/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3349 - (show annotations) (download)
Tue Oct 3 17:12:07 2017 UTC (6 years, 5 months ago) by schoenebeck
File size: 285869 byte(s)
* src/gig.cpp: Fixed undefined behavior when loading a gig file with
  invalid velocity curve parameters (fixes CVE-2017-12951).
* Bumped version (4.0.0.svn32).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 pGroup = pFile->GetGroup(iSampleGroup);
417 } else { // '3gix' chunk missing
418 // by default assigned to that mandatory "Default Group"
419 pGroup = pFile->GetGroup(0);
420 }
421
422 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423 if (pCkSmpl) {
424 Manufacturer = pCkSmpl->ReadInt32();
425 Product = pCkSmpl->ReadInt32();
426 SamplePeriod = pCkSmpl->ReadInt32();
427 MIDIUnityNote = pCkSmpl->ReadInt32();
428 FineTune = pCkSmpl->ReadInt32();
429 pCkSmpl->Read(&SMPTEFormat, 1, 4);
430 SMPTEOffset = pCkSmpl->ReadInt32();
431 Loops = pCkSmpl->ReadInt32();
432 pCkSmpl->ReadInt32(); // manufByt
433 LoopID = pCkSmpl->ReadInt32();
434 pCkSmpl->Read(&LoopType, 1, 4);
435 LoopStart = pCkSmpl->ReadInt32();
436 LoopEnd = pCkSmpl->ReadInt32();
437 LoopFraction = pCkSmpl->ReadInt32();
438 LoopPlayCount = pCkSmpl->ReadInt32();
439 } else { // 'smpl' chunk missing
440 // use default values
441 Manufacturer = 0;
442 Product = 0;
443 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 MIDIUnityNote = 60;
445 FineTune = 0;
446 SMPTEFormat = smpte_format_no_offset;
447 SMPTEOffset = 0;
448 Loops = 0;
449 LoopID = 0;
450 LoopType = loop_type_normal;
451 LoopStart = 0;
452 LoopEnd = 0;
453 LoopFraction = 0;
454 LoopPlayCount = 0;
455 }
456
457 FrameTable = NULL;
458 SamplePos = 0;
459 RAMCache.Size = 0;
460 RAMCache.pStart = NULL;
461 RAMCache.NullExtensionSize = 0;
462
463 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464
465 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466 Compressed = ewav;
467 Dithered = false;
468 TruncatedBits = 0;
469 if (Compressed) {
470 uint32_t version = ewav->ReadInt32();
471 if (version == 3 && BitDepth == 24) {
472 Dithered = ewav->ReadInt32();
473 ewav->SetPos(Channels == 2 ? 84 : 64);
474 TruncatedBits = ewav->ReadInt32();
475 }
476 ScanCompressedSample();
477 }
478
479 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 }
484 FrameOffset = 0; // just for streaming compressed samples
485
486 LoopSize = LoopEnd - LoopStart + 1;
487 }
488
489 /**
490 * Make a (semi) deep copy of the Sample object given by @a orig (without
491 * the actual waveform data) and assign it to this object.
492 *
493 * Discussion: copying .gig samples is a bit tricky. It requires three
494 * steps:
495 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496 * its new sample waveform data size.
497 * 2. Saving the file (done by File::Save()) so that it gains correct size
498 * and layout for writing the actual wave form data directly to disc
499 * in next step.
500 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501 *
502 * @param orig - original Sample object to be copied from
503 */
504 void Sample::CopyAssignMeta(const Sample* orig) {
505 // handle base classes
506 DLS::Sample::CopyAssignCore(orig);
507
508 // handle actual own attributes of this class
509 Manufacturer = orig->Manufacturer;
510 Product = orig->Product;
511 SamplePeriod = orig->SamplePeriod;
512 MIDIUnityNote = orig->MIDIUnityNote;
513 FineTune = orig->FineTune;
514 SMPTEFormat = orig->SMPTEFormat;
515 SMPTEOffset = orig->SMPTEOffset;
516 Loops = orig->Loops;
517 LoopID = orig->LoopID;
518 LoopType = orig->LoopType;
519 LoopStart = orig->LoopStart;
520 LoopEnd = orig->LoopEnd;
521 LoopSize = orig->LoopSize;
522 LoopFraction = orig->LoopFraction;
523 LoopPlayCount = orig->LoopPlayCount;
524
525 // schedule resizing this sample to the given sample's size
526 Resize(orig->GetSize());
527 }
528
529 /**
530 * Should be called after CopyAssignMeta() and File::Save() sequence.
531 * Read more about it in the discussion of CopyAssignMeta(). This method
532 * copies the actual waveform data by disk streaming.
533 *
534 * @e CAUTION: this method is currently not thread safe! During this
535 * operation the sample must not be used for other purposes by other
536 * threads!
537 *
538 * @param orig - original Sample object to be copied from
539 */
540 void Sample::CopyAssignWave(const Sample* orig) {
541 const int iReadAtOnce = 32*1024;
542 char* buf = new char[iReadAtOnce * orig->FrameSize];
543 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 file_offset_t restorePos = pOrig->GetPos();
545 pOrig->SetPos(0);
546 SetPos(0);
547 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 n = pOrig->Read(buf, iReadAtOnce))
549 {
550 Write(buf, n);
551 }
552 pOrig->SetPos(restorePos);
553 delete [] buf;
554 }
555
556 /**
557 * Apply sample and its settings to the respective RIFF chunks. You have
558 * to call File::Save() to make changes persistent.
559 *
560 * Usually there is absolutely no need to call this method explicitly.
561 * It will be called automatically when File::Save() was called.
562 *
563 * @param pProgress - callback function for progress notification
564 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 * was provided yet
566 * @throws gig::Exception if there is any invalid sample setting
567 */
568 void Sample::UpdateChunks(progress_t* pProgress) {
569 // first update base class's chunks
570 DLS::Sample::UpdateChunks(pProgress);
571
572 // make sure 'smpl' chunk exists
573 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 if (!pCkSmpl) {
575 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576 memset(pCkSmpl->LoadChunkData(), 0, 60);
577 }
578 // update 'smpl' chunk
579 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 store32(&pData[0], Manufacturer);
582 store32(&pData[4], Product);
583 store32(&pData[8], SamplePeriod);
584 store32(&pData[12], MIDIUnityNote);
585 store32(&pData[16], FineTune);
586 store32(&pData[20], SMPTEFormat);
587 store32(&pData[24], SMPTEOffset);
588 store32(&pData[28], Loops);
589
590 // we skip 'manufByt' for now (4 bytes)
591
592 store32(&pData[36], LoopID);
593 store32(&pData[40], LoopType);
594 store32(&pData[44], LoopStart);
595 store32(&pData[48], LoopEnd);
596 store32(&pData[52], LoopFraction);
597 store32(&pData[56], LoopPlayCount);
598
599 // make sure '3gix' chunk exists
600 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 // determine appropriate sample group index (to be stored in chunk)
603 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 File* pFile = static_cast<File*>(pParent);
605 if (pFile->pGroups) {
606 std::list<Group*>::iterator iter = pFile->pGroups->begin();
607 std::list<Group*>::iterator end = pFile->pGroups->end();
608 for (int i = 0; iter != end; i++, iter++) {
609 if (*iter == pGroup) {
610 iSampleGroup = i;
611 break; // found
612 }
613 }
614 }
615 // update '3gix' chunk
616 pData = (uint8_t*) pCk3gix->LoadChunkData();
617 store16(&pData[0], iSampleGroup);
618
619 // if the library user toggled the "Compressed" attribute from true to
620 // false, then the EWAV chunk associated with compressed samples needs
621 // to be deleted
622 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623 if (ewav && !Compressed) {
624 pWaveList->DeleteSubChunk(ewav);
625 }
626 }
627
628 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629 void Sample::ScanCompressedSample() {
630 //TODO: we have to add some more scans here (e.g. determine compression rate)
631 this->SamplesTotal = 0;
632 std::list<file_offset_t> frameOffsets;
633
634 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636
637 // Scanning
638 pCkData->SetPos(0);
639 if (Channels == 2) { // Stereo
640 for (int i = 0 ; ; i++) {
641 // for 24 bit samples every 8:th frame offset is
642 // stored, to save some memory
643 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644
645 const int mode_l = pCkData->ReadUint8();
646 const int mode_r = pCkData->ReadUint8();
647 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649
650 if (pCkData->RemainingBytes() <= frameSize) {
651 SamplesInLastFrame =
652 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654 SamplesTotal += SamplesInLastFrame;
655 break;
656 }
657 SamplesTotal += SamplesPerFrame;
658 pCkData->SetPos(frameSize, RIFF::stream_curpos);
659 }
660 }
661 else { // Mono
662 for (int i = 0 ; ; i++) {
663 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664
665 const int mode = pCkData->ReadUint8();
666 if (mode > 5) throw gig::Exception("Unknown compression mode");
667 const file_offset_t frameSize = bytesPerFrame[mode];
668
669 if (pCkData->RemainingBytes() <= frameSize) {
670 SamplesInLastFrame =
671 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672 SamplesTotal += SamplesInLastFrame;
673 break;
674 }
675 SamplesTotal += SamplesPerFrame;
676 pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 }
678 }
679 pCkData->SetPos(0);
680
681 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682 if (FrameTable) delete[] FrameTable;
683 FrameTable = new file_offset_t[frameOffsets.size()];
684 std::list<file_offset_t>::iterator end = frameOffsets.end();
685 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 for (int i = 0; iter != end; i++, iter++) {
687 FrameTable[i] = *iter;
688 }
689 }
690
691 /**
692 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693 * ReleaseSampleData() to free the memory if you don't need the cached
694 * sample data anymore.
695 *
696 * @returns buffer_t structure with start address and size of the buffer
697 * in bytes
698 * @see ReleaseSampleData(), Read(), SetPos()
699 */
700 buffer_t Sample::LoadSampleData() {
701 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702 }
703
704 /**
705 * Reads (uncompresses if needed) and caches the first \a SampleCount
706 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707 * memory space if you don't need the cached samples anymore. There is no
708 * guarantee that exactly \a SampleCount samples will be cached; this is
709 * not an error. The size will be eventually truncated e.g. to the
710 * beginning of a frame of a compressed sample. This is done for
711 * efficiency reasons while streaming the wave by your sampler engine
712 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713 * that will be returned to determine the actual cached samples, but note
714 * that the size is given in bytes! You get the number of actually cached
715 * samples by dividing it by the frame size of the sample:
716 * @code
717 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718 * long cachedsamples = buf.Size / pSample->FrameSize;
719 * @endcode
720 *
721 * @param SampleCount - number of sample points to load into RAM
722 * @returns buffer_t structure with start address and size of
723 * the cached sample data in bytes
724 * @see ReleaseSampleData(), Read(), SetPos()
725 */
726 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728 }
729
730 /**
731 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732 * ReleaseSampleData() to free the memory if you don't need the cached
733 * sample data anymore.
734 * The method will add \a NullSamplesCount silence samples past the
735 * official buffer end (this won't affect the 'Size' member of the
736 * buffer_t structure, that means 'Size' always reflects the size of the
737 * actual sample data, the buffer might be bigger though). Silence
738 * samples past the official buffer are needed for differential
739 * algorithms that always have to take subsequent samples into account
740 * (resampling/interpolation would be an important example) and avoids
741 * memory access faults in such cases.
742 *
743 * @param NullSamplesCount - number of silence samples the buffer should
744 * be extended past it's data end
745 * @returns buffer_t structure with start address and
746 * size of the buffer in bytes
747 * @see ReleaseSampleData(), Read(), SetPos()
748 */
749 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751 }
752
753 /**
754 * Reads (uncompresses if needed) and caches the first \a SampleCount
755 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756 * memory space if you don't need the cached samples anymore. There is no
757 * guarantee that exactly \a SampleCount samples will be cached; this is
758 * not an error. The size will be eventually truncated e.g. to the
759 * beginning of a frame of a compressed sample. This is done for
760 * efficiency reasons while streaming the wave by your sampler engine
761 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762 * that will be returned to determine the actual cached samples, but note
763 * that the size is given in bytes! You get the number of actually cached
764 * samples by dividing it by the frame size of the sample:
765 * @code
766 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767 * long cachedsamples = buf.Size / pSample->FrameSize;
768 * @endcode
769 * The method will add \a NullSamplesCount silence samples past the
770 * official buffer end (this won't affect the 'Size' member of the
771 * buffer_t structure, that means 'Size' always reflects the size of the
772 * actual sample data, the buffer might be bigger though). Silence
773 * samples past the official buffer are needed for differential
774 * algorithms that always have to take subsequent samples into account
775 * (resampling/interpolation would be an important example) and avoids
776 * memory access faults in such cases.
777 *
778 * @param SampleCount - number of sample points to load into RAM
779 * @param NullSamplesCount - number of silence samples the buffer should
780 * be extended past it's data end
781 * @returns buffer_t structure with start address and
782 * size of the cached sample data in bytes
783 * @see ReleaseSampleData(), Read(), SetPos()
784 */
785 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 SetPos(0); // reset read position to begin of sample
790 RAMCache.pStart = new int8_t[allocationsize];
791 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793 // fill the remaining buffer space with silence samples
794 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795 return GetCache();
796 }
797
798 /**
799 * Returns current cached sample points. A buffer_t structure will be
800 * returned which contains address pointer to the begin of the cache and
801 * the size of the cached sample data in bytes. Use
802 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803 * RAM.
804 *
805 * @returns buffer_t structure with current cached sample points
806 * @see LoadSampleData();
807 */
808 buffer_t Sample::GetCache() {
809 // return a copy of the buffer_t structure
810 buffer_t result;
811 result.Size = this->RAMCache.Size;
812 result.pStart = this->RAMCache.pStart;
813 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814 return result;
815 }
816
817 /**
818 * Frees the cached sample from RAM if loaded with
819 * <i>LoadSampleData()</i> previously.
820 *
821 * @see LoadSampleData();
822 */
823 void Sample::ReleaseSampleData() {
824 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825 RAMCache.pStart = NULL;
826 RAMCache.Size = 0;
827 RAMCache.NullExtensionSize = 0;
828 }
829
830 /** @brief Resize sample.
831 *
832 * Resizes the sample's wave form data, that is the actual size of
833 * sample wave data possible to be written for this sample. This call
834 * will return immediately and just schedule the resize operation. You
835 * should call File::Save() to actually perform the resize operation(s)
836 * "physically" to the file. As this can take a while on large files, it
837 * is recommended to call Resize() first on all samples which have to be
838 * resized and finally to call File::Save() to perform all those resize
839 * operations in one rush.
840 *
841 * The actual size (in bytes) is dependant to the current FrameSize
842 * value. You may want to set FrameSize before calling Resize().
843 *
844 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845 * enlarged samples before calling File::Save() as this might exceed the
846 * current sample's boundary!
847 *
848 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 * other formats will fail!
851 *
852 * @param NewSize - new sample wave data size in sample points (must be
853 * greater than zero)
854 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 * @throws gig::Exception if existing sample is compressed
857 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858 * DLS::Sample::FormatTag, File::Save()
859 */
860 void Sample::Resize(file_offset_t NewSize) {
861 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 DLS::Sample::Resize(NewSize);
863 }
864
865 /**
866 * Sets the position within the sample (in sample points, not in
867 * bytes). Use this method and <i>Read()</i> if you don't want to load
868 * the sample into RAM, thus for disk streaming.
869 *
870 * Although the original Gigasampler engine doesn't allow positioning
871 * within compressed samples, I decided to implement it. Even though
872 * the Gigasampler format doesn't allow to define loops for compressed
873 * samples at the moment, positioning within compressed samples might be
874 * interesting for some sampler engines though. The only drawback about
875 * my decision is that it takes longer to load compressed gig Files on
876 * startup, because it's neccessary to scan the samples for some
877 * mandatory informations. But I think as it doesn't affect the runtime
878 * efficiency, nobody will have a problem with that.
879 *
880 * @param SampleCount number of sample points to jump
881 * @param Whence optional: to which relation \a SampleCount refers
882 * to, if omited <i>RIFF::stream_start</i> is assumed
883 * @returns the new sample position
884 * @see Read()
885 */
886 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 if (Compressed) {
888 switch (Whence) {
889 case RIFF::stream_curpos:
890 this->SamplePos += SampleCount;
891 break;
892 case RIFF::stream_end:
893 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894 break;
895 case RIFF::stream_backward:
896 this->SamplePos -= SampleCount;
897 break;
898 case RIFF::stream_start: default:
899 this->SamplePos = SampleCount;
900 break;
901 }
902 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903
904 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907 return this->SamplePos;
908 }
909 else { // not compressed
910 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 return (result == orderedBytes) ? SampleCount
913 : result / this->FrameSize;
914 }
915 }
916
917 /**
918 * Returns the current position in the sample (in sample points).
919 */
920 file_offset_t Sample::GetPos() const {
921 if (Compressed) return SamplePos;
922 else return pCkData->GetPos() / FrameSize;
923 }
924
925 /**
926 * Reads \a SampleCount number of sample points from the position stored
927 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928 * the position within the sample respectively, this method honors the
929 * looping informations of the sample (if any). The sample wave stream
930 * will be decompressed on the fly if using a compressed sample. Use this
931 * method if you don't want to load the sample into RAM, thus for disk
932 * streaming. All this methods needs to know to proceed with streaming
933 * for the next time you call this method is stored in \a pPlaybackState.
934 * You have to allocate and initialize the playback_state_t structure by
935 * yourself before you use it to stream a sample:
936 * @code
937 * gig::playback_state_t playbackstate;
938 * playbackstate.position = 0;
939 * playbackstate.reverse = false;
940 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941 * @endcode
942 * You don't have to take care of things like if there is actually a loop
943 * defined or if the current read position is located within a loop area.
944 * The method already handles such cases by itself.
945 *
946 * <b>Caution:</b> If you are using more than one streaming thread, you
947 * have to use an external decompression buffer for <b>EACH</b>
948 * streaming thread to avoid race conditions and crashes!
949 *
950 * @param pBuffer destination buffer
951 * @param SampleCount number of sample points to read
952 * @param pPlaybackState will be used to store and reload the playback
953 * state for the next ReadAndLoop() call
954 * @param pDimRgn dimension region with looping information
955 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 * @returns number of successfully read sample points
957 * @see CreateDecompressionBuffer()
958 */
959 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 uint8_t* pDst = (uint8_t*) pBuffer;
963
964 SetPos(pPlaybackState->position); // recover position from the last time
965
966 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967
968 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970
971 if (GetPos() <= loopEnd) {
972 switch (loop.LoopType) {
973
974 case loop_type_bidirectional: { //TODO: not tested yet!
975 do {
976 // if not endless loop check if max. number of loop cycles have been passed
977 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978
979 if (!pPlaybackState->reverse) { // forward playback
980 do {
981 samplestoloopend = loopEnd - GetPos();
982 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983 samplestoread -= readsamples;
984 totalreadsamples += readsamples;
985 if (readsamples == samplestoloopend) {
986 pPlaybackState->reverse = true;
987 break;
988 }
989 } while (samplestoread && readsamples);
990 }
991 else { // backward playback
992
993 // as we can only read forward from disk, we have to
994 // determine the end position within the loop first,
995 // read forward from that 'end' and finally after
996 // reading, swap all sample frames so it reflects
997 // backward playback
998
999 file_offset_t swapareastart = totalreadsamples;
1000 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003
1004 SetPos(reverseplaybackend);
1005
1006 // read samples for backward playback
1007 do {
1008 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009 samplestoreadinloop -= readsamples;
1010 samplestoread -= readsamples;
1011 totalreadsamples += readsamples;
1012 } while (samplestoreadinloop && readsamples);
1013
1014 SetPos(reverseplaybackend); // pretend we really read backwards
1015
1016 if (reverseplaybackend == loop.LoopStart) {
1017 pPlaybackState->loop_cycles_left--;
1018 pPlaybackState->reverse = false;
1019 }
1020
1021 // reverse the sample frames for backward playback
1022 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 }
1025 } while (samplestoread && readsamples);
1026 break;
1027 }
1028
1029 case loop_type_backward: { // TODO: not tested yet!
1030 // forward playback (not entered the loop yet)
1031 if (!pPlaybackState->reverse) do {
1032 samplestoloopend = loopEnd - GetPos();
1033 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034 samplestoread -= readsamples;
1035 totalreadsamples += readsamples;
1036 if (readsamples == samplestoloopend) {
1037 pPlaybackState->reverse = true;
1038 break;
1039 }
1040 } while (samplestoread && readsamples);
1041
1042 if (!samplestoread) break;
1043
1044 // as we can only read forward from disk, we have to
1045 // determine the end position within the loop first,
1046 // read forward from that 'end' and finally after
1047 // reading, swap all sample frames so it reflects
1048 // backward playback
1049
1050 file_offset_t swapareastart = totalreadsamples;
1051 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 : samplestoread;
1054 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055
1056 SetPos(reverseplaybackend);
1057
1058 // read samples for backward playback
1059 do {
1060 // if not endless loop check if max. number of loop cycles have been passed
1061 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062 samplestoloopend = loopEnd - GetPos();
1063 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064 samplestoreadinloop -= readsamples;
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoreadinloop && readsamples);
1072
1073 SetPos(reverseplaybackend); // pretend we really read backwards
1074
1075 // reverse the sample frames for backward playback
1076 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077 break;
1078 }
1079
1080 default: case loop_type_normal: {
1081 do {
1082 // if not endless loop check if max. number of loop cycles have been passed
1083 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084 samplestoloopend = loopEnd - GetPos();
1085 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086 samplestoread -= readsamples;
1087 totalreadsamples += readsamples;
1088 if (readsamples == samplestoloopend) {
1089 pPlaybackState->loop_cycles_left--;
1090 SetPos(loop.LoopStart);
1091 }
1092 } while (samplestoread && readsamples);
1093 break;
1094 }
1095 }
1096 }
1097 }
1098
1099 // read on without looping
1100 if (samplestoread) do {
1101 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 samplestoread -= readsamples;
1103 totalreadsamples += readsamples;
1104 } while (readsamples && samplestoread);
1105
1106 // store current position
1107 pPlaybackState->position = GetPos();
1108
1109 return totalreadsamples;
1110 }
1111
1112 /**
1113 * Reads \a SampleCount number of sample points from the current
1114 * position into the buffer pointed by \a pBuffer and increments the
1115 * position within the sample. The sample wave stream will be
1116 * decompressed on the fly if using a compressed sample. Use this method
1117 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118 * thus for disk streaming.
1119 *
1120 * <b>Caution:</b> If you are using more than one streaming thread, you
1121 * have to use an external decompression buffer for <b>EACH</b>
1122 * streaming thread to avoid race conditions and crashes!
1123 *
1124 * For 16 bit samples, the data in the buffer will be int16_t
1125 * (using native endianness). For 24 bit, the buffer will
1126 * contain three bytes per sample, little-endian.
1127 *
1128 * @param pBuffer destination buffer
1129 * @param SampleCount number of sample points to read
1130 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 * @returns number of successfully read sample points
1132 * @see SetPos(), CreateDecompressionBuffer()
1133 */
1134 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 if (SampleCount == 0) return 0;
1136 if (!Compressed) {
1137 if (BitDepth == 24) {
1138 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 }
1140 else { // 16 bit
1141 // (pCkData->Read does endian correction)
1142 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143 : pCkData->Read(pBuffer, SampleCount, 2);
1144 }
1145 }
1146 else {
1147 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 //TODO: efficiency: maybe we should test for an average compression rate
1149 file_offset_t assumedsize = GuessSize(SampleCount),
1150 remainingbytes = 0, // remaining bytes in the local buffer
1151 remainingsamples = SampleCount,
1152 copysamples, skipsamples,
1153 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 this->FrameOffset = 0;
1155
1156 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157
1158 // if decompression buffer too small, then reduce amount of samples to read
1159 if (pDecompressionBuffer->Size < assumedsize) {
1160 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162 remainingsamples = SampleCount;
1163 assumedsize = GuessSize(SampleCount);
1164 }
1165
1166 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170
1171 while (remainingsamples && remainingbytes) {
1172 file_offset_t framesamples = SamplesPerFrame;
1173 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174
1175 int mode_l = *pSrc++, mode_r = 0;
1176
1177 if (Channels == 2) {
1178 mode_r = *pSrc++;
1179 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182 if (remainingbytes < framebytes) { // last frame in sample
1183 framesamples = SamplesInLastFrame;
1184 if (mode_l == 4 && (framesamples & 1)) {
1185 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186 }
1187 else {
1188 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189 }
1190 }
1191 }
1192 else {
1193 framebytes = bytesPerFrame[mode_l] + 1;
1194 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195 if (remainingbytes < framebytes) {
1196 framesamples = SamplesInLastFrame;
1197 }
1198 }
1199
1200 // determine how many samples in this frame to skip and read
1201 if (currentframeoffset + remainingsamples >= framesamples) {
1202 if (currentframeoffset <= framesamples) {
1203 copysamples = framesamples - currentframeoffset;
1204 skipsamples = currentframeoffset;
1205 }
1206 else {
1207 copysamples = 0;
1208 skipsamples = framesamples;
1209 }
1210 }
1211 else {
1212 // This frame has enough data for pBuffer, but not
1213 // all of the frame is needed. Set file position
1214 // to start of this frame for next call to Read.
1215 copysamples = remainingsamples;
1216 skipsamples = currentframeoffset;
1217 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218 this->FrameOffset = currentframeoffset + copysamples;
1219 }
1220 remainingsamples -= copysamples;
1221
1222 if (remainingbytes > framebytes) {
1223 remainingbytes -= framebytes;
1224 if (remainingsamples == 0 &&
1225 currentframeoffset + copysamples == framesamples) {
1226 // This frame has enough data for pBuffer, and
1227 // all of the frame is needed. Set file
1228 // position to start of next frame for next
1229 // call to Read. FrameOffset is 0.
1230 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231 }
1232 }
1233 else remainingbytes = 0;
1234
1235 currentframeoffset -= skipsamples;
1236
1237 if (copysamples == 0) {
1238 // skip this frame
1239 pSrc += framebytes - Channels;
1240 }
1241 else {
1242 const unsigned char* const param_l = pSrc;
1243 if (BitDepth == 24) {
1244 if (mode_l != 2) pSrc += 12;
1245
1246 if (Channels == 2) { // Stereo
1247 const unsigned char* const param_r = pSrc;
1248 if (mode_r != 2) pSrc += 12;
1249
1250 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 skipsamples, copysamples, TruncatedBits);
1252 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 skipsamples, copysamples, TruncatedBits);
1254 pDst24 += copysamples * 6;
1255 }
1256 else { // Mono
1257 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 skipsamples, copysamples, TruncatedBits);
1259 pDst24 += copysamples * 3;
1260 }
1261 }
1262 else { // 16 bit
1263 if (mode_l) pSrc += 4;
1264
1265 int step;
1266 if (Channels == 2) { // Stereo
1267 const unsigned char* const param_r = pSrc;
1268 if (mode_r) pSrc += 4;
1269
1270 step = (2 - mode_l) + (2 - mode_r);
1271 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 skipsamples, copysamples);
1274 pDst += copysamples << 1;
1275 }
1276 else { // Mono
1277 step = 2 - mode_l;
1278 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 pDst += copysamples;
1280 }
1281 }
1282 pSrc += nextFrameOffset;
1283 }
1284
1285 // reload from disk to local buffer if needed
1286 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287 assumedsize = GuessSize(remainingsamples);
1288 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 }
1293 } // while
1294
1295 this->SamplePos += (SampleCount - remainingsamples);
1296 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 return (SampleCount - remainingsamples);
1298 }
1299 }
1300
1301 /** @brief Write sample wave data.
1302 *
1303 * Writes \a SampleCount number of sample points from the buffer pointed
1304 * by \a pBuffer and increments the position within the sample. Use this
1305 * method to directly write the sample data to disk, i.e. if you don't
1306 * want or cannot load the whole sample data into RAM.
1307 *
1308 * You have to Resize() the sample to the desired size and call
1309 * File::Save() <b>before</b> using Write().
1310 *
1311 * Note: there is currently no support for writing compressed samples.
1312 *
1313 * For 16 bit samples, the data in the source buffer should be
1314 * int16_t (using native endianness). For 24 bit, the buffer
1315 * should contain three bytes per sample, little-endian.
1316 *
1317 * @param pBuffer - source buffer
1318 * @param SampleCount - number of sample points to write
1319 * @throws DLS::Exception if current sample size is too small
1320 * @throws gig::Exception if sample is compressed
1321 * @see DLS::LoadSampleData()
1322 */
1323 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325
1326 // if this is the first write in this sample, reset the
1327 // checksum calculator
1328 if (pCkData->GetPos() == 0) {
1329 __resetCRC(crc);
1330 }
1331 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 file_offset_t res;
1333 if (BitDepth == 24) {
1334 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335 } else { // 16 bit
1336 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337 : pCkData->Write(pBuffer, SampleCount, 2);
1338 }
1339 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340
1341 // if this is the last write, update the checksum chunk in the
1342 // file
1343 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 __finalizeCRC(crc);
1345 File* pFile = static_cast<File*>(GetParent());
1346 pFile->SetSampleChecksum(this, crc);
1347 }
1348 return res;
1349 }
1350
1351 /**
1352 * Allocates a decompression buffer for streaming (compressed) samples
1353 * with Sample::Read(). If you are using more than one streaming thread
1354 * in your application you <b>HAVE</b> to create a decompression buffer
1355 * for <b>EACH</b> of your streaming threads and provide it with the
1356 * Sample::Read() call in order to avoid race conditions and crashes.
1357 *
1358 * You should free the memory occupied by the allocated buffer(s) once
1359 * you don't need one of your streaming threads anymore by calling
1360 * DestroyDecompressionBuffer().
1361 *
1362 * @param MaxReadSize - the maximum size (in sample points) you ever
1363 * expect to read with one Read() call
1364 * @returns allocated decompression buffer
1365 * @see DestroyDecompressionBuffer()
1366 */
1367 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 buffer_t result;
1369 const double worstCaseHeaderOverhead =
1370 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 result.pStart = new int8_t[result.Size];
1373 result.NullExtensionSize = 0;
1374 return result;
1375 }
1376
1377 /**
1378 * Free decompression buffer, previously created with
1379 * CreateDecompressionBuffer().
1380 *
1381 * @param DecompressionBuffer - previously allocated decompression
1382 * buffer to free
1383 */
1384 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386 delete[] (int8_t*) DecompressionBuffer.pStart;
1387 DecompressionBuffer.pStart = NULL;
1388 DecompressionBuffer.Size = 0;
1389 DecompressionBuffer.NullExtensionSize = 0;
1390 }
1391 }
1392
1393 /**
1394 * Returns pointer to the Group this Sample belongs to. In the .gig
1395 * format a sample always belongs to one group. If it wasn't explicitly
1396 * assigned to a certain group, it will be automatically assigned to a
1397 * default group.
1398 *
1399 * @returns Sample's Group (never NULL)
1400 */
1401 Group* Sample::GetGroup() const {
1402 return pGroup;
1403 }
1404
1405 /**
1406 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407 * time when this sample's wave form data was modified for the last time
1408 * by calling Write(). This checksum only covers the raw wave form data,
1409 * not any meta informations like i.e. bit depth or loop points. Since
1410 * this method just returns the checksum stored for this sample i.e. when
1411 * the gig file was loaded, this method returns immediately. So it does no
1412 * recalcuation of the checksum with the currently available sample wave
1413 * form data.
1414 *
1415 * @see VerifyWaveData()
1416 */
1417 uint32_t Sample::GetWaveDataCRC32Checksum() {
1418 return crc;
1419 }
1420
1421 /**
1422 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423 * Sample's raw wave data is intentionally modified (i.e. by calling
1424 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425 * is calculated and stored/updated for this sample, along to the sample's
1426 * meta informations.
1427 *
1428 * Now by calling this method the current raw audio wave data is checked
1429 * against the already stored CRC32 check sum in order to check whether the
1430 * sample data had been damaged unintentionally for some reason. Since by
1431 * calling this method always the entire raw audio wave data has to be
1432 * read, verifying all samples this way may take a long time accordingly.
1433 * And that's also the reason why the sample integrity is not checked by
1434 * default whenever a gig file is loaded. So this method must be called
1435 * explicitly to fulfill this task.
1436 *
1437 * @param pActually - (optional) if provided, will be set to the actually
1438 * calculated checksum of the current raw wave form data,
1439 * you can get the expected checksum instead by calling
1440 * GetWaveDataCRC32Checksum()
1441 * @returns true if sample is OK or false if the sample is damaged
1442 * @throws Exception if no checksum had been stored to disk for this
1443 * sample yet, or on I/O issues
1444 * @see GetWaveDataCRC32Checksum()
1445 */
1446 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 //File* pFile = static_cast<File*>(GetParent());
1448 uint32_t crc = CalculateWaveDataChecksum();
1449 if (pActually) *pActually = crc;
1450 return crc == this->crc;
1451 }
1452
1453 uint32_t Sample::CalculateWaveDataChecksum() {
1454 const size_t sz = 20*1024; // 20kB buffer size
1455 std::vector<uint8_t> buffer(sz);
1456 buffer.resize(sz);
1457
1458 const size_t n = sz / FrameSize;
1459 SetPos(0);
1460 uint32_t crc = 0;
1461 __resetCRC(crc);
1462 while (true) {
1463 file_offset_t nRead = Read(&buffer[0], n);
1464 if (nRead <= 0) break;
1465 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466 }
1467 __finalizeCRC(crc);
1468 return crc;
1469 }
1470
1471 Sample::~Sample() {
1472 Instances--;
1473 if (!Instances && InternalDecompressionBuffer.Size) {
1474 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475 InternalDecompressionBuffer.pStart = NULL;
1476 InternalDecompressionBuffer.Size = 0;
1477 }
1478 if (FrameTable) delete[] FrameTable;
1479 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480 }
1481
1482
1483
1484 // *************** DimensionRegion ***************
1485 // *
1486
1487 size_t DimensionRegion::Instances = 0;
1488 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489
1490 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 Instances++;
1492
1493 pSample = NULL;
1494 pRegion = pParent;
1495
1496 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497 else memset(&Crossfade, 0, 4);
1498
1499 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500
1501 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 if (_3ewa) { // if '3ewa' chunk exists
1503 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506 _3ewa->ReadInt16(); // unknown
1507 LFO1InternalDepth = _3ewa->ReadUint16();
1508 _3ewa->ReadInt16(); // unknown
1509 LFO3InternalDepth = _3ewa->ReadInt16();
1510 _3ewa->ReadInt16(); // unknown
1511 LFO1ControlDepth = _3ewa->ReadUint16();
1512 _3ewa->ReadInt16(); // unknown
1513 LFO3ControlDepth = _3ewa->ReadInt16();
1514 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 EG1Sustain = _3ewa->ReadUint16();
1518 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521 EG1ControllerInvert = eg1ctrloptions & 0x01;
1522 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527 EG2ControllerInvert = eg2ctrloptions & 0x01;
1528 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534 _3ewa->ReadInt16(); // unknown
1535 EG2Sustain = _3ewa->ReadUint16();
1536 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537 _3ewa->ReadInt16(); // unknown
1538 LFO2ControlDepth = _3ewa->ReadUint16();
1539 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 _3ewa->ReadInt16(); // unknown
1541 LFO2InternalDepth = _3ewa->ReadUint16();
1542 int32_t eg1decay2 = _3ewa->ReadInt32();
1543 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545 _3ewa->ReadInt16(); // unknown
1546 EG1PreAttack = _3ewa->ReadUint16();
1547 int32_t eg2decay2 = _3ewa->ReadInt32();
1548 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550 _3ewa->ReadInt16(); // unknown
1551 EG2PreAttack = _3ewa->ReadUint16();
1552 uint8_t velocityresponse = _3ewa->ReadUint8();
1553 if (velocityresponse < 5) {
1554 VelocityResponseCurve = curve_type_nonlinear;
1555 VelocityResponseDepth = velocityresponse;
1556 } else if (velocityresponse < 10) {
1557 VelocityResponseCurve = curve_type_linear;
1558 VelocityResponseDepth = velocityresponse - 5;
1559 } else if (velocityresponse < 15) {
1560 VelocityResponseCurve = curve_type_special;
1561 VelocityResponseDepth = velocityresponse - 10;
1562 } else {
1563 VelocityResponseCurve = curve_type_unknown;
1564 VelocityResponseDepth = 0;
1565 }
1566 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567 if (releasevelocityresponse < 5) {
1568 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569 ReleaseVelocityResponseDepth = releasevelocityresponse;
1570 } else if (releasevelocityresponse < 10) {
1571 ReleaseVelocityResponseCurve = curve_type_linear;
1572 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573 } else if (releasevelocityresponse < 15) {
1574 ReleaseVelocityResponseCurve = curve_type_special;
1575 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576 } else {
1577 ReleaseVelocityResponseCurve = curve_type_unknown;
1578 ReleaseVelocityResponseDepth = 0;
1579 }
1580 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581 AttenuationControllerThreshold = _3ewa->ReadInt8();
1582 _3ewa->ReadInt32(); // unknown
1583 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584 _3ewa->ReadInt16(); // unknown
1585 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589 else DimensionBypass = dim_bypass_ctrl_none;
1590 uint8_t pan = _3ewa->ReadUint8();
1591 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592 SelfMask = _3ewa->ReadInt8() & 0x01;
1593 _3ewa->ReadInt8(); // unknown
1594 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609 : vcf_res_ctrl_none;
1610 uint16_t eg3depth = _3ewa->ReadUint16();
1611 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 _3ewa->ReadInt16(); // unknown
1614 ChannelOffset = _3ewa->ReadUint8() / 4;
1615 uint8_t regoptions = _3ewa->ReadUint8();
1616 MSDecode = regoptions & 0x01; // bit 0
1617 SustainDefeat = regoptions & 0x02; // bit 1
1618 _3ewa->ReadInt16(); // unknown
1619 VelocityUpperLimit = _3ewa->ReadInt8();
1620 _3ewa->ReadInt8(); // unknown
1621 _3ewa->ReadInt16(); // unknown
1622 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623 _3ewa->ReadInt8(); // unknown
1624 _3ewa->ReadInt8(); // unknown
1625 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626 uint8_t vcfcutoff = _3ewa->ReadUint8();
1627 VCFEnabled = vcfcutoff & 0x80; // bit 7
1628 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630 uint8_t vcfvelscale = _3ewa->ReadUint8();
1631 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633 _3ewa->ReadInt8(); // unknown
1634 uint8_t vcfresonance = _3ewa->ReadUint8();
1635 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640 uint8_t vcfvelocity = _3ewa->ReadUint8();
1641 VCFVelocityDynamicRange = vcfvelocity % 5;
1642 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644 if (VCFType == vcf_type_lowpass) {
1645 if (lfo3ctrl & 0x40) // bit 6
1646 VCFType = vcf_type_lowpassturbo;
1647 }
1648 if (_3ewa->RemainingBytes() >= 8) {
1649 _3ewa->Read(DimensionUpperLimits, 1, 8);
1650 } else {
1651 memset(DimensionUpperLimits, 0, 8);
1652 }
1653 } else { // '3ewa' chunk does not exist yet
1654 // use default values
1655 LFO3Frequency = 1.0;
1656 EG3Attack = 0.0;
1657 LFO1InternalDepth = 0;
1658 LFO3InternalDepth = 0;
1659 LFO1ControlDepth = 0;
1660 LFO3ControlDepth = 0;
1661 EG1Attack = 0.0;
1662 EG1Decay1 = 0.005;
1663 EG1Sustain = 1000;
1664 EG1Release = 0.3;
1665 EG1Controller.type = eg1_ctrl_t::type_none;
1666 EG1Controller.controller_number = 0;
1667 EG1ControllerInvert = false;
1668 EG1ControllerAttackInfluence = 0;
1669 EG1ControllerDecayInfluence = 0;
1670 EG1ControllerReleaseInfluence = 0;
1671 EG2Controller.type = eg2_ctrl_t::type_none;
1672 EG2Controller.controller_number = 0;
1673 EG2ControllerInvert = false;
1674 EG2ControllerAttackInfluence = 0;
1675 EG2ControllerDecayInfluence = 0;
1676 EG2ControllerReleaseInfluence = 0;
1677 LFO1Frequency = 1.0;
1678 EG2Attack = 0.0;
1679 EG2Decay1 = 0.005;
1680 EG2Sustain = 1000;
1681 EG2Release = 60;
1682 LFO2ControlDepth = 0;
1683 LFO2Frequency = 1.0;
1684 LFO2InternalDepth = 0;
1685 EG1Decay2 = 0.0;
1686 EG1InfiniteSustain = true;
1687 EG1PreAttack = 0;
1688 EG2Decay2 = 0.0;
1689 EG2InfiniteSustain = true;
1690 EG2PreAttack = 0;
1691 VelocityResponseCurve = curve_type_nonlinear;
1692 VelocityResponseDepth = 3;
1693 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694 ReleaseVelocityResponseDepth = 3;
1695 VelocityResponseCurveScaling = 32;
1696 AttenuationControllerThreshold = 0;
1697 SampleStartOffset = 0;
1698 PitchTrack = true;
1699 DimensionBypass = dim_bypass_ctrl_none;
1700 Pan = 0;
1701 SelfMask = true;
1702 LFO3Controller = lfo3_ctrl_modwheel;
1703 LFO3Sync = false;
1704 InvertAttenuationController = false;
1705 AttenuationController.type = attenuation_ctrl_t::type_none;
1706 AttenuationController.controller_number = 0;
1707 LFO2Controller = lfo2_ctrl_internal;
1708 LFO2FlipPhase = false;
1709 LFO2Sync = false;
1710 LFO1Controller = lfo1_ctrl_internal;
1711 LFO1FlipPhase = false;
1712 LFO1Sync = false;
1713 VCFResonanceController = vcf_res_ctrl_none;
1714 EG3Depth = 0;
1715 ChannelOffset = 0;
1716 MSDecode = false;
1717 SustainDefeat = false;
1718 VelocityUpperLimit = 0;
1719 ReleaseTriggerDecay = 0;
1720 EG1Hold = false;
1721 VCFEnabled = false;
1722 VCFCutoff = 0;
1723 VCFCutoffController = vcf_cutoff_ctrl_none;
1724 VCFCutoffControllerInvert = false;
1725 VCFVelocityScale = 0;
1726 VCFResonance = 0;
1727 VCFResonanceDynamic = false;
1728 VCFKeyboardTracking = false;
1729 VCFKeyboardTrackingBreakpoint = 0;
1730 VCFVelocityDynamicRange = 0x04;
1731 VCFVelocityCurve = curve_type_linear;
1732 VCFType = vcf_type_lowpass;
1733 memset(DimensionUpperLimits, 127, 8);
1734 }
1735 // format extension for EG behavior options, these will *NOT* work with
1736 // Gigasampler/GigaStudio !
1737 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738 if (lsde) {
1739 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740 for (int i = 0; i < 2; ++i) {
1741 unsigned char byte = lsde->ReadUint8();
1742 pEGOpts[i]->AttackCancel = byte & 1;
1743 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1745 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1746 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1747 }
1748 }
1749
1750 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751 VelocityResponseDepth,
1752 VelocityResponseCurveScaling);
1753
1754 pVelocityReleaseTable = GetReleaseVelocityTable(
1755 ReleaseVelocityResponseCurve,
1756 ReleaseVelocityResponseDepth
1757 );
1758
1759 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760 VCFVelocityDynamicRange,
1761 VCFVelocityScale,
1762 VCFCutoffController);
1763
1764 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765 VelocityTable = 0;
1766 }
1767
1768 /*
1769 * Constructs a DimensionRegion by copying all parameters from
1770 * another DimensionRegion
1771 */
1772 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773 Instances++;
1774 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775 *this = src; // default memberwise shallow copy of all parameters
1776 pParentList = _3ewl; // restore the chunk pointer
1777
1778 // deep copy of owned structures
1779 if (src.VelocityTable) {
1780 VelocityTable = new uint8_t[128];
1781 for (int k = 0 ; k < 128 ; k++)
1782 VelocityTable[k] = src.VelocityTable[k];
1783 }
1784 if (src.pSampleLoops) {
1785 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786 for (int k = 0 ; k < src.SampleLoops ; k++)
1787 pSampleLoops[k] = src.pSampleLoops[k];
1788 }
1789 }
1790
1791 /**
1792 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793 * and assign it to this object.
1794 *
1795 * Note that all sample pointers referenced by @a orig are simply copied as
1796 * memory address. Thus the respective samples are shared, not duplicated!
1797 *
1798 * @param orig - original DimensionRegion object to be copied from
1799 */
1800 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801 CopyAssign(orig, NULL);
1802 }
1803
1804 /**
1805 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806 * and assign it to this object.
1807 *
1808 * @param orig - original DimensionRegion object to be copied from
1809 * @param mSamples - crosslink map between the foreign file's samples and
1810 * this file's samples
1811 */
1812 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813 // delete all allocated data first
1814 if (VelocityTable) delete [] VelocityTable;
1815 if (pSampleLoops) delete [] pSampleLoops;
1816
1817 // backup parent list pointer
1818 RIFF::List* p = pParentList;
1819
1820 gig::Sample* pOriginalSample = pSample;
1821 gig::Region* pOriginalRegion = pRegion;
1822
1823 //NOTE: copy code copied from assignment constructor above, see comment there as well
1824
1825 *this = *orig; // default memberwise shallow copy of all parameters
1826
1827 // restore members that shall not be altered
1828 pParentList = p; // restore the chunk pointer
1829 pRegion = pOriginalRegion;
1830
1831 // only take the raw sample reference reference if the
1832 // two DimensionRegion objects are part of the same file
1833 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834 pSample = pOriginalSample;
1835 }
1836
1837 if (mSamples && mSamples->count(orig->pSample)) {
1838 pSample = mSamples->find(orig->pSample)->second;
1839 }
1840
1841 // deep copy of owned structures
1842 if (orig->VelocityTable) {
1843 VelocityTable = new uint8_t[128];
1844 for (int k = 0 ; k < 128 ; k++)
1845 VelocityTable[k] = orig->VelocityTable[k];
1846 }
1847 if (orig->pSampleLoops) {
1848 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849 for (int k = 0 ; k < orig->SampleLoops ; k++)
1850 pSampleLoops[k] = orig->pSampleLoops[k];
1851 }
1852 }
1853
1854 void DimensionRegion::serialize(Serialization::Archive* archive) {
1855 // in case this class will become backward incompatible one day,
1856 // then set a version and minimum version for this class like:
1857 //archive->setVersion(*this, 2);
1858 //archive->setMinVersion(*this, 1);
1859
1860 SRLZ(VelocityUpperLimit);
1861 SRLZ(EG1PreAttack);
1862 SRLZ(EG1Attack);
1863 SRLZ(EG1Decay1);
1864 SRLZ(EG1Decay2);
1865 SRLZ(EG1InfiniteSustain);
1866 SRLZ(EG1Sustain);
1867 SRLZ(EG1Release);
1868 SRLZ(EG1Hold);
1869 SRLZ(EG1Controller);
1870 SRLZ(EG1ControllerInvert);
1871 SRLZ(EG1ControllerAttackInfluence);
1872 SRLZ(EG1ControllerDecayInfluence);
1873 SRLZ(EG1ControllerReleaseInfluence);
1874 SRLZ(LFO1Frequency);
1875 SRLZ(LFO1InternalDepth);
1876 SRLZ(LFO1ControlDepth);
1877 SRLZ(LFO1Controller);
1878 SRLZ(LFO1FlipPhase);
1879 SRLZ(LFO1Sync);
1880 SRLZ(EG2PreAttack);
1881 SRLZ(EG2Attack);
1882 SRLZ(EG2Decay1);
1883 SRLZ(EG2Decay2);
1884 SRLZ(EG2InfiniteSustain);
1885 SRLZ(EG2Sustain);
1886 SRLZ(EG2Release);
1887 SRLZ(EG2Controller);
1888 SRLZ(EG2ControllerInvert);
1889 SRLZ(EG2ControllerAttackInfluence);
1890 SRLZ(EG2ControllerDecayInfluence);
1891 SRLZ(EG2ControllerReleaseInfluence);
1892 SRLZ(LFO2Frequency);
1893 SRLZ(LFO2InternalDepth);
1894 SRLZ(LFO2ControlDepth);
1895 SRLZ(LFO2Controller);
1896 SRLZ(LFO2FlipPhase);
1897 SRLZ(LFO2Sync);
1898 SRLZ(EG3Attack);
1899 SRLZ(EG3Depth);
1900 SRLZ(LFO3Frequency);
1901 SRLZ(LFO3InternalDepth);
1902 SRLZ(LFO3ControlDepth);
1903 SRLZ(LFO3Controller);
1904 SRLZ(LFO3Sync);
1905 SRLZ(VCFEnabled);
1906 SRLZ(VCFType);
1907 SRLZ(VCFCutoffController);
1908 SRLZ(VCFCutoffControllerInvert);
1909 SRLZ(VCFCutoff);
1910 SRLZ(VCFVelocityCurve);
1911 SRLZ(VCFVelocityScale);
1912 SRLZ(VCFVelocityDynamicRange);
1913 SRLZ(VCFResonance);
1914 SRLZ(VCFResonanceDynamic);
1915 SRLZ(VCFResonanceController);
1916 SRLZ(VCFKeyboardTracking);
1917 SRLZ(VCFKeyboardTrackingBreakpoint);
1918 SRLZ(VelocityResponseCurve);
1919 SRLZ(VelocityResponseDepth);
1920 SRLZ(VelocityResponseCurveScaling);
1921 SRLZ(ReleaseVelocityResponseCurve);
1922 SRLZ(ReleaseVelocityResponseDepth);
1923 SRLZ(ReleaseTriggerDecay);
1924 SRLZ(Crossfade);
1925 SRLZ(PitchTrack);
1926 SRLZ(DimensionBypass);
1927 SRLZ(Pan);
1928 SRLZ(SelfMask);
1929 SRLZ(AttenuationController);
1930 SRLZ(InvertAttenuationController);
1931 SRLZ(AttenuationControllerThreshold);
1932 SRLZ(ChannelOffset);
1933 SRLZ(SustainDefeat);
1934 SRLZ(MSDecode);
1935 //SRLZ(SampleStartOffset);
1936 SRLZ(SampleAttenuation);
1937 SRLZ(EG1Options);
1938 SRLZ(EG2Options);
1939
1940 // derived attributes from DLS::Sampler
1941 SRLZ(FineTune);
1942 SRLZ(Gain);
1943 }
1944
1945 /**
1946 * Updates the respective member variable and updates @c SampleAttenuation
1947 * which depends on this value.
1948 */
1949 void DimensionRegion::SetGain(int32_t gain) {
1950 DLS::Sampler::SetGain(gain);
1951 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1952 }
1953
1954 /**
1955 * Apply dimension region settings to the respective RIFF chunks. You
1956 * have to call File::Save() to make changes persistent.
1957 *
1958 * Usually there is absolutely no need to call this method explicitly.
1959 * It will be called automatically when File::Save() was called.
1960 *
1961 * @param pProgress - callback function for progress notification
1962 */
1963 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964 // first update base class's chunk
1965 DLS::Sampler::UpdateChunks(pProgress);
1966
1967 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969 pData[12] = Crossfade.in_start;
1970 pData[13] = Crossfade.in_end;
1971 pData[14] = Crossfade.out_start;
1972 pData[15] = Crossfade.out_end;
1973
1974 // make sure '3ewa' chunk exists
1975 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976 if (!_3ewa) {
1977 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980 }
1981 pData = (uint8_t*) _3ewa->LoadChunkData();
1982
1983 // update '3ewa' chunk with DimensionRegion's current settings
1984
1985 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986 store32(&pData[0], chunksize); // unknown, always chunk size?
1987
1988 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989 store32(&pData[4], lfo3freq);
1990
1991 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992 store32(&pData[8], eg3attack);
1993
1994 // next 2 bytes unknown
1995
1996 store16(&pData[14], LFO1InternalDepth);
1997
1998 // next 2 bytes unknown
1999
2000 store16(&pData[18], LFO3InternalDepth);
2001
2002 // next 2 bytes unknown
2003
2004 store16(&pData[22], LFO1ControlDepth);
2005
2006 // next 2 bytes unknown
2007
2008 store16(&pData[26], LFO3ControlDepth);
2009
2010 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011 store32(&pData[28], eg1attack);
2012
2013 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014 store32(&pData[32], eg1decay1);
2015
2016 // next 2 bytes unknown
2017
2018 store16(&pData[38], EG1Sustain);
2019
2020 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021 store32(&pData[40], eg1release);
2022
2023 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024 pData[44] = eg1ctl;
2025
2026 const uint8_t eg1ctrloptions =
2027 (EG1ControllerInvert ? 0x01 : 0x00) |
2028 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031 pData[45] = eg1ctrloptions;
2032
2033 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034 pData[46] = eg2ctl;
2035
2036 const uint8_t eg2ctrloptions =
2037 (EG2ControllerInvert ? 0x01 : 0x00) |
2038 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041 pData[47] = eg2ctrloptions;
2042
2043 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044 store32(&pData[48], lfo1freq);
2045
2046 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047 store32(&pData[52], eg2attack);
2048
2049 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050 store32(&pData[56], eg2decay1);
2051
2052 // next 2 bytes unknown
2053
2054 store16(&pData[62], EG2Sustain);
2055
2056 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057 store32(&pData[64], eg2release);
2058
2059 // next 2 bytes unknown
2060
2061 store16(&pData[70], LFO2ControlDepth);
2062
2063 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064 store32(&pData[72], lfo2freq);
2065
2066 // next 2 bytes unknown
2067
2068 store16(&pData[78], LFO2InternalDepth);
2069
2070 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071 store32(&pData[80], eg1decay2);
2072
2073 // next 2 bytes unknown
2074
2075 store16(&pData[86], EG1PreAttack);
2076
2077 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078 store32(&pData[88], eg2decay2);
2079
2080 // next 2 bytes unknown
2081
2082 store16(&pData[94], EG2PreAttack);
2083
2084 {
2085 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2086 uint8_t velocityresponse = VelocityResponseDepth;
2087 switch (VelocityResponseCurve) {
2088 case curve_type_nonlinear:
2089 break;
2090 case curve_type_linear:
2091 velocityresponse += 5;
2092 break;
2093 case curve_type_special:
2094 velocityresponse += 10;
2095 break;
2096 case curve_type_unknown:
2097 default:
2098 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099 }
2100 pData[96] = velocityresponse;
2101 }
2102
2103 {
2104 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2105 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2106 switch (ReleaseVelocityResponseCurve) {
2107 case curve_type_nonlinear:
2108 break;
2109 case curve_type_linear:
2110 releasevelocityresponse += 5;
2111 break;
2112 case curve_type_special:
2113 releasevelocityresponse += 10;
2114 break;
2115 case curve_type_unknown:
2116 default:
2117 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118 }
2119 pData[97] = releasevelocityresponse;
2120 }
2121
2122 pData[98] = VelocityResponseCurveScaling;
2123
2124 pData[99] = AttenuationControllerThreshold;
2125
2126 // next 4 bytes unknown
2127
2128 store16(&pData[104], SampleStartOffset);
2129
2130 // next 2 bytes unknown
2131
2132 {
2133 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2134 switch (DimensionBypass) {
2135 case dim_bypass_ctrl_94:
2136 pitchTrackDimensionBypass |= 0x10;
2137 break;
2138 case dim_bypass_ctrl_95:
2139 pitchTrackDimensionBypass |= 0x20;
2140 break;
2141 case dim_bypass_ctrl_none:
2142 //FIXME: should we set anything here?
2143 break;
2144 default:
2145 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146 }
2147 pData[108] = pitchTrackDimensionBypass;
2148 }
2149
2150 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151 pData[109] = pan;
2152
2153 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154 pData[110] = selfmask;
2155
2156 // next byte unknown
2157
2158 {
2159 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2160 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163 pData[112] = lfo3ctrl;
2164 }
2165
2166 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167 pData[113] = attenctl;
2168
2169 {
2170 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2173 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174 pData[114] = lfo2ctrl;
2175 }
2176
2177 {
2178 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2179 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2180 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2181 if (VCFResonanceController != vcf_res_ctrl_none)
2182 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183 pData[115] = lfo1ctrl;
2184 }
2185
2186 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188 store16(&pData[116], eg3depth);
2189
2190 // next 2 bytes unknown
2191
2192 const uint8_t channeloffset = ChannelOffset * 4;
2193 pData[120] = channeloffset;
2194
2195 {
2196 uint8_t regoptions = 0;
2197 if (MSDecode) regoptions |= 0x01; // bit 0
2198 if (SustainDefeat) regoptions |= 0x02; // bit 1
2199 pData[121] = regoptions;
2200 }
2201
2202 // next 2 bytes unknown
2203
2204 pData[124] = VelocityUpperLimit;
2205
2206 // next 3 bytes unknown
2207
2208 pData[128] = ReleaseTriggerDecay;
2209
2210 // next 2 bytes unknown
2211
2212 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213 pData[131] = eg1hold;
2214
2215 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2216 (VCFCutoff & 0x7f); /* lower 7 bits */
2217 pData[132] = vcfcutoff;
2218
2219 pData[133] = VCFCutoffController;
2220
2221 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223 pData[134] = vcfvelscale;
2224
2225 // next byte unknown
2226
2227 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228 (VCFResonance & 0x7f); /* lower 7 bits */
2229 pData[136] = vcfresonance;
2230
2231 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233 pData[137] = vcfbreakpoint;
2234
2235 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236 VCFVelocityCurve * 5;
2237 pData[138] = vcfvelocity;
2238
2239 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240 pData[139] = vcftype;
2241
2242 if (chunksize >= 148) {
2243 memcpy(&pData[140], DimensionUpperLimits, 8);
2244 }
2245
2246 // format extension for EG behavior options, these will *NOT* work with
2247 // Gigasampler/GigaStudio !
2248 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249 if (!lsde) {
2250 // only add this "LSDE" chunk if the EG options do not match the
2251 // default EG behavior
2252 eg_opt_t defaultOpt;
2253 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255 {
2256 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257 // move LSDE chunk to the end of parent list
2258 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259 }
2260 }
2261 if (lsde) {
2262 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264 for (int i = 0; i < 2; ++i) {
2265 pData[i] =
2266 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2267 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2269 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2270 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2271 }
2272 }
2273 }
2274
2275 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276 curve_type_t curveType = releaseVelocityResponseCurve;
2277 uint8_t depth = releaseVelocityResponseDepth;
2278 // this models a strange behaviour or bug in GSt: two of the
2279 // velocity response curves for release time are not used even
2280 // if specified, instead another curve is chosen.
2281 if ((curveType == curve_type_nonlinear && depth == 0) ||
2282 (curveType == curve_type_special && depth == 4)) {
2283 curveType = curve_type_nonlinear;
2284 depth = 3;
2285 }
2286 return GetVelocityTable(curveType, depth, 0);
2287 }
2288
2289 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290 uint8_t vcfVelocityDynamicRange,
2291 uint8_t vcfVelocityScale,
2292 vcf_cutoff_ctrl_t vcfCutoffController)
2293 {
2294 curve_type_t curveType = vcfVelocityCurve;
2295 uint8_t depth = vcfVelocityDynamicRange;
2296 // even stranger GSt: two of the velocity response curves for
2297 // filter cutoff are not used, instead another special curve
2298 // is chosen. This curve is not used anywhere else.
2299 if ((curveType == curve_type_nonlinear && depth == 0) ||
2300 (curveType == curve_type_special && depth == 4)) {
2301 curveType = curve_type_special;
2302 depth = 5;
2303 }
2304 return GetVelocityTable(curveType, depth,
2305 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306 ? vcfVelocityScale : 0);
2307 }
2308
2309 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2310 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2311 {
2312 // sanity check input parameters
2313 // (fallback to some default parameters on ill input)
2314 switch (curveType) {
2315 case curve_type_nonlinear:
2316 case curve_type_linear:
2317 if (depth > 4) {
2318 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2319 depth = 0;
2320 scaling = 0;
2321 }
2322 break;
2323 case curve_type_special:
2324 if (depth > 5) {
2325 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2326 depth = 0;
2327 scaling = 0;
2328 }
2329 break;
2330 case curve_type_unknown:
2331 default:
2332 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2333 curveType = curve_type_linear;
2334 depth = 0;
2335 scaling = 0;
2336 break;
2337 }
2338
2339 double* table;
2340 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2341 if (pVelocityTables->count(tableKey)) { // if key exists
2342 table = (*pVelocityTables)[tableKey];
2343 }
2344 else {
2345 table = CreateVelocityTable(curveType, depth, scaling);
2346 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2347 }
2348 return table;
2349 }
2350
2351 Region* DimensionRegion::GetParent() const {
2352 return pRegion;
2353 }
2354
2355 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2356 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2357 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2358 //#pragma GCC diagnostic push
2359 //#pragma GCC diagnostic error "-Wswitch"
2360
2361 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2362 leverage_ctrl_t decodedcontroller;
2363 switch (EncodedController) {
2364 // special controller
2365 case _lev_ctrl_none:
2366 decodedcontroller.type = leverage_ctrl_t::type_none;
2367 decodedcontroller.controller_number = 0;
2368 break;
2369 case _lev_ctrl_velocity:
2370 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2371 decodedcontroller.controller_number = 0;
2372 break;
2373 case _lev_ctrl_channelaftertouch:
2374 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2375 decodedcontroller.controller_number = 0;
2376 break;
2377
2378 // ordinary MIDI control change controller
2379 case _lev_ctrl_modwheel:
2380 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381 decodedcontroller.controller_number = 1;
2382 break;
2383 case _lev_ctrl_breath:
2384 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385 decodedcontroller.controller_number = 2;
2386 break;
2387 case _lev_ctrl_foot:
2388 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389 decodedcontroller.controller_number = 4;
2390 break;
2391 case _lev_ctrl_effect1:
2392 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393 decodedcontroller.controller_number = 12;
2394 break;
2395 case _lev_ctrl_effect2:
2396 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397 decodedcontroller.controller_number = 13;
2398 break;
2399 case _lev_ctrl_genpurpose1:
2400 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401 decodedcontroller.controller_number = 16;
2402 break;
2403 case _lev_ctrl_genpurpose2:
2404 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405 decodedcontroller.controller_number = 17;
2406 break;
2407 case _lev_ctrl_genpurpose3:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 18;
2410 break;
2411 case _lev_ctrl_genpurpose4:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 19;
2414 break;
2415 case _lev_ctrl_portamentotime:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 5;
2418 break;
2419 case _lev_ctrl_sustainpedal:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 64;
2422 break;
2423 case _lev_ctrl_portamento:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 65;
2426 break;
2427 case _lev_ctrl_sostenutopedal:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 66;
2430 break;
2431 case _lev_ctrl_softpedal:
2432 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433 decodedcontroller.controller_number = 67;
2434 break;
2435 case _lev_ctrl_genpurpose5:
2436 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437 decodedcontroller.controller_number = 80;
2438 break;
2439 case _lev_ctrl_genpurpose6:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 81;
2442 break;
2443 case _lev_ctrl_genpurpose7:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 82;
2446 break;
2447 case _lev_ctrl_genpurpose8:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 83;
2450 break;
2451 case _lev_ctrl_effect1depth:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 91;
2454 break;
2455 case _lev_ctrl_effect2depth:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 92;
2458 break;
2459 case _lev_ctrl_effect3depth:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 93;
2462 break;
2463 case _lev_ctrl_effect4depth:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 94;
2466 break;
2467 case _lev_ctrl_effect5depth:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 95;
2470 break;
2471
2472 // format extension (these controllers are so far only supported by
2473 // LinuxSampler & gigedit) they will *NOT* work with
2474 // Gigasampler/GigaStudio !
2475 case _lev_ctrl_CC3_EXT:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 3;
2478 break;
2479 case _lev_ctrl_CC6_EXT:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 6;
2482 break;
2483 case _lev_ctrl_CC7_EXT:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 7;
2486 break;
2487 case _lev_ctrl_CC8_EXT:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 8;
2490 break;
2491 case _lev_ctrl_CC9_EXT:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 9;
2494 break;
2495 case _lev_ctrl_CC10_EXT:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 10;
2498 break;
2499 case _lev_ctrl_CC11_EXT:
2500 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501 decodedcontroller.controller_number = 11;
2502 break;
2503 case _lev_ctrl_CC14_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 14;
2506 break;
2507 case _lev_ctrl_CC15_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 15;
2510 break;
2511 case _lev_ctrl_CC20_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 20;
2514 break;
2515 case _lev_ctrl_CC21_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 21;
2518 break;
2519 case _lev_ctrl_CC22_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 22;
2522 break;
2523 case _lev_ctrl_CC23_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 23;
2526 break;
2527 case _lev_ctrl_CC24_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 24;
2530 break;
2531 case _lev_ctrl_CC25_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 25;
2534 break;
2535 case _lev_ctrl_CC26_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 26;
2538 break;
2539 case _lev_ctrl_CC27_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 27;
2542 break;
2543 case _lev_ctrl_CC28_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 28;
2546 break;
2547 case _lev_ctrl_CC29_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 29;
2550 break;
2551 case _lev_ctrl_CC30_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 30;
2554 break;
2555 case _lev_ctrl_CC31_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 31;
2558 break;
2559 case _lev_ctrl_CC68_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 68;
2562 break;
2563 case _lev_ctrl_CC69_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 69;
2566 break;
2567 case _lev_ctrl_CC70_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 70;
2570 break;
2571 case _lev_ctrl_CC71_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 71;
2574 break;
2575 case _lev_ctrl_CC72_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 72;
2578 break;
2579 case _lev_ctrl_CC73_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 73;
2582 break;
2583 case _lev_ctrl_CC74_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 74;
2586 break;
2587 case _lev_ctrl_CC75_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 75;
2590 break;
2591 case _lev_ctrl_CC76_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 76;
2594 break;
2595 case _lev_ctrl_CC77_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 77;
2598 break;
2599 case _lev_ctrl_CC78_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 78;
2602 break;
2603 case _lev_ctrl_CC79_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 79;
2606 break;
2607 case _lev_ctrl_CC84_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 84;
2610 break;
2611 case _lev_ctrl_CC85_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 85;
2614 break;
2615 case _lev_ctrl_CC86_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 86;
2618 break;
2619 case _lev_ctrl_CC87_EXT:
2620 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621 decodedcontroller.controller_number = 87;
2622 break;
2623 case _lev_ctrl_CC89_EXT:
2624 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625 decodedcontroller.controller_number = 89;
2626 break;
2627 case _lev_ctrl_CC90_EXT:
2628 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629 decodedcontroller.controller_number = 90;
2630 break;
2631 case _lev_ctrl_CC96_EXT:
2632 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633 decodedcontroller.controller_number = 96;
2634 break;
2635 case _lev_ctrl_CC97_EXT:
2636 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637 decodedcontroller.controller_number = 97;
2638 break;
2639 case _lev_ctrl_CC102_EXT:
2640 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641 decodedcontroller.controller_number = 102;
2642 break;
2643 case _lev_ctrl_CC103_EXT:
2644 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645 decodedcontroller.controller_number = 103;
2646 break;
2647 case _lev_ctrl_CC104_EXT:
2648 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649 decodedcontroller.controller_number = 104;
2650 break;
2651 case _lev_ctrl_CC105_EXT:
2652 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653 decodedcontroller.controller_number = 105;
2654 break;
2655 case _lev_ctrl_CC106_EXT:
2656 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657 decodedcontroller.controller_number = 106;
2658 break;
2659 case _lev_ctrl_CC107_EXT:
2660 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661 decodedcontroller.controller_number = 107;
2662 break;
2663 case _lev_ctrl_CC108_EXT:
2664 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665 decodedcontroller.controller_number = 108;
2666 break;
2667 case _lev_ctrl_CC109_EXT:
2668 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669 decodedcontroller.controller_number = 109;
2670 break;
2671 case _lev_ctrl_CC110_EXT:
2672 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673 decodedcontroller.controller_number = 110;
2674 break;
2675 case _lev_ctrl_CC111_EXT:
2676 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677 decodedcontroller.controller_number = 111;
2678 break;
2679 case _lev_ctrl_CC112_EXT:
2680 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681 decodedcontroller.controller_number = 112;
2682 break;
2683 case _lev_ctrl_CC113_EXT:
2684 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685 decodedcontroller.controller_number = 113;
2686 break;
2687 case _lev_ctrl_CC114_EXT:
2688 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689 decodedcontroller.controller_number = 114;
2690 break;
2691 case _lev_ctrl_CC115_EXT:
2692 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693 decodedcontroller.controller_number = 115;
2694 break;
2695 case _lev_ctrl_CC116_EXT:
2696 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697 decodedcontroller.controller_number = 116;
2698 break;
2699 case _lev_ctrl_CC117_EXT:
2700 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701 decodedcontroller.controller_number = 117;
2702 break;
2703 case _lev_ctrl_CC118_EXT:
2704 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705 decodedcontroller.controller_number = 118;
2706 break;
2707 case _lev_ctrl_CC119_EXT:
2708 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709 decodedcontroller.controller_number = 119;
2710 break;
2711
2712 // unknown controller type
2713 default:
2714 decodedcontroller.type = leverage_ctrl_t::type_none;
2715 decodedcontroller.controller_number = 0;
2716 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2717 break;
2718 }
2719 return decodedcontroller;
2720 }
2721
2722 // see above (diagnostic push not supported prior GCC 4.6)
2723 //#pragma GCC diagnostic pop
2724
2725 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2726 _lev_ctrl_t encodedcontroller;
2727 switch (DecodedController.type) {
2728 // special controller
2729 case leverage_ctrl_t::type_none:
2730 encodedcontroller = _lev_ctrl_none;
2731 break;
2732 case leverage_ctrl_t::type_velocity:
2733 encodedcontroller = _lev_ctrl_velocity;
2734 break;
2735 case leverage_ctrl_t::type_channelaftertouch:
2736 encodedcontroller = _lev_ctrl_channelaftertouch;
2737 break;
2738
2739 // ordinary MIDI control change controller
2740 case leverage_ctrl_t::type_controlchange:
2741 switch (DecodedController.controller_number) {
2742 case 1:
2743 encodedcontroller = _lev_ctrl_modwheel;
2744 break;
2745 case 2:
2746 encodedcontroller = _lev_ctrl_breath;
2747 break;
2748 case 4:
2749 encodedcontroller = _lev_ctrl_foot;
2750 break;
2751 case 12:
2752 encodedcontroller = _lev_ctrl_effect1;
2753 break;
2754 case 13:
2755 encodedcontroller = _lev_ctrl_effect2;
2756 break;
2757 case 16:
2758 encodedcontroller = _lev_ctrl_genpurpose1;
2759 break;
2760 case 17:
2761 encodedcontroller = _lev_ctrl_genpurpose2;
2762 break;
2763 case 18:
2764 encodedcontroller = _lev_ctrl_genpurpose3;
2765 break;
2766 case 19:
2767 encodedcontroller = _lev_ctrl_genpurpose4;
2768 break;
2769 case 5:
2770 encodedcontroller = _lev_ctrl_portamentotime;
2771 break;
2772 case 64:
2773 encodedcontroller = _lev_ctrl_sustainpedal;
2774 break;
2775 case 65:
2776 encodedcontroller = _lev_ctrl_portamento;
2777 break;
2778 case 66:
2779 encodedcontroller = _lev_ctrl_sostenutopedal;
2780 break;
2781 case 67:
2782 encodedcontroller = _lev_ctrl_softpedal;
2783 break;
2784 case 80:
2785 encodedcontroller = _lev_ctrl_genpurpose5;
2786 break;
2787 case 81:
2788 encodedcontroller = _lev_ctrl_genpurpose6;
2789 break;
2790 case 82:
2791 encodedcontroller = _lev_ctrl_genpurpose7;
2792 break;
2793 case 83:
2794 encodedcontroller = _lev_ctrl_genpurpose8;
2795 break;
2796 case 91:
2797 encodedcontroller = _lev_ctrl_effect1depth;
2798 break;
2799 case 92:
2800 encodedcontroller = _lev_ctrl_effect2depth;
2801 break;
2802 case 93:
2803 encodedcontroller = _lev_ctrl_effect3depth;
2804 break;
2805 case 94:
2806 encodedcontroller = _lev_ctrl_effect4depth;
2807 break;
2808 case 95:
2809 encodedcontroller = _lev_ctrl_effect5depth;
2810 break;
2811
2812 // format extension (these controllers are so far only
2813 // supported by LinuxSampler & gigedit) they will *NOT*
2814 // work with Gigasampler/GigaStudio !
2815 case 3:
2816 encodedcontroller = _lev_ctrl_CC3_EXT;
2817 break;
2818 case 6:
2819 encodedcontroller = _lev_ctrl_CC6_EXT;
2820 break;
2821 case 7:
2822 encodedcontroller = _lev_ctrl_CC7_EXT;
2823 break;
2824 case 8:
2825 encodedcontroller = _lev_ctrl_CC8_EXT;
2826 break;
2827 case 9:
2828 encodedcontroller = _lev_ctrl_CC9_EXT;
2829 break;
2830 case 10:
2831 encodedcontroller = _lev_ctrl_CC10_EXT;
2832 break;
2833 case 11:
2834 encodedcontroller = _lev_ctrl_CC11_EXT;
2835 break;
2836 case 14:
2837 encodedcontroller = _lev_ctrl_CC14_EXT;
2838 break;
2839 case 15:
2840 encodedcontroller = _lev_ctrl_CC15_EXT;
2841 break;
2842 case 20:
2843 encodedcontroller = _lev_ctrl_CC20_EXT;
2844 break;
2845 case 21:
2846 encodedcontroller = _lev_ctrl_CC21_EXT;
2847 break;
2848 case 22:
2849 encodedcontroller = _lev_ctrl_CC22_EXT;
2850 break;
2851 case 23:
2852 encodedcontroller = _lev_ctrl_CC23_EXT;
2853 break;
2854 case 24:
2855 encodedcontroller = _lev_ctrl_CC24_EXT;
2856 break;
2857 case 25:
2858 encodedcontroller = _lev_ctrl_CC25_EXT;
2859 break;
2860 case 26:
2861 encodedcontroller = _lev_ctrl_CC26_EXT;
2862 break;
2863 case 27:
2864 encodedcontroller = _lev_ctrl_CC27_EXT;
2865 break;
2866 case 28:
2867 encodedcontroller = _lev_ctrl_CC28_EXT;
2868 break;
2869 case 29:
2870 encodedcontroller = _lev_ctrl_CC29_EXT;
2871 break;
2872 case 30:
2873 encodedcontroller = _lev_ctrl_CC30_EXT;
2874 break;
2875 case 31:
2876 encodedcontroller = _lev_ctrl_CC31_EXT;
2877 break;
2878 case 68:
2879 encodedcontroller = _lev_ctrl_CC68_EXT;
2880 break;
2881 case 69:
2882 encodedcontroller = _lev_ctrl_CC69_EXT;
2883 break;
2884 case 70:
2885 encodedcontroller = _lev_ctrl_CC70_EXT;
2886 break;
2887 case 71:
2888 encodedcontroller = _lev_ctrl_CC71_EXT;
2889 break;
2890 case 72:
2891 encodedcontroller = _lev_ctrl_CC72_EXT;
2892 break;
2893 case 73:
2894 encodedcontroller = _lev_ctrl_CC73_EXT;
2895 break;
2896 case 74:
2897 encodedcontroller = _lev_ctrl_CC74_EXT;
2898 break;
2899 case 75:
2900 encodedcontroller = _lev_ctrl_CC75_EXT;
2901 break;
2902 case 76:
2903 encodedcontroller = _lev_ctrl_CC76_EXT;
2904 break;
2905 case 77:
2906 encodedcontroller = _lev_ctrl_CC77_EXT;
2907 break;
2908 case 78:
2909 encodedcontroller = _lev_ctrl_CC78_EXT;
2910 break;
2911 case 79:
2912 encodedcontroller = _lev_ctrl_CC79_EXT;
2913 break;
2914 case 84:
2915 encodedcontroller = _lev_ctrl_CC84_EXT;
2916 break;
2917 case 85:
2918 encodedcontroller = _lev_ctrl_CC85_EXT;
2919 break;
2920 case 86:
2921 encodedcontroller = _lev_ctrl_CC86_EXT;
2922 break;
2923 case 87:
2924 encodedcontroller = _lev_ctrl_CC87_EXT;
2925 break;
2926 case 89:
2927 encodedcontroller = _lev_ctrl_CC89_EXT;
2928 break;
2929 case 90:
2930 encodedcontroller = _lev_ctrl_CC90_EXT;
2931 break;
2932 case 96:
2933 encodedcontroller = _lev_ctrl_CC96_EXT;
2934 break;
2935 case 97:
2936 encodedcontroller = _lev_ctrl_CC97_EXT;
2937 break;
2938 case 102:
2939 encodedcontroller = _lev_ctrl_CC102_EXT;
2940 break;
2941 case 103:
2942 encodedcontroller = _lev_ctrl_CC103_EXT;
2943 break;
2944 case 104:
2945 encodedcontroller = _lev_ctrl_CC104_EXT;
2946 break;
2947 case 105:
2948 encodedcontroller = _lev_ctrl_CC105_EXT;
2949 break;
2950 case 106:
2951 encodedcontroller = _lev_ctrl_CC106_EXT;
2952 break;
2953 case 107:
2954 encodedcontroller = _lev_ctrl_CC107_EXT;
2955 break;
2956 case 108:
2957 encodedcontroller = _lev_ctrl_CC108_EXT;
2958 break;
2959 case 109:
2960 encodedcontroller = _lev_ctrl_CC109_EXT;
2961 break;
2962 case 110:
2963 encodedcontroller = _lev_ctrl_CC110_EXT;
2964 break;
2965 case 111:
2966 encodedcontroller = _lev_ctrl_CC111_EXT;
2967 break;
2968 case 112:
2969 encodedcontroller = _lev_ctrl_CC112_EXT;
2970 break;
2971 case 113:
2972 encodedcontroller = _lev_ctrl_CC113_EXT;
2973 break;
2974 case 114:
2975 encodedcontroller = _lev_ctrl_CC114_EXT;
2976 break;
2977 case 115:
2978 encodedcontroller = _lev_ctrl_CC115_EXT;
2979 break;
2980 case 116:
2981 encodedcontroller = _lev_ctrl_CC116_EXT;
2982 break;
2983 case 117:
2984 encodedcontroller = _lev_ctrl_CC117_EXT;
2985 break;
2986 case 118:
2987 encodedcontroller = _lev_ctrl_CC118_EXT;
2988 break;
2989 case 119:
2990 encodedcontroller = _lev_ctrl_CC119_EXT;
2991 break;
2992
2993 default:
2994 throw gig::Exception("leverage controller number is not supported by the gig format");
2995 }
2996 break;
2997 default:
2998 throw gig::Exception("Unknown leverage controller type.");
2999 }
3000 return encodedcontroller;
3001 }
3002
3003 DimensionRegion::~DimensionRegion() {
3004 Instances--;
3005 if (!Instances) {
3006 // delete the velocity->volume tables
3007 VelocityTableMap::iterator iter;
3008 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3009 double* pTable = iter->second;
3010 if (pTable) delete[] pTable;
3011 }
3012 pVelocityTables->clear();
3013 delete pVelocityTables;
3014 pVelocityTables = NULL;
3015 }
3016 if (VelocityTable) delete[] VelocityTable;
3017 }
3018
3019 /**
3020 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3021 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3022 * and VelocityResponseCurveScaling) involved are taken into account to
3023 * calculate the amplitude factor. Use this method when a key was
3024 * triggered to get the volume with which the sample should be played
3025 * back.
3026 *
3027 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3028 * @returns amplitude factor (between 0.0 and 1.0)
3029 */
3030 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3031 return pVelocityAttenuationTable[MIDIKeyVelocity];
3032 }
3033
3034 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3035 return pVelocityReleaseTable[MIDIKeyVelocity];
3036 }
3037
3038 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3039 return pVelocityCutoffTable[MIDIKeyVelocity];
3040 }
3041
3042 /**
3043 * Updates the respective member variable and the lookup table / cache
3044 * that depends on this value.
3045 */
3046 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3047 pVelocityAttenuationTable =
3048 GetVelocityTable(
3049 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3050 );
3051 VelocityResponseCurve = curve;
3052 }
3053
3054 /**
3055 * Updates the respective member variable and the lookup table / cache
3056 * that depends on this value.
3057 */
3058 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3059 pVelocityAttenuationTable =
3060 GetVelocityTable(
3061 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3062 );
3063 VelocityResponseDepth = depth;
3064 }
3065
3066 /**
3067 * Updates the respective member variable and the lookup table / cache
3068 * that depends on this value.
3069 */
3070 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3071 pVelocityAttenuationTable =
3072 GetVelocityTable(
3073 VelocityResponseCurve, VelocityResponseDepth, scaling
3074 );
3075 VelocityResponseCurveScaling = scaling;
3076 }
3077
3078 /**
3079 * Updates the respective member variable and the lookup table / cache
3080 * that depends on this value.
3081 */
3082 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3083 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3084 ReleaseVelocityResponseCurve = curve;
3085 }
3086
3087 /**
3088 * Updates the respective member variable and the lookup table / cache
3089 * that depends on this value.
3090 */
3091 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3092 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3093 ReleaseVelocityResponseDepth = depth;
3094 }
3095
3096 /**
3097 * Updates the respective member variable and the lookup table / cache
3098 * that depends on this value.
3099 */
3100 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3101 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3102 VCFCutoffController = controller;
3103 }
3104
3105 /**
3106 * Updates the respective member variable and the lookup table / cache
3107 * that depends on this value.
3108 */
3109 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3110 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3111 VCFVelocityCurve = curve;
3112 }
3113
3114 /**
3115 * Updates the respective member variable and the lookup table / cache
3116 * that depends on this value.
3117 */
3118 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3119 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3120 VCFVelocityDynamicRange = range;
3121 }
3122
3123 /**
3124 * Updates the respective member variable and the lookup table / cache
3125 * that depends on this value.
3126 */
3127 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3128 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3129 VCFVelocityScale = scaling;
3130 }
3131
3132 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3133
3134 // line-segment approximations of the 15 velocity curves
3135
3136 // linear
3137 const int lin0[] = { 1, 1, 127, 127 };
3138 const int lin1[] = { 1, 21, 127, 127 };
3139 const int lin2[] = { 1, 45, 127, 127 };
3140 const int lin3[] = { 1, 74, 127, 127 };
3141 const int lin4[] = { 1, 127, 127, 127 };
3142
3143 // non-linear
3144 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3145 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3146 127, 127 };
3147 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3148 127, 127 };
3149 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3150 127, 127 };
3151 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3152
3153 // special
3154 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3155 113, 127, 127, 127 };
3156 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3157 118, 127, 127, 127 };
3158 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3159 85, 90, 91, 127, 127, 127 };
3160 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3161 117, 127, 127, 127 };
3162 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3163 127, 127 };
3164
3165 // this is only used by the VCF velocity curve
3166 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3167 91, 127, 127, 127 };
3168
3169 const int* const curves[] = { non0, non1, non2, non3, non4,
3170 lin0, lin1, lin2, lin3, lin4,
3171 spe0, spe1, spe2, spe3, spe4, spe5 };
3172
3173 double* const table = new double[128];
3174
3175 const int* curve = curves[curveType * 5 + depth];
3176 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3177
3178 table[0] = 0;
3179 for (int x = 1 ; x < 128 ; x++) {
3180
3181 if (x > curve[2]) curve += 2;
3182 double y = curve[1] + (x - curve[0]) *
3183 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3184 y = y / 127;
3185
3186 // Scale up for s > 20, down for s < 20. When
3187 // down-scaling, the curve still ends at 1.0.
3188 if (s < 20 && y >= 0.5)
3189 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3190 else
3191 y = y * (s / 20.0);
3192 if (y > 1) y = 1;
3193
3194 table[x] = y;
3195 }
3196 return table;
3197 }
3198
3199
3200 // *************** Region ***************
3201 // *
3202
3203 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3204 // Initialization
3205 Dimensions = 0;
3206 for (int i = 0; i < 256; i++) {
3207 pDimensionRegions[i] = NULL;
3208 }
3209 Layers = 1;
3210 File* file = (File*) GetParent()->GetParent();
3211 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3212
3213 // Actual Loading
3214
3215 if (!file->GetAutoLoad()) return;
3216
3217 LoadDimensionRegions(rgnList);
3218
3219 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3220 if (_3lnk) {
3221 DimensionRegions = _3lnk->ReadUint32();
3222 for (int i = 0; i < dimensionBits; i++) {
3223 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3224 uint8_t bits = _3lnk->ReadUint8();
3225 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3226 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3227 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3228 if (dimension == dimension_none) { // inactive dimension
3229 pDimensionDefinitions[i].dimension = dimension_none;
3230 pDimensionDefinitions[i].bits = 0;
3231 pDimensionDefinitions[i].zones = 0;
3232 pDimensionDefinitions[i].split_type = split_type_bit;
3233 pDimensionDefinitions[i].zone_size = 0;
3234 }
3235 else { // active dimension
3236 pDimensionDefinitions[i].dimension = dimension;
3237 pDimensionDefinitions[i].bits = bits;
3238 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3239 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3240 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3241 Dimensions++;
3242
3243 // if this is a layer dimension, remember the amount of layers
3244 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3245 }
3246 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3247 }
3248 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3249
3250 // if there's a velocity dimension and custom velocity zone splits are used,
3251 // update the VelocityTables in the dimension regions
3252 UpdateVelocityTable();
3253
3254 // jump to start of the wave pool indices (if not already there)
3255 if (file->pVersion && file->pVersion->major == 3)
3256 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3257 else
3258 _3lnk->SetPos(44);
3259
3260 // load sample references (if auto loading is enabled)
3261 if (file->GetAutoLoad()) {
3262 for (uint i = 0; i < DimensionRegions; i++) {
3263 uint32_t wavepoolindex = _3lnk->ReadUint32();
3264 if (file->pWavePoolTable && pDimensionRegions[i])
3265 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3266 }
3267 GetSample(); // load global region sample reference
3268 }
3269 } else {
3270 DimensionRegions = 0;
3271 for (int i = 0 ; i < 8 ; i++) {
3272 pDimensionDefinitions[i].dimension = dimension_none;
3273 pDimensionDefinitions[i].bits = 0;
3274 pDimensionDefinitions[i].zones = 0;
3275 }
3276 }
3277
3278 // make sure there is at least one dimension region
3279 if (!DimensionRegions) {
3280 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3281 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3282 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3283 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3284 DimensionRegions = 1;
3285 }
3286 }
3287
3288 /**
3289 * Apply Region settings and all its DimensionRegions to the respective
3290 * RIFF chunks. You have to call File::Save() to make changes persistent.
3291 *
3292 * Usually there is absolutely no need to call this method explicitly.
3293 * It will be called automatically when File::Save() was called.
3294 *
3295 * @param pProgress - callback function for progress notification
3296 * @throws gig::Exception if samples cannot be dereferenced
3297 */
3298 void Region::UpdateChunks(progress_t* pProgress) {
3299 // in the gig format we don't care about the Region's sample reference
3300 // but we still have to provide some existing one to not corrupt the
3301 // file, so to avoid the latter we simply always assign the sample of
3302 // the first dimension region of this region
3303 pSample = pDimensionRegions[0]->pSample;
3304
3305 // first update base class's chunks
3306 DLS::Region::UpdateChunks(pProgress);
3307
3308 // update dimension region's chunks
3309 for (int i = 0; i < DimensionRegions; i++) {
3310 pDimensionRegions[i]->UpdateChunks(pProgress);
3311 }
3312
3313 File* pFile = (File*) GetParent()->GetParent();
3314 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3315 const int iMaxDimensions = version3 ? 8 : 5;
3316 const int iMaxDimensionRegions = version3 ? 256 : 32;
3317
3318 // make sure '3lnk' chunk exists
3319 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3320 if (!_3lnk) {
3321 const int _3lnkChunkSize = version3 ? 1092 : 172;
3322 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3323 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3324
3325 // move 3prg to last position
3326 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3327 }
3328
3329 // update dimension definitions in '3lnk' chunk
3330 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3331 store32(&pData[0], DimensionRegions);
3332 int shift = 0;
3333 for (int i = 0; i < iMaxDimensions; i++) {
3334 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3335 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3336 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3337 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3338 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3339 // next 3 bytes unknown, always zero?
3340
3341 shift += pDimensionDefinitions[i].bits;
3342 }
3343
3344 // update wave pool table in '3lnk' chunk
3345 const int iWavePoolOffset = version3 ? 68 : 44;
3346 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3347 int iWaveIndex = -1;
3348 if (i < DimensionRegions) {
3349 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3350 File::SampleList::iterator iter = pFile->pSamples->begin();
3351 File::SampleList::iterator end = pFile->pSamples->end();
3352 for (int index = 0; iter != end; ++iter, ++index) {
3353 if (*iter == pDimensionRegions[i]->pSample) {
3354 iWaveIndex = index;
3355 break;
3356 }
3357 }
3358 }
3359 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3360 }
3361 }
3362
3363 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3364 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3365 if (_3prg) {
3366 int dimensionRegionNr = 0;
3367 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3368 while (_3ewl) {
3369 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3370 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3371 dimensionRegionNr++;
3372 }
3373 _3ewl = _3prg->GetNextSubList();
3374 }
3375 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3376 }
3377 }
3378
3379 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3380 // update KeyRange struct and make sure regions are in correct order
3381 DLS::Region::SetKeyRange(Low, High);
3382 // update Region key table for fast lookup
3383 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3384 }
3385
3386 void Region::UpdateVelocityTable() {
3387 // get velocity dimension's index
3388 int veldim = -1;
3389 for (int i = 0 ; i < Dimensions ; i++) {
3390 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3391 veldim = i;
3392 break;
3393 }
3394 }
3395 if (veldim == -1) return;
3396
3397 int step = 1;
3398 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3399 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3400
3401 // loop through all dimension regions for all dimensions except the velocity dimension
3402 int dim[8] = { 0 };
3403 for (int i = 0 ; i < DimensionRegions ; i++) {
3404 const int end = i + step * pDimensionDefinitions[veldim].zones;
3405
3406 // create a velocity table for all cases where the velocity zone is zero
3407 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3408 pDimensionRegions[i]->VelocityUpperLimit) {
3409 // create the velocity table
3410 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3411 if (!table) {
3412 table = new uint8_t[128];
3413 pDimensionRegions[i]->VelocityTable = table;
3414 }
3415 int tableidx = 0;
3416 int velocityZone = 0;
3417 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3418 for (int k = i ; k < end ; k += step) {
3419 DimensionRegion *d = pDimensionRegions[k];
3420 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3421 velocityZone++;
3422 }
3423 } else { // gig2
3424 for (int k = i ; k < end ; k += step) {
3425 DimensionRegion *d = pDimensionRegions[k];
3426 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3427 velocityZone++;
3428 }
3429 }
3430 } else {
3431 if (pDimensionRegions[i]->VelocityTable) {
3432 delete[] pDimensionRegions[i]->VelocityTable;
3433 pDimensionRegions[i]->VelocityTable = 0;
3434 }
3435 }
3436
3437 // jump to the next case where the velocity zone is zero
3438 int j;
3439 int shift = 0;
3440 for (j = 0 ; j < Dimensions ; j++) {
3441 if (j == veldim) i += skipveldim; // skip velocity dimension
3442 else {
3443 dim[j]++;
3444 if (dim[j] < pDimensionDefinitions[j].zones) break;
3445 else {
3446 // skip unused dimension regions
3447 dim[j] = 0;
3448 i += ((1 << pDimensionDefinitions[j].bits) -
3449 pDimensionDefinitions[j].zones) << shift;
3450 }
3451 }
3452 shift += pDimensionDefinitions[j].bits;
3453 }
3454 if (j == Dimensions) break;
3455 }
3456 }
3457
3458 /** @brief Einstein would have dreamed of it - create a new dimension.
3459 *
3460 * Creates a new dimension with the dimension definition given by
3461 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3462 * There is a hard limit of dimensions and total amount of "bits" all
3463 * dimensions can have. This limit is dependant to what gig file format
3464 * version this file refers to. The gig v2 (and lower) format has a
3465 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3466 * format has a limit of 8.
3467 *
3468 * @param pDimDef - defintion of the new dimension
3469 * @throws gig::Exception if dimension of the same type exists already
3470 * @throws gig::Exception if amount of dimensions or total amount of
3471 * dimension bits limit is violated
3472 */
3473 void Region::AddDimension(dimension_def_t* pDimDef) {
3474 // some initial sanity checks of the given dimension definition
3475 if (pDimDef->zones < 2)
3476 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3477 if (pDimDef->bits < 1)
3478 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3479 if (pDimDef->dimension == dimension_samplechannel) {
3480 if (pDimDef->zones != 2)
3481 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3482 if (pDimDef->bits != 1)
3483 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3484 }
3485
3486 // check if max. amount of dimensions reached
3487 File* file = (File*) GetParent()->GetParent();
3488 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3489 if (Dimensions >= iMaxDimensions)
3490 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3491 // check if max. amount of dimension bits reached
3492 int iCurrentBits = 0;
3493 for (int i = 0; i < Dimensions; i++)
3494 iCurrentBits += pDimensionDefinitions[i].bits;
3495 if (iCurrentBits >= iMaxDimensions)
3496 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3497 const int iNewBits = iCurrentBits + pDimDef->bits;
3498 if (iNewBits > iMaxDimensions)
3499 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3500 // check if there's already a dimensions of the same type
3501 for (int i = 0; i < Dimensions; i++)
3502 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3503 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3504
3505 // pos is where the new dimension should be placed, normally
3506 // last in list, except for the samplechannel dimension which
3507 // has to be first in list
3508 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3509 int bitpos = 0;
3510 for (int i = 0 ; i < pos ; i++)
3511 bitpos += pDimensionDefinitions[i].bits;
3512
3513 // make room for the new dimension
3514 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3515 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3516 for (int j = Dimensions ; j > pos ; j--) {
3517 pDimensionRegions[i]->DimensionUpperLimits[j] =
3518 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3519 }
3520 }
3521
3522 // assign definition of new dimension
3523 pDimensionDefinitions[pos] = *pDimDef;
3524
3525 // auto correct certain dimension definition fields (where possible)
3526 pDimensionDefinitions[pos].split_type =
3527 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3528 pDimensionDefinitions[pos].zone_size =
3529 __resolveZoneSize(pDimensionDefinitions[pos]);
3530
3531 // create new dimension region(s) for this new dimension, and make
3532 // sure that the dimension regions are placed correctly in both the
3533 // RIFF list and the pDimensionRegions array
3534 RIFF::Chunk* moveTo = NULL;
3535 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3536 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3537 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3538 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3539 }
3540 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3541 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3542 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3543 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3544 // create a new dimension region and copy all parameter values from
3545 // an existing dimension region
3546 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3547 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3548
3549 DimensionRegions++;
3550 }
3551 }
3552 moveTo = pDimensionRegions[i]->pParentList;
3553 }
3554
3555 // initialize the upper limits for this dimension
3556 int mask = (1 << bitpos) - 1;
3557 for (int z = 0 ; z < pDimDef->zones ; z++) {
3558 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3559 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3560 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3561 (z << bitpos) |
3562 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3563 }
3564 }
3565
3566 Dimensions++;
3567
3568 // if this is a layer dimension, update 'Layers' attribute
3569 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3570
3571 UpdateVelocityTable();
3572 }
3573
3574 /** @brief Delete an existing dimension.
3575 *
3576 * Deletes the dimension given by \a pDimDef and deletes all respective
3577 * dimension regions, that is all dimension regions where the dimension's
3578 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3579 * for example this would delete all dimension regions for the case(s)
3580 * where the sustain pedal is pressed down.
3581 *
3582 * @param pDimDef - dimension to delete
3583 * @throws gig::Exception if given dimension cannot be found
3584 */
3585 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3586 // get dimension's index
3587 int iDimensionNr = -1;
3588 for (int i = 0; i < Dimensions; i++) {
3589 if (&pDimensionDefinitions[i] == pDimDef) {
3590 iDimensionNr = i;
3591 break;
3592 }
3593 }
3594 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3595
3596 // get amount of bits below the dimension to delete
3597 int iLowerBits = 0;
3598 for (int i = 0; i < iDimensionNr; i++)
3599 iLowerBits += pDimensionDefinitions[i].bits;
3600
3601 // get amount ot bits above the dimension to delete
3602 int iUpperBits = 0;
3603 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3604 iUpperBits += pDimensionDefinitions[i].bits;
3605
3606 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3607
3608 // delete dimension regions which belong to the given dimension
3609 // (that is where the dimension's bit > 0)
3610 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3611 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3612 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3613 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3614 iObsoleteBit << iLowerBits |
3615 iLowerBit;
3616
3617 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3618 delete pDimensionRegions[iToDelete];
3619 pDimensionRegions[iToDelete] = NULL;
3620 DimensionRegions--;
3621 }
3622 }
3623 }
3624
3625 // defrag pDimensionRegions array
3626 // (that is remove the NULL spaces within the pDimensionRegions array)
3627 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3628 if (!pDimensionRegions[iTo]) {
3629 if (iFrom <= iTo) iFrom = iTo + 1;
3630 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3631 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3632 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3633 pDimensionRegions[iFrom] = NULL;
3634 }
3635 }
3636 }
3637
3638 // remove the this dimension from the upper limits arrays
3639 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3640 DimensionRegion* d = pDimensionRegions[j];
3641 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3642 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3643 }
3644 d->DimensionUpperLimits[Dimensions - 1] = 127;
3645 }
3646
3647 // 'remove' dimension definition
3648 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3649 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3650 }
3651 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3652 pDimensionDefinitions[Dimensions - 1].bits = 0;
3653 pDimensionDefinitions[Dimensions - 1].zones = 0;
3654
3655 Dimensions--;
3656
3657 // if this was a layer dimension, update 'Layers' attribute
3658 if (pDimDef->dimension == dimension_layer) Layers = 1;
3659 }
3660
3661 /** @brief Delete one split zone of a dimension (decrement zone amount).
3662 *
3663 * Instead of deleting an entire dimensions, this method will only delete
3664 * one particular split zone given by @a zone of the Region's dimension
3665 * given by @a type. So this method will simply decrement the amount of
3666 * zones by one of the dimension in question. To be able to do that, the
3667 * respective dimension must exist on this Region and it must have at least
3668 * 3 zones. All DimensionRegion objects associated with the zone will be
3669 * deleted.
3670 *
3671 * @param type - identifies the dimension where a zone shall be deleted
3672 * @param zone - index of the dimension split zone that shall be deleted
3673 * @throws gig::Exception if requested zone could not be deleted
3674 */
3675 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3676 dimension_def_t* oldDef = GetDimensionDefinition(type);
3677 if (!oldDef)
3678 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3679 if (oldDef->zones <= 2)
3680 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3681 if (zone < 0 || zone >= oldDef->zones)
3682 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3683
3684 const int newZoneSize = oldDef->zones - 1;
3685
3686 // create a temporary Region which just acts as a temporary copy
3687 // container and will be deleted at the end of this function and will
3688 // also not be visible through the API during this process
3689 gig::Region* tempRgn = NULL;
3690 {
3691 // adding these temporary chunks is probably not even necessary
3692 Instrument* instr = static_cast<Instrument*>(GetParent());
3693 RIFF::List* pCkInstrument = instr->pCkInstrument;
3694 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3695 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3696 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3697 tempRgn = new Region(instr, rgn);
3698 }
3699
3700 // copy this region's dimensions (with already the dimension split size
3701 // requested by the arguments of this method call) to the temporary
3702 // region, and don't use Region::CopyAssign() here for this task, since
3703 // it would also alter fast lookup helper variables here and there
3704 dimension_def_t newDef;
3705 for (int i = 0; i < Dimensions; ++i) {
3706 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3707 // is this the dimension requested by the method arguments? ...
3708 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3709 def.zones = newZoneSize;
3710 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3711 newDef = def;
3712 }
3713 tempRgn->AddDimension(&def);
3714 }
3715
3716 // find the dimension index in the tempRegion which is the dimension
3717 // type passed to this method (paranoidly expecting different order)
3718 int tempReducedDimensionIndex = -1;
3719 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3720 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3721 tempReducedDimensionIndex = d;
3722 break;
3723 }
3724 }
3725
3726 // copy dimension regions from this region to the temporary region
3727 for (int iDst = 0; iDst < 256; ++iDst) {
3728 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3729 if (!dstDimRgn) continue;
3730 std::map<dimension_t,int> dimCase;
3731 bool isValidZone = true;
3732 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3733 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3734 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3735 (iDst >> baseBits) & ((1 << dstBits) - 1);
3736 baseBits += dstBits;
3737 // there are also DimensionRegion objects of unused zones, skip them
3738 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3739 isValidZone = false;
3740 break;
3741 }
3742 }
3743 if (!isValidZone) continue;
3744 // a bit paranoid: cope with the chance that the dimensions would
3745 // have different order in source and destination regions
3746 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3747 if (dimCase[type] >= zone) dimCase[type]++;
3748 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3749 dstDimRgn->CopyAssign(srcDimRgn);
3750 // if this is the upper most zone of the dimension passed to this
3751 // method, then correct (raise) its upper limit to 127
3752 if (newDef.split_type == split_type_normal && isLastZone)
3753 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3754 }
3755
3756 // now tempRegion's dimensions and DimensionRegions basically reflect
3757 // what we wanted to get for this actual Region here, so we now just
3758 // delete and recreate the dimension in question with the new amount
3759 // zones and then copy back from tempRegion
3760 DeleteDimension(oldDef);
3761 AddDimension(&newDef);
3762 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3763 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3764 if (!srcDimRgn) continue;
3765 std::map<dimension_t,int> dimCase;
3766 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3767 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3768 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3769 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3770 baseBits += srcBits;
3771 }
3772 // a bit paranoid: cope with the chance that the dimensions would
3773 // have different order in source and destination regions
3774 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3775 if (!dstDimRgn) continue;
3776 dstDimRgn->CopyAssign(srcDimRgn);
3777 }
3778
3779 // delete temporary region
3780 delete tempRgn;
3781
3782 UpdateVelocityTable();
3783 }
3784
3785 /** @brief Divide split zone of a dimension in two (increment zone amount).
3786 *
3787 * This will increment the amount of zones for the dimension (given by
3788 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3789 * in the middle of its zone range in two. So the two zones resulting from
3790 * the zone being splitted, will be an equivalent copy regarding all their
3791 * articulation informations and sample reference. The two zones will only
3792 * differ in their zone's upper limit
3793 * (DimensionRegion::DimensionUpperLimits).
3794 *
3795 * @param type - identifies the dimension where a zone shall be splitted
3796 * @param zone - index of the dimension split zone that shall be splitted
3797 * @throws gig::Exception if requested zone could not be splitted
3798 */
3799 void Region::SplitDimensionZone(dimension_t type, int zone) {
3800 dimension_def_t* oldDef = GetDimensionDefinition(type);
3801 if (!oldDef)
3802 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3803 if (zone < 0 || zone >= oldDef->zones)
3804 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3805
3806 const int newZoneSize = oldDef->zones + 1;
3807
3808 // create a temporary Region which just acts as a temporary copy
3809 // container and will be deleted at the end of this function and will
3810 // also not be visible through the API during this process
3811 gig::Region* tempRgn = NULL;
3812 {
3813 // adding these temporary chunks is probably not even necessary
3814 Instrument* instr = static_cast<Instrument*>(GetParent());
3815 RIFF::List* pCkInstrument = instr->pCkInstrument;
3816 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3817 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3818 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3819 tempRgn = new Region(instr, rgn);
3820 }
3821
3822 // copy this region's dimensions (with already the dimension split size
3823 // requested by the arguments of this method call) to the temporary
3824 // region, and don't use Region::CopyAssign() here for this task, since
3825 // it would also alter fast lookup helper variables here and there
3826 dimension_def_t newDef;
3827 for (int i = 0; i < Dimensions; ++i) {
3828 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3829 // is this the dimension requested by the method arguments? ...
3830 if (def.dimension == type) { // ... if yes, increment zone amount by one
3831 def.zones = newZoneSize;
3832 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3833 newDef = def;
3834 }
3835 tempRgn->AddDimension(&def);
3836 }
3837
3838 // find the dimension index in the tempRegion which is the dimension
3839 // type passed to this method (paranoidly expecting different order)
3840 int tempIncreasedDimensionIndex = -1;
3841 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3842 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3843 tempIncreasedDimensionIndex = d;
3844 break;
3845 }
3846 }
3847
3848 // copy dimension regions from this region to the temporary region
3849 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3850 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3851 if (!srcDimRgn) continue;
3852 std::map<dimension_t,int> dimCase;
3853 bool isValidZone = true;
3854 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3855 const int srcBits = pDimensionDefinitions[d].bits;
3856 dimCase[pDimensionDefinitions[d].dimension] =
3857 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3858 // there are also DimensionRegion objects for unused zones, skip them
3859 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3860 isValidZone = false;
3861 break;
3862 }
3863 baseBits += srcBits;
3864 }
3865 if (!isValidZone) continue;
3866 // a bit paranoid: cope with the chance that the dimensions would
3867 // have different order in source and destination regions
3868 if (dimCase[type] > zone) dimCase[type]++;
3869 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3870 dstDimRgn->CopyAssign(srcDimRgn);
3871 // if this is the requested zone to be splitted, then also copy
3872 // the source DimensionRegion to the newly created target zone
3873 // and set the old zones upper limit lower
3874 if (dimCase[type] == zone) {
3875 // lower old zones upper limit
3876 if (newDef.split_type == split_type_normal) {
3877 const int high =
3878 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3879 int low = 0;
3880 if (zone > 0) {
3881 std::map<dimension_t,int> lowerCase = dimCase;
3882 lowerCase[type]--;
3883 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3884 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3885 }
3886 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3887 }
3888 // fill the newly created zone of the divided zone as well
3889 dimCase[type]++;
3890 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3891 dstDimRgn->CopyAssign(srcDimRgn);
3892 }
3893 }
3894
3895 // now tempRegion's dimensions and DimensionRegions basically reflect
3896 // what we wanted to get for this actual Region here, so we now just
3897 // delete and recreate the dimension in question with the new amount
3898 // zones and then copy back from tempRegion
3899 DeleteDimension(oldDef);
3900 AddDimension(&newDef);
3901 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3902 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3903 if (!srcDimRgn) continue;
3904 std::map<dimension_t,int> dimCase;
3905 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3906 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3907 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3908 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3909 baseBits += srcBits;
3910 }
3911 // a bit paranoid: cope with the chance that the dimensions would
3912 // have different order in source and destination regions
3913 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3914 if (!dstDimRgn) continue;
3915 dstDimRgn->CopyAssign(srcDimRgn);
3916 }
3917
3918 // delete temporary region
3919 delete tempRgn;
3920
3921 UpdateVelocityTable();
3922 }
3923
3924 /** @brief Change type of an existing dimension.
3925 *
3926 * Alters the dimension type of a dimension already existing on this
3927 * region. If there is currently no dimension on this Region with type
3928 * @a oldType, then this call with throw an Exception. Likewise there are
3929 * cases where the requested dimension type cannot be performed. For example
3930 * if the new dimension type shall be gig::dimension_samplechannel, and the
3931 * current dimension has more than 2 zones. In such cases an Exception is
3932 * thrown as well.
3933 *
3934 * @param oldType - identifies the existing dimension to be changed
3935 * @param newType - to which dimension type it should be changed to
3936 * @throws gig::Exception if requested change cannot be performed
3937 */
3938 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3939 if (oldType == newType) return;
3940 dimension_def_t* def = GetDimensionDefinition(oldType);
3941 if (!def)
3942 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3943 if (newType == dimension_samplechannel && def->zones != 2)
3944 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3945 if (GetDimensionDefinition(newType))
3946 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3947 def->dimension = newType;
3948 def->split_type = __resolveSplitType(newType);
3949 }
3950
3951 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3952 uint8_t bits[8] = {};
3953 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3954 it != DimCase.end(); ++it)
3955 {
3956 for (int d = 0; d < Dimensions; ++d) {
3957 if (pDimensionDefinitions[d].dimension == it->first) {
3958 bits[d] = it->second;
3959 goto nextDimCaseSlice;
3960 }
3961 }
3962 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3963 nextDimCaseSlice:
3964 ; // noop
3965 }
3966 return GetDimensionRegionByBit(bits);
3967 }
3968
3969 /**
3970 * Searches in the current Region for a dimension of the given dimension
3971 * type and returns the precise configuration of that dimension in this
3972 * Region.
3973 *
3974 * @param type - dimension type of the sought dimension
3975 * @returns dimension definition or NULL if there is no dimension with
3976 * sought type in this Region.
3977 */
3978 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3979 for (int i = 0; i < Dimensions; ++i)
3980 if (pDimensionDefinitions[i].dimension == type)
3981 return &pDimensionDefinitions[i];
3982 return NULL;
3983 }
3984
3985 Region::~Region() {
3986 for (int i = 0; i < 256; i++) {
3987 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3988 }
3989 }
3990
3991 /**
3992 * Use this method in your audio engine to get the appropriate dimension
3993 * region with it's articulation data for the current situation. Just
3994 * call the method with the current MIDI controller values and you'll get
3995 * the DimensionRegion with the appropriate articulation data for the
3996 * current situation (for this Region of course only). To do that you'll
3997 * first have to look which dimensions with which controllers and in
3998 * which order are defined for this Region when you load the .gig file.
3999 * Special cases are e.g. layer or channel dimensions where you just put
4000 * in the index numbers instead of a MIDI controller value (means 0 for
4001 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4002 * etc.).
4003 *
4004 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4005 * @returns adress to the DimensionRegion for the given situation
4006 * @see pDimensionDefinitions
4007 * @see Dimensions
4008 */
4009 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4010 uint8_t bits;
4011 int veldim = -1;
4012 int velbitpos = 0;
4013 int bitpos = 0;
4014 int dimregidx = 0;
4015 for (uint i = 0; i < Dimensions; i++) {
4016 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4017 // the velocity dimension must be handled after the other dimensions
4018 veldim = i;
4019 velbitpos = bitpos;
4020 } else {
4021 switch (pDimensionDefinitions[i].split_type) {
4022 case split_type_normal:
4023 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4024 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4025 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4026 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4027 }
4028 } else {
4029 // gig2: evenly sized zones
4030 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4031 }
4032 break;
4033 case split_type_bit: // the value is already the sought dimension bit number
4034 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4035 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4036 break;
4037 }
4038 dimregidx |= bits << bitpos;
4039 }
4040 bitpos += pDimensionDefinitions[i].bits;
4041 }
4042 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4043 if (!dimreg) return NULL;
4044 if (veldim != -1) {
4045 // (dimreg is now the dimension region for the lowest velocity)
4046 if (dimreg->VelocityTable) // custom defined zone ranges
4047 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4048 else // normal split type
4049 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4050
4051 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4052 dimregidx |= (bits & limiter_mask) << velbitpos;
4053 dimreg = pDimensionRegions[dimregidx & 255];
4054 }
4055 return dimreg;
4056 }
4057
4058 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4059 uint8_t bits;
4060 int veldim = -1;
4061 int velbitpos = 0;
4062 int bitpos = 0;
4063 int dimregidx = 0;
4064 for (uint i = 0; i < Dimensions; i++) {
4065 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4066 // the velocity dimension must be handled after the other dimensions
4067 veldim = i;
4068 velbitpos = bitpos;
4069 } else {
4070 switch (pDimensionDefinitions[i].split_type) {
4071 case split_type_normal:
4072 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4073 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4074 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4075 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4076 }
4077 } else {
4078 // gig2: evenly sized zones
4079 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4080 }
4081 break;
4082 case split_type_bit: // the value is already the sought dimension bit number
4083 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4084 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4085 break;
4086 }
4087 dimregidx |= bits << bitpos;
4088 }
4089 bitpos += pDimensionDefinitions[i].bits;
4090 }
4091 dimregidx &= 255;
4092 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4093 if (!dimreg) return -1;
4094 if (veldim != -1) {
4095 // (dimreg is now the dimension region for the lowest velocity)
4096 if (dimreg->VelocityTable) // custom defined zone ranges
4097 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4098 else // normal split type
4099 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4100
4101 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4102 dimregidx |= (bits & limiter_mask) << velbitpos;
4103 dimregidx &= 255;
4104 }
4105 return dimregidx;
4106 }
4107
4108 /**
4109 * Returns the appropriate DimensionRegion for the given dimension bit
4110 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4111 * instead of calling this method directly!
4112 *
4113 * @param DimBits Bit numbers for dimension 0 to 7
4114 * @returns adress to the DimensionRegion for the given dimension
4115 * bit numbers
4116 * @see GetDimensionRegionByValue()
4117 */
4118 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4119 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4120 << pDimensionDefinitions[5].bits | DimBits[5])
4121 << pDimensionDefinitions[4].bits | DimBits[4])
4122 << pDimensionDefinitions[3].bits | DimBits[3])
4123 << pDimensionDefinitions[2].bits | DimBits[2])
4124 << pDimensionDefinitions[1].bits | DimBits[1])
4125 << pDimensionDefinitions[0].bits | DimBits[0]];
4126 }
4127
4128 /**
4129 * Returns pointer address to the Sample referenced with this region.
4130 * This is the global Sample for the entire Region (not sure if this is
4131 * actually used by the Gigasampler engine - I would only use the Sample
4132 * referenced by the appropriate DimensionRegion instead of this sample).
4133 *
4134 * @returns address to Sample or NULL if there is no reference to a
4135 * sample saved in the .gig file
4136 */
4137 Sample* Region::GetSample() {
4138 if (pSample) return static_cast<gig::Sample*>(pSample);
4139 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4140 }
4141
4142 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4143 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4144 File* file = (File*) GetParent()->GetParent();
4145 if (!file->pWavePoolTable) return NULL;
4146 // for new files or files >= 2 GB use 64 bit wave pool offsets
4147 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4148 // use 64 bit wave pool offsets (treating this as large file)
4149 uint64_t soughtoffset =
4150 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4151 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4152 Sample* sample = file->GetFirstSample(pProgress);
4153 while (sample) {
4154 if (sample->ullWavePoolOffset == soughtoffset)
4155 return static_cast<gig::Sample*>(sample);
4156 sample = file->GetNextSample();
4157 }
4158 } else {
4159 // use extension files and 32 bit wave pool offsets
4160 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4161 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4162 Sample* sample = file->GetFirstSample(pProgress);
4163 while (sample) {
4164 if (sample->ullWavePoolOffset == soughtoffset &&
4165 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4166 sample = file->GetNextSample();
4167 }
4168 }
4169 return NULL;
4170 }
4171
4172 /**
4173 * Make a (semi) deep copy of the Region object given by @a orig
4174 * and assign it to this object.
4175 *
4176 * Note that all sample pointers referenced by @a orig are simply copied as
4177 * memory address. Thus the respective samples are shared, not duplicated!
4178 *
4179 * @param orig - original Region object to be copied from
4180 */
4181 void Region::CopyAssign(const Region* orig) {
4182 CopyAssign(orig, NULL);
4183 }
4184
4185 /**
4186 * Make a (semi) deep copy of the Region object given by @a orig and
4187 * assign it to this object
4188 *
4189 * @param mSamples - crosslink map between the foreign file's samples and
4190 * this file's samples
4191 */
4192 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4193 // handle base classes
4194 DLS::Region::CopyAssign(orig);
4195
4196 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4197 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4198 }
4199
4200 // handle own member variables
4201 for (int i = Dimensions - 1; i >= 0; --i) {
4202 DeleteDimension(&pDimensionDefinitions[i]);
4203 }
4204 Layers = 0; // just to be sure
4205 for (int i = 0; i < orig->Dimensions; i++) {
4206 // we need to copy the dim definition here, to avoid the compiler
4207 // complaining about const-ness issue
4208 dimension_def_t def = orig->pDimensionDefinitions[i];
4209 AddDimension(&def);
4210 }
4211 for (int i = 0; i < 256; i++) {
4212 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4213 pDimensionRegions[i]->CopyAssign(
4214 orig->pDimensionRegions[i],
4215 mSamples
4216 );
4217 }
4218 }
4219 Layers = orig->Layers;
4220 }
4221
4222
4223 // *************** MidiRule ***************
4224 // *
4225
4226 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4227 _3ewg->SetPos(36);
4228 Triggers = _3ewg->ReadUint8();
4229 _3ewg->SetPos(40);
4230 ControllerNumber = _3ewg->ReadUint8();
4231 _3ewg->SetPos(46);
4232 for (int i = 0 ; i < Triggers ; i++) {
4233 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4234 pTriggers[i].Descending = _3ewg->ReadUint8();
4235 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4236 pTriggers[i].Key = _3ewg->ReadUint8();
4237 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4238 pTriggers[i].Velocity = _3ewg->ReadUint8();
4239 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4240 _3ewg->ReadUint8();
4241 }
4242 }
4243
4244 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4245 ControllerNumber(0),
4246 Triggers(0) {
4247 }
4248
4249 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4250 pData[32] = 4;
4251 pData[33] = 16;
4252 pData[36] = Triggers;
4253 pData[40] = ControllerNumber;
4254 for (int i = 0 ; i < Triggers ; i++) {
4255 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4256 pData[47 + i * 8] = pTriggers[i].Descending;
4257 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4258 pData[49 + i * 8] = pTriggers[i].Key;
4259 pData[50 + i * 8] = pTriggers[i].NoteOff;
4260 pData[51 + i * 8] = pTriggers[i].Velocity;
4261 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4262 }
4263 }
4264
4265 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4266 _3ewg->SetPos(36);
4267 LegatoSamples = _3ewg->ReadUint8(); // always 12
4268 _3ewg->SetPos(40);
4269 BypassUseController = _3ewg->ReadUint8();
4270 BypassKey = _3ewg->ReadUint8();
4271 BypassController = _3ewg->ReadUint8();
4272 ThresholdTime = _3ewg->ReadUint16();
4273 _3ewg->ReadInt16();
4274 ReleaseTime = _3ewg->ReadUint16();
4275 _3ewg->ReadInt16();
4276 KeyRange.low = _3ewg->ReadUint8();
4277 KeyRange.high = _3ewg->ReadUint8();
4278 _3ewg->SetPos(64);
4279 ReleaseTriggerKey = _3ewg->ReadUint8();
4280 AltSustain1Key = _3ewg->ReadUint8();
4281 AltSustain2Key = _3ewg->ReadUint8();
4282 }
4283
4284 MidiRuleLegato::MidiRuleLegato() :
4285 LegatoSamples(12),
4286 BypassUseController(false),
4287 BypassKey(0),
4288 BypassController(1),
4289 ThresholdTime(20),
4290 ReleaseTime(20),
4291 ReleaseTriggerKey(0),
4292 AltSustain1Key(0),
4293 AltSustain2Key(0)
4294 {
4295 KeyRange.low = KeyRange.high = 0;
4296 }
4297
4298 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4299 pData[32] = 0;
4300 pData[33] = 16;
4301 pData[36] = LegatoSamples;
4302 pData[40] = BypassUseController;
4303 pData[41] = BypassKey;
4304 pData[42] = BypassController;
4305 store16(&pData[43], ThresholdTime);
4306 store16(&pData[47], ReleaseTime);
4307 pData[51] = KeyRange.low;
4308 pData[52] = KeyRange.high;
4309 pData[64] = ReleaseTriggerKey;
4310 pData[65] = AltSustain1Key;
4311 pData[66] = AltSustain2Key;
4312 }
4313
4314 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4315 _3ewg->SetPos(36);
4316 Articulations = _3ewg->ReadUint8();
4317 int flags = _3ewg->ReadUint8();
4318 Polyphonic = flags & 8;
4319 Chained = flags & 4;
4320 Selector = (flags & 2) ? selector_controller :
4321 (flags & 1) ? selector_key_switch : selector_none;
4322 Patterns = _3ewg->ReadUint8();
4323 _3ewg->ReadUint8(); // chosen row
4324 _3ewg->ReadUint8(); // unknown
4325 _3ewg->ReadUint8(); // unknown
4326 _3ewg->ReadUint8(); // unknown
4327 KeySwitchRange.low = _3ewg->ReadUint8();
4328 KeySwitchRange.high = _3ewg->ReadUint8();
4329 Controller = _3ewg->ReadUint8();
4330 PlayRange.low = _3ewg->ReadUint8();
4331 PlayRange.high = _3ewg->ReadUint8();
4332
4333 int n = std::min(int(Articulations), 32);
4334 for (int i = 0 ; i < n ; i++) {
4335 _3ewg->ReadString(pArticulations[i], 32);
4336 }
4337 _3ewg->SetPos(1072);
4338 n = std::min(int(Patterns), 32);
4339 for (int i = 0 ; i < n ; i++) {
4340 _3ewg->ReadString(pPatterns[i].Name, 16);
4341 pPatterns[i].Size = _3ewg->ReadUint8();
4342 _3ewg->Read(&pPatterns[i][0], 1, 32);
4343 }
4344 }
4345
4346 MidiRuleAlternator::MidiRuleAlternator() :
4347 Articulations(0),
4348 Patterns(0),
4349 Selector(selector_none),
4350 Controller(0),
4351 Polyphonic(false),
4352 Chained(false)
4353 {
4354 PlayRange.low = PlayRange.high = 0;
4355 KeySwitchRange.low = KeySwitchRange.high = 0;
4356 }
4357
4358 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4359 pData[32] = 3;
4360 pData[33] = 16;
4361 pData[36] = Articulations;
4362 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4363 (Selector == selector_controller ? 2 :
4364 (Selector == selector_key_switch ? 1 : 0));
4365 pData[38] = Patterns;
4366
4367 pData[43] = KeySwitchRange.low;
4368 pData[44] = KeySwitchRange.high;
4369 pData[45] = Controller;
4370 pData[46] = PlayRange.low;
4371 pData[47] = PlayRange.high;
4372
4373 char* str = reinterpret_cast<char*>(pData);
4374 int pos = 48;
4375 int n = std::min(int(Articulations), 32);
4376 for (int i = 0 ; i < n ; i++, pos += 32) {
4377 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4378 }
4379
4380 pos = 1072;
4381 n = std::min(int(Patterns), 32);
4382 for (int i = 0 ; i < n ; i++, pos += 49) {
4383 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4384 pData[pos + 16] = pPatterns[i].Size;
4385 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4386 }
4387 }
4388
4389 // *************** Script ***************
4390 // *
4391
4392 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4393 pGroup = group;
4394 pChunk = ckScri;
4395 if (ckScri) { // object is loaded from file ...
4396 // read header
4397 uint32_t headerSize = ckScri->ReadUint32();
4398 Compression = (Compression_t) ckScri->ReadUint32();
4399 Encoding = (Encoding_t) ckScri->ReadUint32();
4400 Language = (Language_t) ckScri->ReadUint32();
4401 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4402 crc = ckScri->ReadUint32();
4403 uint32_t nameSize = ckScri->ReadUint32();
4404 Name.resize(nameSize, ' ');
4405 for (int i = 0; i < nameSize; ++i)
4406 Name[i] = ckScri->ReadUint8();
4407 // to handle potential future extensions of the header
4408 ckScri->SetPos(sizeof(int32_t) + headerSize);
4409 // read actual script data
4410 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4411 data.resize(scriptSize);
4412 for (int i = 0; i < scriptSize; ++i)
4413 data[i] = ckScri->ReadUint8();
4414 } else { // this is a new script object, so just initialize it as such ...
4415 Compression = COMPRESSION_NONE;
4416 Encoding = ENCODING_ASCII;
4417 Language = LANGUAGE_NKSP;
4418 Bypass = false;
4419 crc = 0;
4420 Name = "Unnamed Script";
4421 }
4422 }
4423
4424 Script::~Script() {
4425 }
4426
4427 /**
4428 * Returns the current script (i.e. as source code) in text format.
4429 */
4430 String Script::GetScriptAsText() {
4431 String s;
4432 s.resize(data.size(), ' ');
4433 memcpy(&s[0], &data[0], data.size());
4434 return s;
4435 }
4436
4437 /**
4438 * Replaces the current script with the new script source code text given
4439 * by @a text.
4440 *
4441 * @param text - new script source code
4442 */
4443 void Script::SetScriptAsText(const String& text) {
4444 data.resize(text.size());
4445 memcpy(&data[0], &text[0], text.size());
4446 }
4447
4448 /**
4449 * Apply this script to the respective RIFF chunks. You have to call
4450 * File::Save() to make changes persistent.
4451 *
4452 * Usually there is absolutely no need to call this method explicitly.
4453 * It will be called automatically when File::Save() was called.
4454 *
4455 * @param pProgress - callback function for progress notification
4456 */
4457 void Script::UpdateChunks(progress_t* pProgress) {
4458 // recalculate CRC32 check sum
4459 __resetCRC(crc);
4460 __calculateCRC(&data[0], data.size(), crc);
4461 __finalizeCRC(crc);
4462 // make sure chunk exists and has the required size
4463 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4464 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4465 else pChunk->Resize(chunkSize);
4466 // fill the chunk data to be written to disk
4467 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4468 int pos = 0;
4469 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4470 pos += sizeof(int32_t);
4471 store32(&pData[pos], Compression);
4472 pos += sizeof(int32_t);
4473 store32(&pData[pos], Encoding);
4474 pos += sizeof(int32_t);
4475 store32(&pData[pos], Language);
4476 pos += sizeof(int32_t);
4477 store32(&pData[pos], Bypass ? 1 : 0);
4478 pos += sizeof(int32_t);
4479 store32(&pData[pos], crc);
4480 pos += sizeof(int32_t);
4481 store32(&pData[pos], (uint32_t) Name.size());
4482 pos += sizeof(int32_t);
4483 for (int i = 0; i < Name.size(); ++i, ++pos)
4484 pData[pos] = Name[i];
4485 for (int i = 0; i < data.size(); ++i, ++pos)
4486 pData[pos] = data[i];
4487 }
4488
4489 /**
4490 * Move this script from its current ScriptGroup to another ScriptGroup
4491 * given by @a pGroup.
4492 *
4493 * @param pGroup - script's new group
4494 */
4495 void Script::SetGroup(ScriptGroup* pGroup) {
4496 if (this->pGroup == pGroup) return;
4497 if (pChunk)
4498 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4499 this->pGroup = pGroup;
4500 }
4501
4502 /**
4503 * Returns the script group this script currently belongs to. Each script
4504 * is a member of exactly one ScriptGroup.
4505 *
4506 * @returns current script group
4507 */
4508 ScriptGroup* Script::GetGroup() const {
4509 return pGroup;
4510 }
4511
4512 /**
4513 * Make a (semi) deep copy of the Script object given by @a orig
4514 * and assign it to this object. Note: the ScriptGroup this Script
4515 * object belongs to remains untouched by this call.
4516 *
4517 * @param orig - original Script object to be copied from
4518 */
4519 void Script::CopyAssign(const Script* orig) {
4520 Name = orig->Name;
4521 Compression = orig->Compression;
4522 Encoding = orig->Encoding;
4523 Language = orig->Language;
4524 Bypass = orig->Bypass;
4525 data = orig->data;
4526 }
4527
4528 void Script::RemoveAllScriptReferences() {
4529 File* pFile = pGroup->pFile;
4530 for (int i = 0; pFile->GetInstrument(i); ++i) {
4531 Instrument* instr = pFile->GetInstrument(i);
4532 instr->RemoveScript(this);
4533 }
4534 }
4535
4536 // *************** ScriptGroup ***************
4537 // *
4538
4539 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4540 pFile = file;
4541 pList = lstRTIS;
4542 pScripts = NULL;
4543 if (lstRTIS) {
4544 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4545 ::LoadString(ckName, Name);
4546 } else {
4547 Name = "Default Group";
4548 }
4549 }
4550
4551 ScriptGroup::~ScriptGroup() {
4552 if (pScripts) {
4553 std::list<Script*>::iterator iter = pScripts->begin();
4554 std::list<Script*>::iterator end = pScripts->end();
4555 while (iter != end) {
4556 delete *iter;
4557 ++iter;
4558 }
4559 delete pScripts;
4560 }
4561 }
4562
4563 /**
4564 * Apply this script group to the respective RIFF chunks. You have to call
4565 * File::Save() to make changes persistent.
4566 *
4567 * Usually there is absolutely no need to call this method explicitly.
4568 * It will be called automatically when File::Save() was called.
4569 *
4570 * @param pProgress - callback function for progress notification
4571 */
4572 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4573 if (pScripts) {
4574 if (!pList)
4575 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4576
4577 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4578 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4579
4580 for (std::list<Script*>::iterator it = pScripts->begin();
4581 it != pScripts->end(); ++it)
4582 {
4583 (*it)->UpdateChunks(pProgress);
4584 }
4585 }
4586 }
4587
4588 /** @brief Get instrument script.
4589 *
4590 * Returns the real-time instrument script with the given index.
4591 *
4592 * @param index - number of the sought script (0..n)
4593 * @returns sought script or NULL if there's no such script
4594 */
4595 Script* ScriptGroup::GetScript(uint index) {
4596 if (!pScripts) LoadScripts();
4597 std::list<Script*>::iterator it = pScripts->begin();
4598 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4599 if (i == index) return *it;
4600 return NULL;
4601 }
4602
4603 /** @brief Add new instrument script.
4604 *
4605 * Adds a new real-time instrument script to the file. The script is not
4606 * actually used / executed unless it is referenced by an instrument to be
4607 * used. This is similar to samples, which you can add to a file, without
4608 * an instrument necessarily actually using it.
4609 *
4610 * You have to call Save() to make this persistent to the file.
4611 *
4612 * @return new empty script object
4613 */
4614 Script* ScriptGroup::AddScript() {
4615 if (!pScripts) LoadScripts();
4616 Script* pScript = new Script(this, NULL);
4617 pScripts->push_back(pScript);
4618 return pScript;
4619 }
4620
4621 /** @brief Delete an instrument script.
4622 *
4623 * This will delete the given real-time instrument script. References of
4624 * instruments that are using that script will be removed accordingly.
4625 *
4626 * You have to call Save() to make this persistent to the file.
4627 *
4628 * @param pScript - script to delete
4629 * @throws gig::Exception if given script could not be found
4630 */
4631 void ScriptGroup::DeleteScript(Script* pScript) {
4632 if (!pScripts) LoadScripts();
4633 std::list<Script*>::iterator iter =
4634 find(pScripts->begin(), pScripts->end(), pScript);
4635 if (iter == pScripts->end())
4636 throw gig::Exception("Could not delete script, could not find given script");
4637 pScripts->erase(iter);
4638 pScript->RemoveAllScriptReferences();
4639 if (pScript->pChunk)
4640 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4641 delete pScript;
4642 }
4643
4644 void ScriptGroup::LoadScripts() {
4645 if (pScripts) return;
4646 pScripts = new std::list<Script*>;
4647 if (!pList) return;
4648
4649 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4650 ck = pList->GetNextSubChunk())
4651 {
4652 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4653 pScripts->push_back(new Script(this, ck));
4654 }
4655 }
4656 }
4657
4658 // *************** Instrument ***************
4659 // *
4660
4661 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4662 static const DLS::Info::string_length_t fixedStringLengths[] = {
4663 { CHUNK_ID_INAM, 64 },
4664 { CHUNK_ID_ISFT, 12 },
4665 { 0, 0 }
4666 };
4667 pInfo->SetFixedStringLengths(fixedStringLengths);
4668
4669 // Initialization
4670 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4671 EffectSend = 0;
4672 Attenuation = 0;
4673 FineTune = 0;
4674 PitchbendRange = 2;
4675 PianoReleaseMode = false;
4676 DimensionKeyRange.low = 0;
4677 DimensionKeyRange.high = 0;
4678 pMidiRules = new MidiRule*[3];
4679 pMidiRules[0] = NULL;
4680 pScriptRefs = NULL;
4681
4682 // Loading
4683 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4684 if (lart) {
4685 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4686 if (_3ewg) {
4687 EffectSend = _3ewg->ReadUint16();
4688 Attenuation = _3ewg->ReadInt32();
4689 FineTune = _3ewg->ReadInt16();
4690 PitchbendRange = _3ewg->ReadInt16();
4691 uint8_t dimkeystart = _3ewg->ReadUint8();
4692 PianoReleaseMode = dimkeystart & 0x01;
4693 DimensionKeyRange.low = dimkeystart >> 1;
4694 DimensionKeyRange.high = _3ewg->ReadUint8();
4695
4696 if (_3ewg->GetSize() > 32) {
4697 // read MIDI rules
4698 int i = 0;
4699 _3ewg->SetPos(32);
4700 uint8_t id1 = _3ewg->ReadUint8();
4701 uint8_t id2 = _3ewg->ReadUint8();
4702
4703 if (id2 == 16) {
4704 if (id1 == 4) {
4705 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4706 } else if (id1 == 0) {
4707 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4708 } else if (id1 == 3) {
4709 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4710 } else {
4711 pMidiRules[i++] = new MidiRuleUnknown;
4712 }
4713 }
4714 else if (id1 != 0 || id2 != 0) {
4715 pMidiRules[i++] = new MidiRuleUnknown;
4716 }
4717 //TODO: all the other types of rules
4718
4719 pMidiRules[i] = NULL;
4720 }
4721 }
4722 }
4723
4724 if (pFile->GetAutoLoad()) {
4725 if (!pRegions) pRegions = new RegionList;
4726 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4727 if (lrgn) {
4728 RIFF::List* rgn = lrgn->GetFirstSubList();
4729 while (rgn) {
4730 if (rgn->GetListType() == LIST_TYPE_RGN) {
4731 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4732 pRegions->push_back(new Region(this, rgn));
4733 }
4734 rgn = lrgn->GetNextSubList();
4735 }
4736 // Creating Region Key Table for fast lookup
4737 UpdateRegionKeyTable();
4738 }
4739 }
4740
4741 // own gig format extensions
4742 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4743 if (lst3LS) {
4744 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4745 if (ckSCSL) {
4746 int headerSize = ckSCSL->ReadUint32();
4747 int slotCount = ckSCSL->ReadUint32();
4748 if (slotCount) {
4749 int slotSize = ckSCSL->ReadUint32();
4750 ckSCSL->SetPos(headerSize); // in case of future header extensions
4751 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4752 for (int i = 0; i < slotCount; ++i) {
4753 _ScriptPooolEntry e;
4754 e.fileOffset = ckSCSL->ReadUint32();
4755 e.bypass = ckSCSL->ReadUint32() & 1;
4756 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4757 scriptPoolFileOffsets.push_back(e);
4758 }
4759 }
4760 }
4761 }
4762
4763 __notify_progress(pProgress, 1.0f); // notify done
4764 }
4765
4766 void Instrument::UpdateRegionKeyTable() {
4767 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4768 RegionList::iterator iter = pRegions->begin();
4769 RegionList::iterator end = pRegions->end();
4770 for (; iter != end; ++iter) {
4771 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4772 const int low = std::max(int(pRegion->KeyRange.low), 0);
4773 const int high = std::min(int(pRegion->KeyRange.high), 127);
4774 for (int iKey = low; iKey <= high; iKey++) {
4775 RegionKeyTable[iKey] = pRegion;
4776 }
4777 }
4778 }
4779
4780 Instrument::~Instrument() {
4781 for (int i = 0 ; pMidiRules[i] ; i++) {
4782 delete pMidiRules[i];
4783 }
4784 delete[] pMidiRules;
4785 if (pScriptRefs) delete pScriptRefs;
4786 }
4787
4788 /**
4789 * Apply Instrument with all its Regions to the respective RIFF chunks.
4790 * You have to call File::Save() to make changes persistent.
4791 *
4792 * Usually there is absolutely no need to call this method explicitly.
4793 * It will be called automatically when File::Save() was called.
4794 *
4795 * @param pProgress - callback function for progress notification
4796 * @throws gig::Exception if samples cannot be dereferenced
4797 */
4798 void Instrument::UpdateChunks(progress_t* pProgress) {
4799 // first update base classes' chunks
4800 DLS::Instrument::UpdateChunks(pProgress);
4801
4802 // update Regions' chunks
4803 {
4804 RegionList::iterator iter = pRegions->begin();
4805 RegionList::iterator end = pRegions->end();
4806 for (; iter != end; ++iter)
4807 (*iter)->UpdateChunks(pProgress);
4808 }
4809
4810 // make sure 'lart' RIFF list chunk exists
4811 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4812 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4813 // make sure '3ewg' RIFF chunk exists
4814 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4815 if (!_3ewg) {
4816 File* pFile = (File*) GetParent();
4817
4818 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4819 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4820 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4821 memset(_3ewg->LoadChunkData(), 0, size);
4822 }
4823 // update '3ewg' RIFF chunk
4824 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4825 store16(&pData[0], EffectSend);
4826 store32(&pData[2], Attenuation);
4827 store16(&pData[6], FineTune);
4828 store16(&pData[8], PitchbendRange);
4829 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4830 DimensionKeyRange.low << 1;
4831 pData[10] = dimkeystart;
4832 pData[11] = DimensionKeyRange.high;
4833
4834 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4835 pData[32] = 0;
4836 pData[33] = 0;
4837 } else {
4838 for (int i = 0 ; pMidiRules[i] ; i++) {
4839 pMidiRules[i]->UpdateChunks(pData);
4840 }
4841 }
4842
4843 // own gig format extensions
4844 if (ScriptSlotCount()) {
4845 // make sure we have converted the original loaded script file
4846 // offsets into valid Script object pointers
4847 LoadScripts();
4848
4849 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4850 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4851 const int slotCount = (int) pScriptRefs->size();
4852 const int headerSize = 3 * sizeof(uint32_t);
4853 const int slotSize = 2 * sizeof(uint32_t);
4854 const int totalChunkSize = headerSize + slotCount * slotSize;
4855 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4856 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4857 else ckSCSL->Resize(totalChunkSize);
4858 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4859 int pos = 0;
4860 store32(&pData[pos], headerSize);
4861 pos += sizeof(uint32_t);
4862 store32(&pData[pos], slotCount);
4863 pos += sizeof(uint32_t);
4864 store32(&pData[pos], slotSize);
4865 pos += sizeof(uint32_t);
4866 for (int i = 0; i < slotCount; ++i) {
4867 // arbitrary value, the actual file offset will be updated in
4868 // UpdateScriptFileOffsets() after the file has been resized
4869 int bogusFileOffset = 0;
4870 store32(&pData[pos], bogusFileOffset);
4871 pos += sizeof(uint32_t);
4872 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4873 pos += sizeof(uint32_t);
4874 }
4875 } else {
4876 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4877 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4878 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4879 }
4880 }
4881
4882 void Instrument::UpdateScriptFileOffsets() {
4883 // own gig format extensions
4884 if (pScriptRefs && pScriptRefs->size() > 0) {
4885 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4886 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4887 const int slotCount = (int) pScriptRefs->size();
4888 const int headerSize = 3 * sizeof(uint32_t);
4889 ckSCSL->SetPos(headerSize);
4890 for (int i = 0; i < slotCount; ++i) {
4891 uint32_t fileOffset = uint32_t(
4892 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4893 (*pScriptRefs)[i].script->pChunk->GetPos() -
4894 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4895 );
4896 ckSCSL->WriteUint32(&fileOffset);
4897 // jump over flags entry (containing the bypass flag)
4898 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4899 }
4900 }
4901 }
4902
4903 /**
4904 * Returns the appropriate Region for a triggered note.
4905 *
4906 * @param Key MIDI Key number of triggered note / key (0 - 127)
4907 * @returns pointer adress to the appropriate Region or NULL if there
4908 * there is no Region defined for the given \a Key
4909 */
4910 Region* Instrument::GetRegion(unsigned int Key) {
4911 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4912 return RegionKeyTable[Key];
4913
4914 /*for (int i = 0; i < Regions; i++) {
4915 if (Key <= pRegions[i]->KeyRange.high &&
4916 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4917 }
4918 return NULL;*/
4919 }
4920
4921 /**
4922 * Returns the first Region of the instrument. You have to call this
4923 * method once before you use GetNextRegion().
4924 *
4925 * @returns pointer address to first region or NULL if there is none
4926 * @see GetNextRegion()
4927 */
4928 Region* Instrument::GetFirstRegion() {
4929 if (!pRegions) return NULL;
4930 RegionsIterator = pRegions->begin();
4931 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4932 }
4933
4934 /**
4935 * Returns the next Region of the instrument. You have to call
4936 * GetFirstRegion() once before you can use this method. By calling this
4937 * method multiple times it iterates through the available Regions.
4938 *
4939 * @returns pointer address to the next region or NULL if end reached
4940 * @see GetFirstRegion()
4941 */
4942 Region* Instrument::GetNextRegion() {
4943 if (!pRegions) return NULL;
4944 RegionsIterator++;
4945 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4946 }
4947
4948 Region* Instrument::AddRegion() {
4949 // create new Region object (and its RIFF chunks)
4950 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4951 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4952 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4953 Region* pNewRegion = new Region(this, rgn);
4954 pRegions->push_back(pNewRegion);
4955 Regions = (uint32_t) pRegions->size();
4956 // update Region key table for fast lookup
4957 UpdateRegionKeyTable();
4958 // done
4959 return pNewRegion;
4960 }
4961
4962 void Instrument::DeleteRegion(Region* pRegion) {
4963 if (!pRegions) return;
4964 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4965 // update Region key table for fast lookup
4966 UpdateRegionKeyTable();
4967 }
4968
4969 /**
4970 * Move this instrument at the position before @arg dst.
4971 *
4972 * This method can be used to reorder the sequence of instruments in a
4973 * .gig file. This might be helpful especially on large .gig files which
4974 * contain a large number of instruments within the same .gig file. So
4975 * grouping such instruments to similar ones, can help to keep track of them
4976 * when working with such complex .gig files.
4977 *
4978 * When calling this method, this instrument will be removed from in its
4979 * current position in the instruments list and moved to the requested
4980 * target position provided by @param dst. You may also pass NULL as
4981 * argument to this method, in that case this intrument will be moved to the
4982 * very end of the .gig file's instrument list.
4983 *
4984 * You have to call Save() to make the order change persistent to the .gig
4985 * file.
4986 *
4987 * Currently this method is limited to moving the instrument within the same
4988 * .gig file. Trying to move it to another .gig file by calling this method
4989 * will throw an exception.
4990 *
4991 * @param dst - destination instrument at which this instrument will be
4992 * moved to, or pass NULL for moving to end of list
4993 * @throw gig::Exception if this instrument and target instrument are not
4994 * part of the same file
4995 */
4996 void Instrument::MoveTo(Instrument* dst) {
4997 if (dst && GetParent() != dst->GetParent())
4998 throw Exception(
4999 "gig::Instrument::MoveTo() can only be used for moving within "
5000 "the same gig file."
5001 );
5002
5003 File* pFile = (File*) GetParent();
5004
5005 // move this instrument within the instrument list
5006 {
5007 File::InstrumentList& list = *pFile->pInstruments;
5008
5009 File::InstrumentList::iterator itFrom =
5010 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5011
5012 File::InstrumentList::iterator itTo =
5013 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5014
5015 list.splice(itTo, list, itFrom);
5016 }
5017
5018 // move the instrument's actual list RIFF chunk appropriately
5019 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5020 lstCkInstruments->MoveSubChunk(
5021 this->pCkInstrument,
5022 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5023 );
5024 }
5025
5026 /**
5027 * Returns a MIDI rule of the instrument.
5028 *
5029 * The list of MIDI rules, at least in gig v3, always contains at
5030 * most two rules. The second rule can only be the DEF filter
5031 * (which currently isn't supported by libgig).
5032 *
5033 * @param i - MIDI rule number
5034 * @returns pointer address to MIDI rule number i or NULL if there is none
5035 */
5036 MidiRule* Instrument::GetMidiRule(int i) {
5037 return pMidiRules[i];
5038 }
5039
5040 /**
5041 * Adds the "controller trigger" MIDI rule to the instrument.
5042 *
5043 * @returns the new MIDI rule
5044 */
5045 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5046 delete pMidiRules[0];
5047 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5048 pMidiRules[0] = r;
5049 pMidiRules[1] = 0;
5050 return r;
5051 }
5052
5053 /**
5054 * Adds the legato MIDI rule to the instrument.
5055 *
5056 * @returns the new MIDI rule
5057 */
5058 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5059 delete pMidiRules[0];
5060 MidiRuleLegato* r = new MidiRuleLegato;
5061 pMidiRules[0] = r;
5062 pMidiRules[1] = 0;
5063 return r;
5064 }
5065
5066 /**
5067 * Adds the alternator MIDI rule to the instrument.
5068 *
5069 * @returns the new MIDI rule
5070 */
5071 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5072 delete pMidiRules[0];
5073 MidiRuleAlternator* r = new MidiRuleAlternator;
5074 pMidiRules[0] = r;
5075 pMidiRules[1] = 0;
5076 return r;
5077 }
5078
5079 /**
5080 * Deletes a MIDI rule from the instrument.
5081 *
5082 * @param i - MIDI rule number
5083 */
5084 void Instrument::DeleteMidiRule(int i) {
5085 delete pMidiRules[i];
5086 pMidiRules[i] = 0;
5087 }
5088
5089 void Instrument::LoadScripts() {
5090 if (pScriptRefs) return;
5091 pScriptRefs = new std::vector<_ScriptPooolRef>;
5092 if (scriptPoolFileOffsets.empty()) return;
5093 File* pFile = (File*) GetParent();
5094 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5095 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5096 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5097 ScriptGroup* group = pFile->GetScriptGroup(i);
5098 for (uint s = 0; group->GetScript(s); ++s) {
5099 Script* script = group->GetScript(s);
5100 if (script->pChunk) {
5101 uint32_t offset = uint32_t(
5102 script->pChunk->GetFilePos() -
5103 script->pChunk->GetPos() -
5104 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5105 );
5106 if (offset == soughtOffset)
5107 {
5108 _ScriptPooolRef ref;
5109 ref.script = script;
5110 ref.bypass = scriptPoolFileOffsets[k].bypass;
5111 pScriptRefs->push_back(ref);
5112 break;
5113 }
5114 }
5115 }
5116 }
5117 }
5118 // we don't need that anymore
5119 scriptPoolFileOffsets.clear();
5120 }
5121
5122 /** @brief Get instrument script (gig format extension).
5123 *
5124 * Returns the real-time instrument script of instrument script slot
5125 * @a index.
5126 *
5127 * @note This is an own format extension which did not exist i.e. in the
5128 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5129 * gigedit.
5130 *
5131 * @param index - instrument script slot index
5132 * @returns script or NULL if index is out of bounds
5133 */
5134 Script* Instrument::GetScriptOfSlot(uint index) {
5135 LoadScripts();
5136 if (index >= pScriptRefs->size()) return NULL;
5137 return pScriptRefs->at(index).script;
5138 }
5139
5140 /** @brief Add new instrument script slot (gig format extension).
5141 *
5142 * Add the given real-time instrument script reference to this instrument,
5143 * which shall be executed by the sampler for for this instrument. The
5144 * script will be added to the end of the script list of this instrument.
5145 * The positions of the scripts in the Instrument's Script list are
5146 * relevant, because they define in which order they shall be executed by
5147 * the sampler. For this reason it is also legal to add the same script
5148 * twice to an instrument, for example you might have a script called
5149 * "MyFilter" which performs an event filter task, and you might have
5150 * another script called "MyNoteTrigger" which triggers new notes, then you
5151 * might for example have the following list of scripts on the instrument:
5152 *
5153 * 1. Script "MyFilter"
5154 * 2. Script "MyNoteTrigger"
5155 * 3. Script "MyFilter"
5156 *
5157 * Which would make sense, because the 2nd script launched new events, which
5158 * you might need to filter as well.
5159 *
5160 * There are two ways to disable / "bypass" scripts. You can either disable
5161 * a script locally for the respective script slot on an instrument (i.e. by
5162 * passing @c false to the 2nd argument of this method, or by calling
5163 * SetScriptBypassed()). Or you can disable a script globally for all slots
5164 * and all instruments by setting Script::Bypass.
5165 *
5166 * @note This is an own format extension which did not exist i.e. in the
5167 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5168 * gigedit.
5169 *
5170 * @param pScript - script that shall be executed for this instrument
5171 * @param bypass - if enabled, the sampler shall skip executing this
5172 * script (in the respective list position)
5173 * @see SetScriptBypassed()
5174 */
5175 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5176 LoadScripts();
5177 _ScriptPooolRef ref = { pScript, bypass };
5178 pScriptRefs->push_back(ref);
5179 }
5180
5181 /** @brief Flip two script slots with each other (gig format extension).
5182 *
5183 * Swaps the position of the two given scripts in the Instrument's Script
5184 * list. The positions of the scripts in the Instrument's Script list are
5185 * relevant, because they define in which order they shall be executed by
5186 * the sampler.
5187 *
5188 * @note This is an own format extension which did not exist i.e. in the
5189 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5190 * gigedit.
5191 *
5192 * @param index1 - index of the first script slot to swap
5193 * @param index2 - index of the second script slot to swap
5194 */
5195 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5196 LoadScripts();
5197 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5198 return;
5199 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5200 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5201 (*pScriptRefs)[index2] = tmp;
5202 }
5203
5204 /** @brief Remove script slot.
5205 *
5206 * Removes the script slot with the given slot index.
5207 *
5208 * @param index - index of script slot to remove
5209 */
5210 void Instrument::RemoveScriptSlot(uint index) {
5211 LoadScripts();
5212 if (index >= pScriptRefs->size()) return;
5213 pScriptRefs->erase( pScriptRefs->begin() + index );
5214 }
5215
5216 /** @brief Remove reference to given Script (gig format extension).
5217 *
5218 * This will remove all script slots on the instrument which are referencing
5219 * the given script.
5220 *
5221 * @note This is an own format extension which did not exist i.e. in the
5222 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5223 * gigedit.
5224 *
5225 * @param pScript - script reference to remove from this instrument
5226 * @see RemoveScriptSlot()
5227 */
5228 void Instrument::RemoveScript(Script* pScript) {
5229 LoadScripts();
5230 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5231 if ((*pScriptRefs)[i].script == pScript) {
5232 pScriptRefs->erase( pScriptRefs->begin() + i );
5233 }
5234 }
5235 }
5236
5237 /** @brief Instrument's amount of script slots.
5238 *
5239 * This method returns the amount of script slots this instrument currently
5240 * uses.
5241 *
5242 * A script slot is a reference of a real-time instrument script to be
5243 * executed by the sampler. The scripts will be executed by the sampler in
5244 * sequence of the slots. One (same) script may be referenced multiple
5245 * times in different slots.
5246 *
5247 * @note This is an own format extension which did not exist i.e. in the
5248 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5249 * gigedit.
5250 */
5251 uint Instrument::ScriptSlotCount() const {
5252 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5253 }
5254
5255 /** @brief Whether script execution shall be skipped.
5256 *
5257 * Defines locally for the Script reference slot in the Instrument's Script
5258 * list, whether the script shall be skipped by the sampler regarding
5259 * execution.
5260 *
5261 * It is also possible to ignore exeuction of the script globally, for all
5262 * slots and for all instruments by setting Script::Bypass.
5263 *
5264 * @note This is an own format extension which did not exist i.e. in the
5265 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5266 * gigedit.
5267 *
5268 * @param index - index of the script slot on this instrument
5269 * @see Script::Bypass
5270 */
5271 bool Instrument::IsScriptSlotBypassed(uint index) {
5272 if (index >= ScriptSlotCount()) return false;
5273 return pScriptRefs ? pScriptRefs->at(index).bypass
5274 : scriptPoolFileOffsets.at(index).bypass;
5275
5276 }
5277
5278 /** @brief Defines whether execution shall be skipped.
5279 *
5280 * You can call this method to define locally whether or whether not the
5281 * given script slot shall be executed by the sampler.
5282 *
5283 * @note This is an own format extension which did not exist i.e. in the
5284 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5285 * gigedit.
5286 *
5287 * @param index - script slot index on this instrument
5288 * @param bBypass - if true, the script slot will be skipped by the sampler
5289 * @see Script::Bypass
5290 */
5291 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5292 if (index >= ScriptSlotCount()) return;
5293 if (pScriptRefs)
5294 pScriptRefs->at(index).bypass = bBypass;
5295 else
5296 scriptPoolFileOffsets.at(index).bypass = bBypass;
5297 }
5298
5299 /**
5300 * Make a (semi) deep copy of the Instrument object given by @a orig
5301 * and assign it to this object.
5302 *
5303 * Note that all sample pointers referenced by @a orig are simply copied as
5304 * memory address. Thus the respective samples are shared, not duplicated!
5305 *
5306 * @param orig - original Instrument object to be copied from
5307 */
5308 void Instrument::CopyAssign(const Instrument* orig) {
5309 CopyAssign(orig, NULL);
5310 }
5311
5312 /**
5313 * Make a (semi) deep copy of the Instrument object given by @a orig
5314 * and assign it to this object.
5315 *
5316 * @param orig - original Instrument object to be copied from
5317 * @param mSamples - crosslink map between the foreign file's samples and
5318 * this file's samples
5319 */
5320 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5321 // handle base class
5322 // (without copying DLS region stuff)
5323 DLS::Instrument::CopyAssignCore(orig);
5324
5325 // handle own member variables
5326 Attenuation = orig->Attenuation;
5327 EffectSend = orig->EffectSend;
5328 FineTune = orig->FineTune;
5329 PitchbendRange = orig->PitchbendRange;
5330 PianoReleaseMode = orig->PianoReleaseMode;
5331 DimensionKeyRange = orig->DimensionKeyRange;
5332 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5333 pScriptRefs = orig->pScriptRefs;
5334
5335 // free old midi rules
5336 for (int i = 0 ; pMidiRules[i] ; i++) {
5337 delete pMidiRules[i];
5338 }
5339 //TODO: MIDI rule copying
5340 pMidiRules[0] = NULL;
5341
5342 // delete all old regions
5343 while (Regions) DeleteRegion(GetFirstRegion());
5344 // create new regions and copy them from original
5345 {
5346 RegionList::const_iterator it = orig->pRegions->begin();
5347 for (int i = 0; i < orig->Regions; ++i, ++it) {
5348 Region* dstRgn = AddRegion();
5349 //NOTE: Region does semi-deep copy !
5350 dstRgn->CopyAssign(
5351 static_cast<gig::Region*>(*it),
5352 mSamples
5353 );
5354 }
5355 }
5356
5357 UpdateRegionKeyTable();
5358 }
5359
5360
5361 // *************** Group ***************
5362 // *
5363
5364 /** @brief Constructor.
5365 *
5366 * @param file - pointer to the gig::File object
5367 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5368 * NULL if this is a new Group
5369 */
5370 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5371 pFile = file;
5372 pNameChunk = ck3gnm;
5373 ::LoadString(pNameChunk, Name);
5374 }
5375
5376 Group::~Group() {
5377 // remove the chunk associated with this group (if any)
5378 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5379 }
5380
5381 /** @brief Update chunks with current group settings.
5382 *
5383 * Apply current Group field values to the respective chunks. You have
5384 * to call File::Save() to make changes persistent.
5385 *
5386 * Usually there is absolutely no need to call this method explicitly.
5387 * It will be called automatically when File::Save() was called.
5388 *
5389 * @param pProgress - callback function for progress notification
5390 */
5391 void Group::UpdateChunks(progress_t* pProgress) {
5392 // make sure <3gri> and <3gnl> list chunks exist
5393 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5394 if (!_3gri) {
5395 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5396 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5397 }
5398 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5399 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5400
5401 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5402 // v3 has a fixed list of 128 strings, find a free one
5403 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5404 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5405 pNameChunk = ck;
5406 break;
5407 }
5408 }
5409 }
5410
5411 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5412 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5413 }
5414
5415 /**
5416 * Returns the first Sample of this Group. You have to call this method
5417 * once before you use GetNextSample().
5418 *
5419 * <b>Notice:</b> this method might block for a long time, in case the
5420 * samples of this .gig file were not scanned yet
5421 *
5422 * @returns pointer address to first Sample or NULL if there is none
5423 * applied to this Group
5424 * @see GetNextSample()
5425 */
5426 Sample* Group::GetFirstSample() {
5427 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5428 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5429 if (pSample->GetGroup() == this) return pSample;
5430 }
5431 return NULL;
5432 }
5433
5434 /**
5435 * Returns the next Sample of the Group. You have to call
5436 * GetFirstSample() once before you can use this method. By calling this
5437 * method multiple times it iterates through the Samples assigned to
5438 * this Group.
5439 *
5440 * @returns pointer address to the next Sample of this Group or NULL if
5441 * end reached
5442 * @see GetFirstSample()
5443 */
5444 Sample* Group::GetNextSample() {
5445 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5446 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5447 if (pSample->GetGroup() == this) return pSample;
5448 }
5449 return NULL;
5450 }
5451
5452 /**
5453 * Move Sample given by \a pSample from another Group to this Group.
5454 */
5455 void Group::AddSample(Sample* pSample) {
5456 pSample->pGroup = this;
5457 }
5458
5459 /**
5460 * Move all members of this group to another group (preferably the 1st
5461 * one except this). This method is called explicitly by
5462 * File::DeleteGroup() thus when a Group was deleted. This code was
5463 * intentionally not placed in the destructor!
5464 */
5465 void Group::MoveAll() {
5466 // get "that" other group first
5467 Group* pOtherGroup = NULL;
5468 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5469 if (pOtherGroup != this) break;
5470 }
5471 if (!pOtherGroup) throw Exception(
5472 "Could not move samples to another group, since there is no "
5473 "other Group. This is a bug, report it!"
5474 );
5475 // now move all samples of this group to the other group
5476 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5477 pOtherGroup->AddSample(pSample);
5478 }
5479 }
5480
5481
5482
5483 // *************** File ***************
5484 // *
5485
5486 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5487 const DLS::version_t File::VERSION_2 = {
5488 0, 2, 19980628 & 0xffff, 19980628 >> 16
5489 };
5490
5491 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5492 const DLS::version_t File::VERSION_3 = {
5493 0, 3, 20030331 & 0xffff, 20030331 >> 16
5494 };
5495
5496 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5497 { CHUNK_ID_IARL, 256 },
5498 { CHUNK_ID_IART, 128 },
5499 { CHUNK_ID_ICMS, 128 },
5500 { CHUNK_ID_ICMT, 1024 },
5501 { CHUNK_ID_ICOP, 128 },
5502 { CHUNK_ID_ICRD, 128 },
5503 { CHUNK_ID_IENG, 128 },
5504 { CHUNK_ID_IGNR, 128 },
5505 { CHUNK_ID_IKEY, 128 },
5506 { CHUNK_ID_IMED, 128 },
5507 { CHUNK_ID_INAM, 128 },
5508 { CHUNK_ID_IPRD, 128 },
5509 { CHUNK_ID_ISBJ, 128 },
5510 { CHUNK_ID_ISFT, 128 },
5511 { CHUNK_ID_ISRC, 128 },
5512 { CHUNK_ID_ISRF, 128 },
5513 { CHUNK_ID_ITCH, 128 },
5514 { 0, 0 }
5515 };
5516
5517 File::File() : DLS::File() {
5518 bAutoLoad = true;
5519 *pVersion = VERSION_3;
5520 pGroups = NULL;
5521 pScriptGroups = NULL;
5522 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5523 pInfo->ArchivalLocation = String(256, ' ');
5524
5525 // add some mandatory chunks to get the file chunks in right
5526 // order (INFO chunk will be moved to first position later)
5527 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5528 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5529 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5530
5531 GenerateDLSID();
5532 }
5533
5534 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5535 bAutoLoad = true;
5536 pGroups = NULL;
5537 pScriptGroups = NULL;
5538 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5539 }
5540
5541 File::~File() {
5542 if (pGroups) {
5543 std::list<Group*>::iterator iter = pGroups->begin();
5544 std::list<Group*>::iterator end = pGroups->end();
5545 while (iter != end) {
5546 delete *iter;
5547 ++iter;
5548 }
5549 delete pGroups;
5550 }
5551 if (pScriptGroups) {
5552 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5553 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5554 while (iter != end) {
5555 delete *iter;
5556 ++iter;
5557 }
5558 delete pScriptGroups;
5559 }
5560 }
5561
5562 Sample* File::GetFirstSample(progress_t* pProgress) {
5563 if (!pSamples) LoadSamples(pProgress);
5564 if (!pSamples) return NULL;
5565 SamplesIterator = pSamples->begin();
5566 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5567 }
5568
5569 Sample* File::GetNextSample() {
5570 if (!pSamples) return NULL;
5571 SamplesIterator++;
5572 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5573 }
5574
5575 /**
5576 * Returns Sample object of @a index.
5577 *
5578 * @returns sample object or NULL if index is out of bounds
5579 */
5580 Sample* File::GetSample(uint index) {
5581 if (!pSamples) LoadSamples();
5582 if (!pSamples) return NULL;
5583 DLS::File::SampleList::iterator it = pSamples->begin();
5584 for (int i = 0; i < index; ++i) {
5585 ++it;
5586 if (it == pSamples->end()) return NULL;
5587 }
5588 if (it == pSamples->end()) return NULL;
5589 return static_cast<gig::Sample*>( *it );
5590 }
5591
5592 /** @brief Add a new sample.
5593 *
5594 * This will create a new Sample object for the gig file. You have to
5595 * call Save() to make this persistent to the file.
5596 *
5597 * @returns pointer to new Sample object
5598 */
5599 Sample* File::AddSample() {
5600 if (!pSamples) LoadSamples();
5601 __ensureMandatoryChunksExist();
5602 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5603 // create new Sample object and its respective 'wave' list chunk
5604 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5605 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5606
5607 // add mandatory chunks to get the chunks in right order
5608 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5609 wave->AddSubList(LIST_TYPE_INFO);
5610
5611 pSamples->push_back(pSample);
5612 return pSample;
5613 }
5614
5615 /** @brief Delete a sample.
5616 *
5617 * This will delete the given Sample object from the gig file. Any
5618 * references to this sample from Regions and DimensionRegions will be
5619 * removed. You have to call Save() to make this persistent to the file.
5620 *
5621 * @param pSample - sample to delete
5622 * @throws gig::Exception if given sample could not be found
5623 */
5624 void File::DeleteSample(Sample* pSample) {
5625 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5626 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5627 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5628 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5629 pSamples->erase(iter);
5630 delete pSample;
5631
5632 SampleList::iterator tmp = SamplesIterator;
5633 // remove all references to the sample
5634 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5635 instrument = GetNextInstrument()) {
5636 for (Region* region = instrument->GetFirstRegion() ; region ;
5637 region = instrument->GetNextRegion()) {
5638
5639 if (region->GetSample() == pSample) region->SetSample(NULL);
5640
5641 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5642 gig::DimensionRegion *d = region->pDimensionRegions[i];
5643 if (d->pSample == pSample) d->pSample = NULL;
5644 }
5645 }
5646 }
5647 SamplesIterator = tmp; // restore iterator
5648 }
5649
5650 void File::LoadSamples() {
5651 LoadSamples(NULL);
5652 }
5653
5654 void File::LoadSamples(progress_t* pProgress) {
5655 // Groups must be loaded before samples, because samples will try
5656 // to resolve the group they belong to
5657 if (!pGroups) LoadGroups();
5658
5659 if (!pSamples) pSamples = new SampleList;
5660
5661 RIFF::File* file = pRIFF;
5662
5663 // just for progress calculation
5664 int iSampleIndex = 0;
5665 int iTotalSamples = WavePoolCount;
5666
5667 // check if samples should be loaded from extension files
5668 // (only for old gig files < 2 GB)
5669 int lastFileNo = 0;
5670 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5671 for (int i = 0 ; i < WavePoolCount ; i++) {
5672 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5673 }
5674 }
5675 String name(pRIFF->GetFileName());
5676 int nameLen = (int) name.length();
5677 char suffix[6];
5678 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5679
5680 for (int fileNo = 0 ; ; ) {
5681 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5682 if (wvpl) {
5683 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5684 RIFF::List* wave = wvpl->GetFirstSubList();
5685 while (wave) {
5686 if (wave->GetListType() == LIST_TYPE_WAVE) {
5687 // notify current progress
5688 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5689 __notify_progress(pProgress, subprogress);
5690
5691 file_offset_t waveFileOffset = wave->GetFilePos();
5692 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5693
5694 iSampleIndex++;
5695 }
5696 wave = wvpl->GetNextSubList();
5697 }
5698
5699 if (fileNo == lastFileNo) break;
5700
5701 // open extension file (*.gx01, *.gx02, ...)
5702 fileNo++;
5703 sprintf(suffix, ".gx%02d", fileNo);
5704 name.replace(nameLen, 5, suffix);
5705 file = new RIFF::File(name);
5706 ExtensionFiles.push_back(file);
5707 } else break;
5708 }
5709
5710 __notify_progress(pProgress, 1.0); // notify done
5711 }
5712
5713 Instrument* File::GetFirstInstrument() {
5714 if (!pInstruments) LoadInstruments();
5715 if (!pInstruments) return NULL;
5716 InstrumentsIterator = pInstruments->begin();
5717 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5718 }
5719
5720 Instrument* File::GetNextInstrument() {
5721 if (!pInstruments) return NULL;
5722 InstrumentsIterator++;
5723 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5724 }
5725
5726 /**
5727 * Returns the instrument with the given index.
5728 *
5729 * @param index - number of the sought instrument (0..n)
5730 * @param pProgress - optional: callback function for progress notification
5731 * @returns sought instrument or NULL if there's no such instrument
5732 */
5733 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5734 if (!pInstruments) {
5735 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5736
5737 // sample loading subtask
5738 progress_t subprogress;
5739 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5740 __notify_progress(&subprogress, 0.0f);
5741 if (GetAutoLoad())
5742 GetFirstSample(&subprogress); // now force all samples to be loaded
5743 __notify_progress(&subprogress, 1.0f);
5744
5745 // instrument loading subtask
5746 if (pProgress && pProgress->callback) {
5747 subprogress.__range_min = subprogress.__range_max;
5748 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5749 }
5750 __notify_progress(&subprogress, 0.0f);
5751 LoadInstruments(&subprogress);
5752 __notify_progress(&subprogress, 1.0f);
5753 }
5754 if (!pInstruments) return NULL;
5755 InstrumentsIterator = pInstruments->begin();
5756 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5757 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5758 InstrumentsIterator++;
5759 }
5760 return NULL;
5761 }
5762
5763 /** @brief Add a new instrument definition.
5764 *
5765 * This will create a new Instrument object for the gig file. You have
5766 * to call Save() to make this persistent to the file.
5767 *
5768 * @returns pointer to new Instrument object
5769 */
5770 Instrument* File::AddInstrument() {
5771 if (!pInstruments) LoadInstruments();
5772 __ensureMandatoryChunksExist();
5773 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5774 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5775
5776 // add mandatory chunks to get the chunks in right order
5777 lstInstr->AddSubList(LIST_TYPE_INFO);
5778 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5779
5780 Instrument* pInstrument = new Instrument(this, lstInstr);
5781 pInstrument->GenerateDLSID();
5782
5783 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5784
5785 // this string is needed for the gig to be loadable in GSt:
5786 pInstrument->pInfo->Software = "Endless Wave";
5787
5788 pInstruments->push_back(pInstrument);
5789 return pInstrument;
5790 }
5791
5792 /** @brief Add a duplicate of an existing instrument.
5793 *
5794 * Duplicates the instrument definition given by @a orig and adds it
5795 * to this file. This allows in an instrument editor application to
5796 * easily create variations of an instrument, which will be stored in
5797 * the same .gig file, sharing i.e. the same samples.
5798 *
5799 * Note that all sample pointers referenced by @a orig are simply copied as
5800 * memory address. Thus the respective samples are shared, not duplicated!
5801 *
5802 * You have to call Save() to make this persistent to the file.
5803 *
5804 * @param orig - original instrument to be copied
5805 * @returns duplicated copy of the given instrument
5806 */
5807 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5808 Instrument* instr = AddInstrument();
5809 instr->CopyAssign(orig);
5810 return instr;
5811 }
5812
5813 /** @brief Add content of another existing file.
5814 *
5815 * Duplicates the samples, groups and instruments of the original file
5816 * given by @a pFile and adds them to @c this File. In case @c this File is
5817 * a new one that you haven't saved before, then you have to call
5818 * SetFileName() before calling AddContentOf(), because this method will
5819 * automatically save this file during operation, which is required for
5820 * writing the sample waveform data by disk streaming.
5821 *
5822 * @param pFile - original file whose's content shall be copied from
5823 */
5824 void File::AddContentOf(File* pFile) {
5825 static int iCallCount = -1;
5826 iCallCount++;
5827 std::map<Group*,Group*> mGroups;
5828 std::map<Sample*,Sample*> mSamples;
5829
5830 // clone sample groups
5831 for (int i = 0; pFile->GetGroup(i); ++i) {
5832 Group* g = AddGroup();
5833 g->Name =
5834 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5835 mGroups[pFile->GetGroup(i)] = g;
5836 }
5837
5838 // clone samples (not waveform data here yet)
5839 for (int i = 0; pFile->GetSample(i); ++i) {
5840 Sample* s = AddSample();
5841 s->CopyAssignMeta(pFile->GetSample(i));
5842 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5843 mSamples[pFile->GetSample(i)] = s;
5844 }
5845
5846 // clone script groups and their scripts
5847 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5848 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5849 ScriptGroup* dg = AddScriptGroup();
5850 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5851 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5852 Script* ss = sg->GetScript(iScript);
5853 Script* ds = dg->AddScript();
5854 ds->CopyAssign(ss);
5855 }
5856 }
5857
5858 //BUG: For some reason this method only works with this additional
5859 // Save() call in between here.
5860 //
5861 // Important: The correct one of the 2 Save() methods has to be called
5862 // here, depending on whether the file is completely new or has been
5863 // saved to disk already, otherwise it will result in data corruption.
5864 if (pRIFF->IsNew())
5865 Save(GetFileName());
5866 else
5867 Save();
5868
5869 // clone instruments
5870 // (passing the crosslink table here for the cloned samples)
5871 for (int i = 0; pFile->GetInstrument(i); ++i) {
5872 Instrument* instr = AddInstrument();
5873 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5874 }
5875
5876 // Mandatory: file needs to be saved to disk at this point, so this
5877 // file has the correct size and data layout for writing the samples'
5878 // waveform data to disk.
5879 Save();
5880
5881 // clone samples' waveform data
5882 // (using direct read & write disk streaming)
5883 for (int i = 0; pFile->GetSample(i); ++i) {
5884 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5885 }
5886 }
5887
5888 /** @brief Delete an instrument.
5889 *
5890 * This will delete the given Instrument object from the gig file. You
5891 * have to call Save() to make this persistent to the file.
5892 *
5893 * @param pInstrument - instrument to delete
5894 * @throws gig::Exception if given instrument could not be found
5895 */
5896 void File::DeleteInstrument(Instrument* pInstrument) {
5897 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5898 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5899 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5900 pInstruments->erase(iter);
5901 delete pInstrument;
5902 }
5903
5904 void File::LoadInstruments() {
5905 LoadInstruments(NULL);
5906 }
5907
5908 void File::LoadInstruments(progress_t* pProgress) {
5909 if (!pInstruments) pInstruments = new InstrumentList;
5910 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5911 if (lstInstruments) {
5912 int iInstrumentIndex = 0;
5913 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5914 while (lstInstr) {
5915 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5916 // notify current progress
5917 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5918 __notify_progress(pProgress, localProgress);
5919
5920 // divide local progress into subprogress for loading current Instrument
5921 progress_t subprogress;
5922 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5923
5924 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5925
5926 iInstrumentIndex++;
5927 }
5928 lstInstr = lstInstruments->GetNextSubList();
5929 }
5930 __notify_progress(pProgress, 1.0); // notify done
5931 }
5932 }
5933
5934 /// Updates the 3crc chunk with the checksum of a sample. The
5935 /// update is done directly to disk, as this method is called
5936 /// after File::Save()
5937 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5938 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5939 if (!_3crc) return;
5940
5941 // get the index of the sample
5942 int iWaveIndex = GetWaveTableIndexOf(pSample);
5943 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5944
5945 // write the CRC-32 checksum to disk
5946 _3crc->SetPos(iWaveIndex * 8);
5947 uint32_t one = 1;
5948 _3crc->WriteUint32(&one); // always 1
5949 _3crc->WriteUint32(&crc);
5950 }
5951
5952 uint32_t File::GetSampleChecksum(Sample* pSample) {
5953 // get the index of the sample
5954 int iWaveIndex = GetWaveTableIndexOf(pSample);
5955 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5956
5957 return GetSampleChecksumByIndex(iWaveIndex);
5958 }
5959
5960 uint32_t File::GetSampleChecksumByIndex(int index) {
5961 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5962
5963 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5964 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5965 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5966 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5967
5968 // read the CRC-32 checksum directly from disk
5969 size_t pos = index * 8;
5970 if (pos + 8 > _3crc->GetNewSize())
5971 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5972
5973 uint32_t one = load32(&pData[pos]); // always 1
5974 if (one != 1)
5975 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5976
5977 return load32(&pData[pos+4]);
5978 }
5979
5980 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5981 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5982 File::SampleList::iterator iter = pSamples->begin();
5983 File::SampleList::iterator end = pSamples->end();
5984 for (int index = 0; iter != end; ++iter, ++index)
5985 if (*iter == pSample)
5986 return index;
5987 return -1;
5988 }
5989
5990 /**
5991 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5992 * the CRC32 check sums of all samples' raw wave data.
5993 *
5994 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5995 */
5996 bool File::VerifySampleChecksumTable() {
5997 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5998 if (!_3crc) return false;
5999 if (_3crc->GetNewSize() <= 0) return false;
6000 if (_3crc->GetNewSize() % 8) return false;
6001 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6002 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6003
6004 const file_offset_t n = _3crc->GetNewSize() / 8;
6005
6006 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6007 if (!pData) return false;
6008
6009 for (file_offset_t i = 0; i < n; ++i) {
6010 uint32_t one = pData[i*2];
6011 if (one != 1) return false;
6012 }
6013
6014 return true;
6015 }
6016
6017 /**
6018 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6019 * file's checksum table with those new checksums. This might usually
6020 * just be necessary if the checksum table was damaged.
6021 *
6022 * @e IMPORTANT: The current implementation of this method only works
6023 * with files that have not been modified since it was loaded, because
6024 * it expects that no externally caused file structure changes are
6025 * required!
6026 *
6027 * Due to the expectation above, this method is currently protected
6028 * and actually only used by the command line tool "gigdump" yet.
6029 *
6030 * @returns true if Save() is required to be called after this call,
6031 * false if no further action is required
6032 */
6033 bool File::RebuildSampleChecksumTable() {
6034 // make sure sample chunks were scanned
6035 if (!pSamples) GetFirstSample();
6036
6037 bool bRequiresSave = false;
6038
6039 // make sure "3CRC" chunk exists with required size
6040 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6041 if (!_3crc) {
6042 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6043 // the order of einf and 3crc is not the same in v2 and v3
6044 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6045 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6046 bRequiresSave = true;
6047 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6048 _3crc->Resize(pSamples->size() * 8);
6049 bRequiresSave = true;
6050 }
6051
6052 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6053 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6054 {
6055 File::SampleList::iterator iter = pSamples->begin();
6056 File::SampleList::iterator end = pSamples->end();
6057 for (; iter != end; ++iter) {
6058 gig::Sample* pSample = (gig::Sample*) *iter;
6059 int index = GetWaveTableIndexOf(pSample);
6060 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6061 pData[index*2] = 1; // always 1
6062 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6063 }
6064 }
6065 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6066 // make sure file is in write mode
6067 pRIFF->SetMode(RIFF::stream_mode_read_write);
6068 {
6069 File::SampleList::iterator iter = pSamples->begin();
6070 File::SampleList::iterator end = pSamples->end();
6071 for (; iter != end; ++iter) {
6072 gig::Sample* pSample = (gig::Sample*) *iter;
6073 int index = GetWaveTableIndexOf(pSample);
6074 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6075 pSample->crc = pSample->CalculateWaveDataChecksum();
6076 SetSampleChecksum(pSample, pSample->crc);
6077 }
6078 }
6079 }
6080
6081 return bRequiresSave;
6082 }
6083
6084 Group* File::GetFirstGroup() {
6085 if (!pGroups) LoadGroups();
6086 // there must always be at least one group
6087 GroupsIterator = pGroups->begin();
6088 return *GroupsIterator;
6089 }
6090
6091 Group* File::GetNextGroup() {
6092 if (!pGroups) return NULL;
6093 ++GroupsIterator;
6094 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6095 }
6096
6097 /**
6098 * Returns the group with the given index.
6099 *
6100 * @param index - number of the sought group (0..n)
6101 * @returns sought group or NULL if there's no such group
6102 */
6103 Group* File::GetGroup(uint index) {
6104 if (!pGroups) LoadGroups();
6105 GroupsIterator = pGroups->begin();
6106 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6107 if (i == index) return *GroupsIterator;
6108 ++GroupsIterator;
6109 }
6110 return NULL;
6111 }
6112
6113 /**
6114 * Returns the group with the given group name.
6115 *
6116 * Note: group names don't have to be unique in the gig format! So there
6117 * can be multiple groups with the same name. This method will simply
6118 * return the first group found with the given name.
6119 *
6120 * @param name - name of the sought group
6121 * @returns sought group or NULL if there's no group with that name
6122 */
6123 Group* File::GetGroup(String name) {
6124 if (!pGroups) LoadGroups();
6125 GroupsIterator = pGroups->begin();
6126 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6127 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6128 return NULL;
6129 }
6130
6131 Group* File::AddGroup() {
6132 if (!pGroups) LoadGroups();
6133 // there must always be at least one group
6134 __ensureMandatoryChunksExist();
6135 Group* pGroup = new Group(this, NULL);
6136 pGroups->push_back(pGroup);
6137 return pGroup;
6138 }
6139
6140 /** @brief Delete a group and its samples.
6141 *
6142 * This will delete the given Group object and all the samples that
6143 * belong to this group from the gig file. You have to call Save() to
6144 * make this persistent to the file.
6145 *
6146 * @param pGroup - group to delete
6147 * @throws gig::Exception if given group could not be found
6148 */
6149 void File::DeleteGroup(Group* pGroup) {
6150 if (!pGroups) LoadGroups();
6151 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6152 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6153 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6154 // delete all members of this group
6155 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6156 DeleteSample(pSample);
6157 }
6158 // now delete this group object
6159 pGroups->erase(iter);
6160 delete pGroup;
6161 }
6162
6163 /** @brief Delete a group.
6164 *
6165 * This will delete the given Group object from the gig file. All the
6166 * samples that belong to this group will not be deleted, but instead
6167 * be moved to another group. You have to call Save() to make this
6168 * persistent to the file.
6169 *
6170 * @param pGroup - group to delete
6171 * @throws gig::Exception if given group could not be found
6172 */
6173 void File::DeleteGroupOnly(Group* pGroup) {
6174 if (!pGroups) LoadGroups();
6175 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6176 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6177 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6178 // move all members of this group to another group
6179 pGroup->MoveAll();
6180 pGroups->erase(iter);
6181 delete pGroup;
6182 }
6183
6184 void File::LoadGroups() {
6185 if (!pGroups) pGroups = new std::list<Group*>;
6186 // try to read defined groups from file
6187 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6188 if (lst3gri) {
6189 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6190 if (lst3gnl) {
6191 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6192 while (ck) {
6193 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6194 if (pVersion && pVersion->major == 3 &&
6195 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6196
6197 pGroups->push_back(new Group(this, ck));
6198 }
6199 ck = lst3gnl->GetNextSubChunk();
6200 }
6201 }
6202 }
6203 // if there were no group(s), create at least the mandatory default group
6204 if (!pGroups->size()) {
6205 Group* pGroup = new Group(this, NULL);
6206 pGroup->Name = "Default Group";
6207 pGroups->push_back(pGroup);
6208 }
6209 }
6210
6211 /** @brief Get instrument script group (by index).
6212 *
6213 * Returns the real-time instrument script group with the given index.
6214 *
6215 * @param index - number of the sought group (0..n)
6216 * @returns sought script group or NULL if there's no such group
6217 */
6218 ScriptGroup* File::GetScriptGroup(uint index) {
6219 if (!pScriptGroups) LoadScriptGroups();
6220 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6221 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6222 if (i == index) return *it;
6223 return NULL;
6224 }
6225
6226 /** @brief Get instrument script group (by name).
6227 *
6228 * Returns the first real-time instrument script group found with the given
6229 * group name. Note that group names may not necessarily be unique.
6230 *
6231 * @param name - name of the sought script group
6232 * @returns sought script group or NULL if there's no such group
6233 */
6234 ScriptGroup* File::GetScriptGroup(const String& name) {
6235 if (!pScriptGroups) LoadScriptGroups();
6236 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6237 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6238 if ((*it)->Name == name) return *it;
6239 return NULL;
6240 }
6241
6242 /** @brief Add new instrument script group.
6243 *
6244 * Adds a new, empty real-time instrument script group to the file.
6245 *
6246 * You have to call Save() to make this persistent to the file.
6247 *
6248 * @return new empty script group
6249 */
6250 ScriptGroup* File::AddScriptGroup() {
6251 if (!pScriptGroups) LoadScriptGroups();
6252 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6253 pScriptGroups->push_back(pScriptGroup);
6254 return pScriptGroup;
6255 }
6256
6257 /** @brief Delete an instrument script group.
6258 *
6259 * This will delete the given real-time instrument script group and all its
6260 * instrument scripts it contains. References inside instruments that are
6261 * using the deleted scripts will be removed from the respective instruments
6262 * accordingly.
6263 *
6264 * You have to call Save() to make this persistent to the file.
6265 *
6266 * @param pScriptGroup - script group to delete
6267 * @throws gig::Exception if given script group could not be found
6268 */
6269 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6270 if (!pScriptGroups) LoadScriptGroups();
6271 std::list<ScriptGroup*>::iterator iter =
6272 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6273 if (iter == pScriptGroups->end())
6274 throw gig::Exception("Could not delete script group, could not find given script group");
6275 pScriptGroups->erase(iter);
6276 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6277 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6278 if (pScriptGroup->pList)
6279 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6280 delete pScriptGroup;
6281 }
6282
6283 void File::LoadScriptGroups() {
6284 if (pScriptGroups) return;
6285 pScriptGroups = new std::list<ScriptGroup*>;
6286 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6287 if (lstLS) {
6288 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6289 lst = lstLS->GetNextSubList())
6290 {
6291 if (lst->GetListType() == LIST_TYPE_RTIS) {
6292 pScriptGroups->push_back(new ScriptGroup(this, lst));
6293 }
6294 }
6295 }
6296 }
6297
6298 /**
6299 * Apply all the gig file's current instruments, samples, groups and settings
6300 * to the respective RIFF chunks. You have to call Save() to make changes
6301 * persistent.
6302 *
6303 * Usually there is absolutely no need to call this method explicitly.
6304 * It will be called automatically when File::Save() was called.
6305 *
6306 * @param pProgress - callback function for progress notification
6307 * @throws Exception - on errors
6308 */
6309 void File::UpdateChunks(progress_t* pProgress) {
6310 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6311
6312 // update own gig format extension chunks
6313 // (not part of the GigaStudio 4 format)
6314 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6315 if (!lst3LS) {
6316 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6317 }
6318 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6319 // location of <3LS > is irrelevant, however it should be located
6320 // before the actual wave data
6321 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6322 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6323
6324 // This must be performed before writing the chunks for instruments,
6325 // because the instruments' script slots will write the file offsets
6326 // of the respective instrument script chunk as reference.
6327 if (pScriptGroups) {
6328 // Update instrument script (group) chunks.
6329 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6330 it != pScriptGroups->end(); ++it)
6331 {
6332 (*it)->UpdateChunks(pProgress);
6333 }
6334 }
6335
6336 // in case no libgig custom format data was added, then remove the
6337 // custom "3LS " chunk again
6338 if (!lst3LS->CountSubChunks()) {
6339 pRIFF->DeleteSubChunk(lst3LS);
6340 lst3LS = NULL;
6341 }
6342
6343 // first update base class's chunks
6344 DLS::File::UpdateChunks(pProgress);
6345
6346 if (newFile) {
6347 // INFO was added by Resource::UpdateChunks - make sure it
6348 // is placed first in file
6349 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6350 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6351 if (first != info) {
6352 pRIFF->MoveSubChunk(info, first);
6353 }
6354 }
6355
6356 // update group's chunks
6357 if (pGroups) {
6358 // make sure '3gri' and '3gnl' list chunks exist
6359 // (before updating the Group chunks)
6360 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6361 if (!_3gri) {
6362 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6363 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6364 }
6365 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6366 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6367
6368 // v3: make sure the file has 128 3gnm chunks
6369 // (before updating the Group chunks)
6370 if (pVersion && pVersion->major == 3) {
6371 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6372 for (int i = 0 ; i < 128 ; i++) {
6373 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6374 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6375 }
6376 }
6377
6378 std::list<Group*>::iterator iter = pGroups->begin();
6379 std::list<Group*>::iterator end = pGroups->end();
6380 for (; iter != end; ++iter) {
6381 (*iter)->UpdateChunks(pProgress);
6382 }
6383 }
6384
6385 // update einf chunk
6386
6387 // The einf chunk contains statistics about the gig file, such
6388 // as the number of regions and samples used by each
6389 // instrument. It is divided in equally sized parts, where the
6390 // first part contains information about the whole gig file,
6391 // and the rest of the parts map to each instrument in the
6392 // file.
6393 //
6394 // At the end of each part there is a bit map of each sample
6395 // in the file, where a set bit means that the sample is used
6396 // by the file/instrument.
6397 //
6398 // Note that there are several fields with unknown use. These
6399 // are set to zero.
6400
6401 int sublen = int(pSamples->size() / 8 + 49);
6402 int einfSize = (Instruments + 1) * sublen;
6403
6404 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6405 if (einf) {
6406 if (einf->GetSize() != einfSize) {
6407 einf->Resize(einfSize);
6408 memset(einf->LoadChunkData(), 0, einfSize);
6409 }
6410 } else if (newFile) {
6411 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6412 }
6413 if (einf) {
6414 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6415
6416 std::map<gig::Sample*,int> sampleMap;
6417 int sampleIdx = 0;
6418 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6419 sampleMap[pSample] = sampleIdx++;
6420 }
6421
6422 int totnbusedsamples = 0;
6423 int totnbusedchannels = 0;
6424 int totnbregions = 0;
6425 int totnbdimregions = 0;
6426 int totnbloops = 0;
6427 int instrumentIdx = 0;
6428
6429 memset(&pData[48], 0, sublen - 48);
6430
6431 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6432 instrument = GetNextInstrument()) {
6433 int nbusedsamples = 0;
6434 int nbusedchannels = 0;
6435 int nbdimregions = 0;
6436 int nbloops = 0;
6437
6438 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6439
6440 for (Region* region = instrument->GetFirstRegion() ; region ;
6441 region = instrument->GetNextRegion()) {
6442 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6443 gig::DimensionRegion *d = region->pDimensionRegions[i];
6444 if (d->pSample) {
6445 int sampleIdx = sampleMap[d->pSample];
6446 int byte = 48 + sampleIdx / 8;
6447 int bit = 1 << (sampleIdx & 7);
6448 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6449 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6450 nbusedsamples++;
6451 nbusedchannels += d->pSample->Channels;
6452
6453 if ((pData[byte] & bit) == 0) {
6454 pData[byte] |= bit;
6455 totnbusedsamples++;
6456 totnbusedchannels += d->pSample->Channels;
6457 }
6458 }
6459 }
6460 if (d->SampleLoops) nbloops++;
6461 }
6462 nbdimregions += region->DimensionRegions;
6463 }
6464 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6465 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6466 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6467 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6468 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6469 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6470 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6471 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6472 // next 8 bytes unknown
6473 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6474 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6475 // next 4 bytes unknown
6476
6477 totnbregions += instrument->Regions;
6478 totnbdimregions += nbdimregions;
6479 totnbloops += nbloops;
6480 instrumentIdx++;
6481 }
6482 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6483 // store32(&pData[0], sublen);
6484 store32(&pData[4], totnbusedchannels);
6485 store32(&pData[8], totnbusedsamples);
6486 store32(&pData[12], Instruments);
6487 store32(&pData[16], totnbregions);
6488 store32(&pData[20], totnbdimregions);
6489 store32(&pData[24], totnbloops);
6490 // next 8 bytes unknown
6491 // next 4 bytes unknown, not always 0
6492 store32(&pData[40], (uint32_t) pSamples->size());
6493 // next 4 bytes unknown
6494 }
6495
6496 // update 3crc chunk
6497
6498 // The 3crc chunk contains CRC-32 checksums for the
6499 // samples. When saving a gig file to disk, we first update the 3CRC
6500 // chunk here (in RAM) with the old crc values which we read from the
6501 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6502 // member variable). This step is required, because samples might have
6503 // been deleted by the user since the file was opened, which in turn
6504 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6505 // If a sample was conciously modified by the user (that is if
6506 // Sample::Write() was called later on) then Sample::Write() will just
6507 // update the respective individual checksum(s) directly on disk and
6508 // leaves all other sample checksums untouched.
6509
6510 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6511 if (_3crc) {
6512 _3crc->Resize(pSamples->size() * 8);
6513 } else /*if (newFile)*/ {
6514 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6515 // the order of einf and 3crc is not the same in v2 and v3
6516 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6517 }
6518 { // must be performed in RAM here ...
6519 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6520 if (pData) {
6521 File::SampleList::iterator iter = pSamples->begin();
6522 File::SampleList::iterator end = pSamples->end();
6523 for (int index = 0; iter != end; ++iter, ++index) {
6524 gig::Sample* pSample = (gig::Sample*) *iter;
6525 pData[index*2] = 1; // always 1
6526 pData[index*2+1] = pSample->crc;
6527 }
6528 }
6529 }
6530 }
6531
6532 void File::UpdateFileOffsets() {
6533 DLS::File::UpdateFileOffsets();
6534
6535 for (Instrument* instrument = GetFirstInstrument(); instrument;
6536 instrument = GetNextInstrument())
6537 {
6538 instrument->UpdateScriptFileOffsets();
6539 }
6540 }
6541
6542 /**
6543 * Enable / disable automatic loading. By default this properyt is
6544 * enabled and all informations are loaded automatically. However
6545 * loading all Regions, DimensionRegions and especially samples might
6546 * take a long time for large .gig files, and sometimes one might only
6547 * be interested in retrieving very superficial informations like the
6548 * amount of instruments and their names. In this case one might disable
6549 * automatic loading to avoid very slow response times.
6550 *
6551 * @e CAUTION: by disabling this property many pointers (i.e. sample
6552 * references) and informations will have invalid or even undefined
6553 * data! This feature is currently only intended for retrieving very
6554 * superficial informations in a very fast way. Don't use it to retrieve
6555 * details like synthesis informations or even to modify .gig files!
6556 */
6557 void File::SetAutoLoad(bool b) {
6558 bAutoLoad = b;
6559 }
6560
6561 /**
6562 * Returns whether automatic loading is enabled.
6563 * @see SetAutoLoad()
6564 */
6565 bool File::GetAutoLoad() {
6566 return bAutoLoad;
6567 }
6568
6569
6570
6571 // *************** Exception ***************
6572 // *
6573
6574 Exception::Exception() : DLS::Exception() {
6575 }
6576
6577 Exception::Exception(String format, ...) : DLS::Exception() {
6578 va_list arg;
6579 va_start(arg, format);
6580 Message = assemble(format, arg);
6581 va_end(arg);
6582 }
6583
6584 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6585 Message = assemble(format, arg);
6586 }
6587
6588 void Exception::PrintMessage() {
6589 std::cout << "gig::Exception: " << Message << std::endl;
6590 }
6591
6592
6593 // *************** functions ***************
6594 // *
6595
6596 /**
6597 * Returns the name of this C++ library. This is usually "libgig" of
6598 * course. This call is equivalent to RIFF::libraryName() and
6599 * DLS::libraryName().
6600 */
6601 String libraryName() {
6602 return PACKAGE;
6603 }
6604
6605 /**
6606 * Returns version of this C++ library. This call is equivalent to
6607 * RIFF::libraryVersion() and DLS::libraryVersion().
6608 */
6609 String libraryVersion() {
6610 return VERSION;
6611 }
6612
6613 } // namespace gig

  ViewVC Help
Powered by ViewVC