Parent Directory
|
Revision Log
* gig.cpp: Instruments' default pitch bend range is now +-2 semi tones. * Bumped version (4.0.0.svn12).
1 | /*************************************************************************** |
2 | * * |
3 | * libgig - C++ cross-platform Gigasampler format file access library * |
4 | * * |
5 | * Copyright (C) 2003-2016 by Christian Schoenebeck * |
6 | * <cuse@users.sourceforge.net> * |
7 | * * |
8 | * This library is free software; you can redistribute it and/or modify * |
9 | * it under the terms of the GNU General Public License as published by * |
10 | * the Free Software Foundation; either version 2 of the License, or * |
11 | * (at your option) any later version. * |
12 | * * |
13 | * This library is distributed in the hope that it will be useful, * |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
16 | * GNU General Public License for more details. * |
17 | * * |
18 | * You should have received a copy of the GNU General Public License * |
19 | * along with this library; if not, write to the Free Software * |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * |
21 | * MA 02111-1307 USA * |
22 | ***************************************************************************/ |
23 | |
24 | #include "gig.h" |
25 | |
26 | #include "helper.h" |
27 | |
28 | #include <algorithm> |
29 | #include <math.h> |
30 | #include <iostream> |
31 | #include <assert.h> |
32 | |
33 | /// libgig's current file format version (for extending the original Giga file |
34 | /// format with libgig's own custom data / custom features). |
35 | #define GIG_FILE_EXT_VERSION 2 |
36 | |
37 | /// Initial size of the sample buffer which is used for decompression of |
38 | /// compressed sample wave streams - this value should always be bigger than |
39 | /// the biggest sample piece expected to be read by the sampler engine, |
40 | /// otherwise the buffer size will be raised at runtime and thus the buffer |
41 | /// reallocated which is time consuming and unefficient. |
42 | #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB |
43 | |
44 | /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */ |
45 | #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x)) |
46 | #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822)) |
47 | #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01)) |
48 | #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01) |
49 | #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03) |
50 | #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4) |
51 | #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03) |
52 | #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03) |
53 | #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03) |
54 | #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1) |
55 | #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3) |
56 | #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5) |
57 | |
58 | namespace gig { |
59 | |
60 | // *************** Internal functions for sample decompression *************** |
61 | // * |
62 | |
63 | namespace { |
64 | |
65 | inline int get12lo(const unsigned char* pSrc) |
66 | { |
67 | const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8; |
68 | return x & 0x800 ? x - 0x1000 : x; |
69 | } |
70 | |
71 | inline int get12hi(const unsigned char* pSrc) |
72 | { |
73 | const int x = pSrc[1] >> 4 | pSrc[2] << 4; |
74 | return x & 0x800 ? x - 0x1000 : x; |
75 | } |
76 | |
77 | inline int16_t get16(const unsigned char* pSrc) |
78 | { |
79 | return int16_t(pSrc[0] | pSrc[1] << 8); |
80 | } |
81 | |
82 | inline int get24(const unsigned char* pSrc) |
83 | { |
84 | const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16; |
85 | return x & 0x800000 ? x - 0x1000000 : x; |
86 | } |
87 | |
88 | inline void store24(unsigned char* pDst, int x) |
89 | { |
90 | pDst[0] = x; |
91 | pDst[1] = x >> 8; |
92 | pDst[2] = x >> 16; |
93 | } |
94 | |
95 | void Decompress16(int compressionmode, const unsigned char* params, |
96 | int srcStep, int dstStep, |
97 | const unsigned char* pSrc, int16_t* pDst, |
98 | file_offset_t currentframeoffset, |
99 | file_offset_t copysamples) |
100 | { |
101 | switch (compressionmode) { |
102 | case 0: // 16 bit uncompressed |
103 | pSrc += currentframeoffset * srcStep; |
104 | while (copysamples) { |
105 | *pDst = get16(pSrc); |
106 | pDst += dstStep; |
107 | pSrc += srcStep; |
108 | copysamples--; |
109 | } |
110 | break; |
111 | |
112 | case 1: // 16 bit compressed to 8 bit |
113 | int y = get16(params); |
114 | int dy = get16(params + 2); |
115 | while (currentframeoffset) { |
116 | dy -= int8_t(*pSrc); |
117 | y -= dy; |
118 | pSrc += srcStep; |
119 | currentframeoffset--; |
120 | } |
121 | while (copysamples) { |
122 | dy -= int8_t(*pSrc); |
123 | y -= dy; |
124 | *pDst = y; |
125 | pDst += dstStep; |
126 | pSrc += srcStep; |
127 | copysamples--; |
128 | } |
129 | break; |
130 | } |
131 | } |
132 | |
133 | void Decompress24(int compressionmode, const unsigned char* params, |
134 | int dstStep, const unsigned char* pSrc, uint8_t* pDst, |
135 | file_offset_t currentframeoffset, |
136 | file_offset_t copysamples, int truncatedBits) |
137 | { |
138 | int y, dy, ddy, dddy; |
139 | |
140 | #define GET_PARAMS(params) \ |
141 | y = get24(params); \ |
142 | dy = y - get24((params) + 3); \ |
143 | ddy = get24((params) + 6); \ |
144 | dddy = get24((params) + 9) |
145 | |
146 | #define SKIP_ONE(x) \ |
147 | dddy -= (x); \ |
148 | ddy -= dddy; \ |
149 | dy = -dy - ddy; \ |
150 | y += dy |
151 | |
152 | #define COPY_ONE(x) \ |
153 | SKIP_ONE(x); \ |
154 | store24(pDst, y << truncatedBits); \ |
155 | pDst += dstStep |
156 | |
157 | switch (compressionmode) { |
158 | case 2: // 24 bit uncompressed |
159 | pSrc += currentframeoffset * 3; |
160 | while (copysamples) { |
161 | store24(pDst, get24(pSrc) << truncatedBits); |
162 | pDst += dstStep; |
163 | pSrc += 3; |
164 | copysamples--; |
165 | } |
166 | break; |
167 | |
168 | case 3: // 24 bit compressed to 16 bit |
169 | GET_PARAMS(params); |
170 | while (currentframeoffset) { |
171 | SKIP_ONE(get16(pSrc)); |
172 | pSrc += 2; |
173 | currentframeoffset--; |
174 | } |
175 | while (copysamples) { |
176 | COPY_ONE(get16(pSrc)); |
177 | pSrc += 2; |
178 | copysamples--; |
179 | } |
180 | break; |
181 | |
182 | case 4: // 24 bit compressed to 12 bit |
183 | GET_PARAMS(params); |
184 | while (currentframeoffset > 1) { |
185 | SKIP_ONE(get12lo(pSrc)); |
186 | SKIP_ONE(get12hi(pSrc)); |
187 | pSrc += 3; |
188 | currentframeoffset -= 2; |
189 | } |
190 | if (currentframeoffset) { |
191 | SKIP_ONE(get12lo(pSrc)); |
192 | currentframeoffset--; |
193 | if (copysamples) { |
194 | COPY_ONE(get12hi(pSrc)); |
195 | pSrc += 3; |
196 | copysamples--; |
197 | } |
198 | } |
199 | while (copysamples > 1) { |
200 | COPY_ONE(get12lo(pSrc)); |
201 | COPY_ONE(get12hi(pSrc)); |
202 | pSrc += 3; |
203 | copysamples -= 2; |
204 | } |
205 | if (copysamples) { |
206 | COPY_ONE(get12lo(pSrc)); |
207 | } |
208 | break; |
209 | |
210 | case 5: // 24 bit compressed to 8 bit |
211 | GET_PARAMS(params); |
212 | while (currentframeoffset) { |
213 | SKIP_ONE(int8_t(*pSrc++)); |
214 | currentframeoffset--; |
215 | } |
216 | while (copysamples) { |
217 | COPY_ONE(int8_t(*pSrc++)); |
218 | copysamples--; |
219 | } |
220 | break; |
221 | } |
222 | } |
223 | |
224 | const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 }; |
225 | const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 }; |
226 | const int headerSize[] = { 0, 4, 0, 12, 12, 12 }; |
227 | const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 }; |
228 | } |
229 | |
230 | |
231 | |
232 | // *************** Internal CRC-32 (Cyclic Redundancy Check) functions *************** |
233 | // * |
234 | |
235 | static uint32_t* __initCRCTable() { |
236 | static uint32_t res[256]; |
237 | |
238 | for (int i = 0 ; i < 256 ; i++) { |
239 | uint32_t c = i; |
240 | for (int j = 0 ; j < 8 ; j++) { |
241 | c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1; |
242 | } |
243 | res[i] = c; |
244 | } |
245 | return res; |
246 | } |
247 | |
248 | static const uint32_t* __CRCTable = __initCRCTable(); |
249 | |
250 | /** |
251 | * Initialize a CRC variable. |
252 | * |
253 | * @param crc - variable to be initialized |
254 | */ |
255 | inline static void __resetCRC(uint32_t& crc) { |
256 | crc = 0xffffffff; |
257 | } |
258 | |
259 | /** |
260 | * Used to calculate checksums of the sample data in a gig file. The |
261 | * checksums are stored in the 3crc chunk of the gig file and |
262 | * automatically updated when a sample is written with Sample::Write(). |
263 | * |
264 | * One should call __resetCRC() to initialize the CRC variable to be |
265 | * used before calling this function the first time. |
266 | * |
267 | * After initializing the CRC variable one can call this function |
268 | * arbitrary times, i.e. to split the overall CRC calculation into |
269 | * steps. |
270 | * |
271 | * Once the whole data was processed by __calculateCRC(), one should |
272 | * call __encodeCRC() to get the final CRC result. |
273 | * |
274 | * @param buf - pointer to data the CRC shall be calculated of |
275 | * @param bufSize - size of the data to be processed |
276 | * @param crc - variable the CRC sum shall be stored to |
277 | */ |
278 | static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) { |
279 | for (size_t i = 0 ; i < bufSize ; i++) { |
280 | crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8); |
281 | } |
282 | } |
283 | |
284 | /** |
285 | * Returns the final CRC result. |
286 | * |
287 | * @param crc - variable previously passed to __calculateCRC() |
288 | */ |
289 | inline static uint32_t __encodeCRC(const uint32_t& crc) { |
290 | return crc ^ 0xffffffff; |
291 | } |
292 | |
293 | |
294 | |
295 | // *************** Other Internal functions *************** |
296 | // * |
297 | |
298 | static split_type_t __resolveSplitType(dimension_t dimension) { |
299 | return ( |
300 | dimension == dimension_layer || |
301 | dimension == dimension_samplechannel || |
302 | dimension == dimension_releasetrigger || |
303 | dimension == dimension_keyboard || |
304 | dimension == dimension_roundrobin || |
305 | dimension == dimension_random || |
306 | dimension == dimension_smartmidi || |
307 | dimension == dimension_roundrobinkeyboard |
308 | ) ? split_type_bit : split_type_normal; |
309 | } |
310 | |
311 | static int __resolveZoneSize(dimension_def_t& dimension_definition) { |
312 | return (dimension_definition.split_type == split_type_normal) |
313 | ? int(128.0 / dimension_definition.zones) : 0; |
314 | } |
315 | |
316 | |
317 | |
318 | // *************** Sample *************** |
319 | // * |
320 | |
321 | size_t Sample::Instances = 0; |
322 | buffer_t Sample::InternalDecompressionBuffer; |
323 | |
324 | /** @brief Constructor. |
325 | * |
326 | * Load an existing sample or create a new one. A 'wave' list chunk must |
327 | * be given to this constructor. In case the given 'wave' list chunk |
328 | * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the |
329 | * format and sample data will be loaded from there, otherwise default |
330 | * values will be used and those chunks will be created when |
331 | * File::Save() will be called later on. |
332 | * |
333 | * @param pFile - pointer to gig::File where this sample is |
334 | * located (or will be located) |
335 | * @param waveList - pointer to 'wave' list chunk which is (or |
336 | * will be) associated with this sample |
337 | * @param WavePoolOffset - offset of this sample data from wave pool |
338 | * ('wvpl') list chunk |
339 | * @param fileNo - number of an extension file where this sample |
340 | * is located, 0 otherwise |
341 | * @param index - wave pool index of sample (may be -1 on new sample) |
342 | */ |
343 | Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index) |
344 | : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) |
345 | { |
346 | static const DLS::Info::string_length_t fixedStringLengths[] = { |
347 | { CHUNK_ID_INAM, 64 }, |
348 | { 0, 0 } |
349 | }; |
350 | pInfo->SetFixedStringLengths(fixedStringLengths); |
351 | Instances++; |
352 | FileNo = fileNo; |
353 | |
354 | __resetCRC(crc); |
355 | // if this is not a new sample, try to get the sample's already existing |
356 | // CRC32 checksum from disk, this checksum will reflect the sample's CRC32 |
357 | // checksum of the time when the sample was consciously modified by the |
358 | // user for the last time (by calling Sample::Write() that is). |
359 | if (index >= 0) { // not a new file ... |
360 | try { |
361 | uint32_t crc = pFile->GetSampleChecksumByIndex(index); |
362 | this->crc = crc; |
363 | } catch (...) {} |
364 | } |
365 | |
366 | pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX); |
367 | if (pCk3gix) { |
368 | uint16_t iSampleGroup = pCk3gix->ReadInt16(); |
369 | pGroup = pFile->GetGroup(iSampleGroup); |
370 | } else { // '3gix' chunk missing |
371 | // by default assigned to that mandatory "Default Group" |
372 | pGroup = pFile->GetGroup(0); |
373 | } |
374 | |
375 | pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL); |
376 | if (pCkSmpl) { |
377 | Manufacturer = pCkSmpl->ReadInt32(); |
378 | Product = pCkSmpl->ReadInt32(); |
379 | SamplePeriod = pCkSmpl->ReadInt32(); |
380 | MIDIUnityNote = pCkSmpl->ReadInt32(); |
381 | FineTune = pCkSmpl->ReadInt32(); |
382 | pCkSmpl->Read(&SMPTEFormat, 1, 4); |
383 | SMPTEOffset = pCkSmpl->ReadInt32(); |
384 | Loops = pCkSmpl->ReadInt32(); |
385 | pCkSmpl->ReadInt32(); // manufByt |
386 | LoopID = pCkSmpl->ReadInt32(); |
387 | pCkSmpl->Read(&LoopType, 1, 4); |
388 | LoopStart = pCkSmpl->ReadInt32(); |
389 | LoopEnd = pCkSmpl->ReadInt32(); |
390 | LoopFraction = pCkSmpl->ReadInt32(); |
391 | LoopPlayCount = pCkSmpl->ReadInt32(); |
392 | } else { // 'smpl' chunk missing |
393 | // use default values |
394 | Manufacturer = 0; |
395 | Product = 0; |
396 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
397 | MIDIUnityNote = 60; |
398 | FineTune = 0; |
399 | SMPTEFormat = smpte_format_no_offset; |
400 | SMPTEOffset = 0; |
401 | Loops = 0; |
402 | LoopID = 0; |
403 | LoopType = loop_type_normal; |
404 | LoopStart = 0; |
405 | LoopEnd = 0; |
406 | LoopFraction = 0; |
407 | LoopPlayCount = 0; |
408 | } |
409 | |
410 | FrameTable = NULL; |
411 | SamplePos = 0; |
412 | RAMCache.Size = 0; |
413 | RAMCache.pStart = NULL; |
414 | RAMCache.NullExtensionSize = 0; |
415 | |
416 | if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported"); |
417 | |
418 | RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV); |
419 | Compressed = ewav; |
420 | Dithered = false; |
421 | TruncatedBits = 0; |
422 | if (Compressed) { |
423 | uint32_t version = ewav->ReadInt32(); |
424 | if (version == 3 && BitDepth == 24) { |
425 | Dithered = ewav->ReadInt32(); |
426 | ewav->SetPos(Channels == 2 ? 84 : 64); |
427 | TruncatedBits = ewav->ReadInt32(); |
428 | } |
429 | ScanCompressedSample(); |
430 | } |
431 | |
432 | // we use a buffer for decompression and for truncating 24 bit samples to 16 bit |
433 | if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) { |
434 | InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE]; |
435 | InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE; |
436 | } |
437 | FrameOffset = 0; // just for streaming compressed samples |
438 | |
439 | LoopSize = LoopEnd - LoopStart + 1; |
440 | } |
441 | |
442 | /** |
443 | * Make a (semi) deep copy of the Sample object given by @a orig (without |
444 | * the actual waveform data) and assign it to this object. |
445 | * |
446 | * Discussion: copying .gig samples is a bit tricky. It requires three |
447 | * steps: |
448 | * 1. Copy sample's meta informations (done by CopyAssignMeta()) including |
449 | * its new sample waveform data size. |
450 | * 2. Saving the file (done by File::Save()) so that it gains correct size |
451 | * and layout for writing the actual wave form data directly to disc |
452 | * in next step. |
453 | * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()). |
454 | * |
455 | * @param orig - original Sample object to be copied from |
456 | */ |
457 | void Sample::CopyAssignMeta(const Sample* orig) { |
458 | // handle base classes |
459 | DLS::Sample::CopyAssignCore(orig); |
460 | |
461 | // handle actual own attributes of this class |
462 | Manufacturer = orig->Manufacturer; |
463 | Product = orig->Product; |
464 | SamplePeriod = orig->SamplePeriod; |
465 | MIDIUnityNote = orig->MIDIUnityNote; |
466 | FineTune = orig->FineTune; |
467 | SMPTEFormat = orig->SMPTEFormat; |
468 | SMPTEOffset = orig->SMPTEOffset; |
469 | Loops = orig->Loops; |
470 | LoopID = orig->LoopID; |
471 | LoopType = orig->LoopType; |
472 | LoopStart = orig->LoopStart; |
473 | LoopEnd = orig->LoopEnd; |
474 | LoopSize = orig->LoopSize; |
475 | LoopFraction = orig->LoopFraction; |
476 | LoopPlayCount = orig->LoopPlayCount; |
477 | |
478 | // schedule resizing this sample to the given sample's size |
479 | Resize(orig->GetSize()); |
480 | } |
481 | |
482 | /** |
483 | * Should be called after CopyAssignMeta() and File::Save() sequence. |
484 | * Read more about it in the discussion of CopyAssignMeta(). This method |
485 | * copies the actual waveform data by disk streaming. |
486 | * |
487 | * @e CAUTION: this method is currently not thread safe! During this |
488 | * operation the sample must not be used for other purposes by other |
489 | * threads! |
490 | * |
491 | * @param orig - original Sample object to be copied from |
492 | */ |
493 | void Sample::CopyAssignWave(const Sample* orig) { |
494 | const int iReadAtOnce = 32*1024; |
495 | char* buf = new char[iReadAtOnce * orig->FrameSize]; |
496 | Sample* pOrig = (Sample*) orig; //HACK: remove constness for now |
497 | file_offset_t restorePos = pOrig->GetPos(); |
498 | pOrig->SetPos(0); |
499 | SetPos(0); |
500 | for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n; |
501 | n = pOrig->Read(buf, iReadAtOnce)) |
502 | { |
503 | Write(buf, n); |
504 | } |
505 | pOrig->SetPos(restorePos); |
506 | delete [] buf; |
507 | } |
508 | |
509 | /** |
510 | * Apply sample and its settings to the respective RIFF chunks. You have |
511 | * to call File::Save() to make changes persistent. |
512 | * |
513 | * Usually there is absolutely no need to call this method explicitly. |
514 | * It will be called automatically when File::Save() was called. |
515 | * |
516 | * @param pProgress - callback function for progress notification |
517 | * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data |
518 | * was provided yet |
519 | * @throws gig::Exception if there is any invalid sample setting |
520 | */ |
521 | void Sample::UpdateChunks(progress_t* pProgress) { |
522 | // first update base class's chunks |
523 | DLS::Sample::UpdateChunks(pProgress); |
524 | |
525 | // make sure 'smpl' chunk exists |
526 | pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL); |
527 | if (!pCkSmpl) { |
528 | pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60); |
529 | memset(pCkSmpl->LoadChunkData(), 0, 60); |
530 | } |
531 | // update 'smpl' chunk |
532 | uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData(); |
533 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
534 | store32(&pData[0], Manufacturer); |
535 | store32(&pData[4], Product); |
536 | store32(&pData[8], SamplePeriod); |
537 | store32(&pData[12], MIDIUnityNote); |
538 | store32(&pData[16], FineTune); |
539 | store32(&pData[20], SMPTEFormat); |
540 | store32(&pData[24], SMPTEOffset); |
541 | store32(&pData[28], Loops); |
542 | |
543 | // we skip 'manufByt' for now (4 bytes) |
544 | |
545 | store32(&pData[36], LoopID); |
546 | store32(&pData[40], LoopType); |
547 | store32(&pData[44], LoopStart); |
548 | store32(&pData[48], LoopEnd); |
549 | store32(&pData[52], LoopFraction); |
550 | store32(&pData[56], LoopPlayCount); |
551 | |
552 | // make sure '3gix' chunk exists |
553 | pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX); |
554 | if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4); |
555 | // determine appropriate sample group index (to be stored in chunk) |
556 | uint16_t iSampleGroup = 0; // 0 refers to default sample group |
557 | File* pFile = static_cast<File*>(pParent); |
558 | if (pFile->pGroups) { |
559 | std::list<Group*>::iterator iter = pFile->pGroups->begin(); |
560 | std::list<Group*>::iterator end = pFile->pGroups->end(); |
561 | for (int i = 0; iter != end; i++, iter++) { |
562 | if (*iter == pGroup) { |
563 | iSampleGroup = i; |
564 | break; // found |
565 | } |
566 | } |
567 | } |
568 | // update '3gix' chunk |
569 | pData = (uint8_t*) pCk3gix->LoadChunkData(); |
570 | store16(&pData[0], iSampleGroup); |
571 | |
572 | // if the library user toggled the "Compressed" attribute from true to |
573 | // false, then the EWAV chunk associated with compressed samples needs |
574 | // to be deleted |
575 | RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV); |
576 | if (ewav && !Compressed) { |
577 | pWaveList->DeleteSubChunk(ewav); |
578 | } |
579 | } |
580 | |
581 | /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points). |
582 | void Sample::ScanCompressedSample() { |
583 | //TODO: we have to add some more scans here (e.g. determine compression rate) |
584 | this->SamplesTotal = 0; |
585 | std::list<file_offset_t> frameOffsets; |
586 | |
587 | SamplesPerFrame = BitDepth == 24 ? 256 : 2048; |
588 | WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag |
589 | |
590 | // Scanning |
591 | pCkData->SetPos(0); |
592 | if (Channels == 2) { // Stereo |
593 | for (int i = 0 ; ; i++) { |
594 | // for 24 bit samples every 8:th frame offset is |
595 | // stored, to save some memory |
596 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
597 | |
598 | const int mode_l = pCkData->ReadUint8(); |
599 | const int mode_r = pCkData->ReadUint8(); |
600 | if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode"); |
601 | const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r]; |
602 | |
603 | if (pCkData->RemainingBytes() <= frameSize) { |
604 | SamplesInLastFrame = |
605 | ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) / |
606 | (bitsPerSample[mode_l] + bitsPerSample[mode_r]); |
607 | SamplesTotal += SamplesInLastFrame; |
608 | break; |
609 | } |
610 | SamplesTotal += SamplesPerFrame; |
611 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
612 | } |
613 | } |
614 | else { // Mono |
615 | for (int i = 0 ; ; i++) { |
616 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
617 | |
618 | const int mode = pCkData->ReadUint8(); |
619 | if (mode > 5) throw gig::Exception("Unknown compression mode"); |
620 | const file_offset_t frameSize = bytesPerFrame[mode]; |
621 | |
622 | if (pCkData->RemainingBytes() <= frameSize) { |
623 | SamplesInLastFrame = |
624 | ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode]; |
625 | SamplesTotal += SamplesInLastFrame; |
626 | break; |
627 | } |
628 | SamplesTotal += SamplesPerFrame; |
629 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
630 | } |
631 | } |
632 | pCkData->SetPos(0); |
633 | |
634 | // Build the frames table (which is used for fast resolving of a frame's chunk offset) |
635 | if (FrameTable) delete[] FrameTable; |
636 | FrameTable = new file_offset_t[frameOffsets.size()]; |
637 | std::list<file_offset_t>::iterator end = frameOffsets.end(); |
638 | std::list<file_offset_t>::iterator iter = frameOffsets.begin(); |
639 | for (int i = 0; iter != end; i++, iter++) { |
640 | FrameTable[i] = *iter; |
641 | } |
642 | } |
643 | |
644 | /** |
645 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
646 | * ReleaseSampleData() to free the memory if you don't need the cached |
647 | * sample data anymore. |
648 | * |
649 | * @returns buffer_t structure with start address and size of the buffer |
650 | * in bytes |
651 | * @see ReleaseSampleData(), Read(), SetPos() |
652 | */ |
653 | buffer_t Sample::LoadSampleData() { |
654 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples |
655 | } |
656 | |
657 | /** |
658 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
659 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
660 | * memory space if you don't need the cached samples anymore. There is no |
661 | * guarantee that exactly \a SampleCount samples will be cached; this is |
662 | * not an error. The size will be eventually truncated e.g. to the |
663 | * beginning of a frame of a compressed sample. This is done for |
664 | * efficiency reasons while streaming the wave by your sampler engine |
665 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
666 | * that will be returned to determine the actual cached samples, but note |
667 | * that the size is given in bytes! You get the number of actually cached |
668 | * samples by dividing it by the frame size of the sample: |
669 | * @code |
670 | * buffer_t buf = pSample->LoadSampleData(acquired_samples); |
671 | * long cachedsamples = buf.Size / pSample->FrameSize; |
672 | * @endcode |
673 | * |
674 | * @param SampleCount - number of sample points to load into RAM |
675 | * @returns buffer_t structure with start address and size of |
676 | * the cached sample data in bytes |
677 | * @see ReleaseSampleData(), Read(), SetPos() |
678 | */ |
679 | buffer_t Sample::LoadSampleData(file_offset_t SampleCount) { |
680 | return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples |
681 | } |
682 | |
683 | /** |
684 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
685 | * ReleaseSampleData() to free the memory if you don't need the cached |
686 | * sample data anymore. |
687 | * The method will add \a NullSamplesCount silence samples past the |
688 | * official buffer end (this won't affect the 'Size' member of the |
689 | * buffer_t structure, that means 'Size' always reflects the size of the |
690 | * actual sample data, the buffer might be bigger though). Silence |
691 | * samples past the official buffer are needed for differential |
692 | * algorithms that always have to take subsequent samples into account |
693 | * (resampling/interpolation would be an important example) and avoids |
694 | * memory access faults in such cases. |
695 | * |
696 | * @param NullSamplesCount - number of silence samples the buffer should |
697 | * be extended past it's data end |
698 | * @returns buffer_t structure with start address and |
699 | * size of the buffer in bytes |
700 | * @see ReleaseSampleData(), Read(), SetPos() |
701 | */ |
702 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) { |
703 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount); |
704 | } |
705 | |
706 | /** |
707 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
708 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
709 | * memory space if you don't need the cached samples anymore. There is no |
710 | * guarantee that exactly \a SampleCount samples will be cached; this is |
711 | * not an error. The size will be eventually truncated e.g. to the |
712 | * beginning of a frame of a compressed sample. This is done for |
713 | * efficiency reasons while streaming the wave by your sampler engine |
714 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
715 | * that will be returned to determine the actual cached samples, but note |
716 | * that the size is given in bytes! You get the number of actually cached |
717 | * samples by dividing it by the frame size of the sample: |
718 | * @code |
719 | * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples); |
720 | * long cachedsamples = buf.Size / pSample->FrameSize; |
721 | * @endcode |
722 | * The method will add \a NullSamplesCount silence samples past the |
723 | * official buffer end (this won't affect the 'Size' member of the |
724 | * buffer_t structure, that means 'Size' always reflects the size of the |
725 | * actual sample data, the buffer might be bigger though). Silence |
726 | * samples past the official buffer are needed for differential |
727 | * algorithms that always have to take subsequent samples into account |
728 | * (resampling/interpolation would be an important example) and avoids |
729 | * memory access faults in such cases. |
730 | * |
731 | * @param SampleCount - number of sample points to load into RAM |
732 | * @param NullSamplesCount - number of silence samples the buffer should |
733 | * be extended past it's data end |
734 | * @returns buffer_t structure with start address and |
735 | * size of the cached sample data in bytes |
736 | * @see ReleaseSampleData(), Read(), SetPos() |
737 | */ |
738 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) { |
739 | if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal; |
740 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
741 | file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize; |
742 | SetPos(0); // reset read position to begin of sample |
743 | RAMCache.pStart = new int8_t[allocationsize]; |
744 | RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize; |
745 | RAMCache.NullExtensionSize = allocationsize - RAMCache.Size; |
746 | // fill the remaining buffer space with silence samples |
747 | memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize); |
748 | return GetCache(); |
749 | } |
750 | |
751 | /** |
752 | * Returns current cached sample points. A buffer_t structure will be |
753 | * returned which contains address pointer to the begin of the cache and |
754 | * the size of the cached sample data in bytes. Use |
755 | * <i>LoadSampleData()</i> to cache a specific amount of sample points in |
756 | * RAM. |
757 | * |
758 | * @returns buffer_t structure with current cached sample points |
759 | * @see LoadSampleData(); |
760 | */ |
761 | buffer_t Sample::GetCache() { |
762 | // return a copy of the buffer_t structure |
763 | buffer_t result; |
764 | result.Size = this->RAMCache.Size; |
765 | result.pStart = this->RAMCache.pStart; |
766 | result.NullExtensionSize = this->RAMCache.NullExtensionSize; |
767 | return result; |
768 | } |
769 | |
770 | /** |
771 | * Frees the cached sample from RAM if loaded with |
772 | * <i>LoadSampleData()</i> previously. |
773 | * |
774 | * @see LoadSampleData(); |
775 | */ |
776 | void Sample::ReleaseSampleData() { |
777 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
778 | RAMCache.pStart = NULL; |
779 | RAMCache.Size = 0; |
780 | RAMCache.NullExtensionSize = 0; |
781 | } |
782 | |
783 | /** @brief Resize sample. |
784 | * |
785 | * Resizes the sample's wave form data, that is the actual size of |
786 | * sample wave data possible to be written for this sample. This call |
787 | * will return immediately and just schedule the resize operation. You |
788 | * should call File::Save() to actually perform the resize operation(s) |
789 | * "physically" to the file. As this can take a while on large files, it |
790 | * is recommended to call Resize() first on all samples which have to be |
791 | * resized and finally to call File::Save() to perform all those resize |
792 | * operations in one rush. |
793 | * |
794 | * The actual size (in bytes) is dependant to the current FrameSize |
795 | * value. You may want to set FrameSize before calling Resize(). |
796 | * |
797 | * <b>Caution:</b> You cannot directly write (i.e. with Write()) to |
798 | * enlarged samples before calling File::Save() as this might exceed the |
799 | * current sample's boundary! |
800 | * |
801 | * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is |
802 | * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with |
803 | * other formats will fail! |
804 | * |
805 | * @param NewSize - new sample wave data size in sample points (must be |
806 | * greater than zero) |
807 | * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM |
808 | * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large |
809 | * @throws gig::Exception if existing sample is compressed |
810 | * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize, |
811 | * DLS::Sample::FormatTag, File::Save() |
812 | */ |
813 | void Sample::Resize(file_offset_t NewSize) { |
814 | if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)"); |
815 | DLS::Sample::Resize(NewSize); |
816 | } |
817 | |
818 | /** |
819 | * Sets the position within the sample (in sample points, not in |
820 | * bytes). Use this method and <i>Read()</i> if you don't want to load |
821 | * the sample into RAM, thus for disk streaming. |
822 | * |
823 | * Although the original Gigasampler engine doesn't allow positioning |
824 | * within compressed samples, I decided to implement it. Even though |
825 | * the Gigasampler format doesn't allow to define loops for compressed |
826 | * samples at the moment, positioning within compressed samples might be |
827 | * interesting for some sampler engines though. The only drawback about |
828 | * my decision is that it takes longer to load compressed gig Files on |
829 | * startup, because it's neccessary to scan the samples for some |
830 | * mandatory informations. But I think as it doesn't affect the runtime |
831 | * efficiency, nobody will have a problem with that. |
832 | * |
833 | * @param SampleCount number of sample points to jump |
834 | * @param Whence optional: to which relation \a SampleCount refers |
835 | * to, if omited <i>RIFF::stream_start</i> is assumed |
836 | * @returns the new sample position |
837 | * @see Read() |
838 | */ |
839 | file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) { |
840 | if (Compressed) { |
841 | switch (Whence) { |
842 | case RIFF::stream_curpos: |
843 | this->SamplePos += SampleCount; |
844 | break; |
845 | case RIFF::stream_end: |
846 | this->SamplePos = this->SamplesTotal - 1 - SampleCount; |
847 | break; |
848 | case RIFF::stream_backward: |
849 | this->SamplePos -= SampleCount; |
850 | break; |
851 | case RIFF::stream_start: default: |
852 | this->SamplePos = SampleCount; |
853 | break; |
854 | } |
855 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
856 | |
857 | file_offset_t frame = this->SamplePos / 2048; // to which frame to jump |
858 | this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame |
859 | pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame |
860 | return this->SamplePos; |
861 | } |
862 | else { // not compressed |
863 | file_offset_t orderedBytes = SampleCount * this->FrameSize; |
864 | file_offset_t result = pCkData->SetPos(orderedBytes, Whence); |
865 | return (result == orderedBytes) ? SampleCount |
866 | : result / this->FrameSize; |
867 | } |
868 | } |
869 | |
870 | /** |
871 | * Returns the current position in the sample (in sample points). |
872 | */ |
873 | file_offset_t Sample::GetPos() const { |
874 | if (Compressed) return SamplePos; |
875 | else return pCkData->GetPos() / FrameSize; |
876 | } |
877 | |
878 | /** |
879 | * Reads \a SampleCount number of sample points from the position stored |
880 | * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves |
881 | * the position within the sample respectively, this method honors the |
882 | * looping informations of the sample (if any). The sample wave stream |
883 | * will be decompressed on the fly if using a compressed sample. Use this |
884 | * method if you don't want to load the sample into RAM, thus for disk |
885 | * streaming. All this methods needs to know to proceed with streaming |
886 | * for the next time you call this method is stored in \a pPlaybackState. |
887 | * You have to allocate and initialize the playback_state_t structure by |
888 | * yourself before you use it to stream a sample: |
889 | * @code |
890 | * gig::playback_state_t playbackstate; |
891 | * playbackstate.position = 0; |
892 | * playbackstate.reverse = false; |
893 | * playbackstate.loop_cycles_left = pSample->LoopPlayCount; |
894 | * @endcode |
895 | * You don't have to take care of things like if there is actually a loop |
896 | * defined or if the current read position is located within a loop area. |
897 | * The method already handles such cases by itself. |
898 | * |
899 | * <b>Caution:</b> If you are using more than one streaming thread, you |
900 | * have to use an external decompression buffer for <b>EACH</b> |
901 | * streaming thread to avoid race conditions and crashes! |
902 | * |
903 | * @param pBuffer destination buffer |
904 | * @param SampleCount number of sample points to read |
905 | * @param pPlaybackState will be used to store and reload the playback |
906 | * state for the next ReadAndLoop() call |
907 | * @param pDimRgn dimension region with looping information |
908 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
909 | * @returns number of successfully read sample points |
910 | * @see CreateDecompressionBuffer() |
911 | */ |
912 | file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, |
913 | DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) { |
914 | file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend; |
915 | uint8_t* pDst = (uint8_t*) pBuffer; |
916 | |
917 | SetPos(pPlaybackState->position); // recover position from the last time |
918 | |
919 | if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined |
920 | |
921 | const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0]; |
922 | const uint32_t loopEnd = loop.LoopStart + loop.LoopLength; |
923 | |
924 | if (GetPos() <= loopEnd) { |
925 | switch (loop.LoopType) { |
926 | |
927 | case loop_type_bidirectional: { //TODO: not tested yet! |
928 | do { |
929 | // if not endless loop check if max. number of loop cycles have been passed |
930 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
931 | |
932 | if (!pPlaybackState->reverse) { // forward playback |
933 | do { |
934 | samplestoloopend = loopEnd - GetPos(); |
935 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
936 | samplestoread -= readsamples; |
937 | totalreadsamples += readsamples; |
938 | if (readsamples == samplestoloopend) { |
939 | pPlaybackState->reverse = true; |
940 | break; |
941 | } |
942 | } while (samplestoread && readsamples); |
943 | } |
944 | else { // backward playback |
945 | |
946 | // as we can only read forward from disk, we have to |
947 | // determine the end position within the loop first, |
948 | // read forward from that 'end' and finally after |
949 | // reading, swap all sample frames so it reflects |
950 | // backward playback |
951 | |
952 | file_offset_t swapareastart = totalreadsamples; |
953 | file_offset_t loopoffset = GetPos() - loop.LoopStart; |
954 | file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset); |
955 | file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop; |
956 | |
957 | SetPos(reverseplaybackend); |
958 | |
959 | // read samples for backward playback |
960 | do { |
961 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer); |
962 | samplestoreadinloop -= readsamples; |
963 | samplestoread -= readsamples; |
964 | totalreadsamples += readsamples; |
965 | } while (samplestoreadinloop && readsamples); |
966 | |
967 | SetPos(reverseplaybackend); // pretend we really read backwards |
968 | |
969 | if (reverseplaybackend == loop.LoopStart) { |
970 | pPlaybackState->loop_cycles_left--; |
971 | pPlaybackState->reverse = false; |
972 | } |
973 | |
974 | // reverse the sample frames for backward playback |
975 | if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above! |
976 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
977 | } |
978 | } while (samplestoread && readsamples); |
979 | break; |
980 | } |
981 | |
982 | case loop_type_backward: { // TODO: not tested yet! |
983 | // forward playback (not entered the loop yet) |
984 | if (!pPlaybackState->reverse) do { |
985 | samplestoloopend = loopEnd - GetPos(); |
986 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
987 | samplestoread -= readsamples; |
988 | totalreadsamples += readsamples; |
989 | if (readsamples == samplestoloopend) { |
990 | pPlaybackState->reverse = true; |
991 | break; |
992 | } |
993 | } while (samplestoread && readsamples); |
994 | |
995 | if (!samplestoread) break; |
996 | |
997 | // as we can only read forward from disk, we have to |
998 | // determine the end position within the loop first, |
999 | // read forward from that 'end' and finally after |
1000 | // reading, swap all sample frames so it reflects |
1001 | // backward playback |
1002 | |
1003 | file_offset_t swapareastart = totalreadsamples; |
1004 | file_offset_t loopoffset = GetPos() - loop.LoopStart; |
1005 | file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset) |
1006 | : samplestoread; |
1007 | file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength); |
1008 | |
1009 | SetPos(reverseplaybackend); |
1010 | |
1011 | // read samples for backward playback |
1012 | do { |
1013 | // if not endless loop check if max. number of loop cycles have been passed |
1014 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
1015 | samplestoloopend = loopEnd - GetPos(); |
1016 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer); |
1017 | samplestoreadinloop -= readsamples; |
1018 | samplestoread -= readsamples; |
1019 | totalreadsamples += readsamples; |
1020 | if (readsamples == samplestoloopend) { |
1021 | pPlaybackState->loop_cycles_left--; |
1022 | SetPos(loop.LoopStart); |
1023 | } |
1024 | } while (samplestoreadinloop && readsamples); |
1025 | |
1026 | SetPos(reverseplaybackend); // pretend we really read backwards |
1027 | |
1028 | // reverse the sample frames for backward playback |
1029 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
1030 | break; |
1031 | } |
1032 | |
1033 | default: case loop_type_normal: { |
1034 | do { |
1035 | // if not endless loop check if max. number of loop cycles have been passed |
1036 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
1037 | samplestoloopend = loopEnd - GetPos(); |
1038 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
1039 | samplestoread -= readsamples; |
1040 | totalreadsamples += readsamples; |
1041 | if (readsamples == samplestoloopend) { |
1042 | pPlaybackState->loop_cycles_left--; |
1043 | SetPos(loop.LoopStart); |
1044 | } |
1045 | } while (samplestoread && readsamples); |
1046 | break; |
1047 | } |
1048 | } |
1049 | } |
1050 | } |
1051 | |
1052 | // read on without looping |
1053 | if (samplestoread) do { |
1054 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer); |
1055 | samplestoread -= readsamples; |
1056 | totalreadsamples += readsamples; |
1057 | } while (readsamples && samplestoread); |
1058 | |
1059 | // store current position |
1060 | pPlaybackState->position = GetPos(); |
1061 | |
1062 | return totalreadsamples; |
1063 | } |
1064 | |
1065 | /** |
1066 | * Reads \a SampleCount number of sample points from the current |
1067 | * position into the buffer pointed by \a pBuffer and increments the |
1068 | * position within the sample. The sample wave stream will be |
1069 | * decompressed on the fly if using a compressed sample. Use this method |
1070 | * and <i>SetPos()</i> if you don't want to load the sample into RAM, |
1071 | * thus for disk streaming. |
1072 | * |
1073 | * <b>Caution:</b> If you are using more than one streaming thread, you |
1074 | * have to use an external decompression buffer for <b>EACH</b> |
1075 | * streaming thread to avoid race conditions and crashes! |
1076 | * |
1077 | * For 16 bit samples, the data in the buffer will be int16_t |
1078 | * (using native endianness). For 24 bit, the buffer will |
1079 | * contain three bytes per sample, little-endian. |
1080 | * |
1081 | * @param pBuffer destination buffer |
1082 | * @param SampleCount number of sample points to read |
1083 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
1084 | * @returns number of successfully read sample points |
1085 | * @see SetPos(), CreateDecompressionBuffer() |
1086 | */ |
1087 | file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) { |
1088 | if (SampleCount == 0) return 0; |
1089 | if (!Compressed) { |
1090 | if (BitDepth == 24) { |
1091 | return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1092 | } |
1093 | else { // 16 bit |
1094 | // (pCkData->Read does endian correction) |
1095 | return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1 |
1096 | : pCkData->Read(pBuffer, SampleCount, 2); |
1097 | } |
1098 | } |
1099 | else { |
1100 | if (this->SamplePos >= this->SamplesTotal) return 0; |
1101 | //TODO: efficiency: maybe we should test for an average compression rate |
1102 | file_offset_t assumedsize = GuessSize(SampleCount), |
1103 | remainingbytes = 0, // remaining bytes in the local buffer |
1104 | remainingsamples = SampleCount, |
1105 | copysamples, skipsamples, |
1106 | currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read() |
1107 | this->FrameOffset = 0; |
1108 | |
1109 | buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer; |
1110 | |
1111 | // if decompression buffer too small, then reduce amount of samples to read |
1112 | if (pDecompressionBuffer->Size < assumedsize) { |
1113 | std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl; |
1114 | SampleCount = WorstCaseMaxSamples(pDecompressionBuffer); |
1115 | remainingsamples = SampleCount; |
1116 | assumedsize = GuessSize(SampleCount); |
1117 | } |
1118 | |
1119 | unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1120 | int16_t* pDst = static_cast<int16_t*>(pBuffer); |
1121 | uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer); |
1122 | remainingbytes = pCkData->Read(pSrc, assumedsize, 1); |
1123 | |
1124 | while (remainingsamples && remainingbytes) { |
1125 | file_offset_t framesamples = SamplesPerFrame; |
1126 | file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset; |
1127 | |
1128 | int mode_l = *pSrc++, mode_r = 0; |
1129 | |
1130 | if (Channels == 2) { |
1131 | mode_r = *pSrc++; |
1132 | framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2; |
1133 | rightChannelOffset = bytesPerFrameNoHdr[mode_l]; |
1134 | nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r]; |
1135 | if (remainingbytes < framebytes) { // last frame in sample |
1136 | framesamples = SamplesInLastFrame; |
1137 | if (mode_l == 4 && (framesamples & 1)) { |
1138 | rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3; |
1139 | } |
1140 | else { |
1141 | rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3; |
1142 | } |
1143 | } |
1144 | } |
1145 | else { |
1146 | framebytes = bytesPerFrame[mode_l] + 1; |
1147 | nextFrameOffset = bytesPerFrameNoHdr[mode_l]; |
1148 | if (remainingbytes < framebytes) { |
1149 | framesamples = SamplesInLastFrame; |
1150 | } |
1151 | } |
1152 | |
1153 | // determine how many samples in this frame to skip and read |
1154 | if (currentframeoffset + remainingsamples >= framesamples) { |
1155 | if (currentframeoffset <= framesamples) { |
1156 | copysamples = framesamples - currentframeoffset; |
1157 | skipsamples = currentframeoffset; |
1158 | } |
1159 | else { |
1160 | copysamples = 0; |
1161 | skipsamples = framesamples; |
1162 | } |
1163 | } |
1164 | else { |
1165 | // This frame has enough data for pBuffer, but not |
1166 | // all of the frame is needed. Set file position |
1167 | // to start of this frame for next call to Read. |
1168 | copysamples = remainingsamples; |
1169 | skipsamples = currentframeoffset; |
1170 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1171 | this->FrameOffset = currentframeoffset + copysamples; |
1172 | } |
1173 | remainingsamples -= copysamples; |
1174 | |
1175 | if (remainingbytes > framebytes) { |
1176 | remainingbytes -= framebytes; |
1177 | if (remainingsamples == 0 && |
1178 | currentframeoffset + copysamples == framesamples) { |
1179 | // This frame has enough data for pBuffer, and |
1180 | // all of the frame is needed. Set file |
1181 | // position to start of next frame for next |
1182 | // call to Read. FrameOffset is 0. |
1183 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1184 | } |
1185 | } |
1186 | else remainingbytes = 0; |
1187 | |
1188 | currentframeoffset -= skipsamples; |
1189 | |
1190 | if (copysamples == 0) { |
1191 | // skip this frame |
1192 | pSrc += framebytes - Channels; |
1193 | } |
1194 | else { |
1195 | const unsigned char* const param_l = pSrc; |
1196 | if (BitDepth == 24) { |
1197 | if (mode_l != 2) pSrc += 12; |
1198 | |
1199 | if (Channels == 2) { // Stereo |
1200 | const unsigned char* const param_r = pSrc; |
1201 | if (mode_r != 2) pSrc += 12; |
1202 | |
1203 | Decompress24(mode_l, param_l, 6, pSrc, pDst24, |
1204 | skipsamples, copysamples, TruncatedBits); |
1205 | Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3, |
1206 | skipsamples, copysamples, TruncatedBits); |
1207 | pDst24 += copysamples * 6; |
1208 | } |
1209 | else { // Mono |
1210 | Decompress24(mode_l, param_l, 3, pSrc, pDst24, |
1211 | skipsamples, copysamples, TruncatedBits); |
1212 | pDst24 += copysamples * 3; |
1213 | } |
1214 | } |
1215 | else { // 16 bit |
1216 | if (mode_l) pSrc += 4; |
1217 | |
1218 | int step; |
1219 | if (Channels == 2) { // Stereo |
1220 | const unsigned char* const param_r = pSrc; |
1221 | if (mode_r) pSrc += 4; |
1222 | |
1223 | step = (2 - mode_l) + (2 - mode_r); |
1224 | Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples); |
1225 | Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1, |
1226 | skipsamples, copysamples); |
1227 | pDst += copysamples << 1; |
1228 | } |
1229 | else { // Mono |
1230 | step = 2 - mode_l; |
1231 | Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples); |
1232 | pDst += copysamples; |
1233 | } |
1234 | } |
1235 | pSrc += nextFrameOffset; |
1236 | } |
1237 | |
1238 | // reload from disk to local buffer if needed |
1239 | if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) { |
1240 | assumedsize = GuessSize(remainingsamples); |
1241 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1242 | if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes(); |
1243 | remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1); |
1244 | pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1245 | } |
1246 | } // while |
1247 | |
1248 | this->SamplePos += (SampleCount - remainingsamples); |
1249 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
1250 | return (SampleCount - remainingsamples); |
1251 | } |
1252 | } |
1253 | |
1254 | /** @brief Write sample wave data. |
1255 | * |
1256 | * Writes \a SampleCount number of sample points from the buffer pointed |
1257 | * by \a pBuffer and increments the position within the sample. Use this |
1258 | * method to directly write the sample data to disk, i.e. if you don't |
1259 | * want or cannot load the whole sample data into RAM. |
1260 | * |
1261 | * You have to Resize() the sample to the desired size and call |
1262 | * File::Save() <b>before</b> using Write(). |
1263 | * |
1264 | * Note: there is currently no support for writing compressed samples. |
1265 | * |
1266 | * For 16 bit samples, the data in the source buffer should be |
1267 | * int16_t (using native endianness). For 24 bit, the buffer |
1268 | * should contain three bytes per sample, little-endian. |
1269 | * |
1270 | * @param pBuffer - source buffer |
1271 | * @param SampleCount - number of sample points to write |
1272 | * @throws DLS::Exception if current sample size is too small |
1273 | * @throws gig::Exception if sample is compressed |
1274 | * @see DLS::LoadSampleData() |
1275 | */ |
1276 | file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) { |
1277 | if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)"); |
1278 | |
1279 | // if this is the first write in this sample, reset the |
1280 | // checksum calculator |
1281 | if (pCkData->GetPos() == 0) { |
1282 | __resetCRC(crc); |
1283 | } |
1284 | if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small"); |
1285 | file_offset_t res; |
1286 | if (BitDepth == 24) { |
1287 | res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1288 | } else { // 16 bit |
1289 | res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1 |
1290 | : pCkData->Write(pBuffer, SampleCount, 2); |
1291 | } |
1292 | __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc); |
1293 | |
1294 | // if this is the last write, update the checksum chunk in the |
1295 | // file |
1296 | if (pCkData->GetPos() == pCkData->GetSize()) { |
1297 | File* pFile = static_cast<File*>(GetParent()); |
1298 | pFile->SetSampleChecksum(this, __encodeCRC(crc)); |
1299 | } |
1300 | return res; |
1301 | } |
1302 | |
1303 | /** |
1304 | * Allocates a decompression buffer for streaming (compressed) samples |
1305 | * with Sample::Read(). If you are using more than one streaming thread |
1306 | * in your application you <b>HAVE</b> to create a decompression buffer |
1307 | * for <b>EACH</b> of your streaming threads and provide it with the |
1308 | * Sample::Read() call in order to avoid race conditions and crashes. |
1309 | * |
1310 | * You should free the memory occupied by the allocated buffer(s) once |
1311 | * you don't need one of your streaming threads anymore by calling |
1312 | * DestroyDecompressionBuffer(). |
1313 | * |
1314 | * @param MaxReadSize - the maximum size (in sample points) you ever |
1315 | * expect to read with one Read() call |
1316 | * @returns allocated decompression buffer |
1317 | * @see DestroyDecompressionBuffer() |
1318 | */ |
1319 | buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) { |
1320 | buffer_t result; |
1321 | const double worstCaseHeaderOverhead = |
1322 | (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0; |
1323 | result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead); |
1324 | result.pStart = new int8_t[result.Size]; |
1325 | result.NullExtensionSize = 0; |
1326 | return result; |
1327 | } |
1328 | |
1329 | /** |
1330 | * Free decompression buffer, previously created with |
1331 | * CreateDecompressionBuffer(). |
1332 | * |
1333 | * @param DecompressionBuffer - previously allocated decompression |
1334 | * buffer to free |
1335 | */ |
1336 | void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) { |
1337 | if (DecompressionBuffer.Size && DecompressionBuffer.pStart) { |
1338 | delete[] (int8_t*) DecompressionBuffer.pStart; |
1339 | DecompressionBuffer.pStart = NULL; |
1340 | DecompressionBuffer.Size = 0; |
1341 | DecompressionBuffer.NullExtensionSize = 0; |
1342 | } |
1343 | } |
1344 | |
1345 | /** |
1346 | * Returns pointer to the Group this Sample belongs to. In the .gig |
1347 | * format a sample always belongs to one group. If it wasn't explicitly |
1348 | * assigned to a certain group, it will be automatically assigned to a |
1349 | * default group. |
1350 | * |
1351 | * @returns Sample's Group (never NULL) |
1352 | */ |
1353 | Group* Sample::GetGroup() const { |
1354 | return pGroup; |
1355 | } |
1356 | |
1357 | /** |
1358 | * Returns the CRC-32 checksum of the sample's raw wave form data at the |
1359 | * time when this sample's wave form data was modified for the last time |
1360 | * by calling Write(). This checksum only covers the raw wave form data, |
1361 | * not any meta informations like i.e. bit depth or loop points. Since |
1362 | * this method just returns the checksum stored for this sample i.e. when |
1363 | * the gig file was loaded, this method returns immediately. So it does no |
1364 | * recalcuation of the checksum with the currently available sample wave |
1365 | * form data. |
1366 | * |
1367 | * @see VerifyWaveData() |
1368 | */ |
1369 | uint32_t Sample::GetWaveDataCRC32Checksum() { |
1370 | return crc; |
1371 | } |
1372 | |
1373 | /** |
1374 | * Checks the integrity of this sample's raw audio wave data. Whenever a |
1375 | * Sample's raw wave data is intentionally modified (i.e. by calling |
1376 | * Write() and supplying the new raw audio wave form data) a CRC32 checksum |
1377 | * is calculated and stored/updated for this sample, along to the sample's |
1378 | * meta informations. |
1379 | * |
1380 | * Now by calling this method the current raw audio wave data is checked |
1381 | * against the already stored CRC32 check sum in order to check whether the |
1382 | * sample data had been damaged unintentionally for some reason. Since by |
1383 | * calling this method always the entire raw audio wave data has to be |
1384 | * read, verifying all samples this way may take a long time accordingly. |
1385 | * And that's also the reason why the sample integrity is not checked by |
1386 | * default whenever a gig file is loaded. So this method must be called |
1387 | * explicitly to fulfill this task. |
1388 | * |
1389 | * @param pActually - (optional) if provided, will be set to the actually |
1390 | * calculated checksum of the current raw wave form data, |
1391 | * you can get the expected checksum instead by calling |
1392 | * GetWaveDataCRC32Checksum() |
1393 | * @returns true if sample is OK or false if the sample is damaged |
1394 | * @throws Exception if no checksum had been stored to disk for this |
1395 | * sample yet, or on I/O issues |
1396 | * @see GetWaveDataCRC32Checksum() |
1397 | */ |
1398 | bool Sample::VerifyWaveData(uint32_t* pActually) { |
1399 | //File* pFile = static_cast<File*>(GetParent()); |
1400 | uint32_t crc = CalculateWaveDataChecksum(); |
1401 | if (pActually) *pActually = crc; |
1402 | return crc == this->crc; |
1403 | } |
1404 | |
1405 | uint32_t Sample::CalculateWaveDataChecksum() { |
1406 | const size_t sz = 20*1024; // 20kB buffer size |
1407 | std::vector<uint8_t> buffer(sz); |
1408 | buffer.resize(sz); |
1409 | |
1410 | const size_t n = sz / FrameSize; |
1411 | SetPos(0); |
1412 | uint32_t crc = 0; |
1413 | __resetCRC(crc); |
1414 | while (true) { |
1415 | file_offset_t nRead = Read(&buffer[0], n); |
1416 | if (nRead <= 0) break; |
1417 | __calculateCRC(&buffer[0], nRead * FrameSize, crc); |
1418 | } |
1419 | __encodeCRC(crc); |
1420 | return crc; |
1421 | } |
1422 | |
1423 | Sample::~Sample() { |
1424 | Instances--; |
1425 | if (!Instances && InternalDecompressionBuffer.Size) { |
1426 | delete[] (unsigned char*) InternalDecompressionBuffer.pStart; |
1427 | InternalDecompressionBuffer.pStart = NULL; |
1428 | InternalDecompressionBuffer.Size = 0; |
1429 | } |
1430 | if (FrameTable) delete[] FrameTable; |
1431 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
1432 | } |
1433 | |
1434 | |
1435 | |
1436 | // *************** DimensionRegion *************** |
1437 | // * |
1438 | |
1439 | size_t DimensionRegion::Instances = 0; |
1440 | DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL; |
1441 | |
1442 | DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) { |
1443 | Instances++; |
1444 | |
1445 | pSample = NULL; |
1446 | pRegion = pParent; |
1447 | |
1448 | if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4); |
1449 | else memset(&Crossfade, 0, 4); |
1450 | |
1451 | if (!pVelocityTables) pVelocityTables = new VelocityTableMap; |
1452 | |
1453 | RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA); |
1454 | if (_3ewa) { // if '3ewa' chunk exists |
1455 | _3ewa->ReadInt32(); // unknown, always == chunk size ? |
1456 | LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1457 | EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1458 | _3ewa->ReadInt16(); // unknown |
1459 | LFO1InternalDepth = _3ewa->ReadUint16(); |
1460 | _3ewa->ReadInt16(); // unknown |
1461 | LFO3InternalDepth = _3ewa->ReadInt16(); |
1462 | _3ewa->ReadInt16(); // unknown |
1463 | LFO1ControlDepth = _3ewa->ReadUint16(); |
1464 | _3ewa->ReadInt16(); // unknown |
1465 | LFO3ControlDepth = _3ewa->ReadInt16(); |
1466 | EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1467 | EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1468 | _3ewa->ReadInt16(); // unknown |
1469 | EG1Sustain = _3ewa->ReadUint16(); |
1470 | EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1471 | EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1472 | uint8_t eg1ctrloptions = _3ewa->ReadUint8(); |
1473 | EG1ControllerInvert = eg1ctrloptions & 0x01; |
1474 | EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions); |
1475 | EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions); |
1476 | EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions); |
1477 | EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1478 | uint8_t eg2ctrloptions = _3ewa->ReadUint8(); |
1479 | EG2ControllerInvert = eg2ctrloptions & 0x01; |
1480 | EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions); |
1481 | EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions); |
1482 | EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions); |
1483 | LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1484 | EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1485 | EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1486 | _3ewa->ReadInt16(); // unknown |
1487 | EG2Sustain = _3ewa->ReadUint16(); |
1488 | EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1489 | _3ewa->ReadInt16(); // unknown |
1490 | LFO2ControlDepth = _3ewa->ReadUint16(); |
1491 | LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1492 | _3ewa->ReadInt16(); // unknown |
1493 | LFO2InternalDepth = _3ewa->ReadUint16(); |
1494 | int32_t eg1decay2 = _3ewa->ReadInt32(); |
1495 | EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2); |
1496 | EG1InfiniteSustain = (eg1decay2 == 0x7fffffff); |
1497 | _3ewa->ReadInt16(); // unknown |
1498 | EG1PreAttack = _3ewa->ReadUint16(); |
1499 | int32_t eg2decay2 = _3ewa->ReadInt32(); |
1500 | EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2); |
1501 | EG2InfiniteSustain = (eg2decay2 == 0x7fffffff); |
1502 | _3ewa->ReadInt16(); // unknown |
1503 | EG2PreAttack = _3ewa->ReadUint16(); |
1504 | uint8_t velocityresponse = _3ewa->ReadUint8(); |
1505 | if (velocityresponse < 5) { |
1506 | VelocityResponseCurve = curve_type_nonlinear; |
1507 | VelocityResponseDepth = velocityresponse; |
1508 | } else if (velocityresponse < 10) { |
1509 | VelocityResponseCurve = curve_type_linear; |
1510 | VelocityResponseDepth = velocityresponse - 5; |
1511 | } else if (velocityresponse < 15) { |
1512 | VelocityResponseCurve = curve_type_special; |
1513 | VelocityResponseDepth = velocityresponse - 10; |
1514 | } else { |
1515 | VelocityResponseCurve = curve_type_unknown; |
1516 | VelocityResponseDepth = 0; |
1517 | } |
1518 | uint8_t releasevelocityresponse = _3ewa->ReadUint8(); |
1519 | if (releasevelocityresponse < 5) { |
1520 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1521 | ReleaseVelocityResponseDepth = releasevelocityresponse; |
1522 | } else if (releasevelocityresponse < 10) { |
1523 | ReleaseVelocityResponseCurve = curve_type_linear; |
1524 | ReleaseVelocityResponseDepth = releasevelocityresponse - 5; |
1525 | } else if (releasevelocityresponse < 15) { |
1526 | ReleaseVelocityResponseCurve = curve_type_special; |
1527 | ReleaseVelocityResponseDepth = releasevelocityresponse - 10; |
1528 | } else { |
1529 | ReleaseVelocityResponseCurve = curve_type_unknown; |
1530 | ReleaseVelocityResponseDepth = 0; |
1531 | } |
1532 | VelocityResponseCurveScaling = _3ewa->ReadUint8(); |
1533 | AttenuationControllerThreshold = _3ewa->ReadInt8(); |
1534 | _3ewa->ReadInt32(); // unknown |
1535 | SampleStartOffset = (uint16_t) _3ewa->ReadInt16(); |
1536 | _3ewa->ReadInt16(); // unknown |
1537 | uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8(); |
1538 | PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass); |
1539 | if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94; |
1540 | else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95; |
1541 | else DimensionBypass = dim_bypass_ctrl_none; |
1542 | uint8_t pan = _3ewa->ReadUint8(); |
1543 | Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit |
1544 | SelfMask = _3ewa->ReadInt8() & 0x01; |
1545 | _3ewa->ReadInt8(); // unknown |
1546 | uint8_t lfo3ctrl = _3ewa->ReadUint8(); |
1547 | LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits |
1548 | LFO3Sync = lfo3ctrl & 0x20; // bit 5 |
1549 | InvertAttenuationController = lfo3ctrl & 0x80; // bit 7 |
1550 | AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1551 | uint8_t lfo2ctrl = _3ewa->ReadUint8(); |
1552 | LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits |
1553 | LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7 |
1554 | LFO2Sync = lfo2ctrl & 0x20; // bit 5 |
1555 | bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6 |
1556 | uint8_t lfo1ctrl = _3ewa->ReadUint8(); |
1557 | LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits |
1558 | LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7 |
1559 | LFO1Sync = lfo1ctrl & 0x40; // bit 6 |
1560 | VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl)) |
1561 | : vcf_res_ctrl_none; |
1562 | uint16_t eg3depth = _3ewa->ReadUint16(); |
1563 | EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */ |
1564 | : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */ |
1565 | _3ewa->ReadInt16(); // unknown |
1566 | ChannelOffset = _3ewa->ReadUint8() / 4; |
1567 | uint8_t regoptions = _3ewa->ReadUint8(); |
1568 | MSDecode = regoptions & 0x01; // bit 0 |
1569 | SustainDefeat = regoptions & 0x02; // bit 1 |
1570 | _3ewa->ReadInt16(); // unknown |
1571 | VelocityUpperLimit = _3ewa->ReadInt8(); |
1572 | _3ewa->ReadInt8(); // unknown |
1573 | _3ewa->ReadInt16(); // unknown |
1574 | ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay |
1575 | _3ewa->ReadInt8(); // unknown |
1576 | _3ewa->ReadInt8(); // unknown |
1577 | EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7 |
1578 | uint8_t vcfcutoff = _3ewa->ReadUint8(); |
1579 | VCFEnabled = vcfcutoff & 0x80; // bit 7 |
1580 | VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits |
1581 | VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8()); |
1582 | uint8_t vcfvelscale = _3ewa->ReadUint8(); |
1583 | VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7 |
1584 | VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits |
1585 | _3ewa->ReadInt8(); // unknown |
1586 | uint8_t vcfresonance = _3ewa->ReadUint8(); |
1587 | VCFResonance = vcfresonance & 0x7f; // lower 7 bits |
1588 | VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7 |
1589 | uint8_t vcfbreakpoint = _3ewa->ReadUint8(); |
1590 | VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7 |
1591 | VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits |
1592 | uint8_t vcfvelocity = _3ewa->ReadUint8(); |
1593 | VCFVelocityDynamicRange = vcfvelocity % 5; |
1594 | VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5); |
1595 | VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8()); |
1596 | if (VCFType == vcf_type_lowpass) { |
1597 | if (lfo3ctrl & 0x40) // bit 6 |
1598 | VCFType = vcf_type_lowpassturbo; |
1599 | } |
1600 | if (_3ewa->RemainingBytes() >= 8) { |
1601 | _3ewa->Read(DimensionUpperLimits, 1, 8); |
1602 | } else { |
1603 | memset(DimensionUpperLimits, 0, 8); |
1604 | } |
1605 | } else { // '3ewa' chunk does not exist yet |
1606 | // use default values |
1607 | LFO3Frequency = 1.0; |
1608 | EG3Attack = 0.0; |
1609 | LFO1InternalDepth = 0; |
1610 | LFO3InternalDepth = 0; |
1611 | LFO1ControlDepth = 0; |
1612 | LFO3ControlDepth = 0; |
1613 | EG1Attack = 0.0; |
1614 | EG1Decay1 = 0.005; |
1615 | EG1Sustain = 1000; |
1616 | EG1Release = 0.3; |
1617 | EG1Controller.type = eg1_ctrl_t::type_none; |
1618 | EG1Controller.controller_number = 0; |
1619 | EG1ControllerInvert = false; |
1620 | EG1ControllerAttackInfluence = 0; |
1621 | EG1ControllerDecayInfluence = 0; |
1622 | EG1ControllerReleaseInfluence = 0; |
1623 | EG2Controller.type = eg2_ctrl_t::type_none; |
1624 | EG2Controller.controller_number = 0; |
1625 | EG2ControllerInvert = false; |
1626 | EG2ControllerAttackInfluence = 0; |
1627 | EG2ControllerDecayInfluence = 0; |
1628 | EG2ControllerReleaseInfluence = 0; |
1629 | LFO1Frequency = 1.0; |
1630 | EG2Attack = 0.0; |
1631 | EG2Decay1 = 0.005; |
1632 | EG2Sustain = 1000; |
1633 | EG2Release = 60; |
1634 | LFO2ControlDepth = 0; |
1635 | LFO2Frequency = 1.0; |
1636 | LFO2InternalDepth = 0; |
1637 | EG1Decay2 = 0.0; |
1638 | EG1InfiniteSustain = true; |
1639 | EG1PreAttack = 0; |
1640 | EG2Decay2 = 0.0; |
1641 | EG2InfiniteSustain = true; |
1642 | EG2PreAttack = 0; |
1643 | VelocityResponseCurve = curve_type_nonlinear; |
1644 | VelocityResponseDepth = 3; |
1645 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1646 | ReleaseVelocityResponseDepth = 3; |
1647 | VelocityResponseCurveScaling = 32; |
1648 | AttenuationControllerThreshold = 0; |
1649 | SampleStartOffset = 0; |
1650 | PitchTrack = true; |
1651 | DimensionBypass = dim_bypass_ctrl_none; |
1652 | Pan = 0; |
1653 | SelfMask = true; |
1654 | LFO3Controller = lfo3_ctrl_modwheel; |
1655 | LFO3Sync = false; |
1656 | InvertAttenuationController = false; |
1657 | AttenuationController.type = attenuation_ctrl_t::type_none; |
1658 | AttenuationController.controller_number = 0; |
1659 | LFO2Controller = lfo2_ctrl_internal; |
1660 | LFO2FlipPhase = false; |
1661 | LFO2Sync = false; |
1662 | LFO1Controller = lfo1_ctrl_internal; |
1663 | LFO1FlipPhase = false; |
1664 | LFO1Sync = false; |
1665 | VCFResonanceController = vcf_res_ctrl_none; |
1666 | EG3Depth = 0; |
1667 | ChannelOffset = 0; |
1668 | MSDecode = false; |
1669 | SustainDefeat = false; |
1670 | VelocityUpperLimit = 0; |
1671 | ReleaseTriggerDecay = 0; |
1672 | EG1Hold = false; |
1673 | VCFEnabled = false; |
1674 | VCFCutoff = 0; |
1675 | VCFCutoffController = vcf_cutoff_ctrl_none; |
1676 | VCFCutoffControllerInvert = false; |
1677 | VCFVelocityScale = 0; |
1678 | VCFResonance = 0; |
1679 | VCFResonanceDynamic = false; |
1680 | VCFKeyboardTracking = false; |
1681 | VCFKeyboardTrackingBreakpoint = 0; |
1682 | VCFVelocityDynamicRange = 0x04; |
1683 | VCFVelocityCurve = curve_type_linear; |
1684 | VCFType = vcf_type_lowpass; |
1685 | memset(DimensionUpperLimits, 127, 8); |
1686 | } |
1687 | |
1688 | pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve, |
1689 | VelocityResponseDepth, |
1690 | VelocityResponseCurveScaling); |
1691 | |
1692 | pVelocityReleaseTable = GetReleaseVelocityTable( |
1693 | ReleaseVelocityResponseCurve, |
1694 | ReleaseVelocityResponseDepth |
1695 | ); |
1696 | |
1697 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, |
1698 | VCFVelocityDynamicRange, |
1699 | VCFVelocityScale, |
1700 | VCFCutoffController); |
1701 | |
1702 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1703 | VelocityTable = 0; |
1704 | } |
1705 | |
1706 | /* |
1707 | * Constructs a DimensionRegion by copying all parameters from |
1708 | * another DimensionRegion |
1709 | */ |
1710 | DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) { |
1711 | Instances++; |
1712 | //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method |
1713 | *this = src; // default memberwise shallow copy of all parameters |
1714 | pParentList = _3ewl; // restore the chunk pointer |
1715 | |
1716 | // deep copy of owned structures |
1717 | if (src.VelocityTable) { |
1718 | VelocityTable = new uint8_t[128]; |
1719 | for (int k = 0 ; k < 128 ; k++) |
1720 | VelocityTable[k] = src.VelocityTable[k]; |
1721 | } |
1722 | if (src.pSampleLoops) { |
1723 | pSampleLoops = new DLS::sample_loop_t[src.SampleLoops]; |
1724 | for (int k = 0 ; k < src.SampleLoops ; k++) |
1725 | pSampleLoops[k] = src.pSampleLoops[k]; |
1726 | } |
1727 | } |
1728 | |
1729 | /** |
1730 | * Make a (semi) deep copy of the DimensionRegion object given by @a orig |
1731 | * and assign it to this object. |
1732 | * |
1733 | * Note that all sample pointers referenced by @a orig are simply copied as |
1734 | * memory address. Thus the respective samples are shared, not duplicated! |
1735 | * |
1736 | * @param orig - original DimensionRegion object to be copied from |
1737 | */ |
1738 | void DimensionRegion::CopyAssign(const DimensionRegion* orig) { |
1739 | CopyAssign(orig, NULL); |
1740 | } |
1741 | |
1742 | /** |
1743 | * Make a (semi) deep copy of the DimensionRegion object given by @a orig |
1744 | * and assign it to this object. |
1745 | * |
1746 | * @param orig - original DimensionRegion object to be copied from |
1747 | * @param mSamples - crosslink map between the foreign file's samples and |
1748 | * this file's samples |
1749 | */ |
1750 | void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) { |
1751 | // delete all allocated data first |
1752 | if (VelocityTable) delete [] VelocityTable; |
1753 | if (pSampleLoops) delete [] pSampleLoops; |
1754 | |
1755 | // backup parent list pointer |
1756 | RIFF::List* p = pParentList; |
1757 | |
1758 | gig::Sample* pOriginalSample = pSample; |
1759 | gig::Region* pOriginalRegion = pRegion; |
1760 | |
1761 | //NOTE: copy code copied from assignment constructor above, see comment there as well |
1762 | |
1763 | *this = *orig; // default memberwise shallow copy of all parameters |
1764 | |
1765 | // restore members that shall not be altered |
1766 | pParentList = p; // restore the chunk pointer |
1767 | pRegion = pOriginalRegion; |
1768 | |
1769 | // only take the raw sample reference reference if the |
1770 | // two DimensionRegion objects are part of the same file |
1771 | if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) { |
1772 | pSample = pOriginalSample; |
1773 | } |
1774 | |
1775 | if (mSamples && mSamples->count(orig->pSample)) { |
1776 | pSample = mSamples->find(orig->pSample)->second; |
1777 | } |
1778 | |
1779 | // deep copy of owned structures |
1780 | if (orig->VelocityTable) { |
1781 | VelocityTable = new uint8_t[128]; |
1782 | for (int k = 0 ; k < 128 ; k++) |
1783 | VelocityTable[k] = orig->VelocityTable[k]; |
1784 | } |
1785 | if (orig->pSampleLoops) { |
1786 | pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops]; |
1787 | for (int k = 0 ; k < orig->SampleLoops ; k++) |
1788 | pSampleLoops[k] = orig->pSampleLoops[k]; |
1789 | } |
1790 | } |
1791 | |
1792 | /** |
1793 | * Updates the respective member variable and updates @c SampleAttenuation |
1794 | * which depends on this value. |
1795 | */ |
1796 | void DimensionRegion::SetGain(int32_t gain) { |
1797 | DLS::Sampler::SetGain(gain); |
1798 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1799 | } |
1800 | |
1801 | /** |
1802 | * Apply dimension region settings to the respective RIFF chunks. You |
1803 | * have to call File::Save() to make changes persistent. |
1804 | * |
1805 | * Usually there is absolutely no need to call this method explicitly. |
1806 | * It will be called automatically when File::Save() was called. |
1807 | * |
1808 | * @param pProgress - callback function for progress notification |
1809 | */ |
1810 | void DimensionRegion::UpdateChunks(progress_t* pProgress) { |
1811 | // first update base class's chunk |
1812 | DLS::Sampler::UpdateChunks(pProgress); |
1813 | |
1814 | RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP); |
1815 | uint8_t* pData = (uint8_t*) wsmp->LoadChunkData(); |
1816 | pData[12] = Crossfade.in_start; |
1817 | pData[13] = Crossfade.in_end; |
1818 | pData[14] = Crossfade.out_start; |
1819 | pData[15] = Crossfade.out_end; |
1820 | |
1821 | // make sure '3ewa' chunk exists |
1822 | RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA); |
1823 | if (!_3ewa) { |
1824 | File* pFile = (File*) GetParent()->GetParent()->GetParent(); |
1825 | bool version3 = pFile->pVersion && pFile->pVersion->major == 3; |
1826 | _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140); |
1827 | } |
1828 | pData = (uint8_t*) _3ewa->LoadChunkData(); |
1829 | |
1830 | // update '3ewa' chunk with DimensionRegion's current settings |
1831 | |
1832 | const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize(); |
1833 | store32(&pData[0], chunksize); // unknown, always chunk size? |
1834 | |
1835 | const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency); |
1836 | store32(&pData[4], lfo3freq); |
1837 | |
1838 | const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack); |
1839 | store32(&pData[8], eg3attack); |
1840 | |
1841 | // next 2 bytes unknown |
1842 | |
1843 | store16(&pData[14], LFO1InternalDepth); |
1844 | |
1845 | // next 2 bytes unknown |
1846 | |
1847 | store16(&pData[18], LFO3InternalDepth); |
1848 | |
1849 | // next 2 bytes unknown |
1850 | |
1851 | store16(&pData[22], LFO1ControlDepth); |
1852 | |
1853 | // next 2 bytes unknown |
1854 | |
1855 | store16(&pData[26], LFO3ControlDepth); |
1856 | |
1857 | const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack); |
1858 | store32(&pData[28], eg1attack); |
1859 | |
1860 | const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1); |
1861 | store32(&pData[32], eg1decay1); |
1862 | |
1863 | // next 2 bytes unknown |
1864 | |
1865 | store16(&pData[38], EG1Sustain); |
1866 | |
1867 | const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release); |
1868 | store32(&pData[40], eg1release); |
1869 | |
1870 | const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller); |
1871 | pData[44] = eg1ctl; |
1872 | |
1873 | const uint8_t eg1ctrloptions = |
1874 | (EG1ControllerInvert ? 0x01 : 0x00) | |
1875 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) | |
1876 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) | |
1877 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence); |
1878 | pData[45] = eg1ctrloptions; |
1879 | |
1880 | const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller); |
1881 | pData[46] = eg2ctl; |
1882 | |
1883 | const uint8_t eg2ctrloptions = |
1884 | (EG2ControllerInvert ? 0x01 : 0x00) | |
1885 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) | |
1886 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) | |
1887 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence); |
1888 | pData[47] = eg2ctrloptions; |
1889 | |
1890 | const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency); |
1891 | store32(&pData[48], lfo1freq); |
1892 | |
1893 | const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack); |
1894 | store32(&pData[52], eg2attack); |
1895 | |
1896 | const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1); |
1897 | store32(&pData[56], eg2decay1); |
1898 | |
1899 | // next 2 bytes unknown |
1900 | |
1901 | store16(&pData[62], EG2Sustain); |
1902 | |
1903 | const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release); |
1904 | store32(&pData[64], eg2release); |
1905 | |
1906 | // next 2 bytes unknown |
1907 | |
1908 | store16(&pData[70], LFO2ControlDepth); |
1909 | |
1910 | const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency); |
1911 | store32(&pData[72], lfo2freq); |
1912 | |
1913 | // next 2 bytes unknown |
1914 | |
1915 | store16(&pData[78], LFO2InternalDepth); |
1916 | |
1917 | const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2); |
1918 | store32(&pData[80], eg1decay2); |
1919 | |
1920 | // next 2 bytes unknown |
1921 | |
1922 | store16(&pData[86], EG1PreAttack); |
1923 | |
1924 | const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2); |
1925 | store32(&pData[88], eg2decay2); |
1926 | |
1927 | // next 2 bytes unknown |
1928 | |
1929 | store16(&pData[94], EG2PreAttack); |
1930 | |
1931 | { |
1932 | if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4"); |
1933 | uint8_t velocityresponse = VelocityResponseDepth; |
1934 | switch (VelocityResponseCurve) { |
1935 | case curve_type_nonlinear: |
1936 | break; |
1937 | case curve_type_linear: |
1938 | velocityresponse += 5; |
1939 | break; |
1940 | case curve_type_special: |
1941 | velocityresponse += 10; |
1942 | break; |
1943 | case curve_type_unknown: |
1944 | default: |
1945 | throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected"); |
1946 | } |
1947 | pData[96] = velocityresponse; |
1948 | } |
1949 | |
1950 | { |
1951 | if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4"); |
1952 | uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth; |
1953 | switch (ReleaseVelocityResponseCurve) { |
1954 | case curve_type_nonlinear: |
1955 | break; |
1956 | case curve_type_linear: |
1957 | releasevelocityresponse += 5; |
1958 | break; |
1959 | case curve_type_special: |
1960 | releasevelocityresponse += 10; |
1961 | break; |
1962 | case curve_type_unknown: |
1963 | default: |
1964 | throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected"); |
1965 | } |
1966 | pData[97] = releasevelocityresponse; |
1967 | } |
1968 | |
1969 | pData[98] = VelocityResponseCurveScaling; |
1970 | |
1971 | pData[99] = AttenuationControllerThreshold; |
1972 | |
1973 | // next 4 bytes unknown |
1974 | |
1975 | store16(&pData[104], SampleStartOffset); |
1976 | |
1977 | // next 2 bytes unknown |
1978 | |
1979 | { |
1980 | uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack); |
1981 | switch (DimensionBypass) { |
1982 | case dim_bypass_ctrl_94: |
1983 | pitchTrackDimensionBypass |= 0x10; |
1984 | break; |
1985 | case dim_bypass_ctrl_95: |
1986 | pitchTrackDimensionBypass |= 0x20; |
1987 | break; |
1988 | case dim_bypass_ctrl_none: |
1989 | //FIXME: should we set anything here? |
1990 | break; |
1991 | default: |
1992 | throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected"); |
1993 | } |
1994 | pData[108] = pitchTrackDimensionBypass; |
1995 | } |
1996 | |
1997 | const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit |
1998 | pData[109] = pan; |
1999 | |
2000 | const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00; |
2001 | pData[110] = selfmask; |
2002 | |
2003 | // next byte unknown |
2004 | |
2005 | { |
2006 | uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits |
2007 | if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5 |
2008 | if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7 |
2009 | if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6 |
2010 | pData[112] = lfo3ctrl; |
2011 | } |
2012 | |
2013 | const uint8_t attenctl = EncodeLeverageController(AttenuationController); |
2014 | pData[113] = attenctl; |
2015 | |
2016 | { |
2017 | uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits |
2018 | if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7 |
2019 | if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5 |
2020 | if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6 |
2021 | pData[114] = lfo2ctrl; |
2022 | } |
2023 | |
2024 | { |
2025 | uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits |
2026 | if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7 |
2027 | if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6 |
2028 | if (VCFResonanceController != vcf_res_ctrl_none) |
2029 | lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController); |
2030 | pData[115] = lfo1ctrl; |
2031 | } |
2032 | |
2033 | const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth |
2034 | : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */ |
2035 | store16(&pData[116], eg3depth); |
2036 | |
2037 | // next 2 bytes unknown |
2038 | |
2039 | const uint8_t channeloffset = ChannelOffset * 4; |
2040 | pData[120] = channeloffset; |
2041 | |
2042 | { |
2043 | uint8_t regoptions = 0; |
2044 | if (MSDecode) regoptions |= 0x01; // bit 0 |
2045 | if (SustainDefeat) regoptions |= 0x02; // bit 1 |
2046 | pData[121] = regoptions; |
2047 | } |
2048 | |
2049 | // next 2 bytes unknown |
2050 | |
2051 | pData[124] = VelocityUpperLimit; |
2052 | |
2053 | // next 3 bytes unknown |
2054 | |
2055 | pData[128] = ReleaseTriggerDecay; |
2056 | |
2057 | // next 2 bytes unknown |
2058 | |
2059 | const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7 |
2060 | pData[131] = eg1hold; |
2061 | |
2062 | const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */ |
2063 | (VCFCutoff & 0x7f); /* lower 7 bits */ |
2064 | pData[132] = vcfcutoff; |
2065 | |
2066 | pData[133] = VCFCutoffController; |
2067 | |
2068 | const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */ |
2069 | (VCFVelocityScale & 0x7f); /* lower 7 bits */ |
2070 | pData[134] = vcfvelscale; |
2071 | |
2072 | // next byte unknown |
2073 | |
2074 | const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */ |
2075 | (VCFResonance & 0x7f); /* lower 7 bits */ |
2076 | pData[136] = vcfresonance; |
2077 | |
2078 | const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */ |
2079 | (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */ |
2080 | pData[137] = vcfbreakpoint; |
2081 | |
2082 | const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 + |
2083 | VCFVelocityCurve * 5; |
2084 | pData[138] = vcfvelocity; |
2085 | |
2086 | const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType; |
2087 | pData[139] = vcftype; |
2088 | |
2089 | if (chunksize >= 148) { |
2090 | memcpy(&pData[140], DimensionUpperLimits, 8); |
2091 | } |
2092 | } |
2093 | |
2094 | double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) { |
2095 | curve_type_t curveType = releaseVelocityResponseCurve; |
2096 | uint8_t depth = releaseVelocityResponseDepth; |
2097 | // this models a strange behaviour or bug in GSt: two of the |
2098 | // velocity response curves for release time are not used even |
2099 | // if specified, instead another curve is chosen. |
2100 | if ((curveType == curve_type_nonlinear && depth == 0) || |
2101 | (curveType == curve_type_special && depth == 4)) { |
2102 | curveType = curve_type_nonlinear; |
2103 | depth = 3; |
2104 | } |
2105 | return GetVelocityTable(curveType, depth, 0); |
2106 | } |
2107 | |
2108 | double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, |
2109 | uint8_t vcfVelocityDynamicRange, |
2110 | uint8_t vcfVelocityScale, |
2111 | vcf_cutoff_ctrl_t vcfCutoffController) |
2112 | { |
2113 | curve_type_t curveType = vcfVelocityCurve; |
2114 | uint8_t depth = vcfVelocityDynamicRange; |
2115 | // even stranger GSt: two of the velocity response curves for |
2116 | // filter cutoff are not used, instead another special curve |
2117 | // is chosen. This curve is not used anywhere else. |
2118 | if ((curveType == curve_type_nonlinear && depth == 0) || |
2119 | (curveType == curve_type_special && depth == 4)) { |
2120 | curveType = curve_type_special; |
2121 | depth = 5; |
2122 | } |
2123 | return GetVelocityTable(curveType, depth, |
2124 | (vcfCutoffController <= vcf_cutoff_ctrl_none2) |
2125 | ? vcfVelocityScale : 0); |
2126 | } |
2127 | |
2128 | // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet |
2129 | double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) |
2130 | { |
2131 | double* table; |
2132 | uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling; |
2133 | if (pVelocityTables->count(tableKey)) { // if key exists |
2134 | table = (*pVelocityTables)[tableKey]; |
2135 | } |
2136 | else { |
2137 | table = CreateVelocityTable(curveType, depth, scaling); |
2138 | (*pVelocityTables)[tableKey] = table; // put the new table into the tables map |
2139 | } |
2140 | return table; |
2141 | } |
2142 | |
2143 | Region* DimensionRegion::GetParent() const { |
2144 | return pRegion; |
2145 | } |
2146 | |
2147 | // show error if some _lev_ctrl_* enum entry is not listed in the following function |
2148 | // (commented out for now, because "diagnostic push" not supported prior GCC 4.6) |
2149 | // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below) |
2150 | //#pragma GCC diagnostic push |
2151 | //#pragma GCC diagnostic error "-Wswitch" |
2152 | |
2153 | leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) { |
2154 | leverage_ctrl_t decodedcontroller; |
2155 | switch (EncodedController) { |
2156 | // special controller |
2157 | case _lev_ctrl_none: |
2158 | decodedcontroller.type = leverage_ctrl_t::type_none; |
2159 | decodedcontroller.controller_number = 0; |
2160 | break; |
2161 | case _lev_ctrl_velocity: |
2162 | decodedcontroller.type = leverage_ctrl_t::type_velocity; |
2163 | decodedcontroller.controller_number = 0; |
2164 | break; |
2165 | case _lev_ctrl_channelaftertouch: |
2166 | decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch; |
2167 | decodedcontroller.controller_number = 0; |
2168 | break; |
2169 | |
2170 | // ordinary MIDI control change controller |
2171 | case _lev_ctrl_modwheel: |
2172 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2173 | decodedcontroller.controller_number = 1; |
2174 | break; |
2175 | case _lev_ctrl_breath: |
2176 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2177 | decodedcontroller.controller_number = 2; |
2178 | break; |
2179 | case _lev_ctrl_foot: |
2180 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2181 | decodedcontroller.controller_number = 4; |
2182 | break; |
2183 | case _lev_ctrl_effect1: |
2184 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2185 | decodedcontroller.controller_number = 12; |
2186 | break; |
2187 | case _lev_ctrl_effect2: |
2188 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2189 | decodedcontroller.controller_number = 13; |
2190 | break; |
2191 | case _lev_ctrl_genpurpose1: |
2192 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2193 | decodedcontroller.controller_number = 16; |
2194 | break; |
2195 | case _lev_ctrl_genpurpose2: |
2196 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2197 | decodedcontroller.controller_number = 17; |
2198 | break; |
2199 | case _lev_ctrl_genpurpose3: |
2200 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2201 | decodedcontroller.controller_number = 18; |
2202 | break; |
2203 | case _lev_ctrl_genpurpose4: |
2204 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2205 | decodedcontroller.controller_number = 19; |
2206 | break; |
2207 | case _lev_ctrl_portamentotime: |
2208 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2209 | decodedcontroller.controller_number = 5; |
2210 | break; |
2211 | case _lev_ctrl_sustainpedal: |
2212 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2213 | decodedcontroller.controller_number = 64; |
2214 | break; |
2215 | case _lev_ctrl_portamento: |
2216 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2217 | decodedcontroller.controller_number = 65; |
2218 | break; |
2219 | case _lev_ctrl_sostenutopedal: |
2220 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2221 | decodedcontroller.controller_number = 66; |
2222 | break; |
2223 | case _lev_ctrl_softpedal: |
2224 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2225 | decodedcontroller.controller_number = 67; |
2226 | break; |
2227 | case _lev_ctrl_genpurpose5: |
2228 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2229 | decodedcontroller.controller_number = 80; |
2230 | break; |
2231 | case _lev_ctrl_genpurpose6: |
2232 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2233 | decodedcontroller.controller_number = 81; |
2234 | break; |
2235 | case _lev_ctrl_genpurpose7: |
2236 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2237 | decodedcontroller.controller_number = 82; |
2238 | break; |
2239 | case _lev_ctrl_genpurpose8: |
2240 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2241 | decodedcontroller.controller_number = 83; |
2242 | break; |
2243 | case _lev_ctrl_effect1depth: |
2244 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2245 | decodedcontroller.controller_number = 91; |
2246 | break; |
2247 | case _lev_ctrl_effect2depth: |
2248 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2249 | decodedcontroller.controller_number = 92; |
2250 | break; |
2251 | case _lev_ctrl_effect3depth: |
2252 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2253 | decodedcontroller.controller_number = 93; |
2254 | break; |
2255 | case _lev_ctrl_effect4depth: |
2256 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2257 | decodedcontroller.controller_number = 94; |
2258 | break; |
2259 | case _lev_ctrl_effect5depth: |
2260 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2261 | decodedcontroller.controller_number = 95; |
2262 | break; |
2263 | |
2264 | // format extension (these controllers are so far only supported by |
2265 | // LinuxSampler & gigedit) they will *NOT* work with |
2266 | // Gigasampler/GigaStudio ! |
2267 | case _lev_ctrl_CC3_EXT: |
2268 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2269 | decodedcontroller.controller_number = 3; |
2270 | break; |
2271 | case _lev_ctrl_CC6_EXT: |
2272 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2273 | decodedcontroller.controller_number = 6; |
2274 | break; |
2275 | case _lev_ctrl_CC7_EXT: |
2276 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2277 | decodedcontroller.controller_number = 7; |
2278 | break; |
2279 | case _lev_ctrl_CC8_EXT: |
2280 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2281 | decodedcontroller.controller_number = 8; |
2282 | break; |
2283 | case _lev_ctrl_CC9_EXT: |
2284 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2285 | decodedcontroller.controller_number = 9; |
2286 | break; |
2287 | case _lev_ctrl_CC10_EXT: |
2288 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2289 | decodedcontroller.controller_number = 10; |
2290 | break; |
2291 | case _lev_ctrl_CC11_EXT: |
2292 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2293 | decodedcontroller.controller_number = 11; |
2294 | break; |
2295 | case _lev_ctrl_CC14_EXT: |
2296 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2297 | decodedcontroller.controller_number = 14; |
2298 | break; |
2299 | case _lev_ctrl_CC15_EXT: |
2300 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2301 | decodedcontroller.controller_number = 15; |
2302 | break; |
2303 | case _lev_ctrl_CC20_EXT: |
2304 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2305 | decodedcontroller.controller_number = 20; |
2306 | break; |
2307 | case _lev_ctrl_CC21_EXT: |
2308 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2309 | decodedcontroller.controller_number = 21; |
2310 | break; |
2311 | case _lev_ctrl_CC22_EXT: |
2312 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2313 | decodedcontroller.controller_number = 22; |
2314 | break; |
2315 | case _lev_ctrl_CC23_EXT: |
2316 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2317 | decodedcontroller.controller_number = 23; |
2318 | break; |
2319 | case _lev_ctrl_CC24_EXT: |
2320 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2321 | decodedcontroller.controller_number = 24; |
2322 | break; |
2323 | case _lev_ctrl_CC25_EXT: |
2324 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2325 | decodedcontroller.controller_number = 25; |
2326 | break; |
2327 | case _lev_ctrl_CC26_EXT: |
2328 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2329 | decodedcontroller.controller_number = 26; |
2330 | break; |
2331 | case _lev_ctrl_CC27_EXT: |
2332 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2333 | decodedcontroller.controller_number = 27; |
2334 | break; |
2335 | case _lev_ctrl_CC28_EXT: |
2336 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2337 | decodedcontroller.controller_number = 28; |
2338 | break; |
2339 | case _lev_ctrl_CC29_EXT: |
2340 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2341 | decodedcontroller.controller_number = 29; |
2342 | break; |
2343 | case _lev_ctrl_CC30_EXT: |
2344 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2345 | decodedcontroller.controller_number = 30; |
2346 | break; |
2347 | case _lev_ctrl_CC31_EXT: |
2348 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2349 | decodedcontroller.controller_number = 31; |
2350 | break; |
2351 | case _lev_ctrl_CC68_EXT: |
2352 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2353 | decodedcontroller.controller_number = 68; |
2354 | break; |
2355 | case _lev_ctrl_CC69_EXT: |
2356 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2357 | decodedcontroller.controller_number = 69; |
2358 | break; |
2359 | case _lev_ctrl_CC70_EXT: |
2360 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2361 | decodedcontroller.controller_number = 70; |
2362 | break; |
2363 | case _lev_ctrl_CC71_EXT: |
2364 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2365 | decodedcontroller.controller_number = 71; |
2366 | break; |
2367 | case _lev_ctrl_CC72_EXT: |
2368 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2369 | decodedcontroller.controller_number = 72; |
2370 | break; |
2371 | case _lev_ctrl_CC73_EXT: |
2372 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2373 | decodedcontroller.controller_number = 73; |
2374 | break; |
2375 | case _lev_ctrl_CC74_EXT: |
2376 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2377 | decodedcontroller.controller_number = 74; |
2378 | break; |
2379 | case _lev_ctrl_CC75_EXT: |
2380 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2381 | decodedcontroller.controller_number = 75; |
2382 | break; |
2383 | case _lev_ctrl_CC76_EXT: |
2384 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2385 | decodedcontroller.controller_number = 76; |
2386 | break; |
2387 | case _lev_ctrl_CC77_EXT: |
2388 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2389 | decodedcontroller.controller_number = 77; |
2390 | break; |
2391 | case _lev_ctrl_CC78_EXT: |
2392 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2393 | decodedcontroller.controller_number = 78; |
2394 | break; |
2395 | case _lev_ctrl_CC79_EXT: |
2396 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2397 | decodedcontroller.controller_number = 79; |
2398 | break; |
2399 | case _lev_ctrl_CC84_EXT: |
2400 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2401 | decodedcontroller.controller_number = 84; |
2402 | break; |
2403 | case _lev_ctrl_CC85_EXT: |
2404 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2405 | decodedcontroller.controller_number = 85; |
2406 | break; |
2407 | case _lev_ctrl_CC86_EXT: |
2408 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2409 | decodedcontroller.controller_number = 86; |
2410 | break; |
2411 | case _lev_ctrl_CC87_EXT: |
2412 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2413 | decodedcontroller.controller_number = 87; |
2414 | break; |
2415 | case _lev_ctrl_CC89_EXT: |
2416 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2417 | decodedcontroller.controller_number = 89; |
2418 | break; |
2419 | case _lev_ctrl_CC90_EXT: |
2420 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2421 | decodedcontroller.controller_number = 90; |
2422 | break; |
2423 | case _lev_ctrl_CC96_EXT: |
2424 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2425 | decodedcontroller.controller_number = 96; |
2426 | break; |
2427 | case _lev_ctrl_CC97_EXT: |
2428 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2429 | decodedcontroller.controller_number = 97; |
2430 | break; |
2431 | case _lev_ctrl_CC102_EXT: |
2432 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2433 | decodedcontroller.controller_number = 102; |
2434 | break; |
2435 | case _lev_ctrl_CC103_EXT: |
2436 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2437 | decodedcontroller.controller_number = 103; |
2438 | break; |
2439 | case _lev_ctrl_CC104_EXT: |
2440 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2441 | decodedcontroller.controller_number = 104; |
2442 | break; |
2443 | case _lev_ctrl_CC105_EXT: |
2444 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2445 | decodedcontroller.controller_number = 105; |
2446 | break; |
2447 | case _lev_ctrl_CC106_EXT: |
2448 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2449 | decodedcontroller.controller_number = 106; |
2450 | break; |
2451 | case _lev_ctrl_CC107_EXT: |
2452 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2453 | decodedcontroller.controller_number = 107; |
2454 | break; |
2455 | case _lev_ctrl_CC108_EXT: |
2456 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2457 | decodedcontroller.controller_number = 108; |
2458 | break; |
2459 | case _lev_ctrl_CC109_EXT: |
2460 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2461 | decodedcontroller.controller_number = 109; |
2462 | break; |
2463 | case _lev_ctrl_CC110_EXT: |
2464 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2465 | decodedcontroller.controller_number = 110; |
2466 | break; |
2467 | case _lev_ctrl_CC111_EXT: |
2468 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2469 | decodedcontroller.controller_number = 111; |
2470 | break; |
2471 | case _lev_ctrl_CC112_EXT: |
2472 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2473 | decodedcontroller.controller_number = 112; |
2474 | break; |
2475 | case _lev_ctrl_CC113_EXT: |
2476 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2477 | decodedcontroller.controller_number = 113; |
2478 | break; |
2479 | case _lev_ctrl_CC114_EXT: |
2480 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2481 | decodedcontroller.controller_number = 114; |
2482 | break; |
2483 | case _lev_ctrl_CC115_EXT: |
2484 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2485 | decodedcontroller.controller_number = 115; |
2486 | break; |
2487 | case _lev_ctrl_CC116_EXT: |
2488 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2489 | decodedcontroller.controller_number = 116; |
2490 | break; |
2491 | case _lev_ctrl_CC117_EXT: |
2492 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2493 | decodedcontroller.controller_number = 117; |
2494 | break; |
2495 | case _lev_ctrl_CC118_EXT: |
2496 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2497 | decodedcontroller.controller_number = 118; |
2498 | break; |
2499 | case _lev_ctrl_CC119_EXT: |
2500 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2501 | decodedcontroller.controller_number = 119; |
2502 | break; |
2503 | |
2504 | // unknown controller type |
2505 | default: |
2506 | throw gig::Exception("Unknown leverage controller type."); |
2507 | } |
2508 | return decodedcontroller; |
2509 | } |
2510 | |
2511 | // see above (diagnostic push not supported prior GCC 4.6) |
2512 | //#pragma GCC diagnostic pop |
2513 | |
2514 | DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) { |
2515 | _lev_ctrl_t encodedcontroller; |
2516 | switch (DecodedController.type) { |
2517 | // special controller |
2518 | case leverage_ctrl_t::type_none: |
2519 | encodedcontroller = _lev_ctrl_none; |
2520 | break; |
2521 | case leverage_ctrl_t::type_velocity: |
2522 | encodedcontroller = _lev_ctrl_velocity; |
2523 | break; |
2524 | case leverage_ctrl_t::type_channelaftertouch: |
2525 | encodedcontroller = _lev_ctrl_channelaftertouch; |
2526 | break; |
2527 | |
2528 | // ordinary MIDI control change controller |
2529 | case leverage_ctrl_t::type_controlchange: |
2530 | switch (DecodedController.controller_number) { |
2531 | case 1: |
2532 | encodedcontroller = _lev_ctrl_modwheel; |
2533 | break; |
2534 | case 2: |
2535 | encodedcontroller = _lev_ctrl_breath; |
2536 | break; |
2537 | case 4: |
2538 | encodedcontroller = _lev_ctrl_foot; |
2539 | break; |
2540 | case 12: |
2541 | encodedcontroller = _lev_ctrl_effect1; |
2542 | break; |
2543 | case 13: |
2544 | encodedcontroller = _lev_ctrl_effect2; |
2545 | break; |
2546 | case 16: |
2547 | encodedcontroller = _lev_ctrl_genpurpose1; |
2548 | break; |
2549 | case 17: |
2550 | encodedcontroller = _lev_ctrl_genpurpose2; |
2551 | break; |
2552 | case 18: |
2553 | encodedcontroller = _lev_ctrl_genpurpose3; |
2554 | break; |
2555 | case 19: |
2556 | encodedcontroller = _lev_ctrl_genpurpose4; |
2557 | break; |
2558 | case 5: |
2559 | encodedcontroller = _lev_ctrl_portamentotime; |
2560 | break; |
2561 | case 64: |
2562 | encodedcontroller = _lev_ctrl_sustainpedal; |
2563 | break; |
2564 | case 65: |
2565 | encodedcontroller = _lev_ctrl_portamento; |
2566 | break; |
2567 | case 66: |
2568 | encodedcontroller = _lev_ctrl_sostenutopedal; |
2569 | break; |
2570 | case 67: |
2571 | encodedcontroller = _lev_ctrl_softpedal; |
2572 | break; |
2573 | case 80: |
2574 | encodedcontroller = _lev_ctrl_genpurpose5; |
2575 | break; |
2576 | case 81: |
2577 | encodedcontroller = _lev_ctrl_genpurpose6; |
2578 | break; |
2579 | case 82: |
2580 | encodedcontroller = _lev_ctrl_genpurpose7; |
2581 | break; |
2582 | case 83: |
2583 | encodedcontroller = _lev_ctrl_genpurpose8; |
2584 | break; |
2585 | case 91: |
2586 | encodedcontroller = _lev_ctrl_effect1depth; |
2587 | break; |
2588 | case 92: |
2589 | encodedcontroller = _lev_ctrl_effect2depth; |
2590 | break; |
2591 | case 93: |
2592 | encodedcontroller = _lev_ctrl_effect3depth; |
2593 | break; |
2594 | case 94: |
2595 | encodedcontroller = _lev_ctrl_effect4depth; |
2596 | break; |
2597 | case 95: |
2598 | encodedcontroller = _lev_ctrl_effect5depth; |
2599 | break; |
2600 | |
2601 | // format extension (these controllers are so far only |
2602 | // supported by LinuxSampler & gigedit) they will *NOT* |
2603 | // work with Gigasampler/GigaStudio ! |
2604 | case 3: |
2605 | encodedcontroller = _lev_ctrl_CC3_EXT; |
2606 | break; |
2607 | case 6: |
2608 | encodedcontroller = _lev_ctrl_CC6_EXT; |
2609 | break; |
2610 | case 7: |
2611 | encodedcontroller = _lev_ctrl_CC7_EXT; |
2612 | break; |
2613 | case 8: |
2614 | encodedcontroller = _lev_ctrl_CC8_EXT; |
2615 | break; |
2616 | case 9: |
2617 | encodedcontroller = _lev_ctrl_CC9_EXT; |
2618 | break; |
2619 | case 10: |
2620 | encodedcontroller = _lev_ctrl_CC10_EXT; |
2621 | break; |
2622 | case 11: |
2623 | encodedcontroller = _lev_ctrl_CC11_EXT; |
2624 | break; |
2625 | case 14: |
2626 | encodedcontroller = _lev_ctrl_CC14_EXT; |
2627 | break; |
2628 | case 15: |
2629 | encodedcontroller = _lev_ctrl_CC15_EXT; |
2630 | break; |
2631 | case 20: |
2632 | encodedcontroller = _lev_ctrl_CC20_EXT; |
2633 | break; |
2634 | case 21: |
2635 | encodedcontroller = _lev_ctrl_CC21_EXT; |
2636 | break; |
2637 | case 22: |
2638 | encodedcontroller = _lev_ctrl_CC22_EXT; |
2639 | break; |
2640 | case 23: |
2641 | encodedcontroller = _lev_ctrl_CC23_EXT; |
2642 | break; |
2643 | case 24: |
2644 | encodedcontroller = _lev_ctrl_CC24_EXT; |
2645 | break; |
2646 | case 25: |
2647 | encodedcontroller = _lev_ctrl_CC25_EXT; |
2648 | break; |
2649 | case 26: |
2650 | encodedcontroller = _lev_ctrl_CC26_EXT; |
2651 | break; |
2652 | case 27: |
2653 | encodedcontroller = _lev_ctrl_CC27_EXT; |
2654 | break; |
2655 | case 28: |
2656 | encodedcontroller = _lev_ctrl_CC28_EXT; |
2657 | break; |
2658 | case 29: |
2659 | encodedcontroller = _lev_ctrl_CC29_EXT; |
2660 | break; |
2661 | case 30: |
2662 | encodedcontroller = _lev_ctrl_CC30_EXT; |
2663 | break; |
2664 | case 31: |
2665 | encodedcontroller = _lev_ctrl_CC31_EXT; |
2666 | break; |
2667 | case 68: |
2668 | encodedcontroller = _lev_ctrl_CC68_EXT; |
2669 | break; |
2670 | case 69: |
2671 | encodedcontroller = _lev_ctrl_CC69_EXT; |
2672 | break; |
2673 | case 70: |
2674 | encodedcontroller = _lev_ctrl_CC70_EXT; |
2675 | break; |
2676 | case 71: |
2677 | encodedcontroller = _lev_ctrl_CC71_EXT; |
2678 | break; |
2679 | case 72: |
2680 | encodedcontroller = _lev_ctrl_CC72_EXT; |
2681 | break; |
2682 | case 73: |
2683 | encodedcontroller = _lev_ctrl_CC73_EXT; |
2684 | break; |
2685 | case 74: |
2686 | encodedcontroller = _lev_ctrl_CC74_EXT; |
2687 | break; |
2688 | case 75: |
2689 | encodedcontroller = _lev_ctrl_CC75_EXT; |
2690 | break; |
2691 | case 76: |
2692 | encodedcontroller = _lev_ctrl_CC76_EXT; |
2693 | break; |
2694 | case 77: |
2695 | encodedcontroller = _lev_ctrl_CC77_EXT; |
2696 | break; |
2697 | case 78: |
2698 | encodedcontroller = _lev_ctrl_CC78_EXT; |
2699 | break; |
2700 | case 79: |
2701 | encodedcontroller = _lev_ctrl_CC79_EXT; |
2702 | break; |
2703 | case 84: |
2704 | encodedcontroller = _lev_ctrl_CC84_EXT; |
2705 | break; |
2706 | case 85: |
2707 | encodedcontroller = _lev_ctrl_CC85_EXT; |
2708 | break; |
2709 | case 86: |
2710 | encodedcontroller = _lev_ctrl_CC86_EXT; |
2711 | break; |
2712 | case 87: |
2713 | encodedcontroller = _lev_ctrl_CC87_EXT; |
2714 | break; |
2715 | case 89: |
2716 | encodedcontroller = _lev_ctrl_CC89_EXT; |
2717 | break; |
2718 | case 90: |
2719 | encodedcontroller = _lev_ctrl_CC90_EXT; |
2720 | break; |
2721 | case 96: |
2722 | encodedcontroller = _lev_ctrl_CC96_EXT; |
2723 | break; |
2724 | case 97: |
2725 | encodedcontroller = _lev_ctrl_CC97_EXT; |
2726 | break; |
2727 | case 102: |
2728 | encodedcontroller = _lev_ctrl_CC102_EXT; |
2729 | break; |
2730 | case 103: |
2731 | encodedcontroller = _lev_ctrl_CC103_EXT; |
2732 | break; |
2733 | case 104: |
2734 | encodedcontroller = _lev_ctrl_CC104_EXT; |
2735 | break; |
2736 | case 105: |
2737 | encodedcontroller = _lev_ctrl_CC105_EXT; |
2738 | break; |
2739 | case 106: |
2740 | encodedcontroller = _lev_ctrl_CC106_EXT; |
2741 | break; |
2742 | case 107: |
2743 | encodedcontroller = _lev_ctrl_CC107_EXT; |
2744 | break; |
2745 | case 108: |
2746 | encodedcontroller = _lev_ctrl_CC108_EXT; |
2747 | break; |
2748 | case 109: |
2749 | encodedcontroller = _lev_ctrl_CC109_EXT; |
2750 | break; |
2751 | case 110: |
2752 | encodedcontroller = _lev_ctrl_CC110_EXT; |
2753 | break; |
2754 | case 111: |
2755 | encodedcontroller = _lev_ctrl_CC111_EXT; |
2756 | break; |
2757 | case 112: |
2758 | encodedcontroller = _lev_ctrl_CC112_EXT; |
2759 | break; |
2760 | case 113: |
2761 | encodedcontroller = _lev_ctrl_CC113_EXT; |
2762 | break; |
2763 | case 114: |
2764 | encodedcontroller = _lev_ctrl_CC114_EXT; |
2765 | break; |
2766 | case 115: |
2767 | encodedcontroller = _lev_ctrl_CC115_EXT; |
2768 | break; |
2769 | case 116: |
2770 | encodedcontroller = _lev_ctrl_CC116_EXT; |
2771 | break; |
2772 | case 117: |
2773 | encodedcontroller = _lev_ctrl_CC117_EXT; |
2774 | break; |
2775 | case 118: |
2776 | encodedcontroller = _lev_ctrl_CC118_EXT; |
2777 | break; |
2778 | case 119: |
2779 | encodedcontroller = _lev_ctrl_CC119_EXT; |
2780 | break; |
2781 | |
2782 | default: |
2783 | throw gig::Exception("leverage controller number is not supported by the gig format"); |
2784 | } |
2785 | break; |
2786 | default: |
2787 | throw gig::Exception("Unknown leverage controller type."); |
2788 | } |
2789 | return encodedcontroller; |
2790 | } |
2791 | |
2792 | DimensionRegion::~DimensionRegion() { |
2793 | Instances--; |
2794 | if (!Instances) { |
2795 | // delete the velocity->volume tables |
2796 | VelocityTableMap::iterator iter; |
2797 | for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) { |
2798 | double* pTable = iter->second; |
2799 | if (pTable) delete[] pTable; |
2800 | } |
2801 | pVelocityTables->clear(); |
2802 | delete pVelocityTables; |
2803 | pVelocityTables = NULL; |
2804 | } |
2805 | if (VelocityTable) delete[] VelocityTable; |
2806 | } |
2807 | |
2808 | /** |
2809 | * Returns the correct amplitude factor for the given \a MIDIKeyVelocity. |
2810 | * All involved parameters (VelocityResponseCurve, VelocityResponseDepth |
2811 | * and VelocityResponseCurveScaling) involved are taken into account to |
2812 | * calculate the amplitude factor. Use this method when a key was |
2813 | * triggered to get the volume with which the sample should be played |
2814 | * back. |
2815 | * |
2816 | * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127) |
2817 | * @returns amplitude factor (between 0.0 and 1.0) |
2818 | */ |
2819 | double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) { |
2820 | return pVelocityAttenuationTable[MIDIKeyVelocity]; |
2821 | } |
2822 | |
2823 | double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) { |
2824 | return pVelocityReleaseTable[MIDIKeyVelocity]; |
2825 | } |
2826 | |
2827 | double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) { |
2828 | return pVelocityCutoffTable[MIDIKeyVelocity]; |
2829 | } |
2830 | |
2831 | /** |
2832 | * Updates the respective member variable and the lookup table / cache |
2833 | * that depends on this value. |
2834 | */ |
2835 | void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) { |
2836 | pVelocityAttenuationTable = |
2837 | GetVelocityTable( |
2838 | curve, VelocityResponseDepth, VelocityResponseCurveScaling |
2839 | ); |
2840 | VelocityResponseCurve = curve; |
2841 | } |
2842 | |
2843 | /** |
2844 | * Updates the respective member variable and the lookup table / cache |
2845 | * that depends on this value. |
2846 | */ |
2847 | void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) { |
2848 | pVelocityAttenuationTable = |
2849 | GetVelocityTable( |
2850 | VelocityResponseCurve, depth, VelocityResponseCurveScaling |
2851 | ); |
2852 | VelocityResponseDepth = depth; |
2853 | } |
2854 | |
2855 | /** |
2856 | * Updates the respective member variable and the lookup table / cache |
2857 | * that depends on this value. |
2858 | */ |
2859 | void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) { |
2860 | pVelocityAttenuationTable = |
2861 | GetVelocityTable( |
2862 | VelocityResponseCurve, VelocityResponseDepth, scaling |
2863 | ); |
2864 | VelocityResponseCurveScaling = scaling; |
2865 | } |
2866 | |
2867 | /** |
2868 | * Updates the respective member variable and the lookup table / cache |
2869 | * that depends on this value. |
2870 | */ |
2871 | void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) { |
2872 | pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth); |
2873 | ReleaseVelocityResponseCurve = curve; |
2874 | } |
2875 | |
2876 | /** |
2877 | * Updates the respective member variable and the lookup table / cache |
2878 | * that depends on this value. |
2879 | */ |
2880 | void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) { |
2881 | pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth); |
2882 | ReleaseVelocityResponseDepth = depth; |
2883 | } |
2884 | |
2885 | /** |
2886 | * Updates the respective member variable and the lookup table / cache |
2887 | * that depends on this value. |
2888 | */ |
2889 | void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) { |
2890 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller); |
2891 | VCFCutoffController = controller; |
2892 | } |
2893 | |
2894 | /** |
2895 | * Updates the respective member variable and the lookup table / cache |
2896 | * that depends on this value. |
2897 | */ |
2898 | void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) { |
2899 | pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController); |
2900 | VCFVelocityCurve = curve; |
2901 | } |
2902 | |
2903 | /** |
2904 | * Updates the respective member variable and the lookup table / cache |
2905 | * that depends on this value. |
2906 | */ |
2907 | void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) { |
2908 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController); |
2909 | VCFVelocityDynamicRange = range; |
2910 | } |
2911 | |
2912 | /** |
2913 | * Updates the respective member variable and the lookup table / cache |
2914 | * that depends on this value. |
2915 | */ |
2916 | void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) { |
2917 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController); |
2918 | VCFVelocityScale = scaling; |
2919 | } |
2920 | |
2921 | double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) { |
2922 | |
2923 | // line-segment approximations of the 15 velocity curves |
2924 | |
2925 | // linear |
2926 | const int lin0[] = { 1, 1, 127, 127 }; |
2927 | const int lin1[] = { 1, 21, 127, 127 }; |
2928 | const int lin2[] = { 1, 45, 127, 127 }; |
2929 | const int lin3[] = { 1, 74, 127, 127 }; |
2930 | const int lin4[] = { 1, 127, 127, 127 }; |
2931 | |
2932 | // non-linear |
2933 | const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 }; |
2934 | const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127, |
2935 | 127, 127 }; |
2936 | const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127, |
2937 | 127, 127 }; |
2938 | const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127, |
2939 | 127, 127 }; |
2940 | const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 }; |
2941 | |
2942 | // special |
2943 | const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44, |
2944 | 113, 127, 127, 127 }; |
2945 | const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67, |
2946 | 118, 127, 127, 127 }; |
2947 | const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74, |
2948 | 85, 90, 91, 127, 127, 127 }; |
2949 | const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73, |
2950 | 117, 127, 127, 127 }; |
2951 | const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127, |
2952 | 127, 127 }; |
2953 | |
2954 | // this is only used by the VCF velocity curve |
2955 | const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106, |
2956 | 91, 127, 127, 127 }; |
2957 | |
2958 | const int* const curves[] = { non0, non1, non2, non3, non4, |
2959 | lin0, lin1, lin2, lin3, lin4, |
2960 | spe0, spe1, spe2, spe3, spe4, spe5 }; |
2961 | |
2962 | double* const table = new double[128]; |
2963 | |
2964 | const int* curve = curves[curveType * 5 + depth]; |
2965 | const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling |
2966 | |
2967 | table[0] = 0; |
2968 | for (int x = 1 ; x < 128 ; x++) { |
2969 | |
2970 | if (x > curve[2]) curve += 2; |
2971 | double y = curve[1] + (x - curve[0]) * |
2972 | (double(curve[3] - curve[1]) / (curve[2] - curve[0])); |
2973 | y = y / 127; |
2974 | |
2975 | // Scale up for s > 20, down for s < 20. When |
2976 | // down-scaling, the curve still ends at 1.0. |
2977 | if (s < 20 && y >= 0.5) |
2978 | y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1); |
2979 | else |
2980 | y = y * (s / 20.0); |
2981 | if (y > 1) y = 1; |
2982 | |
2983 | table[x] = y; |
2984 | } |
2985 | return table; |
2986 | } |
2987 | |
2988 | |
2989 | // *************** Region *************** |
2990 | // * |
2991 | |
2992 | Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) { |
2993 | // Initialization |
2994 | Dimensions = 0; |
2995 | for (int i = 0; i < 256; i++) { |
2996 | pDimensionRegions[i] = NULL; |
2997 | } |
2998 | Layers = 1; |
2999 | File* file = (File*) GetParent()->GetParent(); |
3000 | int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5; |
3001 | |
3002 | // Actual Loading |
3003 | |
3004 | if (!file->GetAutoLoad()) return; |
3005 | |
3006 | LoadDimensionRegions(rgnList); |
3007 | |
3008 | RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK); |
3009 | if (_3lnk) { |
3010 | DimensionRegions = _3lnk->ReadUint32(); |
3011 | for (int i = 0; i < dimensionBits; i++) { |
3012 | dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8()); |
3013 | uint8_t bits = _3lnk->ReadUint8(); |
3014 | _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1]) |
3015 | _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension) |
3016 | uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits) |
3017 | if (dimension == dimension_none) { // inactive dimension |
3018 | pDimensionDefinitions[i].dimension = dimension_none; |
3019 | pDimensionDefinitions[i].bits = 0; |
3020 | pDimensionDefinitions[i].zones = 0; |
3021 | pDimensionDefinitions[i].split_type = split_type_bit; |
3022 | pDimensionDefinitions[i].zone_size = 0; |
3023 | } |
3024 | else { // active dimension |
3025 | pDimensionDefinitions[i].dimension = dimension; |
3026 | pDimensionDefinitions[i].bits = bits; |
3027 | pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits) |
3028 | pDimensionDefinitions[i].split_type = __resolveSplitType(dimension); |
3029 | pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]); |
3030 | Dimensions++; |
3031 | |
3032 | // if this is a layer dimension, remember the amount of layers |
3033 | if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones; |
3034 | } |
3035 | _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition |
3036 | } |
3037 | for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0; |
3038 | |
3039 | // if there's a velocity dimension and custom velocity zone splits are used, |
3040 | // update the VelocityTables in the dimension regions |
3041 | UpdateVelocityTable(); |
3042 | |
3043 | // jump to start of the wave pool indices (if not already there) |
3044 | if (file->pVersion && file->pVersion->major == 3) |
3045 | _3lnk->SetPos(68); // version 3 has a different 3lnk structure |
3046 | else |
3047 | _3lnk->SetPos(44); |
3048 | |
3049 | // load sample references (if auto loading is enabled) |
3050 | if (file->GetAutoLoad()) { |
3051 | for (uint i = 0; i < DimensionRegions; i++) { |
3052 | uint32_t wavepoolindex = _3lnk->ReadUint32(); |
3053 | if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex); |
3054 | } |
3055 | GetSample(); // load global region sample reference |
3056 | } |
3057 | } else { |
3058 | DimensionRegions = 0; |
3059 | for (int i = 0 ; i < 8 ; i++) { |
3060 | pDimensionDefinitions[i].dimension = dimension_none; |
3061 | pDimensionDefinitions[i].bits = 0; |
3062 | pDimensionDefinitions[i].zones = 0; |
3063 | } |
3064 | } |
3065 | |
3066 | // make sure there is at least one dimension region |
3067 | if (!DimensionRegions) { |
3068 | RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG); |
3069 | if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG); |
3070 | RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL); |
3071 | pDimensionRegions[0] = new DimensionRegion(this, _3ewl); |
3072 | DimensionRegions = 1; |
3073 | } |
3074 | } |
3075 | |
3076 | /** |
3077 | * Apply Region settings and all its DimensionRegions to the respective |
3078 | * RIFF chunks. You have to call File::Save() to make changes persistent. |
3079 | * |
3080 | * Usually there is absolutely no need to call this method explicitly. |
3081 | * It will be called automatically when File::Save() was called. |
3082 | * |
3083 | * @param pProgress - callback function for progress notification |
3084 | * @throws gig::Exception if samples cannot be dereferenced |
3085 | */ |
3086 | void Region::UpdateChunks(progress_t* pProgress) { |
3087 | // in the gig format we don't care about the Region's sample reference |
3088 | // but we still have to provide some existing one to not corrupt the |
3089 | // file, so to avoid the latter we simply always assign the sample of |
3090 | // the first dimension region of this region |
3091 | pSample = pDimensionRegions[0]->pSample; |
3092 | |
3093 | // first update base class's chunks |
3094 | DLS::Region::UpdateChunks(pProgress); |
3095 | |
3096 | // update dimension region's chunks |
3097 | for (int i = 0; i < DimensionRegions; i++) { |
3098 | pDimensionRegions[i]->UpdateChunks(pProgress); |
3099 | } |
3100 | |
3101 | File* pFile = (File*) GetParent()->GetParent(); |
3102 | bool version3 = pFile->pVersion && pFile->pVersion->major == 3; |
3103 | const int iMaxDimensions = version3 ? 8 : 5; |
3104 | const int iMaxDimensionRegions = version3 ? 256 : 32; |
3105 | |
3106 | // make sure '3lnk' chunk exists |
3107 | RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK); |
3108 | if (!_3lnk) { |
3109 | const int _3lnkChunkSize = version3 ? 1092 : 172; |
3110 | _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize); |
3111 | memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize); |
3112 | |
3113 | // move 3prg to last position |
3114 | pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL); |
3115 | } |
3116 | |
3117 | // update dimension definitions in '3lnk' chunk |
3118 | uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData(); |
3119 | store32(&pData[0], DimensionRegions); |
3120 | int shift = 0; |
3121 | for (int i = 0; i < iMaxDimensions; i++) { |
3122 | pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension; |
3123 | pData[5 + i * 8] = pDimensionDefinitions[i].bits; |
3124 | pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift; |
3125 | pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift); |
3126 | pData[8 + i * 8] = pDimensionDefinitions[i].zones; |
3127 | // next 3 bytes unknown, always zero? |
3128 | |
3129 | shift += pDimensionDefinitions[i].bits; |
3130 | } |
3131 | |
3132 | // update wave pool table in '3lnk' chunk |
3133 | const int iWavePoolOffset = version3 ? 68 : 44; |
3134 | for (uint i = 0; i < iMaxDimensionRegions; i++) { |
3135 | int iWaveIndex = -1; |
3136 | if (i < DimensionRegions) { |
3137 | if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples"); |
3138 | File::SampleList::iterator iter = pFile->pSamples->begin(); |
3139 | File::SampleList::iterator end = pFile->pSamples->end(); |
3140 | for (int index = 0; iter != end; ++iter, ++index) { |
3141 | if (*iter == pDimensionRegions[i]->pSample) { |
3142 | iWaveIndex = index; |
3143 | break; |
3144 | } |
3145 | } |
3146 | } |
3147 | store32(&pData[iWavePoolOffset + i * 4], iWaveIndex); |
3148 | } |
3149 | } |
3150 | |
3151 | void Region::LoadDimensionRegions(RIFF::List* rgn) { |
3152 | RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG); |
3153 | if (_3prg) { |
3154 | int dimensionRegionNr = 0; |
3155 | RIFF::List* _3ewl = _3prg->GetFirstSubList(); |
3156 | while (_3ewl) { |
3157 | if (_3ewl->GetListType() == LIST_TYPE_3EWL) { |
3158 | pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl); |
3159 | dimensionRegionNr++; |
3160 | } |
3161 | _3ewl = _3prg->GetNextSubList(); |
3162 | } |
3163 | if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found."); |
3164 | } |
3165 | } |
3166 | |
3167 | void Region::SetKeyRange(uint16_t Low, uint16_t High) { |