRegion for the given situation
2967 * @see pDimensionDefinitions
2968 * @see Dimensions
2969 */
2970 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2971 uint8_t bits;
2972 int veldim = -1;
2973 int velbitpos;
2974 int bitpos = 0;
2975 int dimregidx = 0;
2976 for (uint i = 0; i < Dimensions; i++) {
2977 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2978 // the velocity dimension must be handled after the other dimensions
2979 veldim = i;
2980 velbitpos = bitpos;
2981 } else {
2982 switch (pDimensionDefinitions[i].split_type) {
2983 case split_type_normal:
2984 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2985 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2986 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2987 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2988 }
2989 } else {
2990 // gig2: evenly sized zones
2991 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2992 }
2993 break;
2994 case split_type_bit: // the value is already the sought dimension bit number
2995 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2996 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2997 break;
2998 }
2999 dimregidx |= bits << bitpos;
3000 }
3001 bitpos += pDimensionDefinitions[i].bits;
3002 }
3003 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3004 if (veldim != -1) {
3005 // (dimreg is now the dimension region for the lowest velocity)
3006 if (dimreg->VelocityTable) // custom defined zone ranges
3007 bits = dimreg->VelocityTable[DimValues[veldim]];
3008 else // normal split type
3009 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3010
3011 dimregidx |= bits << velbitpos;
3012 dimreg = pDimensionRegions[dimregidx];
3013 }
3014 return dimreg;
3015 }
3016
3017 /**
3018 * Returns the appropriate DimensionRegion for the given dimension bit
3019 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3020 * instead of calling this method directly!
3021 *
3022 * @param DimBits Bit numbers for dimension 0 to 7
3023 * @returns adress to the DimensionRegion for the given dimension
3024 * bit numbers
3025 * @see GetDimensionRegionByValue()
3026 */
3027 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3028 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3029 << pDimensionDefinitions[5].bits | DimBits[5])
3030 << pDimensionDefinitions[4].bits | DimBits[4])
3031 << pDimensionDefinitions[3].bits | DimBits[3])
3032 << pDimensionDefinitions[2].bits | DimBits[2])
3033 << pDimensionDefinitions[1].bits | DimBits[1])
3034 << pDimensionDefinitions[0].bits | DimBits[0]];
3035 }
3036
3037 /**
3038 * Returns pointer address to the Sample referenced with this region.
3039 * This is the global Sample for the entire Region (not sure if this is
3040 * actually used by the Gigasampler engine - I would only use the Sample
3041 * referenced by the appropriate DimensionRegion instead of this sample).
3042 *
3043 * @returns address to Sample or NULL if there is no reference to a
3044 * sample saved in the .gig file
3045 */
3046 Sample* Region::GetSample() {
3047 if (pSample) return static_cast<gig::Sample*>(pSample);
3048 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3049 }
3050
3051 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3052 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3053 File* file = (File*) GetParent()->GetParent();
3054 if (!file->pWavePoolTable) return NULL;
3055 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3056 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3057 Sample* sample = file->GetFirstSample(pProgress);
3058 while (sample) {
3059 if (sample->ulWavePoolOffset == soughtoffset &&
3060 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3061 sample = file->GetNextSample();
3062 }
3063 return NULL;
3064 }
3065
3066 /**
3067 * Make a (semi) deep copy of the Region object given by @a orig
3068 * and assign it to this object.
3069 *
3070 * Note that all sample pointers referenced by @a orig are simply copied as
3071 * memory address. Thus the respective samples are shared, not duplicated!
3072 *
3073 * @param orig - original Region object to be copied from
3074 */
3075 void Region::CopyAssign(const Region* orig) {
3076 CopyAssign(orig, NULL);
3077 }
3078
3079 /**
3080 * Make a (semi) deep copy of the Region object given by @a orig and
3081 * assign it to this object
3082 *
3083 * @param mSamples - crosslink map between the foreign file's samples and
3084 * this file's samples
3085 */
3086 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3087 // handle base classes
3088 DLS::Region::CopyAssign(orig);
3089
3090 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3091 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3092 }
3093
3094 // handle own member variables
3095 for (int i = Dimensions - 1; i >= 0; --i) {
3096 DeleteDimension(&pDimensionDefinitions[i]);
3097 }
3098 Layers = 0; // just to be sure
3099 for (int i = 0; i < orig->Dimensions; i++) {
3100 // we need to copy the dim definition here, to avoid the compiler
3101 // complaining about const-ness issue
3102 dimension_def_t def = orig->pDimensionDefinitions[i];
3103 AddDimension(&def);
3104 }
3105 for (int i = 0; i < 256; i++) {
3106 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3107 pDimensionRegions[i]->CopyAssign(
3108 orig->pDimensionRegions[i],
3109 mSamples
3110 );
3111 }
3112 }
3113 Layers = orig->Layers;
3114 }
3115
3116
3117 // *************** MidiRule ***************
3118 // *
3119
3120 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3121 _3ewg->SetPos(36);
3122 Triggers = _3ewg->ReadUint8();
3123 _3ewg->SetPos(40);
3124 ControllerNumber = _3ewg->ReadUint8();
3125 _3ewg->SetPos(46);
3126 for (int i = 0 ; i < Triggers ; i++) {
3127 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3128 pTriggers[i].Descending = _3ewg->ReadUint8();
3129 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3130 pTriggers[i].Key = _3ewg->ReadUint8();
3131 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3132 pTriggers[i].Velocity = _3ewg->ReadUint8();
3133 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3134 _3ewg->ReadUint8();
3135 }
3136 }
3137
3138 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3139 ControllerNumber(0),
3140 Triggers(0) {
3141 }
3142
3143 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3144 pData[32] = 4;
3145 pData[33] = 16;
3146 pData[36] = Triggers;
3147 pData[40] = ControllerNumber;
3148 for (int i = 0 ; i < Triggers ; i++) {
3149 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3150 pData[47 + i * 8] = pTriggers[i].Descending;
3151 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3152 pData[49 + i * 8] = pTriggers[i].Key;
3153 pData[50 + i * 8] = pTriggers[i].NoteOff;
3154 pData[51 + i * 8] = pTriggers[i].Velocity;
3155 pData[52 + i * 8] = pTriggers[i].OverridePedal;
3156 }
3157 }
3158
3159 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3160 _3ewg->SetPos(36);
3161 LegatoSamples = _3ewg->ReadUint8(); // always 12
3162 _3ewg->SetPos(40);
3163 BypassUseController = _3ewg->ReadUint8();
3164 BypassKey = _3ewg->ReadUint8();
3165 BypassController = _3ewg->ReadUint8();
3166 ThresholdTime = _3ewg->ReadUint16();
3167 _3ewg->ReadInt16();
3168 ReleaseTime = _3ewg->ReadUint16();
3169 _3ewg->ReadInt16();
3170 KeyRange.low = _3ewg->ReadUint8();
3171 KeyRange.high = _3ewg->ReadUint8();
3172 _3ewg->SetPos(64);
3173 ReleaseTriggerKey = _3ewg->ReadUint8();
3174 AltSustain1Key = _3ewg->ReadUint8();
3175 AltSustain2Key = _3ewg->ReadUint8();
3176 }
3177
3178 MidiRuleLegato::MidiRuleLegato() :
3179 LegatoSamples(12),
3180 BypassUseController(false),
3181 BypassKey(0),
3182 BypassController(1),
3183 ThresholdTime(20),
3184 ReleaseTime(20),
3185 ReleaseTriggerKey(0),
3186 AltSustain1Key(0),
3187 AltSustain2Key(0)
3188 {
3189 KeyRange.low = KeyRange.high = 0;
3190 }
3191
3192 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3193 pData[32] = 0;
3194 pData[33] = 16;
3195 pData[36] = LegatoSamples;
3196 pData[40] = BypassUseController;
3197 pData[41] = BypassKey;
3198 pData[42] = BypassController;
3199 store16(&pData[43], ThresholdTime);
3200 store16(&pData[47], ReleaseTime);
3201 pData[51] = KeyRange.low;
3202 pData[52] = KeyRange.high;
3203 pData[64] = ReleaseTriggerKey;
3204 pData[65] = AltSustain1Key;
3205 pData[66] = AltSustain2Key;
3206 }
3207
3208 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3209 _3ewg->SetPos(36);
3210 Articulations = _3ewg->ReadUint8();
3211 int flags = _3ewg->ReadUint8();
3212 Polyphonic = flags & 8;
3213 Chained = flags & 4;
3214 Selector = (flags & 2) ? selector_controller :
3215 (flags & 1) ? selector_key_switch : selector_none;
3216 Patterns = _3ewg->ReadUint8();
3217 _3ewg->ReadUint8(); // chosen row
3218 _3ewg->ReadUint8(); // unknown
3219 _3ewg->ReadUint8(); // unknown
3220 _3ewg->ReadUint8(); // unknown
3221 KeySwitchRange.low = _3ewg->ReadUint8();
3222 KeySwitchRange.high = _3ewg->ReadUint8();
3223 Controller = _3ewg->ReadUint8();
3224 PlayRange.low = _3ewg->ReadUint8();
3225 PlayRange.high = _3ewg->ReadUint8();
3226
3227 int n = std::min(int(Articulations), 32);
3228 for (int i = 0 ; i < n ; i++) {
3229 _3ewg->ReadString(pArticulations[i], 32);
3230 }
3231 _3ewg->SetPos(1072);
3232 n = std::min(int(Patterns), 32);
3233 for (int i = 0 ; i < n ; i++) {
3234 _3ewg->ReadString(pPatterns[i].Name, 16);
3235 pPatterns[i].Size = _3ewg->ReadUint8();
3236 _3ewg->Read(&pPatterns[i][0], 1, 32);
3237 }
3238 }
3239
3240 MidiRuleAlternator::MidiRuleAlternator() :
3241 Articulations(0),
3242 Patterns(0),
3243 Selector(selector_none),
3244 Controller(0),
3245 Polyphonic(false),
3246 Chained(false)
3247 {
3248 PlayRange.low = PlayRange.high = 0;
3249 KeySwitchRange.low = KeySwitchRange.high = 0;
3250 }
3251
3252 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3253 pData[32] = 3;
3254 pData[33] = 16;
3255 pData[36] = Articulations;
3256 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3257 (Selector == selector_controller ? 2 :
3258 (Selector == selector_key_switch ? 1 : 0));
3259 pData[38] = Patterns;
3260
3261 pData[43] = KeySwitchRange.low;
3262 pData[44] = KeySwitchRange.high;
3263 pData[45] = Controller;
3264 pData[46] = PlayRange.low;
3265 pData[47] = PlayRange.high;
3266
3267 char* str = reinterpret_cast<char*>(pData);
3268 int pos = 48;
3269 int n = std::min(int(Articulations), 32);
3270 for (int i = 0 ; i < n ; i++, pos += 32) {
3271 strncpy(&str[pos], pArticulations[i].c_str(), 32);
3272 }
3273
3274 pos = 1072;
3275 n = std::min(int(Patterns), 32);
3276 for (int i = 0 ; i < n ; i++, pos += 49) {
3277 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3278 pData[pos + 16] = pPatterns[i].Size;
3279 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3280 }
3281 }
3282
3283 // *************** Instrument ***************
3284 // *
3285
3286 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3287 static const DLS::Info::string_length_t fixedStringLengths[] = {
3288 { CHUNK_ID_INAM, 64 },
3289 { CHUNK_ID_ISFT, 12 },
3290 { 0, 0 }
3291 };
3292 pInfo->SetFixedStringLengths(fixedStringLengths);
3293
3294 // Initialization
3295 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3296 EffectSend = 0;
3297 Attenuation = 0;
3298 FineTune = 0;
3299 PitchbendRange = 0;
3300 PianoReleaseMode = false;
3301 DimensionKeyRange.low = 0;
3302 DimensionKeyRange.high = 0;
3303 pMidiRules = new MidiRule*[3];
3304 pMidiRules[0] = NULL;
3305
3306 // Loading
3307 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3308 if (lart) {
3309 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3310 if (_3ewg) {
3311 EffectSend = _3ewg->ReadUint16();
3312 Attenuation = _3ewg->ReadInt32();
3313 FineTune = _3ewg->ReadInt16();
3314 PitchbendRange = _3ewg->ReadInt16();
3315 uint8_t dimkeystart = _3ewg->ReadUint8();
3316 PianoReleaseMode = dimkeystart & 0x01;
3317 DimensionKeyRange.low = dimkeystart >> 1;
3318 DimensionKeyRange.high = _3ewg->ReadUint8();
3319
3320 if (_3ewg->GetSize() > 32) {
3321 // read MIDI rules
3322 int i = 0;
3323 _3ewg->SetPos(32);
3324 uint8_t id1 = _3ewg->ReadUint8();
3325 uint8_t id2 = _3ewg->ReadUint8();
3326
3327 if (id2 == 16) {
3328 if (id1 == 4) {
3329 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3330 } else if (id1 == 0) {
3331 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3332 } else if (id1 == 3) {
3333 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3334 } else {
3335 pMidiRules[i++] = new MidiRuleUnknown;
3336 }
3337 }
3338 else if (id1 != 0 || id2 != 0) {
3339 pMidiRules[i++] = new MidiRuleUnknown;
3340 }
3341 //TODO: all the other types of rules
3342
3343 pMidiRules[i] = NULL;
3344 }
3345 }
3346 }
3347
3348 if (pFile->GetAutoLoad()) {
3349 if (!pRegions) pRegions = new RegionList;
3350 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3351 if (lrgn) {
3352 RIFF::List* rgn = lrgn->GetFirstSubList();
3353 while (rgn) {
3354 if (rgn->GetListType() == LIST_TYPE_RGN) {
3355 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3356 pRegions->push_back(new Region(this, rgn));
3357 }
3358 rgn = lrgn->GetNextSubList();
3359 }
3360 // Creating Region Key Table for fast lookup
3361 UpdateRegionKeyTable();
3362 }
3363 }
3364
3365 __notify_progress(pProgress, 1.0f); // notify done
3366 }
3367
3368 void Instrument::UpdateRegionKeyTable() {
3369 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3370 RegionList::iterator iter = pRegions->begin();
3371 RegionList::iterator end = pRegions->end();
3372 for (; iter != end; ++iter) {
3373 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3374 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3375 RegionKeyTable[iKey] = pRegion;
3376 }
3377 }
3378 }
3379
3380 Instrument::~Instrument() {
3381 for (int i = 0 ; pMidiRules[i] ; i++) {
3382 delete pMidiRules[i];
3383 }
3384 delete[] pMidiRules;
3385 }
3386
3387 /**
3388 * Apply Instrument with all its Regions to the respective RIFF chunks.
3389 * You have to call File::Save() to make changes persistent.
3390 *
3391 * Usually there is absolutely no need to call this method explicitly.
3392 * It will be called automatically when File::Save() was called.
3393 *
3394 * @throws gig::Exception if samples cannot be dereferenced
3395 */
3396 void Instrument::UpdateChunks() {
3397 // first update base classes' chunks
3398 DLS::Instrument::UpdateChunks();
3399
3400 // update Regions' chunks
3401 {
3402 RegionList::iterator iter = pRegions->begin();
3403 RegionList::iterator end = pRegions->end();
3404 for (; iter != end; ++iter)
3405 (*iter)->UpdateChunks();
3406 }
3407
3408 // make sure 'lart' RIFF list chunk exists
3409 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3410 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3411 // make sure '3ewg' RIFF chunk exists
3412 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3413 if (!_3ewg) {
3414 File* pFile = (File*) GetParent();
3415
3416 // 3ewg is bigger in gig3, as it includes the iMIDI rules
3417 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3418 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3419 memset(_3ewg->LoadChunkData(), 0, size);
3420 }
3421 // update '3ewg' RIFF chunk
3422 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3423 store16(&pData[0], EffectSend);
3424 store32(&pData[2], Attenuation);
3425 store16(&pData[6], FineTune);
3426 store16(&pData[8], PitchbendRange);
3427 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3428 DimensionKeyRange.low << 1;
3429 pData[10] = dimkeystart;
3430 pData[11] = DimensionKeyRange.high;
3431
3432 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3433 pData[32] = 0;
3434 pData[33] = 0;
3435 } else {
3436 for (int i = 0 ; pMidiRules[i] ; i++) {
3437 pMidiRules[i]->UpdateChunks(pData);
3438 }
3439 }
3440 }
3441
3442 /**
3443 * Returns the appropriate Region for a triggered note.
3444 *
3445 * @param Key MIDI Key number of triggered note / key (0 - 127)
3446 * @returns pointer adress to the appropriate Region or NULL if there
3447 * there is no Region defined for the given \a Key
3448 */
3449 Region* Instrument::GetRegion(unsigned int Key) {
3450 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3451 return RegionKeyTable[Key];
3452
3453 /*for (int i = 0; i < Regions; i++) {
3454 if (Key <= pRegions[i]->KeyRange.high &&
3455 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3456 }
3457 return NULL;*/
3458 }
3459
3460 /**
3461 * Returns the first Region of the instrument. You have to call this
3462 * method once before you use GetNextRegion().
3463 *
3464 * @returns pointer address to first region or NULL if there is none
3465 * @see GetNextRegion()
3466 */
3467 Region* Instrument::GetFirstRegion() {
3468 if (!pRegions) return NULL;
3469 RegionsIterator = pRegions->begin();
3470 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3471 }
3472
3473 /**
3474 * Returns the next Region of the instrument. You have to call
3475 * GetFirstRegion() once before you can use this method. By calling this
3476 * method multiple times it iterates through the available Regions.
3477 *
3478 * @returns pointer address to the next region or NULL if end reached
3479 * @see GetFirstRegion()
3480 */
3481 Region* Instrument::GetNextRegion() {
3482 if (!pRegions) return NULL;
3483 RegionsIterator++;
3484 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3485 }
3486
3487 Region* Instrument::AddRegion() {
3488 // create new Region object (and its RIFF chunks)
3489 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3490 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3491 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3492 Region* pNewRegion = new Region(this, rgn);
3493 pRegions->push_back(pNewRegion);
3494 Regions = pRegions->size();
3495 // update Region key table for fast lookup
3496 UpdateRegionKeyTable();
3497 // done
3498 return pNewRegion;
3499 }
3500
3501 void Instrument::DeleteRegion(Region* pRegion) {
3502 if (!pRegions) return;
3503 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3504 // update Region key table for fast lookup
3505 UpdateRegionKeyTable();
3506 }
3507
3508 /**
3509 * Returns a MIDI rule of the instrument.
3510 *
3511 * The list of MIDI rules, at least in gig v3, always contains at
3512 * most two rules. The second rule can only be the DEF filter
3513 * (which currently isn't supported by libgig).
3514 *
3515 * @param i - MIDI rule number
3516 * @returns pointer address to MIDI rule number i or NULL if there is none
3517 */
3518 MidiRule* Instrument::GetMidiRule(int i) {
3519 return pMidiRules[i];
3520 }
3521
3522 /**
3523 * Adds the "controller trigger" MIDI rule to the instrument.
3524 *
3525 * @returns the new MIDI rule
3526 */
3527 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3528 delete pMidiRules[0];
3529 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3530 pMidiRules[0] = r;
3531 pMidiRules[1] = 0;
3532 return r;
3533 }
3534
3535 /**
3536 * Adds the legato MIDI rule to the instrument.
3537 *
3538 * @returns the new MIDI rule
3539 */
3540 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3541 delete pMidiRules[0];
3542 MidiRuleLegato* r = new MidiRuleLegato;
3543 pMidiRules[0] = r;
3544 pMidiRules[1] = 0;
3545 return r;
3546 }
3547
3548 /**
3549 * Adds the alternator MIDI rule to the instrument.
3550 *
3551 * @returns the new MIDI rule
3552 */
3553 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3554 delete pMidiRules[0];
3555 MidiRuleAlternator* r = new MidiRuleAlternator;
3556 pMidiRules[0] = r;
3557 pMidiRules[1] = 0;
3558 return r;
3559 }
3560
3561 /**
3562 * Deletes a MIDI rule from the instrument.
3563 *
3564 * @param i - MIDI rule number
3565 */
3566 void Instrument::DeleteMidiRule(int i) {
3567 delete pMidiRules[i];
3568 pMidiRules[i] = 0;
3569 }
3570
3571 /**
3572 * Make a (semi) deep copy of the Instrument object given by @a orig
3573 * and assign it to this object.
3574 *
3575 * Note that all sample pointers referenced by @a orig are simply copied as
3576 * memory address. Thus the respective samples are shared, not duplicated!
3577 *
3578 * @param orig - original Instrument object to be copied from
3579 */
3580 void Instrument::CopyAssign(const Instrument* orig) {
3581 CopyAssign(orig, NULL);
3582 }
3583
3584 /**
3585 * Make a (semi) deep copy of the Instrument object given by @a orig
3586 * and assign it to this object.
3587 *
3588 * @param orig - original Instrument object to be copied from
3589 * @param mSamples - crosslink map between the foreign file's samples and
3590 * this file's samples
3591 */
3592 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
3593 // handle base class
3594 // (without copying DLS region stuff)
3595 DLS::Instrument::CopyAssignCore(orig);
3596
3597 // handle own member variables
3598 Attenuation = orig->Attenuation;
3599 EffectSend = orig->EffectSend;
3600 FineTune = orig->FineTune;
3601 PitchbendRange = orig->PitchbendRange;
3602 PianoReleaseMode = orig->PianoReleaseMode;
3603 DimensionKeyRange = orig->DimensionKeyRange;
3604
3605 // free old midi rules
3606 for (int i = 0 ; pMidiRules[i] ; i++) {
3607 delete pMidiRules[i];
3608 }
3609 //TODO: MIDI rule copying
3610 pMidiRules[0] = NULL;
3611
3612 // delete all old regions
3613 while (Regions) DeleteRegion(GetFirstRegion());
3614 // create new regions and copy them from original
3615 {
3616 RegionList::const_iterator it = orig->pRegions->begin();
3617 for (int i = 0; i < orig->Regions; ++i, ++it) {
3618 Region* dstRgn = AddRegion();
3619 //NOTE: Region does semi-deep copy !
3620 dstRgn->CopyAssign(
3621 static_cast<gig::Region*>(*it),
3622 mSamples
3623 );
3624 }
3625 }
3626
3627 UpdateRegionKeyTable();
3628 }
3629
3630
3631 // *************** Group ***************
3632 // *
3633
3634 /** @brief Constructor.
3635 *
3636 * @param file - pointer to the gig::File object
3637 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3638 * NULL if this is a new Group
3639 */
3640 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3641 pFile = file;
3642 pNameChunk = ck3gnm;
3643 ::LoadString(pNameChunk, Name);
3644 }
3645
3646 Group::~Group() {
3647 // remove the chunk associated with this group (if any)
3648 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3649 }
3650
3651 /** @brief Update chunks with current group settings.
3652 *
3653 * Apply current Group field values to the respective chunks. You have
3654 * to call File::Save() to make changes persistent.
3655 *
3656 * Usually there is absolutely no need to call this method explicitly.
3657 * It will be called automatically when File::Save() was called.
3658 */
3659 void Group::UpdateChunks() {
3660 // make sure <3gri> and <3gnl> list chunks exist
3661 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3662 if (!_3gri) {
3663 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3664 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3665 }
3666 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3667 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3668
3669 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3670 // v3 has a fixed list of 128 strings, find a free one
3671 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3672 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3673 pNameChunk = ck;
3674 break;
3675 }
3676 }
3677 }
3678
3679 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3680 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3681 }
3682
3683 /**
3684 * Returns the first Sample of this Group. You have to call this method
3685 * once before you use GetNextSample().
3686 *
3687 * <b>Notice:</b> this method might block for a long time, in case the
3688 * samples of this .gig file were not scanned yet
3689 *
3690 * @returns pointer address to first Sample or NULL if there is none
3691 * applied to this Group
3692 * @see GetNextSample()
3693 */
3694 Sample* Group::GetFirstSample() {
3695 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3696 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3697 if (pSample->GetGroup() == this) return pSample;
3698 }
3699 return NULL;
3700 }
3701
3702 /**
3703 * Returns the next Sample of the Group. You have to call
3704 * GetFirstSample() once before you can use this method. By calling this
3705 * method multiple times it iterates through the Samples assigned to
3706 * this Group.
3707 *
3708 * @returns pointer address to the next Sample of this Group or NULL if
3709 * end reached
3710 * @see GetFirstSample()
3711 */
3712 Sample* Group::GetNextSample() {
3713 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3714 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3715 if (pSample->GetGroup() == this) return pSample;
3716 }
3717 return NULL;
3718 }
3719
3720 /**
3721 * Move Sample given by \a pSample from another Group to this Group.
3722 */
3723 void Group::AddSample(Sample* pSample) {
3724 pSample->pGroup = this;
3725 }
3726
3727 /**
3728 * Move all members of this group to another group (preferably the 1st
3729 * one except this). This method is called explicitly by
3730 * File::DeleteGroup() thus when a Group was deleted. This code was
3731 * intentionally not placed in the destructor!
3732 */
3733 void Group::MoveAll() {
3734 // get "that" other group first
3735 Group* pOtherGroup = NULL;
3736 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3737 if (pOtherGroup != this) break;
3738 }
3739 if (!pOtherGroup) throw Exception(
3740 "Could not move samples to another group, since there is no "
3741 "other Group. This is a bug, report it!"
3742 );
3743 // now move all samples of this group to the other group
3744 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3745 pOtherGroup->AddSample(pSample);
3746 }
3747 }
3748
3749
3750
3751 // *************** File ***************
3752 // *
3753
3754 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3755 const DLS::version_t File::VERSION_2 = {
3756 0, 2, 19980628 & 0xffff, 19980628 >> 16
3757 };
3758
3759 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3760 const DLS::version_t File::VERSION_3 = {
3761 0, 3, 20030331 & 0xffff, 20030331 >> 16
3762 };
3763
3764 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3765 { CHUNK_ID_IARL, 256 },
3766 { CHUNK_ID_IART, 128 },
3767 { CHUNK_ID_ICMS, 128 },
3768 { CHUNK_ID_ICMT, 1024 },
3769 { CHUNK_ID_ICOP, 128 },
3770 { CHUNK_ID_ICRD, 128 },
3771 { CHUNK_ID_IENG, 128 },
3772 { CHUNK_ID_IGNR, 128 },
3773 { CHUNK_ID_IKEY, 128 },
3774 { CHUNK_ID_IMED, 128 },
3775 { CHUNK_ID_INAM, 128 },
3776 { CHUNK_ID_IPRD, 128 },
3777 { CHUNK_ID_ISBJ, 128 },
3778 { CHUNK_ID_ISFT, 128 },
3779 { CHUNK_ID_ISRC, 128 },
3780 { CHUNK_ID_ISRF, 128 },
3781 { CHUNK_ID_ITCH, 128 },
3782 { 0, 0 }
3783 };
3784
3785 File::File() : DLS::File() {
3786 bAutoLoad = true;
3787 *pVersion = VERSION_3;
3788 pGroups = NULL;
3789 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3790 pInfo->ArchivalLocation = String(256, ' ');
3791
3792 // add some mandatory chunks to get the file chunks in right
3793 // order (INFO chunk will be moved to first position later)
3794 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3795 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3796 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3797
3798 GenerateDLSID();
3799 }
3800
3801 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3802 bAutoLoad = true;
3803 pGroups = NULL;
3804 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3805 }
3806
3807 File::~File() {
3808 if (pGroups) {
3809 std::list<Group*>::iterator iter = pGroups->begin();
3810 std::list<Group*>::iterator end = pGroups->end();
3811 while (iter != end) {
3812 delete *iter;
3813 ++iter;
3814 }
3815 delete pGroups;
3816 }
3817 }
3818
3819 Sample* File::GetFirstSample(progress_t* pProgress) {
3820 if (!pSamples) LoadSamples(pProgress);
3821 if (!pSamples) return NULL;
3822 SamplesIterator = pSamples->begin();
3823 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3824 }
3825
3826 Sample* File::GetNextSample() {
3827 if (!pSamples) return NULL;
3828 SamplesIterator++;
3829 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3830 }
3831
3832 /**
3833 * Returns Sample object of @a index.
3834 *
3835 * @returns sample object or NULL if index is out of bounds
3836 */
3837 Sample* File::GetSample(uint index) {
3838 if (!pSamples) LoadSamples();
3839 if (!pSamples) return NULL;
3840 DLS::File::SampleList::iterator it = pSamples->begin();
3841 for (int i = 0; i < index; ++i) {
3842 ++it;
3843 if (it == pSamples->end()) return NULL;
3844 }
3845 if (it == pSamples->end()) return NULL;
3846 return static_cast<gig::Sample*>( *it );
3847 }
3848
3849 /** @brief Add a new sample.
3850 *
3851 * This will create a new Sample object for the gig file. You have to
3852 * call Save() to make this persistent to the file.
3853 *
3854 * @returns pointer to new Sample object
3855 */
3856 Sample* File::AddSample() {
3857 if (!pSamples) LoadSamples();
3858 __ensureMandatoryChunksExist();
3859 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3860 // create new Sample object and its respective 'wave' list chunk
3861 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3862 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3863
3864 // add mandatory chunks to get the chunks in right order
3865 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3866 wave->AddSubList(LIST_TYPE_INFO);
3867
3868 pSamples->push_back(pSample);
3869 return pSample;
3870 }
3871
3872 /** @brief Delete a sample.
3873 *
3874 * This will delete the given Sample object from the gig file. Any
3875 * references to this sample from Regions and DimensionRegions will be
3876 * removed. You have to call Save() to make this persistent to the file.
3877 *
3878 * @param pSample - sample to delete
3879 * @throws gig::Exception if given sample could not be found
3880 */
3881 void File::DeleteSample(Sample* pSample) {
3882 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3883 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3884 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3885 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3886 pSamples->erase(iter);
3887 delete pSample;
3888
3889 SampleList::iterator tmp = SamplesIterator;
3890 // remove all references to the sample
3891 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3892 instrument = GetNextInstrument()) {
3893 for (Region* region = instrument->GetFirstRegion() ; region ;
3894 region = instrument->GetNextRegion()) {
3895
3896 if (region->GetSample() == pSample) region->SetSample(NULL);
3897
3898 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3899 gig::DimensionRegion *d = region->pDimensionRegions[i];
3900 if (d->pSample == pSample) d->pSample = NULL;
3901 }
3902 }
3903 }
3904 SamplesIterator = tmp; // restore iterator
3905 }
3906
3907 void File::LoadSamples() {
3908 LoadSamples(NULL);
3909 }
3910
3911 void File::LoadSamples(progress_t* pProgress) {
3912 // Groups must be loaded before samples, because samples will try
3913 // to resolve the group they belong to
3914 if (!pGroups) LoadGroups();
3915
3916 if (!pSamples) pSamples = new SampleList;
3917
3918 RIFF::File* file = pRIFF;
3919
3920 // just for progress calculation
3921 int iSampleIndex = 0;
3922 int iTotalSamples = WavePoolCount;
3923
3924 // check if samples should be loaded from extension files
3925 int lastFileNo = 0;
3926 for (int i = 0 ; i < WavePoolCount ; i++) {
3927 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3928 }
3929 String name(pRIFF->GetFileName());
3930 int nameLen = name.length();
3931 char suffix[6];
3932 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3933
3934 for (int fileNo = 0 ; ; ) {
3935 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3936 if (wvpl) {
3937 unsigned long wvplFileOffset = wvpl->GetFilePos();
3938 RIFF::List* wave = wvpl->GetFirstSubList();
3939 while (wave) {
3940 if (wave->GetListType() == LIST_TYPE_WAVE) {
3941 // notify current progress
3942 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3943 __notify_progress(pProgress, subprogress);
3944
3945 unsigned long waveFileOffset = wave->GetFilePos();
3946 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3947
3948 iSampleIndex++;
3949 }
3950 wave = wvpl->GetNextSubList();
3951 }
3952
3953 if (fileNo == lastFileNo) break;
3954
3955 // open extension file (*.gx01, *.gx02, ...)
3956 fileNo++;
3957 sprintf(suffix, ".gx%02d", fileNo);
3958 name.replace(nameLen, 5, suffix);
3959 file = new RIFF::File(name);
3960 ExtensionFiles.push_back(file);
3961 } else break;
3962 }
3963
3964 __notify_progress(pProgress, 1.0); // notify done
3965 }
3966
3967 Instrument* File::GetFirstInstrument() {
3968 if (!pInstruments) LoadInstruments();
3969 if (!pInstruments) return NULL;
3970 InstrumentsIterator = pInstruments->begin();
3971 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3972 }
3973
3974 Instrument* File::GetNextInstrument() {
3975 if (!pInstruments) return NULL;
3976 InstrumentsIterator++;
3977 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3978 }
3979
3980 /**
3981 * Returns the instrument with the given index.
3982 *
3983 * @param index - number of the sought instrument (0..n)
3984 * @param pProgress - optional: callback function for progress notification
3985 * @returns sought instrument or NULL if there's no such instrument
3986 */
3987 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3988 if (!pInstruments) {
3989 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3990
3991 // sample loading subtask
3992 progress_t subprogress;
3993 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3994 __notify_progress(&subprogress, 0.0f);
3995 if (GetAutoLoad())
3996 GetFirstSample(&subprogress); // now force all samples to be loaded
3997 __notify_progress(&subprogress, 1.0f);
3998
3999 // instrument loading subtask
4000 if (pProgress && pProgress->callback) {
4001 subprogress.__range_min = subprogress.__range_max;
4002 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4003 }
4004 __notify_progress(&subprogress, 0.0f);
4005 LoadInstruments(&subprogress);
4006 __notify_progress(&subprogress, 1.0f);
4007 }
4008 if (!pInstruments) return NULL;
4009 InstrumentsIterator = pInstruments->begin();
4010 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4011 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4012 InstrumentsIterator++;
4013 }
4014 return NULL;
4015 }
4016
4017 /** @brief Add a new instrument definition.
4018 *
4019 * This will create a new Instrument object for the gig file. You have
4020 * to call Save() to make this persistent to the file.
4021 *
4022 * @returns pointer to new Instrument object
4023 */
4024 Instrument* File::AddInstrument() {
4025 if (!pInstruments) LoadInstruments();
4026 __ensureMandatoryChunksExist();
4027 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4028 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4029
4030 // add mandatory chunks to get the chunks in right order
4031 lstInstr->AddSubList(LIST_TYPE_INFO);
4032 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4033
4034 Instrument* pInstrument = new Instrument(this, lstInstr);
4035 pInstrument->GenerateDLSID();
4036
4037 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4038
4039 // this string is needed for the gig to be loadable in GSt:
4040 pInstrument->pInfo->Software = "Endless Wave";
4041
4042 pInstruments->push_back(pInstrument);
4043 return pInstrument;
4044 }
4045
4046 /** @brief Add a duplicate of an existing instrument.
4047 *
4048 * Duplicates the instrument definition given by @a orig and adds it
4049 * to this file. This allows in an instrument editor application to
4050 * easily create variations of an instrument, which will be stored in
4051 * the same .gig file, sharing i.e. the same samples.
4052 *
4053 * Note that all sample pointers referenced by @a orig are simply copied as
4054 * memory address. Thus the respective samples are shared, not duplicated!
4055 *
4056 * You have to call Save() to make this persistent to the file.
4057 *
4058 * @param orig - original instrument to be copied
4059 * @returns duplicated copy of the given instrument
4060 */
4061 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4062 Instrument* instr = AddInstrument();
4063 instr->CopyAssign(orig);
4064 return instr;
4065 }
4066
4067 /** @brief Add content of another existing file.
4068 *
4069 * Duplicates the samples, groups and instruments of the original file
4070 * given by @a pFile and adds them to @c this File. In case @c this File is
4071 * a new one that you haven't saved before, then you have to call
4072 * SetFileName() before calling AddContentOf(), because this method will
4073 * automatically save this file during operation, which is required for
4074 * writing the sample waveform data by disk streaming.
4075 *
4076 * @param pFile - original file whose's content shall be copied from
4077 */
4078 void File::AddContentOf(File* pFile) {
4079 static int iCallCount = -1;
4080 iCallCount++;
4081 std::map<Group*,Group*> mGroups;
4082 std::map<Sample*,Sample*> mSamples;
4083
4084 // clone sample groups
4085 for (int i = 0; pFile->GetGroup(i); ++i) {
4086 Group* g = AddGroup();
4087 g->Name =
4088 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4089 mGroups[pFile->GetGroup(i)] = g;
4090 }
4091
4092 // clone samples (not waveform data here yet)
4093 for (int i = 0; pFile->GetSample(i); ++i) {
4094 Sample* s = AddSample();
4095 s->CopyAssignMeta(pFile->GetSample(i));
4096 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4097 mSamples[pFile->GetSample(i)] = s;
4098 }
4099
4100 //BUG: For some reason this method only works with this additional
4101 // Save() call in between here.
4102 //
4103 // Important: The correct one of the 2 Save() methods has to be called
4104 // here, depending on whether the file is completely new or has been
4105 // saved to disk already, otherwise it will result in data corruption.
4106 if (pRIFF->IsNew())
4107 Save(GetFileName());
4108 else
4109 Save();
4110
4111 // clone instruments
4112 // (passing the crosslink table here for the cloned samples)
4113 for (int i = 0; pFile->GetInstrument(i); ++i) {
4114 Instrument* instr = AddInstrument();
4115 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4116 }
4117
4118 // Mandatory: file needs to be saved to disk at this point, so this
4119 // file has the correct size and data layout for writing the samples'
4120 // waveform data to disk.
4121 Save();
4122
4123 // clone samples' waveform data
4124 // (using direct read & write disk streaming)
4125 for (int i = 0; pFile->GetSample(i); ++i) {
4126 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4127 }
4128 }
4129
4130 /** @brief Delete an instrument.
4131 *
4132 * This will delete the given Instrument object from the gig file. You
4133 * have to call Save() to make this persistent to the file.
4134 *
4135 * @param pInstrument - instrument to delete
4136 * @throws gig::Exception if given instrument could not be found
4137 */
4138 void File::DeleteInstrument(Instrument* pInstrument) {
4139 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4140 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4141 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4142 pInstruments->erase(iter);
4143 delete pInstrument;
4144 }
4145
4146 void File::LoadInstruments() {
4147 LoadInstruments(NULL);
4148 }
4149
4150 void File::LoadInstruments(progress_t* pProgress) {
4151 if (!pInstruments) pInstruments = new InstrumentList;
4152 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4153 if (lstInstruments) {
4154 int iInstrumentIndex = 0;
4155 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4156 while (lstInstr) {
4157 if (lstInstr->GetListType() == LIST_TYPE_INS) {
4158 // notify current progress
4159 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4160 __notify_progress(pProgress, localProgress);
4161
4162 // divide local progress into subprogress for loading current Instrument
4163 progress_t subprogress;
4164 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4165
4166 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4167
4168 iInstrumentIndex++;
4169 }
4170 lstInstr = lstInstruments->GetNextSubList();
4171 }
4172 __notify_progress(pProgress, 1.0); // notify done
4173 }
4174 }
4175
4176 /// Updates the 3crc chunk with the checksum of a sample. The
4177 /// update is done directly to disk, as this method is called
4178 /// after File::Save()
4179 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4180 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4181 if (!_3crc) return;
4182
4183 // get the index of the sample
4184 int iWaveIndex = -1;
4185 File::SampleList::iterator iter = pSamples->begin();
4186 File::SampleList::iterator end = pSamples->end();
4187 for (int index = 0; iter != end; ++iter, ++index) {
4188 if (*iter == pSample) {
4189 iWaveIndex = index;
4190 break;
4191 }
4192 }
4193 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4194
4195 // write the CRC-32 checksum to disk
4196 _3crc->SetPos(iWaveIndex * 8);
4197 uint32_t tmp = 1;
4198 _3crc->WriteUint32(&tmp); // unknown, always 1?
4199 _3crc->WriteUint32(&crc);
4200 }
4201
4202 Group* File::GetFirstGroup() {
4203 if (!pGroups) LoadGroups();
4204 // there must always be at least one group
4205 GroupsIterator = pGroups->begin();
4206 return *GroupsIterator;
4207 }
4208
4209 Group* File::GetNextGroup() {
4210 if (!pGroups) return NULL;
4211 ++GroupsIterator;
4212 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4213 }
4214
4215 /**
4216 * Returns the group with the given index.
4217 *
4218 * @param index - number of the sought group (0..n)
4219 * @returns sought group or NULL if there's no such group
4220 */
4221 Group* File::GetGroup(uint index) {
4222 if (!pGroups) LoadGroups();
4223 GroupsIterator = pGroups->begin();
4224 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4225 if (i == index) return *GroupsIterator;
4226 ++GroupsIterator;
4227 }
4228 return NULL;
4229 }
4230
4231 Group* File::AddGroup() {
4232 if (!pGroups) LoadGroups();
4233 // there must always be at least one group
4234 __ensureMandatoryChunksExist();
4235 Group* pGroup = new Group(this, NULL);
4236 pGroups->push_back(pGroup);
4237 return pGroup;
4238 }
4239
4240 /** @brief Delete a group and its samples.
4241 *
4242 * This will delete the given Group object and all the samples that
4243 * belong to this group from the gig file. You have to call Save() to
4244 * make this persistent to the file.
4245 *
4246 * @param pGroup - group to delete
4247 * @throws gig::Exception if given group could not be found
4248 */
4249 void File::DeleteGroup(Group* pGroup) {
4250 if (!pGroups) LoadGroups();
4251 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4252 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4253 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4254 // delete all members of this group
4255 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4256 DeleteSample(pSample);
4257 }
4258 // now delete this group object
4259 pGroups->erase(iter);
4260 delete pGroup;
4261 }
4262
4263 /** @brief Delete a group.
4264 *
4265 * This will delete the given Group object from the gig file. All the
4266 * samples that belong to this group will not be deleted, but instead
4267 * be moved to another group. You have to call Save() to make this
4268 * persistent to the file.
4269 *
4270 * @param pGroup - group to delete
4271 * @throws gig::Exception if given group could not be found
4272 */
4273 void File::DeleteGroupOnly(Group* pGroup) {
4274 if (!pGroups) LoadGroups();
4275 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4276 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4277 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4278 // move all members of this group to another group
4279 pGroup->MoveAll();
4280 pGroups->erase(iter);
4281 delete pGroup;
4282 }
4283
4284 void File::LoadGroups() {
4285 if (!pGroups) pGroups = new std::list<Group*>;
4286 // try to read defined groups from file
4287 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4288 if (lst3gri) {
4289 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4290 if (lst3gnl) {
4291 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4292 while (ck) {
4293 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4294 if (pVersion && pVersion->major == 3 &&
4295 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4296
4297 pGroups->push_back(new Group(this, ck));
4298 }
4299 ck = lst3gnl->GetNextSubChunk();
4300 }
4301 }
4302 }
4303 // if there were no group(s), create at least the mandatory default group
4304 if (!pGroups->size()) {
4305 Group* pGroup = new Group(this, NULL);
4306 pGroup->Name = "Default Group";
4307 pGroups->push_back(pGroup);
4308 }
4309 }
4310
4311 /**
4312 * Apply all the gig file's current instruments, samples, groups and settings
4313 * to the respective RIFF chunks. You have to call Save() to make changes
4314 * persistent.
4315 *
4316 * Usually there is absolutely no need to call this method explicitly.
4317 * It will be called automatically when File::Save() was called.
4318 *
4319 * @throws Exception - on errors
4320 */
4321 void File::UpdateChunks() {
4322 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4323
4324 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4325
4326 // first update base class's chunks
4327 DLS::File::UpdateChunks();
4328
4329 if (newFile) {
4330 // INFO was added by Resource::UpdateChunks - make sure it
4331 // is placed first in file
4332 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4333 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4334 if (first != info) {
4335 pRIFF->MoveSubChunk(info, first);
4336 }
4337 }
4338
4339 // update group's chunks
4340 if (pGroups) {
4341 // make sure '3gri' and '3gnl' list chunks exist
4342 // (before updating the Group chunks)
4343 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4344 if (!_3gri) {
4345 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4346 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4347 }
4348 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4349 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4350
4351 // v3: make sure the file has 128 3gnm chunks
4352 // (before updating the Group chunks)
4353 if (pVersion && pVersion->major == 3) {
4354 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4355 for (int i = 0 ; i < 128 ; i++) {
4356 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4357 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4358 }
4359 }
4360
4361 std::list<Group*>::iterator iter = pGroups->begin();
4362 std::list<Group*>::iterator end = pGroups->end();
4363 for (; iter != end; ++iter) {
4364 (*iter)->UpdateChunks();
4365 }
4366 }
4367
4368 // update einf chunk
4369
4370 // The einf chunk contains statistics about the gig file, such
4371 // as the number of regions and samples used by each
4372 // instrument. It is divided in equally sized parts, where the
4373 // first part contains information about the whole gig file,
4374 // and the rest of the parts map to each instrument in the
4375 // file.
4376 //
4377 // At the end of each part there is a bit map of each sample
4378 // in the file, where a set bit means that the sample is used
4379 // by the file/instrument.
4380 //
4381 // Note that there are several fields with unknown use. These
4382 // are set to zero.
4383
4384 int sublen = pSamples->size() / 8 + 49;
4385 int einfSize = (Instruments + 1) * sublen;
4386
4387 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4388 if (einf) {
4389 if (einf->GetSize() != einfSize) {
4390 einf->Resize(einfSize);
4391 memset(einf->LoadChunkData(), 0, einfSize);
4392 }
4393 } else if (newFile) {
4394 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4395 }
4396 if (einf) {
4397 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4398
4399 std::map<gig::Sample*,int> sampleMap;
4400 int sampleIdx = 0;
4401 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4402 sampleMap[pSample] = sampleIdx++;
4403 }
4404
4405 int totnbusedsamples = 0;
4406 int totnbusedchannels = 0;
4407 int totnbregions = 0;
4408 int totnbdimregions = 0;
4409 int totnbloops = 0;
4410 int instrumentIdx = 0;
4411
4412 memset(&pData[48], 0, sublen - 48);
4413
4414 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4415 instrument = GetNextInstrument()) {
4416 int nbusedsamples = 0;
4417 int nbusedchannels = 0;
4418 int nbdimregions = 0;
4419 int nbloops = 0;
4420
4421 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4422
4423 for (Region* region = instrument->GetFirstRegion() ; region ;
4424 region = instrument->GetNextRegion()) {
4425 for (int i = 0 ; i < region->DimensionRegions ; i++) {
4426 gig::DimensionRegion *d = region->pDimensionRegions[i];
4427 if (d->pSample) {
4428 int sampleIdx = sampleMap[d->pSample];
4429 int byte = 48 + sampleIdx / 8;
4430 int bit = 1 << (sampleIdx & 7);
4431 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4432 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4433 nbusedsamples++;
4434 nbusedchannels += d->pSample->Channels;
4435
4436 if ((pData[byte] & bit) == 0) {
4437 pData[byte] |= bit;
4438 totnbusedsamples++;
4439 totnbusedchannels += d->pSample->Channels;
4440 }
4441 }
4442 }
4443 if (d->SampleLoops) nbloops++;
4444 }
4445 nbdimregions += region->DimensionRegions;
4446 }
4447 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4448 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4449 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4450 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4451 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4452 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4453 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4454 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4455 // next 8 bytes unknown
4456 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4457 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4458 // next 4 bytes unknown
4459
4460 totnbregions += instrument->Regions;
4461 totnbdimregions += nbdimregions;
4462 totnbloops += nbloops;
4463 instrumentIdx++;
4464 }
4465 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4466 // store32(&pData[0], sublen);
4467 store32(&pData[4], totnbusedchannels);
4468 store32(&pData[8], totnbusedsamples);
4469 store32(&pData[12], Instruments);
4470 store32(&pData[16], totnbregions);
4471 store32(&pData[20], totnbdimregions);
4472 store32(&pData[24], totnbloops);
4473 // next 8 bytes unknown
4474 // next 4 bytes unknown, not always 0
4475 store32(&pData[40], pSamples->size());
4476 // next 4 bytes unknown
4477 }
4478
4479 // update 3crc chunk
4480
4481 // The 3crc chunk contains CRC-32 checksums for the
4482 // samples. The actual checksum values will be filled in
4483 // later, by Sample::Write.
4484
4485 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4486 if (_3crc) {
4487 _3crc->Resize(pSamples->size() * 8);
4488 } else if (newFile) {
4489 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4490 _3crc->LoadChunkData();
4491
4492 // the order of einf and 3crc is not the same in v2 and v3
4493 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4494 }
4495 }
4496
4497 /**
4498 * Enable / disable automatic loading. By default this properyt is
4499 * enabled and all informations are loaded automatically. However
4500 * loading all Regions, DimensionRegions and especially samples might
4501 * take a long time for large .gig files, and sometimes one might only
4502 * be interested in retrieving very superficial informations like the
4503 * amount of instruments and their names. In this case one might disable
4504 * automatic loading to avoid very slow response times.
4505 *
4506 * @e CAUTION: by disabling this property many pointers (i.e. sample
4507 * references) and informations will have invalid or even undefined
4508 * data! This feature is currently only intended for retrieving very
4509 * superficial informations in a very fast way. Don't use it to retrieve
4510 * details like synthesis informations or even to modify .gig files!
4511 */
4512 void File::SetAutoLoad(bool b) {
4513 bAutoLoad = b;
4514 }
4515
4516 /**
4517 * Returns whether automatic loading is enabled.
4518 * @see SetAutoLoad()
4519 */
4520 bool File::GetAutoLoad() {
4521 return bAutoLoad;
4522 }
4523
4524
4525
4526 // *************** Exception ***************
4527 // *
4528
4529 Exception::Exception(String Message) : DLS::Exception(Message) {
4530 }
4531
4532 void Exception::PrintMessage() {
4533 std::cout << "gig::Exception: " << Message << std::endl;
4534 }
4535
4536
4537 // *************** functions ***************
4538 // *
4539
4540 /**
4541 * Returns the name of this C++ library. This is usually "libgig" of
4542 * course. This call is equivalent to RIFF::libraryName() and
4543 * DLS::libraryName().
4544 */
4545 String libraryName() {
4546 return PACKAGE;
4547 }
4548
4549 /**
4550 * Returns version of this C++ library. This call is equivalent to
4551 * RIFF::libraryVersion() and DLS::libraryVersion().
4552 */
4553 String libraryVersion() {
4554 return VERSION;
4555 }
4556
4557 } // namespace gig

  ViewVC Help
Powered by ViewVC