/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3324 - (show annotations) (download)
Fri Jul 21 13:05:39 2017 UTC (6 years, 8 months ago) by schoenebeck
File size: 284264 byte(s)
* gig.h/.cpp: Forgot about "decay 2" stage in previous commit.
* Bumped version (4.0.0.svn28).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 pGroup = pFile->GetGroup(iSampleGroup);
417 } else { // '3gix' chunk missing
418 // by default assigned to that mandatory "Default Group"
419 pGroup = pFile->GetGroup(0);
420 }
421
422 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423 if (pCkSmpl) {
424 Manufacturer = pCkSmpl->ReadInt32();
425 Product = pCkSmpl->ReadInt32();
426 SamplePeriod = pCkSmpl->ReadInt32();
427 MIDIUnityNote = pCkSmpl->ReadInt32();
428 FineTune = pCkSmpl->ReadInt32();
429 pCkSmpl->Read(&SMPTEFormat, 1, 4);
430 SMPTEOffset = pCkSmpl->ReadInt32();
431 Loops = pCkSmpl->ReadInt32();
432 pCkSmpl->ReadInt32(); // manufByt
433 LoopID = pCkSmpl->ReadInt32();
434 pCkSmpl->Read(&LoopType, 1, 4);
435 LoopStart = pCkSmpl->ReadInt32();
436 LoopEnd = pCkSmpl->ReadInt32();
437 LoopFraction = pCkSmpl->ReadInt32();
438 LoopPlayCount = pCkSmpl->ReadInt32();
439 } else { // 'smpl' chunk missing
440 // use default values
441 Manufacturer = 0;
442 Product = 0;
443 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 MIDIUnityNote = 60;
445 FineTune = 0;
446 SMPTEFormat = smpte_format_no_offset;
447 SMPTEOffset = 0;
448 Loops = 0;
449 LoopID = 0;
450 LoopType = loop_type_normal;
451 LoopStart = 0;
452 LoopEnd = 0;
453 LoopFraction = 0;
454 LoopPlayCount = 0;
455 }
456
457 FrameTable = NULL;
458 SamplePos = 0;
459 RAMCache.Size = 0;
460 RAMCache.pStart = NULL;
461 RAMCache.NullExtensionSize = 0;
462
463 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464
465 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466 Compressed = ewav;
467 Dithered = false;
468 TruncatedBits = 0;
469 if (Compressed) {
470 uint32_t version = ewav->ReadInt32();
471 if (version == 3 && BitDepth == 24) {
472 Dithered = ewav->ReadInt32();
473 ewav->SetPos(Channels == 2 ? 84 : 64);
474 TruncatedBits = ewav->ReadInt32();
475 }
476 ScanCompressedSample();
477 }
478
479 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 }
484 FrameOffset = 0; // just for streaming compressed samples
485
486 LoopSize = LoopEnd - LoopStart + 1;
487 }
488
489 /**
490 * Make a (semi) deep copy of the Sample object given by @a orig (without
491 * the actual waveform data) and assign it to this object.
492 *
493 * Discussion: copying .gig samples is a bit tricky. It requires three
494 * steps:
495 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496 * its new sample waveform data size.
497 * 2. Saving the file (done by File::Save()) so that it gains correct size
498 * and layout for writing the actual wave form data directly to disc
499 * in next step.
500 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501 *
502 * @param orig - original Sample object to be copied from
503 */
504 void Sample::CopyAssignMeta(const Sample* orig) {
505 // handle base classes
506 DLS::Sample::CopyAssignCore(orig);
507
508 // handle actual own attributes of this class
509 Manufacturer = orig->Manufacturer;
510 Product = orig->Product;
511 SamplePeriod = orig->SamplePeriod;
512 MIDIUnityNote = orig->MIDIUnityNote;
513 FineTune = orig->FineTune;
514 SMPTEFormat = orig->SMPTEFormat;
515 SMPTEOffset = orig->SMPTEOffset;
516 Loops = orig->Loops;
517 LoopID = orig->LoopID;
518 LoopType = orig->LoopType;
519 LoopStart = orig->LoopStart;
520 LoopEnd = orig->LoopEnd;
521 LoopSize = orig->LoopSize;
522 LoopFraction = orig->LoopFraction;
523 LoopPlayCount = orig->LoopPlayCount;
524
525 // schedule resizing this sample to the given sample's size
526 Resize(orig->GetSize());
527 }
528
529 /**
530 * Should be called after CopyAssignMeta() and File::Save() sequence.
531 * Read more about it in the discussion of CopyAssignMeta(). This method
532 * copies the actual waveform data by disk streaming.
533 *
534 * @e CAUTION: this method is currently not thread safe! During this
535 * operation the sample must not be used for other purposes by other
536 * threads!
537 *
538 * @param orig - original Sample object to be copied from
539 */
540 void Sample::CopyAssignWave(const Sample* orig) {
541 const int iReadAtOnce = 32*1024;
542 char* buf = new char[iReadAtOnce * orig->FrameSize];
543 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 file_offset_t restorePos = pOrig->GetPos();
545 pOrig->SetPos(0);
546 SetPos(0);
547 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 n = pOrig->Read(buf, iReadAtOnce))
549 {
550 Write(buf, n);
551 }
552 pOrig->SetPos(restorePos);
553 delete [] buf;
554 }
555
556 /**
557 * Apply sample and its settings to the respective RIFF chunks. You have
558 * to call File::Save() to make changes persistent.
559 *
560 * Usually there is absolutely no need to call this method explicitly.
561 * It will be called automatically when File::Save() was called.
562 *
563 * @param pProgress - callback function for progress notification
564 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 * was provided yet
566 * @throws gig::Exception if there is any invalid sample setting
567 */
568 void Sample::UpdateChunks(progress_t* pProgress) {
569 // first update base class's chunks
570 DLS::Sample::UpdateChunks(pProgress);
571
572 // make sure 'smpl' chunk exists
573 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 if (!pCkSmpl) {
575 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576 memset(pCkSmpl->LoadChunkData(), 0, 60);
577 }
578 // update 'smpl' chunk
579 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 store32(&pData[0], Manufacturer);
582 store32(&pData[4], Product);
583 store32(&pData[8], SamplePeriod);
584 store32(&pData[12], MIDIUnityNote);
585 store32(&pData[16], FineTune);
586 store32(&pData[20], SMPTEFormat);
587 store32(&pData[24], SMPTEOffset);
588 store32(&pData[28], Loops);
589
590 // we skip 'manufByt' for now (4 bytes)
591
592 store32(&pData[36], LoopID);
593 store32(&pData[40], LoopType);
594 store32(&pData[44], LoopStart);
595 store32(&pData[48], LoopEnd);
596 store32(&pData[52], LoopFraction);
597 store32(&pData[56], LoopPlayCount);
598
599 // make sure '3gix' chunk exists
600 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 // determine appropriate sample group index (to be stored in chunk)
603 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 File* pFile = static_cast<File*>(pParent);
605 if (pFile->pGroups) {
606 std::list<Group*>::iterator iter = pFile->pGroups->begin();
607 std::list<Group*>::iterator end = pFile->pGroups->end();
608 for (int i = 0; iter != end; i++, iter++) {
609 if (*iter == pGroup) {
610 iSampleGroup = i;
611 break; // found
612 }
613 }
614 }
615 // update '3gix' chunk
616 pData = (uint8_t*) pCk3gix->LoadChunkData();
617 store16(&pData[0], iSampleGroup);
618
619 // if the library user toggled the "Compressed" attribute from true to
620 // false, then the EWAV chunk associated with compressed samples needs
621 // to be deleted
622 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623 if (ewav && !Compressed) {
624 pWaveList->DeleteSubChunk(ewav);
625 }
626 }
627
628 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629 void Sample::ScanCompressedSample() {
630 //TODO: we have to add some more scans here (e.g. determine compression rate)
631 this->SamplesTotal = 0;
632 std::list<file_offset_t> frameOffsets;
633
634 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636
637 // Scanning
638 pCkData->SetPos(0);
639 if (Channels == 2) { // Stereo
640 for (int i = 0 ; ; i++) {
641 // for 24 bit samples every 8:th frame offset is
642 // stored, to save some memory
643 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644
645 const int mode_l = pCkData->ReadUint8();
646 const int mode_r = pCkData->ReadUint8();
647 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649
650 if (pCkData->RemainingBytes() <= frameSize) {
651 SamplesInLastFrame =
652 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654 SamplesTotal += SamplesInLastFrame;
655 break;
656 }
657 SamplesTotal += SamplesPerFrame;
658 pCkData->SetPos(frameSize, RIFF::stream_curpos);
659 }
660 }
661 else { // Mono
662 for (int i = 0 ; ; i++) {
663 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664
665 const int mode = pCkData->ReadUint8();
666 if (mode > 5) throw gig::Exception("Unknown compression mode");
667 const file_offset_t frameSize = bytesPerFrame[mode];
668
669 if (pCkData->RemainingBytes() <= frameSize) {
670 SamplesInLastFrame =
671 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672 SamplesTotal += SamplesInLastFrame;
673 break;
674 }
675 SamplesTotal += SamplesPerFrame;
676 pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 }
678 }
679 pCkData->SetPos(0);
680
681 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682 if (FrameTable) delete[] FrameTable;
683 FrameTable = new file_offset_t[frameOffsets.size()];
684 std::list<file_offset_t>::iterator end = frameOffsets.end();
685 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 for (int i = 0; iter != end; i++, iter++) {
687 FrameTable[i] = *iter;
688 }
689 }
690
691 /**
692 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693 * ReleaseSampleData() to free the memory if you don't need the cached
694 * sample data anymore.
695 *
696 * @returns buffer_t structure with start address and size of the buffer
697 * in bytes
698 * @see ReleaseSampleData(), Read(), SetPos()
699 */
700 buffer_t Sample::LoadSampleData() {
701 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702 }
703
704 /**
705 * Reads (uncompresses if needed) and caches the first \a SampleCount
706 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707 * memory space if you don't need the cached samples anymore. There is no
708 * guarantee that exactly \a SampleCount samples will be cached; this is
709 * not an error. The size will be eventually truncated e.g. to the
710 * beginning of a frame of a compressed sample. This is done for
711 * efficiency reasons while streaming the wave by your sampler engine
712 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713 * that will be returned to determine the actual cached samples, but note
714 * that the size is given in bytes! You get the number of actually cached
715 * samples by dividing it by the frame size of the sample:
716 * @code
717 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718 * long cachedsamples = buf.Size / pSample->FrameSize;
719 * @endcode
720 *
721 * @param SampleCount - number of sample points to load into RAM
722 * @returns buffer_t structure with start address and size of
723 * the cached sample data in bytes
724 * @see ReleaseSampleData(), Read(), SetPos()
725 */
726 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728 }
729
730 /**
731 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732 * ReleaseSampleData() to free the memory if you don't need the cached
733 * sample data anymore.
734 * The method will add \a NullSamplesCount silence samples past the
735 * official buffer end (this won't affect the 'Size' member of the
736 * buffer_t structure, that means 'Size' always reflects the size of the
737 * actual sample data, the buffer might be bigger though). Silence
738 * samples past the official buffer are needed for differential
739 * algorithms that always have to take subsequent samples into account
740 * (resampling/interpolation would be an important example) and avoids
741 * memory access faults in such cases.
742 *
743 * @param NullSamplesCount - number of silence samples the buffer should
744 * be extended past it's data end
745 * @returns buffer_t structure with start address and
746 * size of the buffer in bytes
747 * @see ReleaseSampleData(), Read(), SetPos()
748 */
749 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751 }
752
753 /**
754 * Reads (uncompresses if needed) and caches the first \a SampleCount
755 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756 * memory space if you don't need the cached samples anymore. There is no
757 * guarantee that exactly \a SampleCount samples will be cached; this is
758 * not an error. The size will be eventually truncated e.g. to the
759 * beginning of a frame of a compressed sample. This is done for
760 * efficiency reasons while streaming the wave by your sampler engine
761 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762 * that will be returned to determine the actual cached samples, but note
763 * that the size is given in bytes! You get the number of actually cached
764 * samples by dividing it by the frame size of the sample:
765 * @code
766 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767 * long cachedsamples = buf.Size / pSample->FrameSize;
768 * @endcode
769 * The method will add \a NullSamplesCount silence samples past the
770 * official buffer end (this won't affect the 'Size' member of the
771 * buffer_t structure, that means 'Size' always reflects the size of the
772 * actual sample data, the buffer might be bigger though). Silence
773 * samples past the official buffer are needed for differential
774 * algorithms that always have to take subsequent samples into account
775 * (resampling/interpolation would be an important example) and avoids
776 * memory access faults in such cases.
777 *
778 * @param SampleCount - number of sample points to load into RAM
779 * @param NullSamplesCount - number of silence samples the buffer should
780 * be extended past it's data end
781 * @returns buffer_t structure with start address and
782 * size of the cached sample data in bytes
783 * @see ReleaseSampleData(), Read(), SetPos()
784 */
785 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 SetPos(0); // reset read position to begin of sample
790 RAMCache.pStart = new int8_t[allocationsize];
791 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793 // fill the remaining buffer space with silence samples
794 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795 return GetCache();
796 }
797
798 /**
799 * Returns current cached sample points. A buffer_t structure will be
800 * returned which contains address pointer to the begin of the cache and
801 * the size of the cached sample data in bytes. Use
802 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803 * RAM.
804 *
805 * @returns buffer_t structure with current cached sample points
806 * @see LoadSampleData();
807 */
808 buffer_t Sample::GetCache() {
809 // return a copy of the buffer_t structure
810 buffer_t result;
811 result.Size = this->RAMCache.Size;
812 result.pStart = this->RAMCache.pStart;
813 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814 return result;
815 }
816
817 /**
818 * Frees the cached sample from RAM if loaded with
819 * <i>LoadSampleData()</i> previously.
820 *
821 * @see LoadSampleData();
822 */
823 void Sample::ReleaseSampleData() {
824 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825 RAMCache.pStart = NULL;
826 RAMCache.Size = 0;
827 RAMCache.NullExtensionSize = 0;
828 }
829
830 /** @brief Resize sample.
831 *
832 * Resizes the sample's wave form data, that is the actual size of
833 * sample wave data possible to be written for this sample. This call
834 * will return immediately and just schedule the resize operation. You
835 * should call File::Save() to actually perform the resize operation(s)
836 * "physically" to the file. As this can take a while on large files, it
837 * is recommended to call Resize() first on all samples which have to be
838 * resized and finally to call File::Save() to perform all those resize
839 * operations in one rush.
840 *
841 * The actual size (in bytes) is dependant to the current FrameSize
842 * value. You may want to set FrameSize before calling Resize().
843 *
844 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845 * enlarged samples before calling File::Save() as this might exceed the
846 * current sample's boundary!
847 *
848 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 * other formats will fail!
851 *
852 * @param NewSize - new sample wave data size in sample points (must be
853 * greater than zero)
854 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 * @throws gig::Exception if existing sample is compressed
857 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858 * DLS::Sample::FormatTag, File::Save()
859 */
860 void Sample::Resize(file_offset_t NewSize) {
861 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 DLS::Sample::Resize(NewSize);
863 }
864
865 /**
866 * Sets the position within the sample (in sample points, not in
867 * bytes). Use this method and <i>Read()</i> if you don't want to load
868 * the sample into RAM, thus for disk streaming.
869 *
870 * Although the original Gigasampler engine doesn't allow positioning
871 * within compressed samples, I decided to implement it. Even though
872 * the Gigasampler format doesn't allow to define loops for compressed
873 * samples at the moment, positioning within compressed samples might be
874 * interesting for some sampler engines though. The only drawback about
875 * my decision is that it takes longer to load compressed gig Files on
876 * startup, because it's neccessary to scan the samples for some
877 * mandatory informations. But I think as it doesn't affect the runtime
878 * efficiency, nobody will have a problem with that.
879 *
880 * @param SampleCount number of sample points to jump
881 * @param Whence optional: to which relation \a SampleCount refers
882 * to, if omited <i>RIFF::stream_start</i> is assumed
883 * @returns the new sample position
884 * @see Read()
885 */
886 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 if (Compressed) {
888 switch (Whence) {
889 case RIFF::stream_curpos:
890 this->SamplePos += SampleCount;
891 break;
892 case RIFF::stream_end:
893 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894 break;
895 case RIFF::stream_backward:
896 this->SamplePos -= SampleCount;
897 break;
898 case RIFF::stream_start: default:
899 this->SamplePos = SampleCount;
900 break;
901 }
902 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903
904 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907 return this->SamplePos;
908 }
909 else { // not compressed
910 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 return (result == orderedBytes) ? SampleCount
913 : result / this->FrameSize;
914 }
915 }
916
917 /**
918 * Returns the current position in the sample (in sample points).
919 */
920 file_offset_t Sample::GetPos() const {
921 if (Compressed) return SamplePos;
922 else return pCkData->GetPos() / FrameSize;
923 }
924
925 /**
926 * Reads \a SampleCount number of sample points from the position stored
927 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928 * the position within the sample respectively, this method honors the
929 * looping informations of the sample (if any). The sample wave stream
930 * will be decompressed on the fly if using a compressed sample. Use this
931 * method if you don't want to load the sample into RAM, thus for disk
932 * streaming. All this methods needs to know to proceed with streaming
933 * for the next time you call this method is stored in \a pPlaybackState.
934 * You have to allocate and initialize the playback_state_t structure by
935 * yourself before you use it to stream a sample:
936 * @code
937 * gig::playback_state_t playbackstate;
938 * playbackstate.position = 0;
939 * playbackstate.reverse = false;
940 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941 * @endcode
942 * You don't have to take care of things like if there is actually a loop
943 * defined or if the current read position is located within a loop area.
944 * The method already handles such cases by itself.
945 *
946 * <b>Caution:</b> If you are using more than one streaming thread, you
947 * have to use an external decompression buffer for <b>EACH</b>
948 * streaming thread to avoid race conditions and crashes!
949 *
950 * @param pBuffer destination buffer
951 * @param SampleCount number of sample points to read
952 * @param pPlaybackState will be used to store and reload the playback
953 * state for the next ReadAndLoop() call
954 * @param pDimRgn dimension region with looping information
955 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 * @returns number of successfully read sample points
957 * @see CreateDecompressionBuffer()
958 */
959 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 uint8_t* pDst = (uint8_t*) pBuffer;
963
964 SetPos(pPlaybackState->position); // recover position from the last time
965
966 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967
968 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970
971 if (GetPos() <= loopEnd) {
972 switch (loop.LoopType) {
973
974 case loop_type_bidirectional: { //TODO: not tested yet!
975 do {
976 // if not endless loop check if max. number of loop cycles have been passed
977 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978
979 if (!pPlaybackState->reverse) { // forward playback
980 do {
981 samplestoloopend = loopEnd - GetPos();
982 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983 samplestoread -= readsamples;
984 totalreadsamples += readsamples;
985 if (readsamples == samplestoloopend) {
986 pPlaybackState->reverse = true;
987 break;
988 }
989 } while (samplestoread && readsamples);
990 }
991 else { // backward playback
992
993 // as we can only read forward from disk, we have to
994 // determine the end position within the loop first,
995 // read forward from that 'end' and finally after
996 // reading, swap all sample frames so it reflects
997 // backward playback
998
999 file_offset_t swapareastart = totalreadsamples;
1000 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003
1004 SetPos(reverseplaybackend);
1005
1006 // read samples for backward playback
1007 do {
1008 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009 samplestoreadinloop -= readsamples;
1010 samplestoread -= readsamples;
1011 totalreadsamples += readsamples;
1012 } while (samplestoreadinloop && readsamples);
1013
1014 SetPos(reverseplaybackend); // pretend we really read backwards
1015
1016 if (reverseplaybackend == loop.LoopStart) {
1017 pPlaybackState->loop_cycles_left--;
1018 pPlaybackState->reverse = false;
1019 }
1020
1021 // reverse the sample frames for backward playback
1022 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 }
1025 } while (samplestoread && readsamples);
1026 break;
1027 }
1028
1029 case loop_type_backward: { // TODO: not tested yet!
1030 // forward playback (not entered the loop yet)
1031 if (!pPlaybackState->reverse) do {
1032 samplestoloopend = loopEnd - GetPos();
1033 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034 samplestoread -= readsamples;
1035 totalreadsamples += readsamples;
1036 if (readsamples == samplestoloopend) {
1037 pPlaybackState->reverse = true;
1038 break;
1039 }
1040 } while (samplestoread && readsamples);
1041
1042 if (!samplestoread) break;
1043
1044 // as we can only read forward from disk, we have to
1045 // determine the end position within the loop first,
1046 // read forward from that 'end' and finally after
1047 // reading, swap all sample frames so it reflects
1048 // backward playback
1049
1050 file_offset_t swapareastart = totalreadsamples;
1051 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 : samplestoread;
1054 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055
1056 SetPos(reverseplaybackend);
1057
1058 // read samples for backward playback
1059 do {
1060 // if not endless loop check if max. number of loop cycles have been passed
1061 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062 samplestoloopend = loopEnd - GetPos();
1063 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064 samplestoreadinloop -= readsamples;
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoreadinloop && readsamples);
1072
1073 SetPos(reverseplaybackend); // pretend we really read backwards
1074
1075 // reverse the sample frames for backward playback
1076 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077 break;
1078 }
1079
1080 default: case loop_type_normal: {
1081 do {
1082 // if not endless loop check if max. number of loop cycles have been passed
1083 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084 samplestoloopend = loopEnd - GetPos();
1085 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086 samplestoread -= readsamples;
1087 totalreadsamples += readsamples;
1088 if (readsamples == samplestoloopend) {
1089 pPlaybackState->loop_cycles_left--;
1090 SetPos(loop.LoopStart);
1091 }
1092 } while (samplestoread && readsamples);
1093 break;
1094 }
1095 }
1096 }
1097 }
1098
1099 // read on without looping
1100 if (samplestoread) do {
1101 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 samplestoread -= readsamples;
1103 totalreadsamples += readsamples;
1104 } while (readsamples && samplestoread);
1105
1106 // store current position
1107 pPlaybackState->position = GetPos();
1108
1109 return totalreadsamples;
1110 }
1111
1112 /**
1113 * Reads \a SampleCount number of sample points from the current
1114 * position into the buffer pointed by \a pBuffer and increments the
1115 * position within the sample. The sample wave stream will be
1116 * decompressed on the fly if using a compressed sample. Use this method
1117 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118 * thus for disk streaming.
1119 *
1120 * <b>Caution:</b> If you are using more than one streaming thread, you
1121 * have to use an external decompression buffer for <b>EACH</b>
1122 * streaming thread to avoid race conditions and crashes!
1123 *
1124 * For 16 bit samples, the data in the buffer will be int16_t
1125 * (using native endianness). For 24 bit, the buffer will
1126 * contain three bytes per sample, little-endian.
1127 *
1128 * @param pBuffer destination buffer
1129 * @param SampleCount number of sample points to read
1130 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 * @returns number of successfully read sample points
1132 * @see SetPos(), CreateDecompressionBuffer()
1133 */
1134 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 if (SampleCount == 0) return 0;
1136 if (!Compressed) {
1137 if (BitDepth == 24) {
1138 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 }
1140 else { // 16 bit
1141 // (pCkData->Read does endian correction)
1142 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143 : pCkData->Read(pBuffer, SampleCount, 2);
1144 }
1145 }
1146 else {
1147 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 //TODO: efficiency: maybe we should test for an average compression rate
1149 file_offset_t assumedsize = GuessSize(SampleCount),
1150 remainingbytes = 0, // remaining bytes in the local buffer
1151 remainingsamples = SampleCount,
1152 copysamples, skipsamples,
1153 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 this->FrameOffset = 0;
1155
1156 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157
1158 // if decompression buffer too small, then reduce amount of samples to read
1159 if (pDecompressionBuffer->Size < assumedsize) {
1160 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162 remainingsamples = SampleCount;
1163 assumedsize = GuessSize(SampleCount);
1164 }
1165
1166 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170
1171 while (remainingsamples && remainingbytes) {
1172 file_offset_t framesamples = SamplesPerFrame;
1173 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174
1175 int mode_l = *pSrc++, mode_r = 0;
1176
1177 if (Channels == 2) {
1178 mode_r = *pSrc++;
1179 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182 if (remainingbytes < framebytes) { // last frame in sample
1183 framesamples = SamplesInLastFrame;
1184 if (mode_l == 4 && (framesamples & 1)) {
1185 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186 }
1187 else {
1188 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189 }
1190 }
1191 }
1192 else {
1193 framebytes = bytesPerFrame[mode_l] + 1;
1194 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195 if (remainingbytes < framebytes) {
1196 framesamples = SamplesInLastFrame;
1197 }
1198 }
1199
1200 // determine how many samples in this frame to skip and read
1201 if (currentframeoffset + remainingsamples >= framesamples) {
1202 if (currentframeoffset <= framesamples) {
1203 copysamples = framesamples - currentframeoffset;
1204 skipsamples = currentframeoffset;
1205 }
1206 else {
1207 copysamples = 0;
1208 skipsamples = framesamples;
1209 }
1210 }
1211 else {
1212 // This frame has enough data for pBuffer, but not
1213 // all of the frame is needed. Set file position
1214 // to start of this frame for next call to Read.
1215 copysamples = remainingsamples;
1216 skipsamples = currentframeoffset;
1217 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218 this->FrameOffset = currentframeoffset + copysamples;
1219 }
1220 remainingsamples -= copysamples;
1221
1222 if (remainingbytes > framebytes) {
1223 remainingbytes -= framebytes;
1224 if (remainingsamples == 0 &&
1225 currentframeoffset + copysamples == framesamples) {
1226 // This frame has enough data for pBuffer, and
1227 // all of the frame is needed. Set file
1228 // position to start of next frame for next
1229 // call to Read. FrameOffset is 0.
1230 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231 }
1232 }
1233 else remainingbytes = 0;
1234
1235 currentframeoffset -= skipsamples;
1236
1237 if (copysamples == 0) {
1238 // skip this frame
1239 pSrc += framebytes - Channels;
1240 }
1241 else {
1242 const unsigned char* const param_l = pSrc;
1243 if (BitDepth == 24) {
1244 if (mode_l != 2) pSrc += 12;
1245
1246 if (Channels == 2) { // Stereo
1247 const unsigned char* const param_r = pSrc;
1248 if (mode_r != 2) pSrc += 12;
1249
1250 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 skipsamples, copysamples, TruncatedBits);
1252 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 skipsamples, copysamples, TruncatedBits);
1254 pDst24 += copysamples * 6;
1255 }
1256 else { // Mono
1257 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 skipsamples, copysamples, TruncatedBits);
1259 pDst24 += copysamples * 3;
1260 }
1261 }
1262 else { // 16 bit
1263 if (mode_l) pSrc += 4;
1264
1265 int step;
1266 if (Channels == 2) { // Stereo
1267 const unsigned char* const param_r = pSrc;
1268 if (mode_r) pSrc += 4;
1269
1270 step = (2 - mode_l) + (2 - mode_r);
1271 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 skipsamples, copysamples);
1274 pDst += copysamples << 1;
1275 }
1276 else { // Mono
1277 step = 2 - mode_l;
1278 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 pDst += copysamples;
1280 }
1281 }
1282 pSrc += nextFrameOffset;
1283 }
1284
1285 // reload from disk to local buffer if needed
1286 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287 assumedsize = GuessSize(remainingsamples);
1288 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 }
1293 } // while
1294
1295 this->SamplePos += (SampleCount - remainingsamples);
1296 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 return (SampleCount - remainingsamples);
1298 }
1299 }
1300
1301 /** @brief Write sample wave data.
1302 *
1303 * Writes \a SampleCount number of sample points from the buffer pointed
1304 * by \a pBuffer and increments the position within the sample. Use this
1305 * method to directly write the sample data to disk, i.e. if you don't
1306 * want or cannot load the whole sample data into RAM.
1307 *
1308 * You have to Resize() the sample to the desired size and call
1309 * File::Save() <b>before</b> using Write().
1310 *
1311 * Note: there is currently no support for writing compressed samples.
1312 *
1313 * For 16 bit samples, the data in the source buffer should be
1314 * int16_t (using native endianness). For 24 bit, the buffer
1315 * should contain three bytes per sample, little-endian.
1316 *
1317 * @param pBuffer - source buffer
1318 * @param SampleCount - number of sample points to write
1319 * @throws DLS::Exception if current sample size is too small
1320 * @throws gig::Exception if sample is compressed
1321 * @see DLS::LoadSampleData()
1322 */
1323 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325
1326 // if this is the first write in this sample, reset the
1327 // checksum calculator
1328 if (pCkData->GetPos() == 0) {
1329 __resetCRC(crc);
1330 }
1331 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 file_offset_t res;
1333 if (BitDepth == 24) {
1334 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335 } else { // 16 bit
1336 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337 : pCkData->Write(pBuffer, SampleCount, 2);
1338 }
1339 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340
1341 // if this is the last write, update the checksum chunk in the
1342 // file
1343 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 __finalizeCRC(crc);
1345 File* pFile = static_cast<File*>(GetParent());
1346 pFile->SetSampleChecksum(this, crc);
1347 }
1348 return res;
1349 }
1350
1351 /**
1352 * Allocates a decompression buffer for streaming (compressed) samples
1353 * with Sample::Read(). If you are using more than one streaming thread
1354 * in your application you <b>HAVE</b> to create a decompression buffer
1355 * for <b>EACH</b> of your streaming threads and provide it with the
1356 * Sample::Read() call in order to avoid race conditions and crashes.
1357 *
1358 * You should free the memory occupied by the allocated buffer(s) once
1359 * you don't need one of your streaming threads anymore by calling
1360 * DestroyDecompressionBuffer().
1361 *
1362 * @param MaxReadSize - the maximum size (in sample points) you ever
1363 * expect to read with one Read() call
1364 * @returns allocated decompression buffer
1365 * @see DestroyDecompressionBuffer()
1366 */
1367 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 buffer_t result;
1369 const double worstCaseHeaderOverhead =
1370 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 result.pStart = new int8_t[result.Size];
1373 result.NullExtensionSize = 0;
1374 return result;
1375 }
1376
1377 /**
1378 * Free decompression buffer, previously created with
1379 * CreateDecompressionBuffer().
1380 *
1381 * @param DecompressionBuffer - previously allocated decompression
1382 * buffer to free
1383 */
1384 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386 delete[] (int8_t*) DecompressionBuffer.pStart;
1387 DecompressionBuffer.pStart = NULL;
1388 DecompressionBuffer.Size = 0;
1389 DecompressionBuffer.NullExtensionSize = 0;
1390 }
1391 }
1392
1393 /**
1394 * Returns pointer to the Group this Sample belongs to. In the .gig
1395 * format a sample always belongs to one group. If it wasn't explicitly
1396 * assigned to a certain group, it will be automatically assigned to a
1397 * default group.
1398 *
1399 * @returns Sample's Group (never NULL)
1400 */
1401 Group* Sample::GetGroup() const {
1402 return pGroup;
1403 }
1404
1405 /**
1406 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407 * time when this sample's wave form data was modified for the last time
1408 * by calling Write(). This checksum only covers the raw wave form data,
1409 * not any meta informations like i.e. bit depth or loop points. Since
1410 * this method just returns the checksum stored for this sample i.e. when
1411 * the gig file was loaded, this method returns immediately. So it does no
1412 * recalcuation of the checksum with the currently available sample wave
1413 * form data.
1414 *
1415 * @see VerifyWaveData()
1416 */
1417 uint32_t Sample::GetWaveDataCRC32Checksum() {
1418 return crc;
1419 }
1420
1421 /**
1422 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423 * Sample's raw wave data is intentionally modified (i.e. by calling
1424 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425 * is calculated and stored/updated for this sample, along to the sample's
1426 * meta informations.
1427 *
1428 * Now by calling this method the current raw audio wave data is checked
1429 * against the already stored CRC32 check sum in order to check whether the
1430 * sample data had been damaged unintentionally for some reason. Since by
1431 * calling this method always the entire raw audio wave data has to be
1432 * read, verifying all samples this way may take a long time accordingly.
1433 * And that's also the reason why the sample integrity is not checked by
1434 * default whenever a gig file is loaded. So this method must be called
1435 * explicitly to fulfill this task.
1436 *
1437 * @param pActually - (optional) if provided, will be set to the actually
1438 * calculated checksum of the current raw wave form data,
1439 * you can get the expected checksum instead by calling
1440 * GetWaveDataCRC32Checksum()
1441 * @returns true if sample is OK or false if the sample is damaged
1442 * @throws Exception if no checksum had been stored to disk for this
1443 * sample yet, or on I/O issues
1444 * @see GetWaveDataCRC32Checksum()
1445 */
1446 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 //File* pFile = static_cast<File*>(GetParent());
1448 uint32_t crc = CalculateWaveDataChecksum();
1449 if (pActually) *pActually = crc;
1450 return crc == this->crc;
1451 }
1452
1453 uint32_t Sample::CalculateWaveDataChecksum() {
1454 const size_t sz = 20*1024; // 20kB buffer size
1455 std::vector<uint8_t> buffer(sz);
1456 buffer.resize(sz);
1457
1458 const size_t n = sz / FrameSize;
1459 SetPos(0);
1460 uint32_t crc = 0;
1461 __resetCRC(crc);
1462 while (true) {
1463 file_offset_t nRead = Read(&buffer[0], n);
1464 if (nRead <= 0) break;
1465 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466 }
1467 __finalizeCRC(crc);
1468 return crc;
1469 }
1470
1471 Sample::~Sample() {
1472 Instances--;
1473 if (!Instances && InternalDecompressionBuffer.Size) {
1474 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475 InternalDecompressionBuffer.pStart = NULL;
1476 InternalDecompressionBuffer.Size = 0;
1477 }
1478 if (FrameTable) delete[] FrameTable;
1479 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480 }
1481
1482
1483
1484 // *************** DimensionRegion ***************
1485 // *
1486
1487 size_t DimensionRegion::Instances = 0;
1488 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489
1490 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 Instances++;
1492
1493 pSample = NULL;
1494 pRegion = pParent;
1495
1496 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497 else memset(&Crossfade, 0, 4);
1498
1499 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500
1501 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 if (_3ewa) { // if '3ewa' chunk exists
1503 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506 _3ewa->ReadInt16(); // unknown
1507 LFO1InternalDepth = _3ewa->ReadUint16();
1508 _3ewa->ReadInt16(); // unknown
1509 LFO3InternalDepth = _3ewa->ReadInt16();
1510 _3ewa->ReadInt16(); // unknown
1511 LFO1ControlDepth = _3ewa->ReadUint16();
1512 _3ewa->ReadInt16(); // unknown
1513 LFO3ControlDepth = _3ewa->ReadInt16();
1514 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 EG1Sustain = _3ewa->ReadUint16();
1518 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521 EG1ControllerInvert = eg1ctrloptions & 0x01;
1522 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527 EG2ControllerInvert = eg2ctrloptions & 0x01;
1528 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534 _3ewa->ReadInt16(); // unknown
1535 EG2Sustain = _3ewa->ReadUint16();
1536 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537 _3ewa->ReadInt16(); // unknown
1538 LFO2ControlDepth = _3ewa->ReadUint16();
1539 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 _3ewa->ReadInt16(); // unknown
1541 LFO2InternalDepth = _3ewa->ReadUint16();
1542 int32_t eg1decay2 = _3ewa->ReadInt32();
1543 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545 _3ewa->ReadInt16(); // unknown
1546 EG1PreAttack = _3ewa->ReadUint16();
1547 int32_t eg2decay2 = _3ewa->ReadInt32();
1548 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550 _3ewa->ReadInt16(); // unknown
1551 EG2PreAttack = _3ewa->ReadUint16();
1552 uint8_t velocityresponse = _3ewa->ReadUint8();
1553 if (velocityresponse < 5) {
1554 VelocityResponseCurve = curve_type_nonlinear;
1555 VelocityResponseDepth = velocityresponse;
1556 } else if (velocityresponse < 10) {
1557 VelocityResponseCurve = curve_type_linear;
1558 VelocityResponseDepth = velocityresponse - 5;
1559 } else if (velocityresponse < 15) {
1560 VelocityResponseCurve = curve_type_special;
1561 VelocityResponseDepth = velocityresponse - 10;
1562 } else {
1563 VelocityResponseCurve = curve_type_unknown;
1564 VelocityResponseDepth = 0;
1565 }
1566 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567 if (releasevelocityresponse < 5) {
1568 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569 ReleaseVelocityResponseDepth = releasevelocityresponse;
1570 } else if (releasevelocityresponse < 10) {
1571 ReleaseVelocityResponseCurve = curve_type_linear;
1572 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573 } else if (releasevelocityresponse < 15) {
1574 ReleaseVelocityResponseCurve = curve_type_special;
1575 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576 } else {
1577 ReleaseVelocityResponseCurve = curve_type_unknown;
1578 ReleaseVelocityResponseDepth = 0;
1579 }
1580 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581 AttenuationControllerThreshold = _3ewa->ReadInt8();
1582 _3ewa->ReadInt32(); // unknown
1583 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584 _3ewa->ReadInt16(); // unknown
1585 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589 else DimensionBypass = dim_bypass_ctrl_none;
1590 uint8_t pan = _3ewa->ReadUint8();
1591 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592 SelfMask = _3ewa->ReadInt8() & 0x01;
1593 _3ewa->ReadInt8(); // unknown
1594 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609 : vcf_res_ctrl_none;
1610 uint16_t eg3depth = _3ewa->ReadUint16();
1611 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 _3ewa->ReadInt16(); // unknown
1614 ChannelOffset = _3ewa->ReadUint8() / 4;
1615 uint8_t regoptions = _3ewa->ReadUint8();
1616 MSDecode = regoptions & 0x01; // bit 0
1617 SustainDefeat = regoptions & 0x02; // bit 1
1618 _3ewa->ReadInt16(); // unknown
1619 VelocityUpperLimit = _3ewa->ReadInt8();
1620 _3ewa->ReadInt8(); // unknown
1621 _3ewa->ReadInt16(); // unknown
1622 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623 _3ewa->ReadInt8(); // unknown
1624 _3ewa->ReadInt8(); // unknown
1625 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626 uint8_t vcfcutoff = _3ewa->ReadUint8();
1627 VCFEnabled = vcfcutoff & 0x80; // bit 7
1628 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630 uint8_t vcfvelscale = _3ewa->ReadUint8();
1631 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633 _3ewa->ReadInt8(); // unknown
1634 uint8_t vcfresonance = _3ewa->ReadUint8();
1635 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640 uint8_t vcfvelocity = _3ewa->ReadUint8();
1641 VCFVelocityDynamicRange = vcfvelocity % 5;
1642 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644 if (VCFType == vcf_type_lowpass) {
1645 if (lfo3ctrl & 0x40) // bit 6
1646 VCFType = vcf_type_lowpassturbo;
1647 }
1648 if (_3ewa->RemainingBytes() >= 8) {
1649 _3ewa->Read(DimensionUpperLimits, 1, 8);
1650 } else {
1651 memset(DimensionUpperLimits, 0, 8);
1652 }
1653 } else { // '3ewa' chunk does not exist yet
1654 // use default values
1655 LFO3Frequency = 1.0;
1656 EG3Attack = 0.0;
1657 LFO1InternalDepth = 0;
1658 LFO3InternalDepth = 0;
1659 LFO1ControlDepth = 0;
1660 LFO3ControlDepth = 0;
1661 EG1Attack = 0.0;
1662 EG1Decay1 = 0.005;
1663 EG1Sustain = 1000;
1664 EG1Release = 0.3;
1665 EG1Controller.type = eg1_ctrl_t::type_none;
1666 EG1Controller.controller_number = 0;
1667 EG1ControllerInvert = false;
1668 EG1ControllerAttackInfluence = 0;
1669 EG1ControllerDecayInfluence = 0;
1670 EG1ControllerReleaseInfluence = 0;
1671 EG2Controller.type = eg2_ctrl_t::type_none;
1672 EG2Controller.controller_number = 0;
1673 EG2ControllerInvert = false;
1674 EG2ControllerAttackInfluence = 0;
1675 EG2ControllerDecayInfluence = 0;
1676 EG2ControllerReleaseInfluence = 0;
1677 LFO1Frequency = 1.0;
1678 EG2Attack = 0.0;
1679 EG2Decay1 = 0.005;
1680 EG2Sustain = 1000;
1681 EG2Release = 60;
1682 LFO2ControlDepth = 0;
1683 LFO2Frequency = 1.0;
1684 LFO2InternalDepth = 0;
1685 EG1Decay2 = 0.0;
1686 EG1InfiniteSustain = true;
1687 EG1PreAttack = 0;
1688 EG2Decay2 = 0.0;
1689 EG2InfiniteSustain = true;
1690 EG2PreAttack = 0;
1691 VelocityResponseCurve = curve_type_nonlinear;
1692 VelocityResponseDepth = 3;
1693 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694 ReleaseVelocityResponseDepth = 3;
1695 VelocityResponseCurveScaling = 32;
1696 AttenuationControllerThreshold = 0;
1697 SampleStartOffset = 0;
1698 PitchTrack = true;
1699 DimensionBypass = dim_bypass_ctrl_none;
1700 Pan = 0;
1701 SelfMask = true;
1702 LFO3Controller = lfo3_ctrl_modwheel;
1703 LFO3Sync = false;
1704 InvertAttenuationController = false;
1705 AttenuationController.type = attenuation_ctrl_t::type_none;
1706 AttenuationController.controller_number = 0;
1707 LFO2Controller = lfo2_ctrl_internal;
1708 LFO2FlipPhase = false;
1709 LFO2Sync = false;
1710 LFO1Controller = lfo1_ctrl_internal;
1711 LFO1FlipPhase = false;
1712 LFO1Sync = false;
1713 VCFResonanceController = vcf_res_ctrl_none;
1714 EG3Depth = 0;
1715 ChannelOffset = 0;
1716 MSDecode = false;
1717 SustainDefeat = false;
1718 VelocityUpperLimit = 0;
1719 ReleaseTriggerDecay = 0;
1720 EG1Hold = false;
1721 VCFEnabled = false;
1722 VCFCutoff = 0;
1723 VCFCutoffController = vcf_cutoff_ctrl_none;
1724 VCFCutoffControllerInvert = false;
1725 VCFVelocityScale = 0;
1726 VCFResonance = 0;
1727 VCFResonanceDynamic = false;
1728 VCFKeyboardTracking = false;
1729 VCFKeyboardTrackingBreakpoint = 0;
1730 VCFVelocityDynamicRange = 0x04;
1731 VCFVelocityCurve = curve_type_linear;
1732 VCFType = vcf_type_lowpass;
1733 memset(DimensionUpperLimits, 127, 8);
1734 }
1735 // format extension for EG behavior options, these will *NOT* work with
1736 // Gigasampler/GigaStudio !
1737 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738 if (lsde) {
1739 unsigned char byte = lsde->ReadUint8();
1740 EGOptions.AttackCancel = byte & 1;
1741 EGOptions.AttackHoldCancel = byte & (1 << 1);
1742 EGOptions.Decay1Cancel = byte & (1 << 2);
1743 EGOptions.Decay2Cancel = byte & (1 << 3);
1744 EGOptions.ReleaseCancel = byte & (1 << 4);
1745 }
1746
1747 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1748 VelocityResponseDepth,
1749 VelocityResponseCurveScaling);
1750
1751 pVelocityReleaseTable = GetReleaseVelocityTable(
1752 ReleaseVelocityResponseCurve,
1753 ReleaseVelocityResponseDepth
1754 );
1755
1756 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1757 VCFVelocityDynamicRange,
1758 VCFVelocityScale,
1759 VCFCutoffController);
1760
1761 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1762 VelocityTable = 0;
1763 }
1764
1765 /*
1766 * Constructs a DimensionRegion by copying all parameters from
1767 * another DimensionRegion
1768 */
1769 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1770 Instances++;
1771 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1772 *this = src; // default memberwise shallow copy of all parameters
1773 pParentList = _3ewl; // restore the chunk pointer
1774
1775 // deep copy of owned structures
1776 if (src.VelocityTable) {
1777 VelocityTable = new uint8_t[128];
1778 for (int k = 0 ; k < 128 ; k++)
1779 VelocityTable[k] = src.VelocityTable[k];
1780 }
1781 if (src.pSampleLoops) {
1782 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1783 for (int k = 0 ; k < src.SampleLoops ; k++)
1784 pSampleLoops[k] = src.pSampleLoops[k];
1785 }
1786 }
1787
1788 /**
1789 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1790 * and assign it to this object.
1791 *
1792 * Note that all sample pointers referenced by @a orig are simply copied as
1793 * memory address. Thus the respective samples are shared, not duplicated!
1794 *
1795 * @param orig - original DimensionRegion object to be copied from
1796 */
1797 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1798 CopyAssign(orig, NULL);
1799 }
1800
1801 /**
1802 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1803 * and assign it to this object.
1804 *
1805 * @param orig - original DimensionRegion object to be copied from
1806 * @param mSamples - crosslink map between the foreign file's samples and
1807 * this file's samples
1808 */
1809 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1810 // delete all allocated data first
1811 if (VelocityTable) delete [] VelocityTable;
1812 if (pSampleLoops) delete [] pSampleLoops;
1813
1814 // backup parent list pointer
1815 RIFF::List* p = pParentList;
1816
1817 gig::Sample* pOriginalSample = pSample;
1818 gig::Region* pOriginalRegion = pRegion;
1819
1820 //NOTE: copy code copied from assignment constructor above, see comment there as well
1821
1822 *this = *orig; // default memberwise shallow copy of all parameters
1823
1824 // restore members that shall not be altered
1825 pParentList = p; // restore the chunk pointer
1826 pRegion = pOriginalRegion;
1827
1828 // only take the raw sample reference reference if the
1829 // two DimensionRegion objects are part of the same file
1830 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1831 pSample = pOriginalSample;
1832 }
1833
1834 if (mSamples && mSamples->count(orig->pSample)) {
1835 pSample = mSamples->find(orig->pSample)->second;
1836 }
1837
1838 // deep copy of owned structures
1839 if (orig->VelocityTable) {
1840 VelocityTable = new uint8_t[128];
1841 for (int k = 0 ; k < 128 ; k++)
1842 VelocityTable[k] = orig->VelocityTable[k];
1843 }
1844 if (orig->pSampleLoops) {
1845 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1846 for (int k = 0 ; k < orig->SampleLoops ; k++)
1847 pSampleLoops[k] = orig->pSampleLoops[k];
1848 }
1849 }
1850
1851 void DimensionRegion::serialize(Serialization::Archive* archive) {
1852 // in case this class will become backward incompatible one day,
1853 // then set a version and minimum version for this class like:
1854 //archive->setVersion(*this, 2);
1855 //archive->setMinVersion(*this, 1);
1856
1857 SRLZ(VelocityUpperLimit);
1858 SRLZ(EG1PreAttack);
1859 SRLZ(EG1Attack);
1860 SRLZ(EG1Decay1);
1861 SRLZ(EG1Decay2);
1862 SRLZ(EG1InfiniteSustain);
1863 SRLZ(EG1Sustain);
1864 SRLZ(EG1Release);
1865 SRLZ(EG1Hold);
1866 SRLZ(EG1Controller);
1867 SRLZ(EG1ControllerInvert);
1868 SRLZ(EG1ControllerAttackInfluence);
1869 SRLZ(EG1ControllerDecayInfluence);
1870 SRLZ(EG1ControllerReleaseInfluence);
1871 SRLZ(LFO1Frequency);
1872 SRLZ(LFO1InternalDepth);
1873 SRLZ(LFO1ControlDepth);
1874 SRLZ(LFO1Controller);
1875 SRLZ(LFO1FlipPhase);
1876 SRLZ(LFO1Sync);
1877 SRLZ(EG2PreAttack);
1878 SRLZ(EG2Attack);
1879 SRLZ(EG2Decay1);
1880 SRLZ(EG2Decay2);
1881 SRLZ(EG2InfiniteSustain);
1882 SRLZ(EG2Sustain);
1883 SRLZ(EG2Release);
1884 SRLZ(EG2Controller);
1885 SRLZ(EG2ControllerInvert);
1886 SRLZ(EG2ControllerAttackInfluence);
1887 SRLZ(EG2ControllerDecayInfluence);
1888 SRLZ(EG2ControllerReleaseInfluence);
1889 SRLZ(LFO2Frequency);
1890 SRLZ(LFO2InternalDepth);
1891 SRLZ(LFO2ControlDepth);
1892 SRLZ(LFO2Controller);
1893 SRLZ(LFO2FlipPhase);
1894 SRLZ(LFO2Sync);
1895 SRLZ(EG3Attack);
1896 SRLZ(EG3Depth);
1897 SRLZ(LFO3Frequency);
1898 SRLZ(LFO3InternalDepth);
1899 SRLZ(LFO3ControlDepth);
1900 SRLZ(LFO3Controller);
1901 SRLZ(LFO3Sync);
1902 SRLZ(VCFEnabled);
1903 SRLZ(VCFType);
1904 SRLZ(VCFCutoffController);
1905 SRLZ(VCFCutoffControllerInvert);
1906 SRLZ(VCFCutoff);
1907 SRLZ(VCFVelocityCurve);
1908 SRLZ(VCFVelocityScale);
1909 SRLZ(VCFVelocityDynamicRange);
1910 SRLZ(VCFResonance);
1911 SRLZ(VCFResonanceDynamic);
1912 SRLZ(VCFResonanceController);
1913 SRLZ(VCFKeyboardTracking);
1914 SRLZ(VCFKeyboardTrackingBreakpoint);
1915 SRLZ(VelocityResponseCurve);
1916 SRLZ(VelocityResponseDepth);
1917 SRLZ(VelocityResponseCurveScaling);
1918 SRLZ(ReleaseVelocityResponseCurve);
1919 SRLZ(ReleaseVelocityResponseDepth);
1920 SRLZ(ReleaseTriggerDecay);
1921 SRLZ(Crossfade);
1922 SRLZ(PitchTrack);
1923 SRLZ(DimensionBypass);
1924 SRLZ(Pan);
1925 SRLZ(SelfMask);
1926 SRLZ(AttenuationController);
1927 SRLZ(InvertAttenuationController);
1928 SRLZ(AttenuationControllerThreshold);
1929 SRLZ(ChannelOffset);
1930 SRLZ(SustainDefeat);
1931 SRLZ(MSDecode);
1932 //SRLZ(SampleStartOffset);
1933 SRLZ(SampleAttenuation);
1934 SRLZ(EGOptions);
1935
1936 // derived attributes from DLS::Sampler
1937 SRLZ(FineTune);
1938 SRLZ(Gain);
1939 }
1940
1941 /**
1942 * Updates the respective member variable and updates @c SampleAttenuation
1943 * which depends on this value.
1944 */
1945 void DimensionRegion::SetGain(int32_t gain) {
1946 DLS::Sampler::SetGain(gain);
1947 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1948 }
1949
1950 /**
1951 * Apply dimension region settings to the respective RIFF chunks. You
1952 * have to call File::Save() to make changes persistent.
1953 *
1954 * Usually there is absolutely no need to call this method explicitly.
1955 * It will be called automatically when File::Save() was called.
1956 *
1957 * @param pProgress - callback function for progress notification
1958 */
1959 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1960 // first update base class's chunk
1961 DLS::Sampler::UpdateChunks(pProgress);
1962
1963 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1964 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1965 pData[12] = Crossfade.in_start;
1966 pData[13] = Crossfade.in_end;
1967 pData[14] = Crossfade.out_start;
1968 pData[15] = Crossfade.out_end;
1969
1970 // make sure '3ewa' chunk exists
1971 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1972 if (!_3ewa) {
1973 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1974 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1975 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1976 }
1977 pData = (uint8_t*) _3ewa->LoadChunkData();
1978
1979 // update '3ewa' chunk with DimensionRegion's current settings
1980
1981 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1982 store32(&pData[0], chunksize); // unknown, always chunk size?
1983
1984 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1985 store32(&pData[4], lfo3freq);
1986
1987 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1988 store32(&pData[8], eg3attack);
1989
1990 // next 2 bytes unknown
1991
1992 store16(&pData[14], LFO1InternalDepth);
1993
1994 // next 2 bytes unknown
1995
1996 store16(&pData[18], LFO3InternalDepth);
1997
1998 // next 2 bytes unknown
1999
2000 store16(&pData[22], LFO1ControlDepth);
2001
2002 // next 2 bytes unknown
2003
2004 store16(&pData[26], LFO3ControlDepth);
2005
2006 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2007 store32(&pData[28], eg1attack);
2008
2009 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2010 store32(&pData[32], eg1decay1);
2011
2012 // next 2 bytes unknown
2013
2014 store16(&pData[38], EG1Sustain);
2015
2016 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2017 store32(&pData[40], eg1release);
2018
2019 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2020 pData[44] = eg1ctl;
2021
2022 const uint8_t eg1ctrloptions =
2023 (EG1ControllerInvert ? 0x01 : 0x00) |
2024 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2025 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2026 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2027 pData[45] = eg1ctrloptions;
2028
2029 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2030 pData[46] = eg2ctl;
2031
2032 const uint8_t eg2ctrloptions =
2033 (EG2ControllerInvert ? 0x01 : 0x00) |
2034 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2035 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2036 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2037 pData[47] = eg2ctrloptions;
2038
2039 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2040 store32(&pData[48], lfo1freq);
2041
2042 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2043 store32(&pData[52], eg2attack);
2044
2045 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2046 store32(&pData[56], eg2decay1);
2047
2048 // next 2 bytes unknown
2049
2050 store16(&pData[62], EG2Sustain);
2051
2052 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2053 store32(&pData[64], eg2release);
2054
2055 // next 2 bytes unknown
2056
2057 store16(&pData[70], LFO2ControlDepth);
2058
2059 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2060 store32(&pData[72], lfo2freq);
2061
2062 // next 2 bytes unknown
2063
2064 store16(&pData[78], LFO2InternalDepth);
2065
2066 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2067 store32(&pData[80], eg1decay2);
2068
2069 // next 2 bytes unknown
2070
2071 store16(&pData[86], EG1PreAttack);
2072
2073 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2074 store32(&pData[88], eg2decay2);
2075
2076 // next 2 bytes unknown
2077
2078 store16(&pData[94], EG2PreAttack);
2079
2080 {
2081 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2082 uint8_t velocityresponse = VelocityResponseDepth;
2083 switch (VelocityResponseCurve) {
2084 case curve_type_nonlinear:
2085 break;
2086 case curve_type_linear:
2087 velocityresponse += 5;
2088 break;
2089 case curve_type_special:
2090 velocityresponse += 10;
2091 break;
2092 case curve_type_unknown:
2093 default:
2094 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2095 }
2096 pData[96] = velocityresponse;
2097 }
2098
2099 {
2100 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2101 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2102 switch (ReleaseVelocityResponseCurve) {
2103 case curve_type_nonlinear:
2104 break;
2105 case curve_type_linear:
2106 releasevelocityresponse += 5;
2107 break;
2108 case curve_type_special:
2109 releasevelocityresponse += 10;
2110 break;
2111 case curve_type_unknown:
2112 default:
2113 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2114 }
2115 pData[97] = releasevelocityresponse;
2116 }
2117
2118 pData[98] = VelocityResponseCurveScaling;
2119
2120 pData[99] = AttenuationControllerThreshold;
2121
2122 // next 4 bytes unknown
2123
2124 store16(&pData[104], SampleStartOffset);
2125
2126 // next 2 bytes unknown
2127
2128 {
2129 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2130 switch (DimensionBypass) {
2131 case dim_bypass_ctrl_94:
2132 pitchTrackDimensionBypass |= 0x10;
2133 break;
2134 case dim_bypass_ctrl_95:
2135 pitchTrackDimensionBypass |= 0x20;
2136 break;
2137 case dim_bypass_ctrl_none:
2138 //FIXME: should we set anything here?
2139 break;
2140 default:
2141 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2142 }
2143 pData[108] = pitchTrackDimensionBypass;
2144 }
2145
2146 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2147 pData[109] = pan;
2148
2149 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2150 pData[110] = selfmask;
2151
2152 // next byte unknown
2153
2154 {
2155 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2156 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2157 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2158 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2159 pData[112] = lfo3ctrl;
2160 }
2161
2162 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2163 pData[113] = attenctl;
2164
2165 {
2166 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2167 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2168 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2169 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2170 pData[114] = lfo2ctrl;
2171 }
2172
2173 {
2174 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2175 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2176 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2177 if (VCFResonanceController != vcf_res_ctrl_none)
2178 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2179 pData[115] = lfo1ctrl;
2180 }
2181
2182 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2183 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2184 store16(&pData[116], eg3depth);
2185
2186 // next 2 bytes unknown
2187
2188 const uint8_t channeloffset = ChannelOffset * 4;
2189 pData[120] = channeloffset;
2190
2191 {
2192 uint8_t regoptions = 0;
2193 if (MSDecode) regoptions |= 0x01; // bit 0
2194 if (SustainDefeat) regoptions |= 0x02; // bit 1
2195 pData[121] = regoptions;
2196 }
2197
2198 // next 2 bytes unknown
2199
2200 pData[124] = VelocityUpperLimit;
2201
2202 // next 3 bytes unknown
2203
2204 pData[128] = ReleaseTriggerDecay;
2205
2206 // next 2 bytes unknown
2207
2208 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2209 pData[131] = eg1hold;
2210
2211 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2212 (VCFCutoff & 0x7f); /* lower 7 bits */
2213 pData[132] = vcfcutoff;
2214
2215 pData[133] = VCFCutoffController;
2216
2217 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2218 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2219 pData[134] = vcfvelscale;
2220
2221 // next byte unknown
2222
2223 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2224 (VCFResonance & 0x7f); /* lower 7 bits */
2225 pData[136] = vcfresonance;
2226
2227 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2228 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2229 pData[137] = vcfbreakpoint;
2230
2231 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2232 VCFVelocityCurve * 5;
2233 pData[138] = vcfvelocity;
2234
2235 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2236 pData[139] = vcftype;
2237
2238 if (chunksize >= 148) {
2239 memcpy(&pData[140], DimensionUpperLimits, 8);
2240 }
2241
2242 // format extension for EG behavior options, these will *NOT* work with
2243 // Gigasampler/GigaStudio !
2244 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2245 if (!lsde) {
2246 // only add this "LSDE" chunk if the EG options do not match the
2247 // default EG behavior
2248 eg_opt_t defaultOpt;
2249 if (memcmp(&EGOptions, &defaultOpt, sizeof(eg_opt_t))) {
2250 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 1);
2251 // move LSDE chunk to the end of parent list
2252 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2253 }
2254 }
2255 if (lsde) {
2256 unsigned char* pByte = (unsigned char*) lsde->LoadChunkData();
2257 *pByte =
2258 (EGOptions.AttackCancel ? 1 : 0) |
2259 (EGOptions.AttackHoldCancel ? (1<<1) : 0) |
2260 (EGOptions.Decay1Cancel ? (1<<2) : 0) |
2261 (EGOptions.Decay2Cancel ? (1<<3) : 0) |
2262 (EGOptions.ReleaseCancel ? (1<<4) : 0);
2263 }
2264 }
2265
2266 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2267 curve_type_t curveType = releaseVelocityResponseCurve;
2268 uint8_t depth = releaseVelocityResponseDepth;
2269 // this models a strange behaviour or bug in GSt: two of the
2270 // velocity response curves for release time are not used even
2271 // if specified, instead another curve is chosen.
2272 if ((curveType == curve_type_nonlinear && depth == 0) ||
2273 (curveType == curve_type_special && depth == 4)) {
2274 curveType = curve_type_nonlinear;
2275 depth = 3;
2276 }
2277 return GetVelocityTable(curveType, depth, 0);
2278 }
2279
2280 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2281 uint8_t vcfVelocityDynamicRange,
2282 uint8_t vcfVelocityScale,
2283 vcf_cutoff_ctrl_t vcfCutoffController)
2284 {
2285 curve_type_t curveType = vcfVelocityCurve;
2286 uint8_t depth = vcfVelocityDynamicRange;
2287 // even stranger GSt: two of the velocity response curves for
2288 // filter cutoff are not used, instead another special curve
2289 // is chosen. This curve is not used anywhere else.
2290 if ((curveType == curve_type_nonlinear && depth == 0) ||
2291 (curveType == curve_type_special && depth == 4)) {
2292 curveType = curve_type_special;
2293 depth = 5;
2294 }
2295 return GetVelocityTable(curveType, depth,
2296 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2297 ? vcfVelocityScale : 0);
2298 }
2299
2300 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2301 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2302 {
2303 double* table;
2304 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2305 if (pVelocityTables->count(tableKey)) { // if key exists
2306 table = (*pVelocityTables)[tableKey];
2307 }
2308 else {
2309 table = CreateVelocityTable(curveType, depth, scaling);
2310 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2311 }
2312 return table;
2313 }
2314
2315 Region* DimensionRegion::GetParent() const {
2316 return pRegion;
2317 }
2318
2319 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2320 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2321 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2322 //#pragma GCC diagnostic push
2323 //#pragma GCC diagnostic error "-Wswitch"
2324
2325 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2326 leverage_ctrl_t decodedcontroller;
2327 switch (EncodedController) {
2328 // special controller
2329 case _lev_ctrl_none:
2330 decodedcontroller.type = leverage_ctrl_t::type_none;
2331 decodedcontroller.controller_number = 0;
2332 break;
2333 case _lev_ctrl_velocity:
2334 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2335 decodedcontroller.controller_number = 0;
2336 break;
2337 case _lev_ctrl_channelaftertouch:
2338 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2339 decodedcontroller.controller_number = 0;
2340 break;
2341
2342 // ordinary MIDI control change controller
2343 case _lev_ctrl_modwheel:
2344 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345 decodedcontroller.controller_number = 1;
2346 break;
2347 case _lev_ctrl_breath:
2348 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349 decodedcontroller.controller_number = 2;
2350 break;
2351 case _lev_ctrl_foot:
2352 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353 decodedcontroller.controller_number = 4;
2354 break;
2355 case _lev_ctrl_effect1:
2356 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357 decodedcontroller.controller_number = 12;
2358 break;
2359 case _lev_ctrl_effect2:
2360 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361 decodedcontroller.controller_number = 13;
2362 break;
2363 case _lev_ctrl_genpurpose1:
2364 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365 decodedcontroller.controller_number = 16;
2366 break;
2367 case _lev_ctrl_genpurpose2:
2368 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369 decodedcontroller.controller_number = 17;
2370 break;
2371 case _lev_ctrl_genpurpose3:
2372 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373 decodedcontroller.controller_number = 18;
2374 break;
2375 case _lev_ctrl_genpurpose4:
2376 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377 decodedcontroller.controller_number = 19;
2378 break;
2379 case _lev_ctrl_portamentotime:
2380 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381 decodedcontroller.controller_number = 5;
2382 break;
2383 case _lev_ctrl_sustainpedal:
2384 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385 decodedcontroller.controller_number = 64;
2386 break;
2387 case _lev_ctrl_portamento:
2388 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389 decodedcontroller.controller_number = 65;
2390 break;
2391 case _lev_ctrl_sostenutopedal:
2392 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393 decodedcontroller.controller_number = 66;
2394 break;
2395 case _lev_ctrl_softpedal:
2396 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397 decodedcontroller.controller_number = 67;
2398 break;
2399 case _lev_ctrl_genpurpose5:
2400 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401 decodedcontroller.controller_number = 80;
2402 break;
2403 case _lev_ctrl_genpurpose6:
2404 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405 decodedcontroller.controller_number = 81;
2406 break;
2407 case _lev_ctrl_genpurpose7:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 82;
2410 break;
2411 case _lev_ctrl_genpurpose8:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 83;
2414 break;
2415 case _lev_ctrl_effect1depth:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 91;
2418 break;
2419 case _lev_ctrl_effect2depth:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 92;
2422 break;
2423 case _lev_ctrl_effect3depth:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 93;
2426 break;
2427 case _lev_ctrl_effect4depth:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 94;
2430 break;
2431 case _lev_ctrl_effect5depth:
2432 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433 decodedcontroller.controller_number = 95;
2434 break;
2435
2436 // format extension (these controllers are so far only supported by
2437 // LinuxSampler & gigedit) they will *NOT* work with
2438 // Gigasampler/GigaStudio !
2439 case _lev_ctrl_CC3_EXT:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 3;
2442 break;
2443 case _lev_ctrl_CC6_EXT:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 6;
2446 break;
2447 case _lev_ctrl_CC7_EXT:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 7;
2450 break;
2451 case _lev_ctrl_CC8_EXT:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 8;
2454 break;
2455 case _lev_ctrl_CC9_EXT:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 9;
2458 break;
2459 case _lev_ctrl_CC10_EXT:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 10;
2462 break;
2463 case _lev_ctrl_CC11_EXT:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 11;
2466 break;
2467 case _lev_ctrl_CC14_EXT:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 14;
2470 break;
2471 case _lev_ctrl_CC15_EXT:
2472 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473 decodedcontroller.controller_number = 15;
2474 break;
2475 case _lev_ctrl_CC20_EXT:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 20;
2478 break;
2479 case _lev_ctrl_CC21_EXT:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 21;
2482 break;
2483 case _lev_ctrl_CC22_EXT:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 22;
2486 break;
2487 case _lev_ctrl_CC23_EXT:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 23;
2490 break;
2491 case _lev_ctrl_CC24_EXT:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 24;
2494 break;
2495 case _lev_ctrl_CC25_EXT:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 25;
2498 break;
2499 case _lev_ctrl_CC26_EXT:
2500 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501 decodedcontroller.controller_number = 26;
2502 break;
2503 case _lev_ctrl_CC27_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 27;
2506 break;
2507 case _lev_ctrl_CC28_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 28;
2510 break;
2511 case _lev_ctrl_CC29_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 29;
2514 break;
2515 case _lev_ctrl_CC30_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 30;
2518 break;
2519 case _lev_ctrl_CC31_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 31;
2522 break;
2523 case _lev_ctrl_CC68_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 68;
2526 break;
2527 case _lev_ctrl_CC69_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 69;
2530 break;
2531 case _lev_ctrl_CC70_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 70;
2534 break;
2535 case _lev_ctrl_CC71_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 71;
2538 break;
2539 case _lev_ctrl_CC72_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 72;
2542 break;
2543 case _lev_ctrl_CC73_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 73;
2546 break;
2547 case _lev_ctrl_CC74_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 74;
2550 break;
2551 case _lev_ctrl_CC75_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 75;
2554 break;
2555 case _lev_ctrl_CC76_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 76;
2558 break;
2559 case _lev_ctrl_CC77_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 77;
2562 break;
2563 case _lev_ctrl_CC78_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 78;
2566 break;
2567 case _lev_ctrl_CC79_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 79;
2570 break;
2571 case _lev_ctrl_CC84_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 84;
2574 break;
2575 case _lev_ctrl_CC85_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 85;
2578 break;
2579 case _lev_ctrl_CC86_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 86;
2582 break;
2583 case _lev_ctrl_CC87_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 87;
2586 break;
2587 case _lev_ctrl_CC89_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 89;
2590 break;
2591 case _lev_ctrl_CC90_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 90;
2594 break;
2595 case _lev_ctrl_CC96_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 96;
2598 break;
2599 case _lev_ctrl_CC97_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 97;
2602 break;
2603 case _lev_ctrl_CC102_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 102;
2606 break;
2607 case _lev_ctrl_CC103_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 103;
2610 break;
2611 case _lev_ctrl_CC104_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 104;
2614 break;
2615 case _lev_ctrl_CC105_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 105;
2618 break;
2619 case _lev_ctrl_CC106_EXT:
2620 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621 decodedcontroller.controller_number = 106;
2622 break;
2623 case _lev_ctrl_CC107_EXT:
2624 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625 decodedcontroller.controller_number = 107;
2626 break;
2627 case _lev_ctrl_CC108_EXT:
2628 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629 decodedcontroller.controller_number = 108;
2630 break;
2631 case _lev_ctrl_CC109_EXT:
2632 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633 decodedcontroller.controller_number = 109;
2634 break;
2635 case _lev_ctrl_CC110_EXT:
2636 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637 decodedcontroller.controller_number = 110;
2638 break;
2639 case _lev_ctrl_CC111_EXT:
2640 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641 decodedcontroller.controller_number = 111;
2642 break;
2643 case _lev_ctrl_CC112_EXT:
2644 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645 decodedcontroller.controller_number = 112;
2646 break;
2647 case _lev_ctrl_CC113_EXT:
2648 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649 decodedcontroller.controller_number = 113;
2650 break;
2651 case _lev_ctrl_CC114_EXT:
2652 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653 decodedcontroller.controller_number = 114;
2654 break;
2655 case _lev_ctrl_CC115_EXT:
2656 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657 decodedcontroller.controller_number = 115;
2658 break;
2659 case _lev_ctrl_CC116_EXT:
2660 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661 decodedcontroller.controller_number = 116;
2662 break;
2663 case _lev_ctrl_CC117_EXT:
2664 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665 decodedcontroller.controller_number = 117;
2666 break;
2667 case _lev_ctrl_CC118_EXT:
2668 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669 decodedcontroller.controller_number = 118;
2670 break;
2671 case _lev_ctrl_CC119_EXT:
2672 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673 decodedcontroller.controller_number = 119;
2674 break;
2675
2676 // unknown controller type
2677 default:
2678 decodedcontroller.type = leverage_ctrl_t::type_none;
2679 decodedcontroller.controller_number = 0;
2680 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2681 break;
2682 }
2683 return decodedcontroller;
2684 }
2685
2686 // see above (diagnostic push not supported prior GCC 4.6)
2687 //#pragma GCC diagnostic pop
2688
2689 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2690 _lev_ctrl_t encodedcontroller;
2691 switch (DecodedController.type) {
2692 // special controller
2693 case leverage_ctrl_t::type_none:
2694 encodedcontroller = _lev_ctrl_none;
2695 break;
2696 case leverage_ctrl_t::type_velocity:
2697 encodedcontroller = _lev_ctrl_velocity;
2698 break;
2699 case leverage_ctrl_t::type_channelaftertouch:
2700 encodedcontroller = _lev_ctrl_channelaftertouch;
2701 break;
2702
2703 // ordinary MIDI control change controller
2704 case leverage_ctrl_t::type_controlchange:
2705 switch (DecodedController.controller_number) {
2706 case 1:
2707 encodedcontroller = _lev_ctrl_modwheel;
2708 break;
2709 case 2:
2710 encodedcontroller = _lev_ctrl_breath;
2711 break;
2712 case 4:
2713 encodedcontroller = _lev_ctrl_foot;
2714 break;
2715 case 12:
2716 encodedcontroller = _lev_ctrl_effect1;
2717 break;
2718 case 13:
2719 encodedcontroller = _lev_ctrl_effect2;
2720 break;
2721 case 16:
2722 encodedcontroller = _lev_ctrl_genpurpose1;
2723 break;
2724 case 17:
2725 encodedcontroller = _lev_ctrl_genpurpose2;
2726 break;
2727 case 18:
2728 encodedcontroller = _lev_ctrl_genpurpose3;
2729 break;
2730 case 19:
2731 encodedcontroller = _lev_ctrl_genpurpose4;
2732 break;
2733 case 5:
2734 encodedcontroller = _lev_ctrl_portamentotime;
2735 break;
2736 case 64:
2737 encodedcontroller = _lev_ctrl_sustainpedal;
2738 break;
2739 case 65:
2740 encodedcontroller = _lev_ctrl_portamento;
2741 break;
2742 case 66:
2743 encodedcontroller = _lev_ctrl_sostenutopedal;
2744 break;
2745 case 67:
2746 encodedcontroller = _lev_ctrl_softpedal;
2747 break;
2748 case 80:
2749 encodedcontroller = _lev_ctrl_genpurpose5;
2750 break;
2751 case 81:
2752 encodedcontroller = _lev_ctrl_genpurpose6;
2753 break;
2754 case 82:
2755 encodedcontroller = _lev_ctrl_genpurpose7;
2756 break;
2757 case 83:
2758 encodedcontroller = _lev_ctrl_genpurpose8;
2759 break;
2760 case 91:
2761 encodedcontroller = _lev_ctrl_effect1depth;
2762 break;
2763 case 92:
2764 encodedcontroller = _lev_ctrl_effect2depth;
2765 break;
2766 case 93:
2767 encodedcontroller = _lev_ctrl_effect3depth;
2768 break;
2769 case 94:
2770 encodedcontroller = _lev_ctrl_effect4depth;
2771 break;
2772 case 95:
2773 encodedcontroller = _lev_ctrl_effect5depth;
2774 break;
2775
2776 // format extension (these controllers are so far only
2777 // supported by LinuxSampler & gigedit) they will *NOT*
2778 // work with Gigasampler/GigaStudio !
2779 case 3:
2780 encodedcontroller = _lev_ctrl_CC3_EXT;
2781 break;
2782 case 6:
2783 encodedcontroller = _lev_ctrl_CC6_EXT;
2784 break;
2785 case 7:
2786 encodedcontroller = _lev_ctrl_CC7_EXT;
2787 break;
2788 case 8:
2789 encodedcontroller = _lev_ctrl_CC8_EXT;
2790 break;
2791 case 9:
2792 encodedcontroller = _lev_ctrl_CC9_EXT;
2793 break;
2794 case 10:
2795 encodedcontroller = _lev_ctrl_CC10_EXT;
2796 break;
2797 case 11:
2798 encodedcontroller = _lev_ctrl_CC11_EXT;
2799 break;
2800 case 14:
2801 encodedcontroller = _lev_ctrl_CC14_EXT;
2802 break;
2803 case 15:
2804 encodedcontroller = _lev_ctrl_CC15_EXT;
2805 break;
2806 case 20:
2807 encodedcontroller = _lev_ctrl_CC20_EXT;
2808 break;
2809 case 21:
2810 encodedcontroller = _lev_ctrl_CC21_EXT;
2811 break;
2812 case 22:
2813 encodedcontroller = _lev_ctrl_CC22_EXT;
2814 break;
2815 case 23:
2816 encodedcontroller = _lev_ctrl_CC23_EXT;
2817 break;
2818 case 24:
2819 encodedcontroller = _lev_ctrl_CC24_EXT;
2820 break;
2821 case 25:
2822 encodedcontroller = _lev_ctrl_CC25_EXT;
2823 break;
2824 case 26:
2825 encodedcontroller = _lev_ctrl_CC26_EXT;
2826 break;
2827 case 27:
2828 encodedcontroller = _lev_ctrl_CC27_EXT;
2829 break;
2830 case 28:
2831 encodedcontroller = _lev_ctrl_CC28_EXT;
2832 break;
2833 case 29:
2834 encodedcontroller = _lev_ctrl_CC29_EXT;
2835 break;
2836 case 30:
2837 encodedcontroller = _lev_ctrl_CC30_EXT;
2838 break;
2839 case 31:
2840 encodedcontroller = _lev_ctrl_CC31_EXT;
2841 break;
2842 case 68:
2843 encodedcontroller = _lev_ctrl_CC68_EXT;
2844 break;
2845 case 69:
2846 encodedcontroller = _lev_ctrl_CC69_EXT;
2847 break;
2848 case 70:
2849 encodedcontroller = _lev_ctrl_CC70_EXT;
2850 break;
2851 case 71:
2852 encodedcontroller = _lev_ctrl_CC71_EXT;
2853 break;
2854 case 72:
2855 encodedcontroller = _lev_ctrl_CC72_EXT;
2856 break;
2857 case 73:
2858 encodedcontroller = _lev_ctrl_CC73_EXT;
2859 break;
2860 case 74:
2861 encodedcontroller = _lev_ctrl_CC74_EXT;
2862 break;
2863 case 75:
2864 encodedcontroller = _lev_ctrl_CC75_EXT;
2865 break;
2866 case 76:
2867 encodedcontroller = _lev_ctrl_CC76_EXT;
2868 break;
2869 case 77:
2870 encodedcontroller = _lev_ctrl_CC77_EXT;
2871 break;
2872 case 78:
2873 encodedcontroller = _lev_ctrl_CC78_EXT;
2874 break;
2875 case 79:
2876 encodedcontroller = _lev_ctrl_CC79_EXT;
2877 break;
2878 case 84:
2879 encodedcontroller = _lev_ctrl_CC84_EXT;
2880 break;
2881 case 85:
2882 encodedcontroller = _lev_ctrl_CC85_EXT;
2883 break;
2884 case 86:
2885 encodedcontroller = _lev_ctrl_CC86_EXT;
2886 break;
2887 case 87:
2888 encodedcontroller = _lev_ctrl_CC87_EXT;
2889 break;
2890 case 89:
2891 encodedcontroller = _lev_ctrl_CC89_EXT;
2892 break;
2893 case 90:
2894 encodedcontroller = _lev_ctrl_CC90_EXT;
2895 break;
2896 case 96:
2897 encodedcontroller = _lev_ctrl_CC96_EXT;
2898 break;
2899 case 97:
2900 encodedcontroller = _lev_ctrl_CC97_EXT;
2901 break;
2902 case 102:
2903 encodedcontroller = _lev_ctrl_CC102_EXT;
2904 break;
2905 case 103:
2906 encodedcontroller = _lev_ctrl_CC103_EXT;
2907 break;
2908 case 104:
2909 encodedcontroller = _lev_ctrl_CC104_EXT;
2910 break;
2911 case 105:
2912 encodedcontroller = _lev_ctrl_CC105_EXT;
2913 break;
2914 case 106:
2915 encodedcontroller = _lev_ctrl_CC106_EXT;
2916 break;
2917 case 107:
2918 encodedcontroller = _lev_ctrl_CC107_EXT;
2919 break;
2920 case 108:
2921 encodedcontroller = _lev_ctrl_CC108_EXT;
2922 break;
2923 case 109:
2924 encodedcontroller = _lev_ctrl_CC109_EXT;
2925 break;
2926 case 110:
2927 encodedcontroller = _lev_ctrl_CC110_EXT;
2928 break;
2929 case 111:
2930 encodedcontroller = _lev_ctrl_CC111_EXT;
2931 break;
2932 case 112:
2933 encodedcontroller = _lev_ctrl_CC112_EXT;
2934 break;
2935 case 113:
2936 encodedcontroller = _lev_ctrl_CC113_EXT;
2937 break;
2938 case 114:
2939 encodedcontroller = _lev_ctrl_CC114_EXT;
2940 break;
2941 case 115:
2942 encodedcontroller = _lev_ctrl_CC115_EXT;
2943 break;
2944 case 116:
2945 encodedcontroller = _lev_ctrl_CC116_EXT;
2946 break;
2947 case 117:
2948 encodedcontroller = _lev_ctrl_CC117_EXT;
2949 break;
2950 case 118:
2951 encodedcontroller = _lev_ctrl_CC118_EXT;
2952 break;
2953 case 119:
2954 encodedcontroller = _lev_ctrl_CC119_EXT;
2955 break;
2956
2957 default:
2958 throw gig::Exception("leverage controller number is not supported by the gig format");
2959 }
2960 break;
2961 default:
2962 throw gig::Exception("Unknown leverage controller type.");
2963 }
2964 return encodedcontroller;
2965 }
2966
2967 DimensionRegion::~DimensionRegion() {
2968 Instances--;
2969 if (!Instances) {
2970 // delete the velocity->volume tables
2971 VelocityTableMap::iterator iter;
2972 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2973 double* pTable = iter->second;
2974 if (pTable) delete[] pTable;
2975 }
2976 pVelocityTables->clear();
2977 delete pVelocityTables;
2978 pVelocityTables = NULL;
2979 }
2980 if (VelocityTable) delete[] VelocityTable;
2981 }
2982
2983 /**
2984 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2985 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2986 * and VelocityResponseCurveScaling) involved are taken into account to
2987 * calculate the amplitude factor. Use this method when a key was
2988 * triggered to get the volume with which the sample should be played
2989 * back.
2990 *
2991 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2992 * @returns amplitude factor (between 0.0 and 1.0)
2993 */
2994 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2995 return pVelocityAttenuationTable[MIDIKeyVelocity];
2996 }
2997
2998 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2999 return pVelocityReleaseTable[MIDIKeyVelocity];
3000 }
3001
3002 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3003 return pVelocityCutoffTable[MIDIKeyVelocity];
3004 }
3005
3006 /**
3007 * Updates the respective member variable and the lookup table / cache
3008 * that depends on this value.
3009 */
3010 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3011 pVelocityAttenuationTable =
3012 GetVelocityTable(
3013 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3014 );
3015 VelocityResponseCurve = curve;
3016 }
3017
3018 /**
3019 * Updates the respective member variable and the lookup table / cache
3020 * that depends on this value.
3021 */
3022 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3023 pVelocityAttenuationTable =
3024 GetVelocityTable(
3025 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3026 );
3027 VelocityResponseDepth = depth;
3028 }
3029
3030 /**
3031 * Updates the respective member variable and the lookup table / cache
3032 * that depends on this value.
3033 */
3034 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3035 pVelocityAttenuationTable =
3036 GetVelocityTable(
3037 VelocityResponseCurve, VelocityResponseDepth, scaling
3038 );
3039 VelocityResponseCurveScaling = scaling;
3040 }
3041
3042 /**
3043 * Updates the respective member variable and the lookup table / cache
3044 * that depends on this value.
3045 */
3046 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3047 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3048 ReleaseVelocityResponseCurve = curve;
3049 }
3050
3051 /**
3052 * Updates the respective member variable and the lookup table / cache
3053 * that depends on this value.
3054 */
3055 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3056 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3057 ReleaseVelocityResponseDepth = depth;
3058 }
3059
3060 /**
3061 * Updates the respective member variable and the lookup table / cache
3062 * that depends on this value.
3063 */
3064 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3065 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3066 VCFCutoffController = controller;
3067 }
3068
3069 /**
3070 * Updates the respective member variable and the lookup table / cache
3071 * that depends on this value.
3072 */
3073 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3074 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3075 VCFVelocityCurve = curve;
3076 }
3077
3078 /**
3079 * Updates the respective member variable and the lookup table / cache
3080 * that depends on this value.
3081 */
3082 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3083 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3084 VCFVelocityDynamicRange = range;
3085 }
3086
3087 /**
3088 * Updates the respective member variable and the lookup table / cache
3089 * that depends on this value.
3090 */
3091 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3092 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3093 VCFVelocityScale = scaling;
3094 }
3095
3096 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3097
3098 // line-segment approximations of the 15 velocity curves
3099
3100 // linear
3101 const int lin0[] = { 1, 1, 127, 127 };
3102 const int lin1[] = { 1, 21, 127, 127 };
3103 const int lin2[] = { 1, 45, 127, 127 };
3104 const int lin3[] = { 1, 74, 127, 127 };
3105 const int lin4[] = { 1, 127, 127, 127 };
3106
3107 // non-linear
3108 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3109 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3110 127, 127 };
3111 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3112 127, 127 };
3113 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3114 127, 127 };
3115 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3116
3117 // special
3118 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3119 113, 127, 127, 127 };
3120 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3121 118, 127, 127, 127 };
3122 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3123 85, 90, 91, 127, 127, 127 };
3124 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3125 117, 127, 127, 127 };
3126 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3127 127, 127 };
3128
3129 // this is only used by the VCF velocity curve
3130 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3131 91, 127, 127, 127 };
3132
3133 const int* const curves[] = { non0, non1, non2, non3, non4,
3134 lin0, lin1, lin2, lin3, lin4,
3135 spe0, spe1, spe2, spe3, spe4, spe5 };
3136
3137 double* const table = new double[128];
3138
3139 const int* curve = curves[curveType * 5 + depth];
3140 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3141
3142 table[0] = 0;
3143 for (int x = 1 ; x < 128 ; x++) {
3144
3145 if (x > curve[2]) curve += 2;
3146 double y = curve[1] + (x - curve[0]) *
3147 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3148 y = y / 127;
3149
3150 // Scale up for s > 20, down for s < 20. When
3151 // down-scaling, the curve still ends at 1.0.
3152 if (s < 20 && y >= 0.5)
3153 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3154 else
3155 y = y * (s / 20.0);
3156 if (y > 1) y = 1;
3157
3158 table[x] = y;
3159 }
3160 return table;
3161 }
3162
3163
3164 // *************** Region ***************
3165 // *
3166
3167 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3168 // Initialization
3169 Dimensions = 0;
3170 for (int i = 0; i < 256; i++) {
3171 pDimensionRegions[i] = NULL;
3172 }
3173 Layers = 1;
3174 File* file = (File*) GetParent()->GetParent();
3175 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3176
3177 // Actual Loading
3178
3179 if (!file->GetAutoLoad()) return;
3180
3181 LoadDimensionRegions(rgnList);
3182
3183 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3184 if (_3lnk) {
3185 DimensionRegions = _3lnk->ReadUint32();
3186 for (int i = 0; i < dimensionBits; i++) {
3187 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3188 uint8_t bits = _3lnk->ReadUint8();
3189 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3190 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3191 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3192 if (dimension == dimension_none) { // inactive dimension
3193 pDimensionDefinitions[i].dimension = dimension_none;
3194 pDimensionDefinitions[i].bits = 0;
3195 pDimensionDefinitions[i].zones = 0;
3196 pDimensionDefinitions[i].split_type = split_type_bit;
3197 pDimensionDefinitions[i].zone_size = 0;
3198 }
3199 else { // active dimension
3200 pDimensionDefinitions[i].dimension = dimension;
3201 pDimensionDefinitions[i].bits = bits;
3202 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3203 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3204 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3205 Dimensions++;
3206
3207 // if this is a layer dimension, remember the amount of layers
3208 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3209 }
3210 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3211 }
3212 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3213
3214 // if there's a velocity dimension and custom velocity zone splits are used,
3215 // update the VelocityTables in the dimension regions
3216 UpdateVelocityTable();
3217
3218 // jump to start of the wave pool indices (if not already there)
3219 if (file->pVersion && file->pVersion->major == 3)
3220 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3221 else
3222 _3lnk->SetPos(44);
3223
3224 // load sample references (if auto loading is enabled)
3225 if (file->GetAutoLoad()) {
3226 for (uint i = 0; i < DimensionRegions; i++) {
3227 uint32_t wavepoolindex = _3lnk->ReadUint32();
3228 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3229 }
3230 GetSample(); // load global region sample reference
3231 }
3232 } else {
3233 DimensionRegions = 0;
3234 for (int i = 0 ; i < 8 ; i++) {
3235 pDimensionDefinitions[i].dimension = dimension_none;
3236 pDimensionDefinitions[i].bits = 0;
3237 pDimensionDefinitions[i].zones = 0;
3238 }
3239 }
3240
3241 // make sure there is at least one dimension region
3242 if (!DimensionRegions) {
3243 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3244 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3245 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3246 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3247 DimensionRegions = 1;
3248 }
3249 }
3250
3251 /**
3252 * Apply Region settings and all its DimensionRegions to the respective
3253 * RIFF chunks. You have to call File::Save() to make changes persistent.
3254 *
3255 * Usually there is absolutely no need to call this method explicitly.
3256 * It will be called automatically when File::Save() was called.
3257 *
3258 * @param pProgress - callback function for progress notification
3259 * @throws gig::Exception if samples cannot be dereferenced
3260 */
3261 void Region::UpdateChunks(progress_t* pProgress) {
3262 // in the gig format we don't care about the Region's sample reference
3263 // but we still have to provide some existing one to not corrupt the
3264 // file, so to avoid the latter we simply always assign the sample of
3265 // the first dimension region of this region
3266 pSample = pDimensionRegions[0]->pSample;
3267
3268 // first update base class's chunks
3269 DLS::Region::UpdateChunks(pProgress);
3270
3271 // update dimension region's chunks
3272 for (int i = 0; i < DimensionRegions; i++) {
3273 pDimensionRegions[i]->UpdateChunks(pProgress);
3274 }
3275
3276 File* pFile = (File*) GetParent()->GetParent();
3277 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3278 const int iMaxDimensions = version3 ? 8 : 5;
3279 const int iMaxDimensionRegions = version3 ? 256 : 32;
3280
3281 // make sure '3lnk' chunk exists
3282 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3283 if (!_3lnk) {
3284 const int _3lnkChunkSize = version3 ? 1092 : 172;
3285 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3286 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3287
3288 // move 3prg to last position
3289 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3290 }
3291
3292 // update dimension definitions in '3lnk' chunk
3293 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3294 store32(&pData[0], DimensionRegions);
3295 int shift = 0;
3296 for (int i = 0; i < iMaxDimensions; i++) {
3297 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3298 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3299 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3300 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3301 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3302 // next 3 bytes unknown, always zero?
3303
3304 shift += pDimensionDefinitions[i].bits;
3305 }
3306
3307 // update wave pool table in '3lnk' chunk
3308 const int iWavePoolOffset = version3 ? 68 : 44;
3309 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3310 int iWaveIndex = -1;
3311 if (i < DimensionRegions) {
3312 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3313 File::SampleList::iterator iter = pFile->pSamples->begin();
3314 File::SampleList::iterator end = pFile->pSamples->end();
3315 for (int index = 0; iter != end; ++iter, ++index) {
3316 if (*iter == pDimensionRegions[i]->pSample) {
3317 iWaveIndex = index;
3318 break;
3319 }
3320 }
3321 }
3322 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3323 }
3324 }
3325
3326 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3327 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3328 if (_3prg) {
3329 int dimensionRegionNr = 0;
3330 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3331 while (_3ewl) {
3332 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3333 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3334 dimensionRegionNr++;
3335 }
3336 _3ewl = _3prg->GetNextSubList();
3337 }
3338 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3339 }
3340 }
3341
3342 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3343 // update KeyRange struct and make sure regions are in correct order
3344 DLS::Region::SetKeyRange(Low, High);
3345 // update Region key table for fast lookup
3346 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3347 }
3348
3349 void Region::UpdateVelocityTable() {
3350 // get velocity dimension's index
3351 int veldim = -1;
3352 for (int i = 0 ; i < Dimensions ; i++) {
3353 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3354 veldim = i;
3355 break;
3356 }
3357 }
3358 if (veldim == -1) return;
3359
3360 int step = 1;
3361 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3362 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3363
3364 // loop through all dimension regions for all dimensions except the velocity dimension
3365 int dim[8] = { 0 };
3366 for (int i = 0 ; i < DimensionRegions ; i++) {
3367 const int end = i + step * pDimensionDefinitions[veldim].zones;
3368
3369 // create a velocity table for all cases where the velocity zone is zero
3370 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3371 pDimensionRegions[i]->VelocityUpperLimit) {
3372 // create the velocity table
3373 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3374 if (!table) {
3375 table = new uint8_t[128];
3376 pDimensionRegions[i]->VelocityTable = table;
3377 }
3378 int tableidx = 0;
3379 int velocityZone = 0;
3380 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3381 for (int k = i ; k < end ; k += step) {
3382 DimensionRegion *d = pDimensionRegions[k];
3383 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3384 velocityZone++;
3385 }
3386 } else { // gig2
3387 for (int k = i ; k < end ; k += step) {
3388 DimensionRegion *d = pDimensionRegions[k];
3389 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3390 velocityZone++;
3391 }
3392 }
3393 } else {
3394 if (pDimensionRegions[i]->VelocityTable) {
3395 delete[] pDimensionRegions[i]->VelocityTable;
3396 pDimensionRegions[i]->VelocityTable = 0;
3397 }
3398 }
3399
3400 // jump to the next case where the velocity zone is zero
3401 int j;
3402 int shift = 0;
3403 for (j = 0 ; j < Dimensions ; j++) {
3404 if (j == veldim) i += skipveldim; // skip velocity dimension
3405 else {
3406 dim[j]++;
3407 if (dim[j] < pDimensionDefinitions[j].zones) break;
3408 else {
3409 // skip unused dimension regions
3410 dim[j] = 0;
3411 i += ((1 << pDimensionDefinitions[j].bits) -
3412 pDimensionDefinitions[j].zones) << shift;
3413 }
3414 }
3415 shift += pDimensionDefinitions[j].bits;
3416 }
3417 if (j == Dimensions) break;
3418 }
3419 }
3420
3421 /** @brief Einstein would have dreamed of it - create a new dimension.
3422 *
3423 * Creates a new dimension with the dimension definition given by
3424 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3425 * There is a hard limit of dimensions and total amount of "bits" all
3426 * dimensions can have. This limit is dependant to what gig file format
3427 * version this file refers to. The gig v2 (and lower) format has a
3428 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3429 * format has a limit of 8.
3430 *
3431 * @param pDimDef - defintion of the new dimension
3432 * @throws gig::Exception if dimension of the same type exists already
3433 * @throws gig::Exception if amount of dimensions or total amount of
3434 * dimension bits limit is violated
3435 */
3436 void Region::AddDimension(dimension_def_t* pDimDef) {
3437 // some initial sanity checks of the given dimension definition
3438 if (pDimDef->zones < 2)
3439 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3440 if (pDimDef->bits < 1)
3441 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3442 if (pDimDef->dimension == dimension_samplechannel) {
3443 if (pDimDef->zones != 2)
3444 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3445 if (pDimDef->bits != 1)
3446 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3447 }
3448
3449 // check if max. amount of dimensions reached
3450 File* file = (File*) GetParent()->GetParent();
3451 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3452 if (Dimensions >= iMaxDimensions)
3453 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3454 // check if max. amount of dimension bits reached
3455 int iCurrentBits = 0;
3456 for (int i = 0; i < Dimensions; i++)
3457 iCurrentBits += pDimensionDefinitions[i].bits;
3458 if (iCurrentBits >= iMaxDimensions)
3459 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3460 const int iNewBits = iCurrentBits + pDimDef->bits;
3461 if (iNewBits > iMaxDimensions)
3462 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3463 // check if there's already a dimensions of the same type
3464 for (int i = 0; i < Dimensions; i++)
3465 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3466 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3467
3468 // pos is where the new dimension should be placed, normally
3469 // last in list, except for the samplechannel dimension which
3470 // has to be first in list
3471 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3472 int bitpos = 0;
3473 for (int i = 0 ; i < pos ; i++)
3474 bitpos += pDimensionDefinitions[i].bits;
3475
3476 // make room for the new dimension
3477 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3478 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3479 for (int j = Dimensions ; j > pos ; j--) {
3480 pDimensionRegions[i]->DimensionUpperLimits[j] =
3481 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3482 }
3483 }
3484
3485 // assign definition of new dimension
3486 pDimensionDefinitions[pos] = *pDimDef;
3487
3488 // auto correct certain dimension definition fields (where possible)
3489 pDimensionDefinitions[pos].split_type =
3490 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3491 pDimensionDefinitions[pos].zone_size =
3492 __resolveZoneSize(pDimensionDefinitions[pos]);
3493
3494 // create new dimension region(s) for this new dimension, and make
3495 // sure that the dimension regions are placed correctly in both the
3496 // RIFF list and the pDimensionRegions array
3497 RIFF::Chunk* moveTo = NULL;
3498 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3499 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3500 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3501 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3502 }
3503 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3504 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3505 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3506 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3507 // create a new dimension region and copy all parameter values from
3508 // an existing dimension region
3509 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3510 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3511
3512 DimensionRegions++;
3513 }
3514 }
3515 moveTo = pDimensionRegions[i]->pParentList;
3516 }
3517
3518 // initialize the upper limits for this dimension
3519 int mask = (1 << bitpos) - 1;
3520 for (int z = 0 ; z < pDimDef->zones ; z++) {
3521 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3522 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3523 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3524 (z << bitpos) |
3525 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3526 }
3527 }
3528
3529 Dimensions++;
3530
3531 // if this is a layer dimension, update 'Layers' attribute
3532 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3533
3534 UpdateVelocityTable();
3535 }
3536
3537 /** @brief Delete an existing dimension.
3538 *
3539 * Deletes the dimension given by \a pDimDef and deletes all respective
3540 * dimension regions, that is all dimension regions where the dimension's
3541 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3542 * for example this would delete all dimension regions for the case(s)
3543 * where the sustain pedal is pressed down.
3544 *
3545 * @param pDimDef - dimension to delete
3546 * @throws gig::Exception if given dimension cannot be found
3547 */
3548 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3549 // get dimension's index
3550 int iDimensionNr = -1;
3551 for (int i = 0; i < Dimensions; i++) {
3552 if (&pDimensionDefinitions[i] == pDimDef) {
3553 iDimensionNr = i;
3554 break;
3555 }
3556 }
3557 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3558
3559 // get amount of bits below the dimension to delete
3560 int iLowerBits = 0;
3561 for (int i = 0; i < iDimensionNr; i++)
3562 iLowerBits += pDimensionDefinitions[i].bits;
3563
3564 // get amount ot bits above the dimension to delete
3565 int iUpperBits = 0;
3566 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3567 iUpperBits += pDimensionDefinitions[i].bits;
3568
3569 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3570
3571 // delete dimension regions which belong to the given dimension
3572 // (that is where the dimension's bit > 0)
3573 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3574 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3575 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3576 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3577 iObsoleteBit << iLowerBits |
3578 iLowerBit;
3579
3580 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3581 delete pDimensionRegions[iToDelete];
3582 pDimensionRegions[iToDelete] = NULL;
3583 DimensionRegions--;
3584 }
3585 }
3586 }
3587
3588 // defrag pDimensionRegions array
3589 // (that is remove the NULL spaces within the pDimensionRegions array)
3590 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3591 if (!pDimensionRegions[iTo]) {
3592 if (iFrom <= iTo) iFrom = iTo + 1;
3593 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3594 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3595 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3596 pDimensionRegions[iFrom] = NULL;
3597 }
3598 }
3599 }
3600
3601 // remove the this dimension from the upper limits arrays
3602 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3603 DimensionRegion* d = pDimensionRegions[j];
3604 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3605 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3606 }
3607 d->DimensionUpperLimits[Dimensions - 1] = 127;
3608 }
3609
3610 // 'remove' dimension definition
3611 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3612 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3613 }
3614 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3615 pDimensionDefinitions[Dimensions - 1].bits = 0;
3616 pDimensionDefinitions[Dimensions - 1].zones = 0;
3617
3618 Dimensions--;
3619
3620 // if this was a layer dimension, update 'Layers' attribute
3621 if (pDimDef->dimension == dimension_layer) Layers = 1;
3622 }
3623
3624 /** @brief Delete one split zone of a dimension (decrement zone amount).
3625 *
3626 * Instead of deleting an entire dimensions, this method will only delete
3627 * one particular split zone given by @a zone of the Region's dimension
3628 * given by @a type. So this method will simply decrement the amount of
3629 * zones by one of the dimension in question. To be able to do that, the
3630 * respective dimension must exist on this Region and it must have at least
3631 * 3 zones. All DimensionRegion objects associated with the zone will be
3632 * deleted.
3633 *
3634 * @param type - identifies the dimension where a zone shall be deleted
3635 * @param zone - index of the dimension split zone that shall be deleted
3636 * @throws gig::Exception if requested zone could not be deleted
3637 */
3638 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3639 dimension_def_t* oldDef = GetDimensionDefinition(type);
3640 if (!oldDef)
3641 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3642 if (oldDef->zones <= 2)
3643 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3644 if (zone < 0 || zone >= oldDef->zones)
3645 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3646
3647 const int newZoneSize = oldDef->zones - 1;
3648
3649 // create a temporary Region which just acts as a temporary copy
3650 // container and will be deleted at the end of this function and will
3651 // also not be visible through the API during this process
3652 gig::Region* tempRgn = NULL;
3653 {
3654 // adding these temporary chunks is probably not even necessary
3655 Instrument* instr = static_cast<Instrument*>(GetParent());
3656 RIFF::List* pCkInstrument = instr->pCkInstrument;
3657 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3658 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3659 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3660 tempRgn = new Region(instr, rgn);
3661 }
3662
3663 // copy this region's dimensions (with already the dimension split size
3664 // requested by the arguments of this method call) to the temporary
3665 // region, and don't use Region::CopyAssign() here for this task, since
3666 // it would also alter fast lookup helper variables here and there
3667 dimension_def_t newDef;
3668 for (int i = 0; i < Dimensions; ++i) {
3669 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3670 // is this the dimension requested by the method arguments? ...
3671 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3672 def.zones = newZoneSize;
3673 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3674 newDef = def;
3675 }
3676 tempRgn->AddDimension(&def);
3677 }
3678
3679 // find the dimension index in the tempRegion which is the dimension
3680 // type passed to this method (paranoidly expecting different order)
3681 int tempReducedDimensionIndex = -1;
3682 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3683 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3684 tempReducedDimensionIndex = d;
3685 break;
3686 }
3687 }
3688
3689 // copy dimension regions from this region to the temporary region
3690 for (int iDst = 0; iDst < 256; ++iDst) {
3691 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3692 if (!dstDimRgn) continue;
3693 std::map<dimension_t,int> dimCase;
3694 bool isValidZone = true;
3695 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3696 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3697 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3698 (iDst >> baseBits) & ((1 << dstBits) - 1);
3699 baseBits += dstBits;
3700 // there are also DimensionRegion objects of unused zones, skip them
3701 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3702 isValidZone = false;
3703 break;
3704 }
3705 }
3706 if (!isValidZone) continue;
3707 // a bit paranoid: cope with the chance that the dimensions would
3708 // have different order in source and destination regions
3709 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3710 if (dimCase[type] >= zone) dimCase[type]++;
3711 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3712 dstDimRgn->CopyAssign(srcDimRgn);
3713 // if this is the upper most zone of the dimension passed to this
3714 // method, then correct (raise) its upper limit to 127
3715 if (newDef.split_type == split_type_normal && isLastZone)
3716 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3717 }
3718
3719 // now tempRegion's dimensions and DimensionRegions basically reflect
3720 // what we wanted to get for this actual Region here, so we now just
3721 // delete and recreate the dimension in question with the new amount
3722 // zones and then copy back from tempRegion
3723 DeleteDimension(oldDef);
3724 AddDimension(&newDef);
3725 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3726 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3727 if (!srcDimRgn) continue;
3728 std::map<dimension_t,int> dimCase;
3729 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3730 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3731 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3732 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3733 baseBits += srcBits;
3734 }
3735 // a bit paranoid: cope with the chance that the dimensions would
3736 // have different order in source and destination regions
3737 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3738 if (!dstDimRgn) continue;
3739 dstDimRgn->CopyAssign(srcDimRgn);
3740 }
3741
3742 // delete temporary region
3743 delete tempRgn;
3744
3745 UpdateVelocityTable();
3746 }
3747
3748 /** @brief Divide split zone of a dimension in two (increment zone amount).
3749 *
3750 * This will increment the amount of zones for the dimension (given by
3751 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3752 * in the middle of its zone range in two. So the two zones resulting from
3753 * the zone being splitted, will be an equivalent copy regarding all their
3754 * articulation informations and sample reference. The two zones will only
3755 * differ in their zone's upper limit
3756 * (DimensionRegion::DimensionUpperLimits).
3757 *
3758 * @param type - identifies the dimension where a zone shall be splitted
3759 * @param zone - index of the dimension split zone that shall be splitted
3760 * @throws gig::Exception if requested zone could not be splitted
3761 */
3762 void Region::SplitDimensionZone(dimension_t type, int zone) {
3763 dimension_def_t* oldDef = GetDimensionDefinition(type);
3764 if (!oldDef)
3765 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3766 if (zone < 0 || zone >= oldDef->zones)
3767 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3768
3769 const int newZoneSize = oldDef->zones + 1;
3770
3771 // create a temporary Region which just acts as a temporary copy
3772 // container and will be deleted at the end of this function and will
3773 // also not be visible through the API during this process
3774 gig::Region* tempRgn = NULL;
3775 {
3776 // adding these temporary chunks is probably not even necessary
3777 Instrument* instr = static_cast<Instrument*>(GetParent());
3778 RIFF::List* pCkInstrument = instr->pCkInstrument;
3779 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3780 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3781 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3782 tempRgn = new Region(instr, rgn);
3783 }
3784
3785 // copy this region's dimensions (with already the dimension split size
3786 // requested by the arguments of this method call) to the temporary
3787 // region, and don't use Region::CopyAssign() here for this task, since
3788 // it would also alter fast lookup helper variables here and there
3789 dimension_def_t newDef;
3790 for (int i = 0; i < Dimensions; ++i) {
3791 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3792 // is this the dimension requested by the method arguments? ...
3793 if (def.dimension == type) { // ... if yes, increment zone amount by one
3794 def.zones = newZoneSize;
3795 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3796 newDef = def;
3797 }
3798 tempRgn->AddDimension(&def);
3799 }
3800
3801 // find the dimension index in the tempRegion which is the dimension
3802 // type passed to this method (paranoidly expecting different order)
3803 int tempIncreasedDimensionIndex = -1;
3804 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3805 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3806 tempIncreasedDimensionIndex = d;
3807 break;
3808 }
3809 }
3810
3811 // copy dimension regions from this region to the temporary region
3812 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3813 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3814 if (!srcDimRgn) continue;
3815 std::map<dimension_t,int> dimCase;
3816 bool isValidZone = true;
3817 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3818 const int srcBits = pDimensionDefinitions[d].bits;
3819 dimCase[pDimensionDefinitions[d].dimension] =
3820 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3821 // there are also DimensionRegion objects for unused zones, skip them
3822 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3823 isValidZone = false;
3824 break;
3825 }
3826 baseBits += srcBits;
3827 }
3828 if (!isValidZone) continue;
3829 // a bit paranoid: cope with the chance that the dimensions would
3830 // have different order in source and destination regions
3831 if (dimCase[type] > zone) dimCase[type]++;
3832 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3833 dstDimRgn->CopyAssign(srcDimRgn);
3834 // if this is the requested zone to be splitted, then also copy
3835 // the source DimensionRegion to the newly created target zone
3836 // and set the old zones upper limit lower
3837 if (dimCase[type] == zone) {
3838 // lower old zones upper limit
3839 if (newDef.split_type == split_type_normal) {
3840 const int high =
3841 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3842 int low = 0;
3843 if (zone > 0) {
3844 std::map<dimension_t,int> lowerCase = dimCase;
3845 lowerCase[type]--;
3846 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3847 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3848 }
3849 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3850 }
3851 // fill the newly created zone of the divided zone as well
3852 dimCase[type]++;
3853 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3854 dstDimRgn->CopyAssign(srcDimRgn);
3855 }
3856 }
3857
3858 // now tempRegion's dimensions and DimensionRegions basically reflect
3859 // what we wanted to get for this actual Region here, so we now just
3860 // delete and recreate the dimension in question with the new amount
3861 // zones and then copy back from tempRegion
3862 DeleteDimension(oldDef);
3863 AddDimension(&newDef);
3864 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3865 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3866 if (!srcDimRgn) continue;
3867 std::map<dimension_t,int> dimCase;
3868 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3869 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3870 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3871 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3872 baseBits += srcBits;
3873 }
3874 // a bit paranoid: cope with the chance that the dimensions would
3875 // have different order in source and destination regions
3876 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3877 if (!dstDimRgn) continue;
3878 dstDimRgn->CopyAssign(srcDimRgn);
3879 }
3880
3881 // delete temporary region
3882 delete tempRgn;
3883
3884 UpdateVelocityTable();
3885 }
3886
3887 /** @brief Change type of an existing dimension.
3888 *
3889 * Alters the dimension type of a dimension already existing on this
3890 * region. If there is currently no dimension on this Region with type
3891 * @a oldType, then this call with throw an Exception. Likewise there are
3892 * cases where the requested dimension type cannot be performed. For example
3893 * if the new dimension type shall be gig::dimension_samplechannel, and the
3894 * current dimension has more than 2 zones. In such cases an Exception is
3895 * thrown as well.
3896 *
3897 * @param oldType - identifies the existing dimension to be changed
3898 * @param newType - to which dimension type it should be changed to
3899 * @throws gig::Exception if requested change cannot be performed
3900 */
3901 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3902 if (oldType == newType) return;
3903 dimension_def_t* def = GetDimensionDefinition(oldType);
3904 if (!def)
3905 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3906 if (newType == dimension_samplechannel && def->zones != 2)
3907 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3908 if (GetDimensionDefinition(newType))
3909 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3910 def->dimension = newType;
3911 def->split_type = __resolveSplitType(newType);
3912 }
3913
3914 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3915 uint8_t bits[8] = {};
3916 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3917 it != DimCase.end(); ++it)
3918 {
3919 for (int d = 0; d < Dimensions; ++d) {
3920 if (pDimensionDefinitions[d].dimension == it->first) {
3921 bits[d] = it->second;
3922 goto nextDimCaseSlice;
3923 }
3924 }
3925 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3926 nextDimCaseSlice:
3927 ; // noop
3928 }
3929 return GetDimensionRegionByBit(bits);
3930 }
3931
3932 /**
3933 * Searches in the current Region for a dimension of the given dimension
3934 * type and returns the precise configuration of that dimension in this
3935 * Region.
3936 *
3937 * @param type - dimension type of the sought dimension
3938 * @returns dimension definition or NULL if there is no dimension with
3939 * sought type in this Region.
3940 */
3941 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3942 for (int i = 0; i < Dimensions; ++i)
3943 if (pDimensionDefinitions[i].dimension == type)
3944 return &pDimensionDefinitions[i];
3945 return NULL;
3946 }
3947
3948 Region::~Region() {
3949 for (int i = 0; i < 256; i++) {
3950 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3951 }
3952 }
3953
3954 /**
3955 * Use this method in your audio engine to get the appropriate dimension
3956 * region with it's articulation data for the current situation. Just
3957 * call the method with the current MIDI controller values and you'll get
3958 * the DimensionRegion with the appropriate articulation data for the
3959 * current situation (for this Region of course only). To do that you'll
3960 * first have to look which dimensions with which controllers and in
3961 * which order are defined for this Region when you load the .gig file.
3962 * Special cases are e.g. layer or channel dimensions where you just put
3963 * in the index numbers instead of a MIDI controller value (means 0 for
3964 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3965 * etc.).
3966 *
3967 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3968 * @returns adress to the DimensionRegion for the given situation
3969 * @see pDimensionDefinitions
3970 * @see Dimensions
3971 */
3972 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3973 uint8_t bits;
3974 int veldim = -1;
3975 int velbitpos = 0;
3976 int bitpos = 0;
3977 int dimregidx = 0;
3978 for (uint i = 0; i < Dimensions; i++) {
3979 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3980 // the velocity dimension must be handled after the other dimensions
3981 veldim = i;
3982 velbitpos = bitpos;
3983 } else {
3984 switch (pDimensionDefinitions[i].split_type) {
3985 case split_type_normal:
3986 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3987 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3988 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3989 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3990 }
3991 } else {
3992 // gig2: evenly sized zones
3993 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3994 }
3995 break;
3996 case split_type_bit: // the value is already the sought dimension bit number
3997 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3998 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3999 break;
4000 }
4001 dimregidx |= bits << bitpos;
4002 }
4003 bitpos += pDimensionDefinitions[i].bits;
4004 }
4005 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4006 if (!dimreg) return NULL;
4007 if (veldim != -1) {
4008 // (dimreg is now the dimension region for the lowest velocity)
4009 if (dimreg->VelocityTable) // custom defined zone ranges
4010 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4011 else // normal split type
4012 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4013
4014 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4015 dimregidx |= (bits & limiter_mask) << velbitpos;
4016 dimreg = pDimensionRegions[dimregidx & 255];
4017 }
4018 return dimreg;
4019 }
4020
4021 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4022 uint8_t bits;
4023 int veldim = -1;
4024 int velbitpos = 0;
4025 int bitpos = 0;
4026 int dimregidx = 0;
4027 for (uint i = 0; i < Dimensions; i++) {
4028 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4029 // the velocity dimension must be handled after the other dimensions
4030 veldim = i;
4031 velbitpos = bitpos;
4032 } else {
4033 switch (pDimensionDefinitions[i].split_type) {
4034 case split_type_normal:
4035 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4036 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4037 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4038 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4039 }
4040 } else {
4041 // gig2: evenly sized zones
4042 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4043 }
4044 break;
4045 case split_type_bit: // the value is already the sought dimension bit number
4046 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4047 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4048 break;
4049 }
4050 dimregidx |= bits << bitpos;
4051 }
4052 bitpos += pDimensionDefinitions[i].bits;
4053 }
4054 dimregidx &= 255;
4055 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4056 if (!dimreg) return -1;
4057 if (veldim != -1) {
4058 // (dimreg is now the dimension region for the lowest velocity)
4059 if (dimreg->VelocityTable) // custom defined zone ranges
4060 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4061 else // normal split type
4062 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4063
4064 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4065 dimregidx |= (bits & limiter_mask) << velbitpos;
4066 dimregidx &= 255;
4067 }
4068 return dimregidx;
4069 }
4070
4071 /**
4072 * Returns the appropriate DimensionRegion for the given dimension bit
4073 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4074 * instead of calling this method directly!
4075 *
4076 * @param DimBits Bit numbers for dimension 0 to 7
4077 * @returns adress to the DimensionRegion for the given dimension
4078 * bit numbers
4079 * @see GetDimensionRegionByValue()
4080 */
4081 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4082 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4083 << pDimensionDefinitions[5].bits | DimBits[5])
4084 << pDimensionDefinitions[4].bits | DimBits[4])
4085 << pDimensionDefinitions[3].bits | DimBits[3])
4086 << pDimensionDefinitions[2].bits | DimBits[2])
4087 << pDimensionDefinitions[1].bits | DimBits[1])
4088 << pDimensionDefinitions[0].bits | DimBits[0]];
4089 }
4090
4091 /**
4092 * Returns pointer address to the Sample referenced with this region.
4093 * This is the global Sample for the entire Region (not sure if this is
4094 * actually used by the Gigasampler engine - I would only use the Sample
4095 * referenced by the appropriate DimensionRegion instead of this sample).
4096 *
4097 * @returns address to Sample or NULL if there is no reference to a
4098 * sample saved in the .gig file
4099 */
4100 Sample* Region::GetSample() {
4101 if (pSample) return static_cast<gig::Sample*>(pSample);
4102 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4103 }
4104
4105 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4106 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4107 File* file = (File*) GetParent()->GetParent();
4108 if (!file->pWavePoolTable) return NULL;
4109 // for new files or files >= 2 GB use 64 bit wave pool offsets
4110 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4111 // use 64 bit wave pool offsets (treating this as large file)
4112 uint64_t soughtoffset =
4113 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4114 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4115 Sample* sample = file->GetFirstSample(pProgress);
4116 while (sample) {
4117 if (sample->ullWavePoolOffset == soughtoffset)
4118 return static_cast<gig::Sample*>(sample);
4119 sample = file->GetNextSample();
4120 }
4121 } else {
4122 // use extension files and 32 bit wave pool offsets
4123 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4124 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4125 Sample* sample = file->GetFirstSample(pProgress);
4126 while (sample) {
4127 if (sample->ullWavePoolOffset == soughtoffset &&
4128 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4129 sample = file->GetNextSample();
4130 }
4131 }
4132 return NULL;
4133 }
4134
4135 /**
4136 * Make a (semi) deep copy of the Region object given by @a orig
4137 * and assign it to this object.
4138 *
4139 * Note that all sample pointers referenced by @a orig are simply copied as
4140 * memory address. Thus the respective samples are shared, not duplicated!
4141 *
4142 * @param orig - original Region object to be copied from
4143 */
4144 void Region::CopyAssign(const Region* orig) {
4145 CopyAssign(orig, NULL);
4146 }
4147
4148 /**
4149 * Make a (semi) deep copy of the Region object given by @a orig and
4150 * assign it to this object
4151 *
4152 * @param mSamples - crosslink map between the foreign file's samples and
4153 * this file's samples
4154 */
4155 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4156 // handle base classes
4157 DLS::Region::CopyAssign(orig);
4158
4159 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4160 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4161 }
4162
4163 // handle own member variables
4164 for (int i = Dimensions - 1; i >= 0; --i) {
4165 DeleteDimension(&pDimensionDefinitions[i]);
4166 }
4167 Layers = 0; // just to be sure
4168 for (int i = 0; i < orig->Dimensions; i++) {
4169 // we need to copy the dim definition here, to avoid the compiler
4170 // complaining about const-ness issue
4171 dimension_def_t def = orig->pDimensionDefinitions[i];
4172 AddDimension(&def);
4173 }
4174 for (int i = 0; i < 256; i++) {
4175 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4176 pDimensionRegions[i]->CopyAssign(
4177 orig->pDimensionRegions[i],
4178 mSamples
4179 );
4180 }
4181 }
4182 Layers = orig->Layers;
4183 }
4184
4185
4186 // *************** MidiRule ***************
4187 // *
4188
4189 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4190 _3ewg->SetPos(36);
4191 Triggers = _3ewg->ReadUint8();
4192 _3ewg->SetPos(40);
4193 ControllerNumber = _3ewg->ReadUint8();
4194 _3ewg->SetPos(46);
4195 for (int i = 0 ; i < Triggers ; i++) {
4196 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4197 pTriggers[i].Descending = _3ewg->ReadUint8();
4198 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4199 pTriggers[i].Key = _3ewg->ReadUint8();
4200 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4201 pTriggers[i].Velocity = _3ewg->ReadUint8();
4202 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4203 _3ewg->ReadUint8();
4204 }
4205 }
4206
4207 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4208 ControllerNumber(0),
4209 Triggers(0) {
4210 }
4211
4212 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4213 pData[32] = 4;
4214 pData[33] = 16;
4215 pData[36] = Triggers;
4216 pData[40] = ControllerNumber;
4217 for (int i = 0 ; i < Triggers ; i++) {
4218 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4219 pData[47 + i * 8] = pTriggers[i].Descending;
4220 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4221 pData[49 + i * 8] = pTriggers[i].Key;
4222 pData[50 + i * 8] = pTriggers[i].NoteOff;
4223 pData[51 + i * 8] = pTriggers[i].Velocity;
4224 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4225 }
4226 }
4227
4228 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4229 _3ewg->SetPos(36);
4230 LegatoSamples = _3ewg->ReadUint8(); // always 12
4231 _3ewg->SetPos(40);
4232 BypassUseController = _3ewg->ReadUint8();
4233 BypassKey = _3ewg->ReadUint8();
4234 BypassController = _3ewg->ReadUint8();
4235 ThresholdTime = _3ewg->ReadUint16();
4236 _3ewg->ReadInt16();
4237 ReleaseTime = _3ewg->ReadUint16();
4238 _3ewg->ReadInt16();
4239 KeyRange.low = _3ewg->ReadUint8();
4240 KeyRange.high = _3ewg->ReadUint8();
4241 _3ewg->SetPos(64);
4242 ReleaseTriggerKey = _3ewg->ReadUint8();
4243 AltSustain1Key = _3ewg->ReadUint8();
4244 AltSustain2Key = _3ewg->ReadUint8();
4245 }
4246
4247 MidiRuleLegato::MidiRuleLegato() :
4248 LegatoSamples(12),
4249 BypassUseController(false),
4250 BypassKey(0),
4251 BypassController(1),
4252 ThresholdTime(20),
4253 ReleaseTime(20),
4254 ReleaseTriggerKey(0),
4255 AltSustain1Key(0),
4256 AltSustain2Key(0)
4257 {
4258 KeyRange.low = KeyRange.high = 0;
4259 }
4260
4261 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4262 pData[32] = 0;
4263 pData[33] = 16;
4264 pData[36] = LegatoSamples;
4265 pData[40] = BypassUseController;
4266 pData[41] = BypassKey;
4267 pData[42] = BypassController;
4268 store16(&pData[43], ThresholdTime);
4269 store16(&pData[47], ReleaseTime);
4270 pData[51] = KeyRange.low;
4271 pData[52] = KeyRange.high;
4272 pData[64] = ReleaseTriggerKey;
4273 pData[65] = AltSustain1Key;
4274 pData[66] = AltSustain2Key;
4275 }
4276
4277 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4278 _3ewg->SetPos(36);
4279 Articulations = _3ewg->ReadUint8();
4280 int flags = _3ewg->ReadUint8();
4281 Polyphonic = flags & 8;
4282 Chained = flags & 4;
4283 Selector = (flags & 2) ? selector_controller :
4284 (flags & 1) ? selector_key_switch : selector_none;
4285 Patterns = _3ewg->ReadUint8();
4286 _3ewg->ReadUint8(); // chosen row
4287 _3ewg->ReadUint8(); // unknown
4288 _3ewg->ReadUint8(); // unknown
4289 _3ewg->ReadUint8(); // unknown
4290 KeySwitchRange.low = _3ewg->ReadUint8();
4291 KeySwitchRange.high = _3ewg->ReadUint8();
4292 Controller = _3ewg->ReadUint8();
4293 PlayRange.low = _3ewg->ReadUint8();
4294 PlayRange.high = _3ewg->ReadUint8();
4295
4296 int n = std::min(int(Articulations), 32);
4297 for (int i = 0 ; i < n ; i++) {
4298 _3ewg->ReadString(pArticulations[i], 32);
4299 }
4300 _3ewg->SetPos(1072);
4301 n = std::min(int(Patterns), 32);
4302 for (int i = 0 ; i < n ; i++) {
4303 _3ewg->ReadString(pPatterns[i].Name, 16);
4304 pPatterns[i].Size = _3ewg->ReadUint8();
4305 _3ewg->Read(&pPatterns[i][0], 1, 32);
4306 }
4307 }
4308
4309 MidiRuleAlternator::MidiRuleAlternator() :
4310 Articulations(0),
4311 Patterns(0),
4312 Selector(selector_none),
4313 Controller(0),
4314 Polyphonic(false),
4315 Chained(false)
4316 {
4317 PlayRange.low = PlayRange.high = 0;
4318 KeySwitchRange.low = KeySwitchRange.high = 0;
4319 }
4320
4321 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4322 pData[32] = 3;
4323 pData[33] = 16;
4324 pData[36] = Articulations;
4325 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4326 (Selector == selector_controller ? 2 :
4327 (Selector == selector_key_switch ? 1 : 0));
4328 pData[38] = Patterns;
4329
4330 pData[43] = KeySwitchRange.low;
4331 pData[44] = KeySwitchRange.high;
4332 pData[45] = Controller;
4333 pData[46] = PlayRange.low;
4334 pData[47] = PlayRange.high;
4335
4336 char* str = reinterpret_cast<char*>(pData);
4337 int pos = 48;
4338 int n = std::min(int(Articulations), 32);
4339 for (int i = 0 ; i < n ; i++, pos += 32) {
4340 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4341 }
4342
4343 pos = 1072;
4344 n = std::min(int(Patterns), 32);
4345 for (int i = 0 ; i < n ; i++, pos += 49) {
4346 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4347 pData[pos + 16] = pPatterns[i].Size;
4348 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4349 }
4350 }
4351
4352 // *************** Script ***************
4353 // *
4354
4355 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4356 pGroup = group;
4357 pChunk = ckScri;
4358 if (ckScri) { // object is loaded from file ...
4359 // read header
4360 uint32_t headerSize = ckScri->ReadUint32();
4361 Compression = (Compression_t) ckScri->ReadUint32();
4362 Encoding = (Encoding_t) ckScri->ReadUint32();
4363 Language = (Language_t) ckScri->ReadUint32();
4364 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4365 crc = ckScri->ReadUint32();
4366 uint32_t nameSize = ckScri->ReadUint32();
4367 Name.resize(nameSize, ' ');
4368 for (int i = 0; i < nameSize; ++i)
4369 Name[i] = ckScri->ReadUint8();
4370 // to handle potential future extensions of the header
4371 ckScri->SetPos(sizeof(int32_t) + headerSize);
4372 // read actual script data
4373 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4374 data.resize(scriptSize);
4375 for (int i = 0; i < scriptSize; ++i)
4376 data[i] = ckScri->ReadUint8();
4377 } else { // this is a new script object, so just initialize it as such ...
4378 Compression = COMPRESSION_NONE;
4379 Encoding = ENCODING_ASCII;
4380 Language = LANGUAGE_NKSP;
4381 Bypass = false;
4382 crc = 0;
4383 Name = "Unnamed Script";
4384 }
4385 }
4386
4387 Script::~Script() {
4388 }
4389
4390 /**
4391 * Returns the current script (i.e. as source code) in text format.
4392 */
4393 String Script::GetScriptAsText() {
4394 String s;
4395 s.resize(data.size(), ' ');
4396 memcpy(&s[0], &data[0], data.size());
4397 return s;
4398 }
4399
4400 /**
4401 * Replaces the current script with the new script source code text given
4402 * by @a text.
4403 *
4404 * @param text - new script source code
4405 */
4406 void Script::SetScriptAsText(const String& text) {
4407 data.resize(text.size());
4408 memcpy(&data[0], &text[0], text.size());
4409 }
4410
4411 /**
4412 * Apply this script to the respective RIFF chunks. You have to call
4413 * File::Save() to make changes persistent.
4414 *
4415 * Usually there is absolutely no need to call this method explicitly.
4416 * It will be called automatically when File::Save() was called.
4417 *
4418 * @param pProgress - callback function for progress notification
4419 */
4420 void Script::UpdateChunks(progress_t* pProgress) {
4421 // recalculate CRC32 check sum
4422 __resetCRC(crc);
4423 __calculateCRC(&data[0], data.size(), crc);
4424 __finalizeCRC(crc);
4425 // make sure chunk exists and has the required size
4426 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4427 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4428 else pChunk->Resize(chunkSize);
4429 // fill the chunk data to be written to disk
4430 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4431 int pos = 0;
4432 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4433 pos += sizeof(int32_t);
4434 store32(&pData[pos], Compression);
4435 pos += sizeof(int32_t);
4436 store32(&pData[pos], Encoding);
4437 pos += sizeof(int32_t);
4438 store32(&pData[pos], Language);
4439 pos += sizeof(int32_t);
4440 store32(&pData[pos], Bypass ? 1 : 0);
4441 pos += sizeof(int32_t);
4442 store32(&pData[pos], crc);
4443 pos += sizeof(int32_t);
4444 store32(&pData[pos], (uint32_t) Name.size());
4445 pos += sizeof(int32_t);
4446 for (int i = 0; i < Name.size(); ++i, ++pos)
4447 pData[pos] = Name[i];
4448 for (int i = 0; i < data.size(); ++i, ++pos)
4449 pData[pos] = data[i];
4450 }
4451
4452 /**
4453 * Move this script from its current ScriptGroup to another ScriptGroup
4454 * given by @a pGroup.
4455 *
4456 * @param pGroup - script's new group
4457 */
4458 void Script::SetGroup(ScriptGroup* pGroup) {
4459 if (this->pGroup == pGroup) return;
4460 if (pChunk)
4461 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4462 this->pGroup = pGroup;
4463 }
4464
4465 /**
4466 * Returns the script group this script currently belongs to. Each script
4467 * is a member of exactly one ScriptGroup.
4468 *
4469 * @returns current script group
4470 */
4471 ScriptGroup* Script::GetGroup() const {
4472 return pGroup;
4473 }
4474
4475 /**
4476 * Make a (semi) deep copy of the Script object given by @a orig
4477 * and assign it to this object. Note: the ScriptGroup this Script
4478 * object belongs to remains untouched by this call.
4479 *
4480 * @param orig - original Script object to be copied from
4481 */
4482 void Script::CopyAssign(const Script* orig) {
4483 Name = orig->Name;
4484 Compression = orig->Compression;
4485 Encoding = orig->Encoding;
4486 Language = orig->Language;
4487 Bypass = orig->Bypass;
4488 data = orig->data;
4489 }
4490
4491 void Script::RemoveAllScriptReferences() {
4492 File* pFile = pGroup->pFile;
4493 for (int i = 0; pFile->GetInstrument(i); ++i) {
4494 Instrument* instr = pFile->GetInstrument(i);
4495 instr->RemoveScript(this);
4496 }
4497 }
4498
4499 // *************** ScriptGroup ***************
4500 // *
4501
4502 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4503 pFile = file;
4504 pList = lstRTIS;
4505 pScripts = NULL;
4506 if (lstRTIS) {
4507 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4508 ::LoadString(ckName, Name);
4509 } else {
4510 Name = "Default Group";
4511 }
4512 }
4513
4514 ScriptGroup::~ScriptGroup() {
4515 if (pScripts) {
4516 std::list<Script*>::iterator iter = pScripts->begin();
4517 std::list<Script*>::iterator end = pScripts->end();
4518 while (iter != end) {
4519 delete *iter;
4520 ++iter;
4521 }
4522 delete pScripts;
4523 }
4524 }
4525
4526 /**
4527 * Apply this script group to the respective RIFF chunks. You have to call
4528 * File::Save() to make changes persistent.
4529 *
4530 * Usually there is absolutely no need to call this method explicitly.
4531 * It will be called automatically when File::Save() was called.
4532 *
4533 * @param pProgress - callback function for progress notification
4534 */
4535 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4536 if (pScripts) {
4537 if (!pList)
4538 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4539
4540 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4541 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4542
4543 for (std::list<Script*>::iterator it = pScripts->begin();
4544 it != pScripts->end(); ++it)
4545 {
4546 (*it)->UpdateChunks(pProgress);
4547 }
4548 }
4549 }
4550
4551 /** @brief Get instrument script.
4552 *
4553 * Returns the real-time instrument script with the given index.
4554 *
4555 * @param index - number of the sought script (0..n)
4556 * @returns sought script or NULL if there's no such script
4557 */
4558 Script* ScriptGroup::GetScript(uint index) {
4559 if (!pScripts) LoadScripts();
4560 std::list<Script*>::iterator it = pScripts->begin();
4561 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4562 if (i == index) return *it;
4563 return NULL;
4564 }
4565
4566 /** @brief Add new instrument script.
4567 *
4568 * Adds a new real-time instrument script to the file. The script is not
4569 * actually used / executed unless it is referenced by an instrument to be
4570 * used. This is similar to samples, which you can add to a file, without
4571 * an instrument necessarily actually using it.
4572 *
4573 * You have to call Save() to make this persistent to the file.
4574 *
4575 * @return new empty script object
4576 */
4577 Script* ScriptGroup::AddScript() {
4578 if (!pScripts) LoadScripts();
4579 Script* pScript = new Script(this, NULL);
4580 pScripts->push_back(pScript);
4581 return pScript;
4582 }
4583
4584 /** @brief Delete an instrument script.
4585 *
4586 * This will delete the given real-time instrument script. References of
4587 * instruments that are using that script will be removed accordingly.
4588 *
4589 * You have to call Save() to make this persistent to the file.
4590 *
4591 * @param pScript - script to delete
4592 * @throws gig::Exception if given script could not be found
4593 */
4594 void ScriptGroup::DeleteScript(Script* pScript) {
4595 if (!pScripts) LoadScripts();
4596 std::list<Script*>::iterator iter =
4597 find(pScripts->begin(), pScripts->end(), pScript);
4598 if (iter == pScripts->end())
4599 throw gig::Exception("Could not delete script, could not find given script");
4600 pScripts->erase(iter);
4601 pScript->RemoveAllScriptReferences();
4602 if (pScript->pChunk)
4603 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4604 delete pScript;
4605 }
4606
4607 void ScriptGroup::LoadScripts() {
4608 if (pScripts) return;
4609 pScripts = new std::list<Script*>;
4610 if (!pList) return;
4611
4612 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4613 ck = pList->GetNextSubChunk())
4614 {
4615 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4616 pScripts->push_back(new Script(this, ck));
4617 }
4618 }
4619 }
4620
4621 // *************** Instrument ***************
4622 // *
4623
4624 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4625 static const DLS::Info::string_length_t fixedStringLengths[] = {
4626 { CHUNK_ID_INAM, 64 },
4627 { CHUNK_ID_ISFT, 12 },
4628 { 0, 0 }
4629 };
4630 pInfo->SetFixedStringLengths(fixedStringLengths);
4631
4632 // Initialization
4633 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4634 EffectSend = 0;
4635 Attenuation = 0;
4636 FineTune = 0;
4637 PitchbendRange = 2;
4638 PianoReleaseMode = false;
4639 DimensionKeyRange.low = 0;
4640 DimensionKeyRange.high = 0;
4641 pMidiRules = new MidiRule*[3];
4642 pMidiRules[0] = NULL;
4643 pScriptRefs = NULL;
4644
4645 // Loading
4646 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4647 if (lart) {
4648 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4649 if (_3ewg) {
4650 EffectSend = _3ewg->ReadUint16();
4651 Attenuation = _3ewg->ReadInt32();
4652 FineTune = _3ewg->ReadInt16();
4653 PitchbendRange = _3ewg->ReadInt16();
4654 uint8_t dimkeystart = _3ewg->ReadUint8();
4655 PianoReleaseMode = dimkeystart & 0x01;
4656 DimensionKeyRange.low = dimkeystart >> 1;
4657 DimensionKeyRange.high = _3ewg->ReadUint8();
4658
4659 if (_3ewg->GetSize() > 32) {
4660 // read MIDI rules
4661 int i = 0;
4662 _3ewg->SetPos(32);
4663 uint8_t id1 = _3ewg->ReadUint8();
4664 uint8_t id2 = _3ewg->ReadUint8();
4665
4666 if (id2 == 16) {
4667 if (id1 == 4) {
4668 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4669 } else if (id1 == 0) {
4670 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4671 } else if (id1 == 3) {
4672 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4673 } else {
4674 pMidiRules[i++] = new MidiRuleUnknown;
4675 }
4676 }
4677 else if (id1 != 0 || id2 != 0) {
4678 pMidiRules[i++] = new MidiRuleUnknown;
4679 }
4680 //TODO: all the other types of rules
4681
4682 pMidiRules[i] = NULL;
4683 }
4684 }
4685 }
4686
4687 if (pFile->GetAutoLoad()) {
4688 if (!pRegions) pRegions = new RegionList;
4689 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4690 if (lrgn) {
4691 RIFF::List* rgn = lrgn->GetFirstSubList();
4692 while (rgn) {
4693 if (rgn->GetListType() == LIST_TYPE_RGN) {
4694 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4695 pRegions->push_back(new Region(this, rgn));
4696 }
4697 rgn = lrgn->GetNextSubList();
4698 }
4699 // Creating Region Key Table for fast lookup
4700 UpdateRegionKeyTable();
4701 }
4702 }
4703
4704 // own gig format extensions
4705 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4706 if (lst3LS) {
4707 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4708 if (ckSCSL) {
4709 int headerSize = ckSCSL->ReadUint32();
4710 int slotCount = ckSCSL->ReadUint32();
4711 if (slotCount) {
4712 int slotSize = ckSCSL->ReadUint32();
4713 ckSCSL->SetPos(headerSize); // in case of future header extensions
4714 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4715 for (int i = 0; i < slotCount; ++i) {
4716 _ScriptPooolEntry e;
4717 e.fileOffset = ckSCSL->ReadUint32();
4718 e.bypass = ckSCSL->ReadUint32() & 1;
4719 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4720 scriptPoolFileOffsets.push_back(e);
4721 }
4722 }
4723 }
4724 }
4725
4726 __notify_progress(pProgress, 1.0f); // notify done
4727 }
4728
4729 void Instrument::UpdateRegionKeyTable() {
4730 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4731 RegionList::iterator iter = pRegions->begin();
4732 RegionList::iterator end = pRegions->end();
4733 for (; iter != end; ++iter) {
4734 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4735 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4736 RegionKeyTable[iKey] = pRegion;
4737 }
4738 }
4739 }
4740
4741 Instrument::~Instrument() {
4742 for (int i = 0 ; pMidiRules[i] ; i++) {
4743 delete pMidiRules[i];
4744 }
4745 delete[] pMidiRules;
4746 if (pScriptRefs) delete pScriptRefs;
4747 }
4748
4749 /**
4750 * Apply Instrument with all its Regions to the respective RIFF chunks.
4751 * You have to call File::Save() to make changes persistent.
4752 *
4753 * Usually there is absolutely no need to call this method explicitly.
4754 * It will be called automatically when File::Save() was called.
4755 *
4756 * @param pProgress - callback function for progress notification
4757 * @throws gig::Exception if samples cannot be dereferenced
4758 */
4759 void Instrument::UpdateChunks(progress_t* pProgress) {
4760 // first update base classes' chunks
4761 DLS::Instrument::UpdateChunks(pProgress);
4762
4763 // update Regions' chunks
4764 {
4765 RegionList::iterator iter = pRegions->begin();
4766 RegionList::iterator end = pRegions->end();
4767 for (; iter != end; ++iter)
4768 (*iter)->UpdateChunks(pProgress);
4769 }
4770
4771 // make sure 'lart' RIFF list chunk exists
4772 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4773 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4774 // make sure '3ewg' RIFF chunk exists
4775 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4776 if (!_3ewg) {
4777 File* pFile = (File*) GetParent();
4778
4779 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4780 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4781 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4782 memset(_3ewg->LoadChunkData(), 0, size);
4783 }
4784 // update '3ewg' RIFF chunk
4785 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4786 store16(&pData[0], EffectSend);
4787 store32(&pData[2], Attenuation);
4788 store16(&pData[6], FineTune);
4789 store16(&pData[8], PitchbendRange);
4790 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4791 DimensionKeyRange.low << 1;
4792 pData[10] = dimkeystart;
4793 pData[11] = DimensionKeyRange.high;
4794
4795 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4796 pData[32] = 0;
4797 pData[33] = 0;
4798 } else {
4799 for (int i = 0 ; pMidiRules[i] ; i++) {
4800 pMidiRules[i]->UpdateChunks(pData);
4801 }
4802 }
4803
4804 // own gig format extensions
4805 if (ScriptSlotCount()) {
4806 // make sure we have converted the original loaded script file
4807 // offsets into valid Script object pointers
4808 LoadScripts();
4809
4810 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4811 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4812 const int slotCount = (int) pScriptRefs->size();
4813 const int headerSize = 3 * sizeof(uint32_t);
4814 const int slotSize = 2 * sizeof(uint32_t);
4815 const int totalChunkSize = headerSize + slotCount * slotSize;
4816 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4817 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4818 else ckSCSL->Resize(totalChunkSize);
4819 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4820 int pos = 0;
4821 store32(&pData[pos], headerSize);
4822 pos += sizeof(uint32_t);
4823 store32(&pData[pos], slotCount);
4824 pos += sizeof(uint32_t);
4825 store32(&pData[pos], slotSize);
4826 pos += sizeof(uint32_t);
4827 for (int i = 0; i < slotCount; ++i) {
4828 // arbitrary value, the actual file offset will be updated in
4829 // UpdateScriptFileOffsets() after the file has been resized
4830 int bogusFileOffset = 0;
4831 store32(&pData[pos], bogusFileOffset);
4832 pos += sizeof(uint32_t);
4833 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4834 pos += sizeof(uint32_t);
4835 }
4836 } else {
4837 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4838 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4839 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4840 }
4841 }
4842
4843 void Instrument::UpdateScriptFileOffsets() {
4844 // own gig format extensions
4845 if (pScriptRefs && pScriptRefs->size() > 0) {
4846 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4847 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4848 const int slotCount = (int) pScriptRefs->size();
4849 const int headerSize = 3 * sizeof(uint32_t);
4850 ckSCSL->SetPos(headerSize);
4851 for (int i = 0; i < slotCount; ++i) {
4852 uint32_t fileOffset = uint32_t(
4853 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4854 (*pScriptRefs)[i].script->pChunk->GetPos() -
4855 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4856 );
4857 ckSCSL->WriteUint32(&fileOffset);
4858 // jump over flags entry (containing the bypass flag)
4859 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4860 }
4861 }
4862 }
4863
4864 /**
4865 * Returns the appropriate Region for a triggered note.
4866 *
4867 * @param Key MIDI Key number of triggered note / key (0 - 127)
4868 * @returns pointer adress to the appropriate Region or NULL if there
4869 * there is no Region defined for the given \a Key
4870 */
4871 Region* Instrument::GetRegion(unsigned int Key) {
4872 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4873 return RegionKeyTable[Key];
4874
4875 /*for (int i = 0; i < Regions; i++) {
4876 if (Key <= pRegions[i]->KeyRange.high &&
4877 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4878 }
4879 return NULL;*/
4880 }
4881
4882 /**
4883 * Returns the first Region of the instrument. You have to call this
4884 * method once before you use GetNextRegion().
4885 *
4886 * @returns pointer address to first region or NULL if there is none
4887 * @see GetNextRegion()
4888 */
4889 Region* Instrument::GetFirstRegion() {
4890 if (!pRegions) return NULL;
4891 RegionsIterator = pRegions->begin();
4892 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4893 }
4894
4895 /**
4896 * Returns the next Region of the instrument. You have to call
4897 * GetFirstRegion() once before you can use this method. By calling this
4898 * method multiple times it iterates through the available Regions.
4899 *
4900 * @returns pointer address to the next region or NULL if end reached
4901 * @see GetFirstRegion()
4902 */
4903 Region* Instrument::GetNextRegion() {
4904 if (!pRegions) return NULL;
4905 RegionsIterator++;
4906 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4907 }
4908
4909 Region* Instrument::AddRegion() {
4910 // create new Region object (and its RIFF chunks)
4911 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4912 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4913 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4914 Region* pNewRegion = new Region(this, rgn);
4915 pRegions->push_back(pNewRegion);
4916 Regions = (uint32_t) pRegions->size();
4917 // update Region key table for fast lookup
4918 UpdateRegionKeyTable();
4919 // done
4920 return pNewRegion;
4921 }
4922
4923 void Instrument::DeleteRegion(Region* pRegion) {
4924 if (!pRegions) return;
4925 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4926 // update Region key table for fast lookup
4927 UpdateRegionKeyTable();
4928 }
4929
4930 /**
4931 * Move this instrument at the position before @arg dst.
4932 *
4933 * This method can be used to reorder the sequence of instruments in a
4934 * .gig file. This might be helpful especially on large .gig files which
4935 * contain a large number of instruments within the same .gig file. So
4936 * grouping such instruments to similar ones, can help to keep track of them
4937 * when working with such complex .gig files.
4938 *
4939 * When calling this method, this instrument will be removed from in its
4940 * current position in the instruments list and moved to the requested
4941 * target position provided by @param dst. You may also pass NULL as
4942 * argument to this method, in that case this intrument will be moved to the
4943 * very end of the .gig file's instrument list.
4944 *
4945 * You have to call Save() to make the order change persistent to the .gig
4946 * file.
4947 *
4948 * Currently this method is limited to moving the instrument within the same
4949 * .gig file. Trying to move it to another .gig file by calling this method
4950 * will throw an exception.
4951 *
4952 * @param dst - destination instrument at which this instrument will be
4953 * moved to, or pass NULL for moving to end of list
4954 * @throw gig::Exception if this instrument and target instrument are not
4955 * part of the same file
4956 */
4957 void Instrument::MoveTo(Instrument* dst) {
4958 if (dst && GetParent() != dst->GetParent())
4959 throw Exception(
4960 "gig::Instrument::MoveTo() can only be used for moving within "
4961 "the same gig file."
4962 );
4963
4964 File* pFile = (File*) GetParent();
4965
4966 // move this instrument within the instrument list
4967 {
4968 File::InstrumentList& list = *pFile->pInstruments;
4969
4970 File::InstrumentList::iterator itFrom =
4971 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4972
4973 File::InstrumentList::iterator itTo =
4974 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4975
4976 list.splice(itTo, list, itFrom);
4977 }
4978
4979 // move the instrument's actual list RIFF chunk appropriately
4980 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4981 lstCkInstruments->MoveSubChunk(
4982 this->pCkInstrument,
4983 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4984 );
4985 }
4986
4987 /**
4988 * Returns a MIDI rule of the instrument.
4989 *
4990 * The list of MIDI rules, at least in gig v3, always contains at
4991 * most two rules. The second rule can only be the DEF filter
4992 * (which currently isn't supported by libgig).
4993 *
4994 * @param i - MIDI rule number
4995 * @returns pointer address to MIDI rule number i or NULL if there is none
4996 */
4997 MidiRule* Instrument::GetMidiRule(int i) {
4998 return pMidiRules[i];
4999 }
5000
5001 /**
5002 * Adds the "controller trigger" MIDI rule to the instrument.
5003 *
5004 * @returns the new MIDI rule
5005 */
5006 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5007 delete pMidiRules[0];
5008 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5009 pMidiRules[0] = r;
5010 pMidiRules[1] = 0;
5011 return r;
5012 }
5013
5014 /**
5015 * Adds the legato MIDI rule to the instrument.
5016 *
5017 * @returns the new MIDI rule
5018 */
5019 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5020 delete pMidiRules[0];
5021 MidiRuleLegato* r = new MidiRuleLegato;
5022 pMidiRules[0] = r;
5023 pMidiRules[1] = 0;
5024 return r;
5025 }
5026
5027 /**
5028 * Adds the alternator MIDI rule to the instrument.
5029 *
5030 * @returns the new MIDI rule
5031 */
5032 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5033 delete pMidiRules[0];
5034 MidiRuleAlternator* r = new MidiRuleAlternator;
5035 pMidiRules[0] = r;
5036 pMidiRules[1] = 0;
5037 return r;
5038 }
5039
5040 /**
5041 * Deletes a MIDI rule from the instrument.
5042 *
5043 * @param i - MIDI rule number
5044 */
5045 void Instrument::DeleteMidiRule(int i) {
5046 delete pMidiRules[i];
5047 pMidiRules[i] = 0;
5048 }
5049
5050 void Instrument::LoadScripts() {
5051 if (pScriptRefs) return;
5052 pScriptRefs = new std::vector<_ScriptPooolRef>;
5053 if (scriptPoolFileOffsets.empty()) return;
5054 File* pFile = (File*) GetParent();
5055 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5056 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5057 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5058 ScriptGroup* group = pFile->GetScriptGroup(i);
5059 for (uint s = 0; group->GetScript(s); ++s) {
5060 Script* script = group->GetScript(s);
5061 if (script->pChunk) {
5062 uint32_t offset = uint32_t(
5063 script->pChunk->GetFilePos() -
5064 script->pChunk->GetPos() -
5065 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5066 );
5067 if (offset == soughtOffset)
5068 {
5069 _ScriptPooolRef ref;
5070 ref.script = script;
5071 ref.bypass = scriptPoolFileOffsets[k].bypass;
5072 pScriptRefs->push_back(ref);
5073 break;
5074 }
5075 }
5076 }
5077 }
5078 }
5079 // we don't need that anymore
5080 scriptPoolFileOffsets.clear();
5081 }
5082
5083 /** @brief Get instrument script (gig format extension).
5084 *
5085 * Returns the real-time instrument script of instrument script slot
5086 * @a index.
5087 *
5088 * @note This is an own format extension which did not exist i.e. in the
5089 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5090 * gigedit.
5091 *
5092 * @param index - instrument script slot index
5093 * @returns script or NULL if index is out of bounds
5094 */
5095 Script* Instrument::GetScriptOfSlot(uint index) {
5096 LoadScripts();
5097 if (index >= pScriptRefs->size()) return NULL;
5098 return pScriptRefs->at(index).script;
5099 }
5100
5101 /** @brief Add new instrument script slot (gig format extension).
5102 *
5103 * Add the given real-time instrument script reference to this instrument,
5104 * which shall be executed by the sampler for for this instrument. The
5105 * script will be added to the end of the script list of this instrument.
5106 * The positions of the scripts in the Instrument's Script list are
5107 * relevant, because they define in which order they shall be executed by
5108 * the sampler. For this reason it is also legal to add the same script
5109 * twice to an instrument, for example you might have a script called
5110 * "MyFilter" which performs an event filter task, and you might have
5111 * another script called "MyNoteTrigger" which triggers new notes, then you
5112 * might for example have the following list of scripts on the instrument:
5113 *
5114 * 1. Script "MyFilter"
5115 * 2. Script "MyNoteTrigger"
5116 * 3. Script "MyFilter"
5117 *
5118 * Which would make sense, because the 2nd script launched new events, which
5119 * you might need to filter as well.
5120 *
5121 * There are two ways to disable / "bypass" scripts. You can either disable
5122 * a script locally for the respective script slot on an instrument (i.e. by
5123 * passing @c false to the 2nd argument of this method, or by calling
5124 * SetScriptBypassed()). Or you can disable a script globally for all slots
5125 * and all instruments by setting Script::Bypass.
5126 *
5127 * @note This is an own format extension which did not exist i.e. in the
5128 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5129 * gigedit.
5130 *
5131 * @param pScript - script that shall be executed for this instrument
5132 * @param bypass - if enabled, the sampler shall skip executing this
5133 * script (in the respective list position)
5134 * @see SetScriptBypassed()
5135 */
5136 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5137 LoadScripts();
5138 _ScriptPooolRef ref = { pScript, bypass };
5139 pScriptRefs->push_back(ref);
5140 }
5141
5142 /** @brief Flip two script slots with each other (gig format extension).
5143 *
5144 * Swaps the position of the two given scripts in the Instrument's Script
5145 * list. The positions of the scripts in the Instrument's Script list are
5146 * relevant, because they define in which order they shall be executed by
5147 * the sampler.
5148 *
5149 * @note This is an own format extension which did not exist i.e. in the
5150 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5151 * gigedit.
5152 *
5153 * @param index1 - index of the first script slot to swap
5154 * @param index2 - index of the second script slot to swap
5155 */
5156 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5157 LoadScripts();
5158 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5159 return;
5160 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5161 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5162 (*pScriptRefs)[index2] = tmp;
5163 }
5164
5165 /** @brief Remove script slot.
5166 *
5167 * Removes the script slot with the given slot index.
5168 *
5169 * @param index - index of script slot to remove
5170 */
5171 void Instrument::RemoveScriptSlot(uint index) {
5172 LoadScripts();
5173 if (index >= pScriptRefs->size()) return;
5174 pScriptRefs->erase( pScriptRefs->begin() + index );
5175 }
5176
5177 /** @brief Remove reference to given Script (gig format extension).
5178 *
5179 * This will remove all script slots on the instrument which are referencing
5180 * the given script.
5181 *
5182 * @note This is an own format extension which did not exist i.e. in the
5183 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5184 * gigedit.
5185 *
5186 * @param pScript - script reference to remove from this instrument
5187 * @see RemoveScriptSlot()
5188 */
5189 void Instrument::RemoveScript(Script* pScript) {
5190 LoadScripts();
5191 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5192 if ((*pScriptRefs)[i].script == pScript) {
5193 pScriptRefs->erase( pScriptRefs->begin() + i );
5194 }
5195 }
5196 }
5197
5198 /** @brief Instrument's amount of script slots.
5199 *
5200 * This method returns the amount of script slots this instrument currently
5201 * uses.
5202 *
5203 * A script slot is a reference of a real-time instrument script to be
5204 * executed by the sampler. The scripts will be executed by the sampler in
5205 * sequence of the slots. One (same) script may be referenced multiple
5206 * times in different slots.
5207 *
5208 * @note This is an own format extension which did not exist i.e. in the
5209 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5210 * gigedit.
5211 */
5212 uint Instrument::ScriptSlotCount() const {
5213 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5214 }
5215
5216 /** @brief Whether script execution shall be skipped.
5217 *
5218 * Defines locally for the Script reference slot in the Instrument's Script
5219 * list, whether the script shall be skipped by the sampler regarding
5220 * execution.
5221 *
5222 * It is also possible to ignore exeuction of the script globally, for all
5223 * slots and for all instruments by setting Script::Bypass.
5224 *
5225 * @note This is an own format extension which did not exist i.e. in the
5226 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5227 * gigedit.
5228 *
5229 * @param index - index of the script slot on this instrument
5230 * @see Script::Bypass
5231 */
5232 bool Instrument::IsScriptSlotBypassed(uint index) {
5233 if (index >= ScriptSlotCount()) return false;
5234 return pScriptRefs ? pScriptRefs->at(index).bypass
5235 : scriptPoolFileOffsets.at(index).bypass;
5236
5237 }
5238
5239 /** @brief Defines whether execution shall be skipped.
5240 *
5241 * You can call this method to define locally whether or whether not the
5242 * given script slot shall be executed by the sampler.
5243 *
5244 * @note This is an own format extension which did not exist i.e. in the
5245 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5246 * gigedit.
5247 *
5248 * @param index - script slot index on this instrument
5249 * @param bBypass - if true, the script slot will be skipped by the sampler
5250 * @see Script::Bypass
5251 */
5252 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5253 if (index >= ScriptSlotCount()) return;
5254 if (pScriptRefs)
5255 pScriptRefs->at(index).bypass = bBypass;
5256 else
5257 scriptPoolFileOffsets.at(index).bypass = bBypass;
5258 }
5259
5260 /**
5261 * Make a (semi) deep copy of the Instrument object given by @a orig
5262 * and assign it to this object.
5263 *
5264 * Note that all sample pointers referenced by @a orig are simply copied as
5265 * memory address. Thus the respective samples are shared, not duplicated!
5266 *
5267 * @param orig - original Instrument object to be copied from
5268 */
5269 void Instrument::CopyAssign(const Instrument* orig) {
5270 CopyAssign(orig, NULL);
5271 }
5272
5273 /**
5274 * Make a (semi) deep copy of the Instrument object given by @a orig
5275 * and assign it to this object.
5276 *
5277 * @param orig - original Instrument object to be copied from
5278 * @param mSamples - crosslink map between the foreign file's samples and
5279 * this file's samples
5280 */
5281 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5282 // handle base class
5283 // (without copying DLS region stuff)
5284 DLS::Instrument::CopyAssignCore(orig);
5285
5286 // handle own member variables
5287 Attenuation = orig->Attenuation;
5288 EffectSend = orig->EffectSend;
5289 FineTune = orig->FineTune;
5290 PitchbendRange = orig->PitchbendRange;
5291 PianoReleaseMode = orig->PianoReleaseMode;
5292 DimensionKeyRange = orig->DimensionKeyRange;
5293 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5294 pScriptRefs = orig->pScriptRefs;
5295
5296 // free old midi rules
5297 for (int i = 0 ; pMidiRules[i] ; i++) {
5298 delete pMidiRules[i];
5299 }
5300 //TODO: MIDI rule copying
5301 pMidiRules[0] = NULL;
5302
5303 // delete all old regions
5304 while (Regions) DeleteRegion(GetFirstRegion());
5305 // create new regions and copy them from original
5306 {
5307 RegionList::const_iterator it = orig->pRegions->begin();
5308 for (int i = 0; i < orig->Regions; ++i, ++it) {
5309 Region* dstRgn = AddRegion();
5310 //NOTE: Region does semi-deep copy !
5311 dstRgn->CopyAssign(
5312 static_cast<gig::Region*>(*it),
5313 mSamples
5314 );
5315 }
5316 }
5317
5318 UpdateRegionKeyTable();
5319 }
5320
5321
5322 // *************** Group ***************
5323 // *
5324
5325 /** @brief Constructor.
5326 *
5327 * @param file - pointer to the gig::File object
5328 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5329 * NULL if this is a new Group
5330 */
5331 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5332 pFile = file;
5333 pNameChunk = ck3gnm;
5334 ::LoadString(pNameChunk, Name);
5335 }
5336
5337 Group::~Group() {
5338 // remove the chunk associated with this group (if any)
5339 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5340 }
5341
5342 /** @brief Update chunks with current group settings.
5343 *
5344 * Apply current Group field values to the respective chunks. You have
5345 * to call File::Save() to make changes persistent.
5346 *
5347 * Usually there is absolutely no need to call this method explicitly.
5348 * It will be called automatically when File::Save() was called.
5349 *
5350 * @param pProgress - callback function for progress notification
5351 */
5352 void Group::UpdateChunks(progress_t* pProgress) {
5353 // make sure <3gri> and <3gnl> list chunks exist
5354 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5355 if (!_3gri) {
5356 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5357 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5358 }
5359 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5360 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5361
5362 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5363 // v3 has a fixed list of 128 strings, find a free one
5364 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5365 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5366 pNameChunk = ck;
5367 break;
5368 }
5369 }
5370 }
5371
5372 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5373 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5374 }
5375
5376 /**
5377 * Returns the first Sample of this Group. You have to call this method
5378 * once before you use GetNextSample().
5379 *
5380 * <b>Notice:</b> this method might block for a long time, in case the
5381 * samples of this .gig file were not scanned yet
5382 *
5383 * @returns pointer address to first Sample or NULL if there is none
5384 * applied to this Group
5385 * @see GetNextSample()
5386 */
5387 Sample* Group::GetFirstSample() {
5388 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5389 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5390 if (pSample->GetGroup() == this) return pSample;
5391 }
5392 return NULL;
5393 }
5394
5395 /**
5396 * Returns the next Sample of the Group. You have to call
5397 * GetFirstSample() once before you can use this method. By calling this
5398 * method multiple times it iterates through the Samples assigned to
5399 * this Group.
5400 *
5401 * @returns pointer address to the next Sample of this Group or NULL if
5402 * end reached
5403 * @see GetFirstSample()
5404 */
5405 Sample* Group::GetNextSample() {
5406 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5407 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5408 if (pSample->GetGroup() == this) return pSample;
5409 }
5410 return NULL;
5411 }
5412
5413 /**
5414 * Move Sample given by \a pSample from another Group to this Group.
5415 */
5416 void Group::AddSample(Sample* pSample) {
5417 pSample->pGroup = this;
5418 }
5419
5420 /**
5421 * Move all members of this group to another group (preferably the 1st
5422 * one except this). This method is called explicitly by
5423 * File::DeleteGroup() thus when a Group was deleted. This code was
5424 * intentionally not placed in the destructor!
5425 */
5426 void Group::MoveAll() {
5427 // get "that" other group first
5428 Group* pOtherGroup = NULL;
5429 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5430 if (pOtherGroup != this) break;
5431 }
5432 if (!pOtherGroup) throw Exception(
5433 "Could not move samples to another group, since there is no "
5434 "other Group. This is a bug, report it!"
5435 );
5436 // now move all samples of this group to the other group
5437 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5438 pOtherGroup->AddSample(pSample);
5439 }
5440 }
5441
5442
5443
5444 // *************** File ***************
5445 // *
5446
5447 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5448 const DLS::version_t File::VERSION_2 = {
5449 0, 2, 19980628 & 0xffff, 19980628 >> 16
5450 };
5451
5452 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5453 const DLS::version_t File::VERSION_3 = {
5454 0, 3, 20030331 & 0xffff, 20030331 >> 16
5455 };
5456
5457 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5458 { CHUNK_ID_IARL, 256 },
5459 { CHUNK_ID_IART, 128 },
5460 { CHUNK_ID_ICMS, 128 },
5461 { CHUNK_ID_ICMT, 1024 },
5462 { CHUNK_ID_ICOP, 128 },
5463 { CHUNK_ID_ICRD, 128 },
5464 { CHUNK_ID_IENG, 128 },
5465 { CHUNK_ID_IGNR, 128 },
5466 { CHUNK_ID_IKEY, 128 },
5467 { CHUNK_ID_IMED, 128 },
5468 { CHUNK_ID_INAM, 128 },
5469 { CHUNK_ID_IPRD, 128 },
5470 { CHUNK_ID_ISBJ, 128 },
5471 { CHUNK_ID_ISFT, 128 },
5472 { CHUNK_ID_ISRC, 128 },
5473 { CHUNK_ID_ISRF, 128 },
5474 { CHUNK_ID_ITCH, 128 },
5475 { 0, 0 }
5476 };
5477
5478 File::File() : DLS::File() {
5479 bAutoLoad = true;
5480 *pVersion = VERSION_3;
5481 pGroups = NULL;
5482 pScriptGroups = NULL;
5483 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5484 pInfo->ArchivalLocation = String(256, ' ');
5485
5486 // add some mandatory chunks to get the file chunks in right
5487 // order (INFO chunk will be moved to first position later)
5488 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5489 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5490 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5491
5492 GenerateDLSID();
5493 }
5494
5495 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5496 bAutoLoad = true;
5497 pGroups = NULL;
5498 pScriptGroups = NULL;
5499 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5500 }
5501
5502 File::~File() {
5503 if (pGroups) {
5504 std::list<Group*>::iterator iter = pGroups->begin();
5505 std::list<Group*>::iterator end = pGroups->end();
5506 while (iter != end) {
5507 delete *iter;
5508 ++iter;
5509 }
5510 delete pGroups;
5511 }
5512 if (pScriptGroups) {
5513 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5514 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5515 while (iter != end) {
5516 delete *iter;
5517 ++iter;
5518 }
5519 delete pScriptGroups;
5520 }
5521 }
5522
5523 Sample* File::GetFirstSample(progress_t* pProgress) {
5524 if (!pSamples) LoadSamples(pProgress);
5525 if (!pSamples) return NULL;
5526 SamplesIterator = pSamples->begin();
5527 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5528 }
5529
5530 Sample* File::GetNextSample() {
5531 if (!pSamples) return NULL;
5532 SamplesIterator++;
5533 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5534 }
5535
5536 /**
5537 * Returns Sample object of @a index.
5538 *
5539 * @returns sample object or NULL if index is out of bounds
5540 */
5541 Sample* File::GetSample(uint index) {
5542 if (!pSamples) LoadSamples();
5543 if (!pSamples) return NULL;
5544 DLS::File::SampleList::iterator it = pSamples->begin();
5545 for (int i = 0; i < index; ++i) {
5546 ++it;
5547 if (it == pSamples->end()) return NULL;
5548 }
5549 if (it == pSamples->end()) return NULL;
5550 return static_cast<gig::Sample*>( *it );
5551 }
5552
5553 /** @brief Add a new sample.
5554 *
5555 * This will create a new Sample object for the gig file. You have to
5556 * call Save() to make this persistent to the file.
5557 *
5558 * @returns pointer to new Sample object
5559 */
5560 Sample* File::AddSample() {
5561 if (!pSamples) LoadSamples();
5562 __ensureMandatoryChunksExist();
5563 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5564 // create new Sample object and its respective 'wave' list chunk
5565 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5566 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5567
5568 // add mandatory chunks to get the chunks in right order
5569 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5570 wave->AddSubList(LIST_TYPE_INFO);
5571
5572 pSamples->push_back(pSample);
5573 return pSample;
5574 }
5575
5576 /** @brief Delete a sample.
5577 *
5578 * This will delete the given Sample object from the gig file. Any
5579 * references to this sample from Regions and DimensionRegions will be
5580 * removed. You have to call Save() to make this persistent to the file.
5581 *
5582 * @param pSample - sample to delete
5583 * @throws gig::Exception if given sample could not be found
5584 */
5585 void File::DeleteSample(Sample* pSample) {
5586 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5587 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5588 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5589 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5590 pSamples->erase(iter);
5591 delete pSample;
5592
5593 SampleList::iterator tmp = SamplesIterator;
5594 // remove all references to the sample
5595 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5596 instrument = GetNextInstrument()) {
5597 for (Region* region = instrument->GetFirstRegion() ; region ;
5598 region = instrument->GetNextRegion()) {
5599
5600 if (region->GetSample() == pSample) region->SetSample(NULL);
5601
5602 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5603 gig::DimensionRegion *d = region->pDimensionRegions[i];
5604 if (d->pSample == pSample) d->pSample = NULL;
5605 }
5606 }
5607 }
5608 SamplesIterator = tmp; // restore iterator
5609 }
5610
5611 void File::LoadSamples() {
5612 LoadSamples(NULL);
5613 }
5614
5615 void File::LoadSamples(progress_t* pProgress) {
5616 // Groups must be loaded before samples, because samples will try
5617 // to resolve the group they belong to
5618 if (!pGroups) LoadGroups();
5619
5620 if (!pSamples) pSamples = new SampleList;
5621
5622 RIFF::File* file = pRIFF;
5623
5624 // just for progress calculation
5625 int iSampleIndex = 0;
5626 int iTotalSamples = WavePoolCount;
5627
5628 // check if samples should be loaded from extension files
5629 // (only for old gig files < 2 GB)
5630 int lastFileNo = 0;
5631 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5632 for (int i = 0 ; i < WavePoolCount ; i++) {
5633 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5634 }
5635 }
5636 String name(pRIFF->GetFileName());
5637 int nameLen = (int) name.length();
5638 char suffix[6];
5639 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5640
5641 for (int fileNo = 0 ; ; ) {
5642 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5643 if (wvpl) {
5644 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5645 RIFF::List* wave = wvpl->GetFirstSubList();
5646 while (wave) {
5647 if (wave->GetListType() == LIST_TYPE_WAVE) {
5648 // notify current progress
5649 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5650 __notify_progress(pProgress, subprogress);
5651
5652 file_offset_t waveFileOffset = wave->GetFilePos();
5653 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5654
5655 iSampleIndex++;
5656 }
5657 wave = wvpl->GetNextSubList();
5658 }
5659
5660 if (fileNo == lastFileNo) break;
5661
5662 // open extension file (*.gx01, *.gx02, ...)
5663 fileNo++;
5664 sprintf(suffix, ".gx%02d", fileNo);
5665 name.replace(nameLen, 5, suffix);
5666 file = new RIFF::File(name);
5667 ExtensionFiles.push_back(file);
5668 } else break;
5669 }
5670
5671 __notify_progress(pProgress, 1.0); // notify done
5672 }
5673
5674 Instrument* File::GetFirstInstrument() {
5675 if (!pInstruments) LoadInstruments();
5676 if (!pInstruments) return NULL;
5677 InstrumentsIterator = pInstruments->begin();
5678 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5679 }
5680
5681 Instrument* File::GetNextInstrument() {
5682 if (!pInstruments) return NULL;
5683 InstrumentsIterator++;
5684 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5685 }
5686
5687 /**
5688 * Returns the instrument with the given index.
5689 *
5690 * @param index - number of the sought instrument (0..n)
5691 * @param pProgress - optional: callback function for progress notification
5692 * @returns sought instrument or NULL if there's no such instrument
5693 */
5694 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5695 if (!pInstruments) {
5696 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5697
5698 // sample loading subtask
5699 progress_t subprogress;
5700 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5701 __notify_progress(&subprogress, 0.0f);
5702 if (GetAutoLoad())
5703 GetFirstSample(&subprogress); // now force all samples to be loaded
5704 __notify_progress(&subprogress, 1.0f);
5705
5706 // instrument loading subtask
5707 if (pProgress && pProgress->callback) {
5708 subprogress.__range_min = subprogress.__range_max;
5709 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5710 }
5711 __notify_progress(&subprogress, 0.0f);
5712 LoadInstruments(&subprogress);
5713 __notify_progress(&subprogress, 1.0f);
5714 }
5715 if (!pInstruments) return NULL;
5716 InstrumentsIterator = pInstruments->begin();
5717 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5718 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5719 InstrumentsIterator++;
5720 }
5721 return NULL;
5722 }
5723
5724 /** @brief Add a new instrument definition.
5725 *
5726 * This will create a new Instrument object for the gig file. You have
5727 * to call Save() to make this persistent to the file.
5728 *
5729 * @returns pointer to new Instrument object
5730 */
5731 Instrument* File::AddInstrument() {
5732 if (!pInstruments) LoadInstruments();
5733 __ensureMandatoryChunksExist();
5734 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5735 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5736
5737 // add mandatory chunks to get the chunks in right order
5738 lstInstr->AddSubList(LIST_TYPE_INFO);
5739 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5740
5741 Instrument* pInstrument = new Instrument(this, lstInstr);
5742 pInstrument->GenerateDLSID();
5743
5744 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5745
5746 // this string is needed for the gig to be loadable in GSt:
5747 pInstrument->pInfo->Software = "Endless Wave";
5748
5749 pInstruments->push_back(pInstrument);
5750 return pInstrument;
5751 }
5752
5753 /** @brief Add a duplicate of an existing instrument.
5754 *
5755 * Duplicates the instrument definition given by @a orig and adds it
5756 * to this file. This allows in an instrument editor application to
5757 * easily create variations of an instrument, which will be stored in
5758 * the same .gig file, sharing i.e. the same samples.
5759 *
5760 * Note that all sample pointers referenced by @a orig are simply copied as
5761 * memory address. Thus the respective samples are shared, not duplicated!
5762 *
5763 * You have to call Save() to make this persistent to the file.
5764 *
5765 * @param orig - original instrument to be copied
5766 * @returns duplicated copy of the given instrument
5767 */
5768 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5769 Instrument* instr = AddInstrument();
5770 instr->CopyAssign(orig);
5771 return instr;
5772 }
5773
5774 /** @brief Add content of another existing file.
5775 *
5776 * Duplicates the samples, groups and instruments of the original file
5777 * given by @a pFile and adds them to @c this File. In case @c this File is
5778 * a new one that you haven't saved before, then you have to call
5779 * SetFileName() before calling AddContentOf(), because this method will
5780 * automatically save this file during operation, which is required for
5781 * writing the sample waveform data by disk streaming.
5782 *
5783 * @param pFile - original file whose's content shall be copied from
5784 */
5785 void File::AddContentOf(File* pFile) {
5786 static int iCallCount = -1;
5787 iCallCount++;
5788 std::map<Group*,Group*> mGroups;
5789 std::map<Sample*,Sample*> mSamples;
5790
5791 // clone sample groups
5792 for (int i = 0; pFile->GetGroup(i); ++i) {
5793 Group* g = AddGroup();
5794 g->Name =
5795 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5796 mGroups[pFile->GetGroup(i)] = g;
5797 }
5798
5799 // clone samples (not waveform data here yet)
5800 for (int i = 0; pFile->GetSample(i); ++i) {
5801 Sample* s = AddSample();
5802 s->CopyAssignMeta(pFile->GetSample(i));
5803 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5804 mSamples[pFile->GetSample(i)] = s;
5805 }
5806
5807 // clone script groups and their scripts
5808 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5809 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5810 ScriptGroup* dg = AddScriptGroup();
5811 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5812 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5813 Script* ss = sg->GetScript(iScript);
5814 Script* ds = dg->AddScript();
5815 ds->CopyAssign(ss);
5816 }
5817 }
5818
5819 //BUG: For some reason this method only works with this additional
5820 // Save() call in between here.
5821 //
5822 // Important: The correct one of the 2 Save() methods has to be called
5823 // here, depending on whether the file is completely new or has been
5824 // saved to disk already, otherwise it will result in data corruption.
5825 if (pRIFF->IsNew())
5826 Save(GetFileName());
5827 else
5828 Save();
5829
5830 // clone instruments
5831 // (passing the crosslink table here for the cloned samples)
5832 for (int i = 0; pFile->GetInstrument(i); ++i) {
5833 Instrument* instr = AddInstrument();
5834 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5835 }
5836
5837 // Mandatory: file needs to be saved to disk at this point, so this
5838 // file has the correct size and data layout for writing the samples'
5839 // waveform data to disk.
5840 Save();
5841
5842 // clone samples' waveform data
5843 // (using direct read & write disk streaming)
5844 for (int i = 0; pFile->GetSample(i); ++i) {
5845 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5846 }
5847 }
5848
5849 /** @brief Delete an instrument.
5850 *
5851 * This will delete the given Instrument object from the gig file. You
5852 * have to call Save() to make this persistent to the file.
5853 *
5854 * @param pInstrument - instrument to delete
5855 * @throws gig::Exception if given instrument could not be found
5856 */
5857 void File::DeleteInstrument(Instrument* pInstrument) {
5858 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5859 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5860 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5861 pInstruments->erase(iter);
5862 delete pInstrument;
5863 }
5864
5865 void File::LoadInstruments() {
5866 LoadInstruments(NULL);
5867 }
5868
5869 void File::LoadInstruments(progress_t* pProgress) {
5870 if (!pInstruments) pInstruments = new InstrumentList;
5871 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5872 if (lstInstruments) {
5873 int iInstrumentIndex = 0;
5874 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5875 while (lstInstr) {
5876 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5877 // notify current progress
5878 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5879 __notify_progress(pProgress, localProgress);
5880
5881 // divide local progress into subprogress for loading current Instrument
5882 progress_t subprogress;
5883 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5884
5885 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5886
5887 iInstrumentIndex++;
5888 }
5889 lstInstr = lstInstruments->GetNextSubList();
5890 }
5891 __notify_progress(pProgress, 1.0); // notify done
5892 }
5893 }
5894
5895 /// Updates the 3crc chunk with the checksum of a sample. The
5896 /// update is done directly to disk, as this method is called
5897 /// after File::Save()
5898 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5899 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5900 if (!_3crc) return;
5901
5902 // get the index of the sample
5903 int iWaveIndex = GetWaveTableIndexOf(pSample);
5904 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5905
5906 // write the CRC-32 checksum to disk
5907 _3crc->SetPos(iWaveIndex * 8);
5908 uint32_t one = 1;
5909 _3crc->WriteUint32(&one); // always 1
5910 _3crc->WriteUint32(&crc);
5911 }
5912
5913 uint32_t File::GetSampleChecksum(Sample* pSample) {
5914 // get the index of the sample
5915 int iWaveIndex = GetWaveTableIndexOf(pSample);
5916 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5917
5918 return GetSampleChecksumByIndex(iWaveIndex);
5919 }
5920
5921 uint32_t File::GetSampleChecksumByIndex(int index) {
5922 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5923
5924 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5925 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5926 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5927 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5928
5929 // read the CRC-32 checksum directly from disk
5930 size_t pos = index * 8;
5931 if (pos + 8 > _3crc->GetNewSize())
5932 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5933
5934 uint32_t one = load32(&pData[pos]); // always 1
5935 if (one != 1)
5936 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5937
5938 return load32(&pData[pos+4]);
5939 }
5940
5941 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5942 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5943 File::SampleList::iterator iter = pSamples->begin();
5944 File::SampleList::iterator end = pSamples->end();
5945 for (int index = 0; iter != end; ++iter, ++index)
5946 if (*iter == pSample)
5947 return index;
5948 return -1;
5949 }
5950
5951 /**
5952 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5953 * the CRC32 check sums of all samples' raw wave data.
5954 *
5955 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5956 */
5957 bool File::VerifySampleChecksumTable() {
5958 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5959 if (!_3crc) return false;
5960 if (_3crc->GetNewSize() <= 0) return false;
5961 if (_3crc->GetNewSize() % 8) return false;
5962 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5963 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5964
5965 const file_offset_t n = _3crc->GetNewSize() / 8;
5966
5967 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5968 if (!pData) return false;
5969
5970 for (file_offset_t i = 0; i < n; ++i) {
5971 uint32_t one = pData[i*2];
5972 if (one != 1) return false;
5973 }
5974
5975 return true;
5976 }
5977
5978 /**
5979 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5980 * file's checksum table with those new checksums. This might usually
5981 * just be necessary if the checksum table was damaged.
5982 *
5983 * @e IMPORTANT: The current implementation of this method only works
5984 * with files that have not been modified since it was loaded, because
5985 * it expects that no externally caused file structure changes are
5986 * required!
5987 *
5988 * Due to the expectation above, this method is currently protected
5989 * and actually only used by the command line tool "gigdump" yet.
5990 *
5991 * @returns true if Save() is required to be called after this call,
5992 * false if no further action is required
5993 */
5994 bool File::RebuildSampleChecksumTable() {
5995 // make sure sample chunks were scanned
5996 if (!pSamples) GetFirstSample();
5997
5998 bool bRequiresSave = false;
5999
6000 // make sure "3CRC" chunk exists with required size
6001 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6002 if (!_3crc) {
6003 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6004 // the order of einf and 3crc is not the same in v2 and v3
6005 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6006 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6007 bRequiresSave = true;
6008 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6009 _3crc->Resize(pSamples->size() * 8);
6010 bRequiresSave = true;
6011 }
6012
6013 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6014 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6015 {
6016 File::SampleList::iterator iter = pSamples->begin();
6017 File::SampleList::iterator end = pSamples->end();
6018 for (; iter != end; ++iter) {
6019 gig::Sample* pSample = (gig::Sample*) *iter;
6020 int index = GetWaveTableIndexOf(pSample);
6021 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6022 pData[index*2] = 1; // always 1
6023 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6024 }
6025 }
6026 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6027 // make sure file is in write mode
6028 pRIFF->SetMode(RIFF::stream_mode_read_write);
6029 {
6030 File::SampleList::iterator iter = pSamples->begin();
6031 File::SampleList::iterator end = pSamples->end();
6032 for (; iter != end; ++iter) {
6033 gig::Sample* pSample = (gig::Sample*) *iter;
6034 int index = GetWaveTableIndexOf(pSample);
6035 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6036 pSample->crc = pSample->CalculateWaveDataChecksum();
6037 SetSampleChecksum(pSample, pSample->crc);
6038 }
6039 }
6040 }
6041
6042 return bRequiresSave;
6043 }
6044
6045 Group* File::GetFirstGroup() {
6046 if (!pGroups) LoadGroups();
6047 // there must always be at least one group
6048 GroupsIterator = pGroups->begin();
6049 return *GroupsIterator;
6050 }
6051
6052 Group* File::GetNextGroup() {
6053 if (!pGroups) return NULL;
6054 ++GroupsIterator;
6055 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6056 }
6057
6058 /**
6059 * Returns the group with the given index.
6060 *
6061 * @param index - number of the sought group (0..n)
6062 * @returns sought group or NULL if there's no such group
6063 */
6064 Group* File::GetGroup(uint index) {
6065 if (!pGroups) LoadGroups();
6066 GroupsIterator = pGroups->begin();
6067 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6068 if (i == index) return *GroupsIterator;
6069 ++GroupsIterator;
6070 }
6071 return NULL;
6072 }
6073
6074 /**
6075 * Returns the group with the given group name.
6076 *
6077 * Note: group names don't have to be unique in the gig format! So there
6078 * can be multiple groups with the same name. This method will simply
6079 * return the first group found with the given name.
6080 *
6081 * @param name - name of the sought group
6082 * @returns sought group or NULL if there's no group with that name
6083 */
6084 Group* File::GetGroup(String name) {
6085 if (!pGroups) LoadGroups();
6086 GroupsIterator = pGroups->begin();
6087 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6088 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6089 return NULL;
6090 }
6091
6092 Group* File::AddGroup() {
6093 if (!pGroups) LoadGroups();
6094 // there must always be at least one group
6095 __ensureMandatoryChunksExist();
6096 Group* pGroup = new Group(this, NULL);
6097 pGroups->push_back(pGroup);
6098 return pGroup;
6099 }
6100
6101 /** @brief Delete a group and its samples.
6102 *
6103 * This will delete the given Group object and all the samples that
6104 * belong to this group from the gig file. You have to call Save() to
6105 * make this persistent to the file.
6106 *
6107 * @param pGroup - group to delete
6108 * @throws gig::Exception if given group could not be found
6109 */
6110 void File::DeleteGroup(Group* pGroup) {
6111 if (!pGroups) LoadGroups();
6112 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6113 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6114 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6115 // delete all members of this group
6116 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6117 DeleteSample(pSample);
6118 }
6119 // now delete this group object
6120 pGroups->erase(iter);
6121 delete pGroup;
6122 }
6123
6124 /** @brief Delete a group.
6125 *
6126 * This will delete the given Group object from the gig file. All the
6127 * samples that belong to this group will not be deleted, but instead
6128 * be moved to another group. You have to call Save() to make this
6129 * persistent to the file.
6130 *
6131 * @param pGroup - group to delete
6132 * @throws gig::Exception if given group could not be found
6133 */
6134 void File::DeleteGroupOnly(Group* pGroup) {
6135 if (!pGroups) LoadGroups();
6136 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6137 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6138 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6139 // move all members of this group to another group
6140 pGroup->MoveAll();
6141 pGroups->erase(iter);
6142 delete pGroup;
6143 }
6144
6145 void File::LoadGroups() {
6146 if (!pGroups) pGroups = new std::list<Group*>;
6147 // try to read defined groups from file
6148 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6149 if (lst3gri) {
6150 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6151 if (lst3gnl) {
6152 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6153 while (ck) {
6154 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6155 if (pVersion && pVersion->major == 3 &&
6156 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6157
6158 pGroups->push_back(new Group(this, ck));
6159 }
6160 ck = lst3gnl->GetNextSubChunk();
6161 }
6162 }
6163 }
6164 // if there were no group(s), create at least the mandatory default group
6165 if (!pGroups->size()) {
6166 Group* pGroup = new Group(this, NULL);
6167 pGroup->Name = "Default Group";
6168 pGroups->push_back(pGroup);
6169 }
6170 }
6171
6172 /** @brief Get instrument script group (by index).
6173 *
6174 * Returns the real-time instrument script group with the given index.
6175 *
6176 * @param index - number of the sought group (0..n)
6177 * @returns sought script group or NULL if there's no such group
6178 */
6179 ScriptGroup* File::GetScriptGroup(uint index) {
6180 if (!pScriptGroups) LoadScriptGroups();
6181 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6182 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6183 if (i == index) return *it;
6184 return NULL;
6185 }
6186
6187 /** @brief Get instrument script group (by name).
6188 *
6189 * Returns the first real-time instrument script group found with the given
6190 * group name. Note that group names may not necessarily be unique.
6191 *
6192 * @param name - name of the sought script group
6193 * @returns sought script group or NULL if there's no such group
6194 */
6195 ScriptGroup* File::GetScriptGroup(const String& name) {
6196 if (!pScriptGroups) LoadScriptGroups();
6197 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6198 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6199 if ((*it)->Name == name) return *it;
6200 return NULL;
6201 }
6202
6203 /** @brief Add new instrument script group.
6204 *
6205 * Adds a new, empty real-time instrument script group to the file.
6206 *
6207 * You have to call Save() to make this persistent to the file.
6208 *
6209 * @return new empty script group
6210 */
6211 ScriptGroup* File::AddScriptGroup() {
6212 if (!pScriptGroups) LoadScriptGroups();
6213 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6214 pScriptGroups->push_back(pScriptGroup);
6215 return pScriptGroup;
6216 }
6217
6218 /** @brief Delete an instrument script group.
6219 *
6220 * This will delete the given real-time instrument script group and all its
6221 * instrument scripts it contains. References inside instruments that are
6222 * using the deleted scripts will be removed from the respective instruments
6223 * accordingly.
6224 *
6225 * You have to call Save() to make this persistent to the file.
6226 *
6227 * @param pScriptGroup - script group to delete
6228 * @throws gig::Exception if given script group could not be found
6229 */
6230 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6231 if (!pScriptGroups) LoadScriptGroups();
6232 std::list<ScriptGroup*>::iterator iter =
6233 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6234 if (iter == pScriptGroups->end())
6235 throw gig::Exception("Could not delete script group, could not find given script group");
6236 pScriptGroups->erase(iter);
6237 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6238 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6239 if (pScriptGroup->pList)
6240 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6241 delete pScriptGroup;
6242 }
6243
6244 void File::LoadScriptGroups() {
6245 if (pScriptGroups) return;
6246 pScriptGroups = new std::list<ScriptGroup*>;
6247 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6248 if (lstLS) {
6249 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6250 lst = lstLS->GetNextSubList())
6251 {
6252 if (lst->GetListType() == LIST_TYPE_RTIS) {
6253 pScriptGroups->push_back(new ScriptGroup(this, lst));
6254 }
6255 }
6256 }
6257 }
6258
6259 /**
6260 * Apply all the gig file's current instruments, samples, groups and settings
6261 * to the respective RIFF chunks. You have to call Save() to make changes
6262 * persistent.
6263 *
6264 * Usually there is absolutely no need to call this method explicitly.
6265 * It will be called automatically when File::Save() was called.
6266 *
6267 * @param pProgress - callback function for progress notification
6268 * @throws Exception - on errors
6269 */
6270 void File::UpdateChunks(progress_t* pProgress) {
6271 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6272
6273 // update own gig format extension chunks
6274 // (not part of the GigaStudio 4 format)
6275 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6276 if (!lst3LS) {
6277 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6278 }
6279 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6280 // location of <3LS > is irrelevant, however it should be located
6281 // before the actual wave data
6282 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6283 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6284
6285 // This must be performed before writing the chunks for instruments,
6286 // because the instruments' script slots will write the file offsets
6287 // of the respective instrument script chunk as reference.
6288 if (pScriptGroups) {
6289 // Update instrument script (group) chunks.
6290 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6291 it != pScriptGroups->end(); ++it)
6292 {
6293 (*it)->UpdateChunks(pProgress);
6294 }
6295 }
6296
6297 // in case no libgig custom format data was added, then remove the
6298 // custom "3LS " chunk again
6299 if (!lst3LS->CountSubChunks()) {
6300 pRIFF->DeleteSubChunk(lst3LS);
6301 lst3LS = NULL;
6302 }
6303
6304 // first update base class's chunks
6305 DLS::File::UpdateChunks(pProgress);
6306
6307 if (newFile) {
6308 // INFO was added by Resource::UpdateChunks - make sure it
6309 // is placed first in file
6310 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6311 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6312 if (first != info) {
6313 pRIFF->MoveSubChunk(info, first);
6314 }
6315 }
6316
6317 // update group's chunks
6318 if (pGroups) {
6319 // make sure '3gri' and '3gnl' list chunks exist
6320 // (before updating the Group chunks)
6321 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6322 if (!_3gri) {
6323 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6324 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6325 }
6326 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6327 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6328
6329 // v3: make sure the file has 128 3gnm chunks
6330 // (before updating the Group chunks)
6331 if (pVersion && pVersion->major == 3) {
6332 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6333 for (int i = 0 ; i < 128 ; i++) {
6334 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6335 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6336 }
6337 }
6338
6339 std::list<Group*>::iterator iter = pGroups->begin();
6340 std::list<Group*>::iterator end = pGroups->end();
6341 for (; iter != end; ++iter) {
6342 (*iter)->UpdateChunks(pProgress);
6343 }
6344 }
6345
6346 // update einf chunk
6347
6348 // The einf chunk contains statistics about the gig file, such
6349 // as the number of regions and samples used by each
6350 // instrument. It is divided in equally sized parts, where the
6351 // first part contains information about the whole gig file,
6352 // and the rest of the parts map to each instrument in the
6353 // file.
6354 //
6355 // At the end of each part there is a bit map of each sample
6356 // in the file, where a set bit means that the sample is used
6357 // by the file/instrument.
6358 //
6359 // Note that there are several fields with unknown use. These
6360 // are set to zero.
6361
6362 int sublen = int(pSamples->size() / 8 + 49);
6363 int einfSize = (Instruments + 1) * sublen;
6364
6365 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6366 if (einf) {
6367 if (einf->GetSize() != einfSize) {
6368 einf->Resize(einfSize);
6369 memset(einf->LoadChunkData(), 0, einfSize);
6370 }
6371 } else if (newFile) {
6372 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6373 }
6374 if (einf) {
6375 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6376
6377 std::map<gig::Sample*,int> sampleMap;
6378 int sampleIdx = 0;
6379 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6380 sampleMap[pSample] = sampleIdx++;
6381 }
6382
6383 int totnbusedsamples = 0;
6384 int totnbusedchannels = 0;
6385 int totnbregions = 0;
6386 int totnbdimregions = 0;
6387 int totnbloops = 0;
6388 int instrumentIdx = 0;
6389
6390 memset(&pData[48], 0, sublen - 48);
6391
6392 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6393 instrument = GetNextInstrument()) {
6394 int nbusedsamples = 0;
6395 int nbusedchannels = 0;
6396 int nbdimregions = 0;
6397 int nbloops = 0;
6398
6399 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6400
6401 for (Region* region = instrument->GetFirstRegion() ; region ;
6402 region = instrument->GetNextRegion()) {
6403 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6404 gig::DimensionRegion *d = region->pDimensionRegions[i];
6405 if (d->pSample) {
6406 int sampleIdx = sampleMap[d->pSample];
6407 int byte = 48 + sampleIdx / 8;
6408 int bit = 1 << (sampleIdx & 7);
6409 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6410 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6411 nbusedsamples++;
6412 nbusedchannels += d->pSample->Channels;
6413
6414 if ((pData[byte] & bit) == 0) {
6415 pData[byte] |= bit;
6416 totnbusedsamples++;
6417 totnbusedchannels += d->pSample->Channels;
6418 }
6419 }
6420 }
6421 if (d->SampleLoops) nbloops++;
6422 }
6423 nbdimregions += region->DimensionRegions;
6424 }
6425 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6426 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6427 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6428 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6429 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6430 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6431 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6432 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6433 // next 8 bytes unknown
6434 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6435 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6436 // next 4 bytes unknown
6437
6438 totnbregions += instrument->Regions;
6439 totnbdimregions += nbdimregions;
6440 totnbloops += nbloops;
6441 instrumentIdx++;
6442 }
6443 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6444 // store32(&pData[0], sublen);
6445 store32(&pData[4], totnbusedchannels);
6446 store32(&pData[8], totnbusedsamples);
6447 store32(&pData[12], Instruments);
6448 store32(&pData[16], totnbregions);
6449 store32(&pData[20], totnbdimregions);
6450 store32(&pData[24], totnbloops);
6451 // next 8 bytes unknown
6452 // next 4 bytes unknown, not always 0
6453 store32(&pData[40], (uint32_t) pSamples->size());
6454 // next 4 bytes unknown
6455 }
6456
6457 // update 3crc chunk
6458
6459 // The 3crc chunk contains CRC-32 checksums for the
6460 // samples. When saving a gig file to disk, we first update the 3CRC
6461 // chunk here (in RAM) with the old crc values which we read from the
6462 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6463 // member variable). This step is required, because samples might have
6464 // been deleted by the user since the file was opened, which in turn
6465 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6466 // If a sample was conciously modified by the user (that is if
6467 // Sample::Write() was called later on) then Sample::Write() will just
6468 // update the respective individual checksum(s) directly on disk and
6469 // leaves all other sample checksums untouched.
6470
6471 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6472 if (_3crc) {
6473 _3crc->Resize(pSamples->size() * 8);
6474 } else /*if (newFile)*/ {
6475 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6476 // the order of einf and 3crc is not the same in v2 and v3
6477 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6478 }
6479 { // must be performed in RAM here ...
6480 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6481 if (pData) {
6482 File::SampleList::iterator iter = pSamples->begin();
6483 File::SampleList::iterator end = pSamples->end();
6484 for (int index = 0; iter != end; ++iter, ++index) {
6485 gig::Sample* pSample = (gig::Sample*) *iter;
6486 pData[index*2] = 1; // always 1
6487 pData[index*2+1] = pSample->crc;
6488 }
6489 }
6490 }
6491 }
6492
6493 void File::UpdateFileOffsets() {
6494 DLS::File::UpdateFileOffsets();
6495
6496 for (Instrument* instrument = GetFirstInstrument(); instrument;
6497 instrument = GetNextInstrument())
6498 {
6499 instrument->UpdateScriptFileOffsets();
6500 }
6501 }
6502
6503 /**
6504 * Enable / disable automatic loading. By default this properyt is
6505 * enabled and all informations are loaded automatically. However
6506 * loading all Regions, DimensionRegions and especially samples might
6507 * take a long time for large .gig files, and sometimes one might only
6508 * be interested in retrieving very superficial informations like the
6509 * amount of instruments and their names. In this case one might disable
6510 * automatic loading to avoid very slow response times.
6511 *
6512 * @e CAUTION: by disabling this property many pointers (i.e. sample
6513 * references) and informations will have invalid or even undefined
6514 * data! This feature is currently only intended for retrieving very
6515 * superficial informations in a very fast way. Don't use it to retrieve
6516 * details like synthesis informations or even to modify .gig files!
6517 */
6518 void File::SetAutoLoad(bool b) {
6519 bAutoLoad = b;
6520 }
6521
6522 /**
6523 * Returns whether automatic loading is enabled.
6524 * @see SetAutoLoad()
6525 */
6526 bool File::GetAutoLoad() {
6527 return bAutoLoad;
6528 }
6529
6530
6531
6532 // *************** Exception ***************
6533 // *
6534
6535 Exception::Exception() : DLS::Exception() {
6536 }
6537
6538 Exception::Exception(String format, ...) : DLS::Exception() {
6539 va_list arg;
6540 va_start(arg, format);
6541 Message = assemble(format, arg);
6542 va_end(arg);
6543 }
6544
6545 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6546 Message = assemble(format, arg);
6547 }
6548
6549 void Exception::PrintMessage() {
6550 std::cout << "gig::Exception: " << Message << std::endl;
6551 }
6552
6553
6554 // *************** functions ***************
6555 // *
6556
6557 /**
6558 * Returns the name of this C++ library. This is usually "libgig" of
6559 * course. This call is equivalent to RIFF::libraryName() and
6560 * DLS::libraryName().
6561 */
6562 String libraryName() {
6563 return PACKAGE;
6564 }
6565
6566 /**
6567 * Returns version of this C++ library. This call is equivalent to
6568 * RIFF::libraryVersion() and DLS::libraryVersion().
6569 */
6570 String libraryVersion() {
6571 return VERSION;
6572 }
6573
6574 } // namespace gig

  ViewVC Help
Powered by ViewVC