/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 406 - (show annotations) (download)
Wed Feb 23 19:11:07 2005 UTC (14 years, 8 months ago) by persson
File size: 82953 byte(s)
* src/gig.h, src/gig.cpp: added pre-calculated sample attenuation
  parameter
* src/gigdump: added output of Gain and SampleStartOffset

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include <iostream>
27
28 namespace gig { namespace {
29
30 // *************** Internal functions for sample decopmression ***************
31 // *
32
33 inline int get12lo(const unsigned char* pSrc)
34 {
35 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
36 return x & 0x800 ? x - 0x1000 : x;
37 }
38
39 inline int get12hi(const unsigned char* pSrc)
40 {
41 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
42 return x & 0x800 ? x - 0x1000 : x;
43 }
44
45 inline int16_t get16(const unsigned char* pSrc)
46 {
47 return int16_t(pSrc[0] | pSrc[1] << 8);
48 }
49
50 inline int get24(const unsigned char* pSrc)
51 {
52 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
53 return x & 0x800000 ? x - 0x1000000 : x;
54 }
55
56 void Decompress16(int compressionmode, const unsigned char* params,
57 int srcStep, int dstStep,
58 const unsigned char* pSrc, int16_t* pDst,
59 unsigned long currentframeoffset,
60 unsigned long copysamples)
61 {
62 switch (compressionmode) {
63 case 0: // 16 bit uncompressed
64 pSrc += currentframeoffset * srcStep;
65 while (copysamples) {
66 *pDst = get16(pSrc);
67 pDst += dstStep;
68 pSrc += srcStep;
69 copysamples--;
70 }
71 break;
72
73 case 1: // 16 bit compressed to 8 bit
74 int y = get16(params);
75 int dy = get16(params + 2);
76 while (currentframeoffset) {
77 dy -= int8_t(*pSrc);
78 y -= dy;
79 pSrc += srcStep;
80 currentframeoffset--;
81 }
82 while (copysamples) {
83 dy -= int8_t(*pSrc);
84 y -= dy;
85 *pDst = y;
86 pDst += dstStep;
87 pSrc += srcStep;
88 copysamples--;
89 }
90 break;
91 }
92 }
93
94 void Decompress24(int compressionmode, const unsigned char* params,
95 int dstStep, const unsigned char* pSrc, int16_t* pDst,
96 unsigned long currentframeoffset,
97 unsigned long copysamples)
98 {
99 // Note: The 24 bits are truncated to 16 bits for now.
100
101 // Note: The calculation of the initial value of y is strange
102 // and not 100% correct. What should the first two parameters
103 // really be used for? Why are they two? The correct value for
104 // y seems to lie somewhere between the values of the first
105 // two parameters.
106 //
107 // Strange thing #2: The formula in SKIP_ONE gives values for
108 // y that are twice as high as they should be. That's why
109 // COPY_ONE shifts 9 steps instead of 8, and also why y is
110 // initialized with a sum instead of a mean value.
111
112 int y, dy, ddy;
113
114 #define GET_PARAMS(params) \
115 y = (get24(params) + get24((params) + 3)); \
116 dy = get24((params) + 6); \
117 ddy = get24((params) + 9)
118
119 #define SKIP_ONE(x) \
120 ddy -= (x); \
121 dy -= ddy; \
122 y -= dy
123
124 #define COPY_ONE(x) \
125 SKIP_ONE(x); \
126 *pDst = y >> 9; \
127 pDst += dstStep
128
129 switch (compressionmode) {
130 case 2: // 24 bit uncompressed
131 pSrc += currentframeoffset * 3;
132 while (copysamples) {
133 *pDst = get24(pSrc) >> 8;
134 pDst += dstStep;
135 pSrc += 3;
136 copysamples--;
137 }
138 break;
139
140 case 3: // 24 bit compressed to 16 bit
141 GET_PARAMS(params);
142 while (currentframeoffset) {
143 SKIP_ONE(get16(pSrc));
144 pSrc += 2;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 COPY_ONE(get16(pSrc));
149 pSrc += 2;
150 copysamples--;
151 }
152 break;
153
154 case 4: // 24 bit compressed to 12 bit
155 GET_PARAMS(params);
156 while (currentframeoffset > 1) {
157 SKIP_ONE(get12lo(pSrc));
158 SKIP_ONE(get12hi(pSrc));
159 pSrc += 3;
160 currentframeoffset -= 2;
161 }
162 if (currentframeoffset) {
163 SKIP_ONE(get12lo(pSrc));
164 currentframeoffset--;
165 if (copysamples) {
166 COPY_ONE(get12hi(pSrc));
167 pSrc += 3;
168 copysamples--;
169 }
170 }
171 while (copysamples > 1) {
172 COPY_ONE(get12lo(pSrc));
173 COPY_ONE(get12hi(pSrc));
174 pSrc += 3;
175 copysamples -= 2;
176 }
177 if (copysamples) {
178 COPY_ONE(get12lo(pSrc));
179 }
180 break;
181
182 case 5: // 24 bit compressed to 8 bit
183 GET_PARAMS(params);
184 while (currentframeoffset) {
185 SKIP_ONE(int8_t(*pSrc++));
186 currentframeoffset--;
187 }
188 while (copysamples) {
189 COPY_ONE(int8_t(*pSrc++));
190 copysamples--;
191 }
192 break;
193 }
194 }
195
196 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
197 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
198 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
199 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
200 }
201
202
203 // *************** Sample ***************
204 // *
205
206 unsigned int Sample::Instances = 0;
207 buffer_t Sample::InternalDecompressionBuffer;
208
209 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
210 Instances++;
211
212 RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
213 if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
214 SampleGroup = _3gix->ReadInt16();
215
216 RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
217 if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
218 Manufacturer = smpl->ReadInt32();
219 Product = smpl->ReadInt32();
220 SamplePeriod = smpl->ReadInt32();
221 MIDIUnityNote = smpl->ReadInt32();
222 FineTune = smpl->ReadInt32();
223 smpl->Read(&SMPTEFormat, 1, 4);
224 SMPTEOffset = smpl->ReadInt32();
225 Loops = smpl->ReadInt32();
226 smpl->ReadInt32(); // manufByt
227 LoopID = smpl->ReadInt32();
228 smpl->Read(&LoopType, 1, 4);
229 LoopStart = smpl->ReadInt32();
230 LoopEnd = smpl->ReadInt32();
231 LoopFraction = smpl->ReadInt32();
232 LoopPlayCount = smpl->ReadInt32();
233
234 FrameTable = NULL;
235 SamplePos = 0;
236 RAMCache.Size = 0;
237 RAMCache.pStart = NULL;
238 RAMCache.NullExtensionSize = 0;
239
240 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
241
242 Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));
243 if (Compressed) {
244 ScanCompressedSample();
245 }
246
247 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
248 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
249 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
250 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
251 }
252 FrameOffset = 0; // just for streaming compressed samples
253
254 LoopSize = LoopEnd - LoopStart;
255 }
256
257 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
258 void Sample::ScanCompressedSample() {
259 //TODO: we have to add some more scans here (e.g. determine compression rate)
260 this->SamplesTotal = 0;
261 std::list<unsigned long> frameOffsets;
262
263 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
264 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
265
266 // Scanning
267 pCkData->SetPos(0);
268 if (Channels == 2) { // Stereo
269 for (int i = 0 ; ; i++) {
270 // for 24 bit samples every 8:th frame offset is
271 // stored, to save some memory
272 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
273
274 const int mode_l = pCkData->ReadUint8();
275 const int mode_r = pCkData->ReadUint8();
276 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
277 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
278
279 if (pCkData->RemainingBytes() <= frameSize) {
280 SamplesInLastFrame =
281 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
282 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
283 SamplesTotal += SamplesInLastFrame;
284 break;
285 }
286 SamplesTotal += SamplesPerFrame;
287 pCkData->SetPos(frameSize, RIFF::stream_curpos);
288 }
289 }
290 else { // Mono
291 for (int i = 0 ; ; i++) {
292 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
293
294 const int mode = pCkData->ReadUint8();
295 if (mode > 5) throw gig::Exception("Unknown compression mode");
296 const unsigned long frameSize = bytesPerFrame[mode];
297
298 if (pCkData->RemainingBytes() <= frameSize) {
299 SamplesInLastFrame =
300 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
301 SamplesTotal += SamplesInLastFrame;
302 break;
303 }
304 SamplesTotal += SamplesPerFrame;
305 pCkData->SetPos(frameSize, RIFF::stream_curpos);
306 }
307 }
308 pCkData->SetPos(0);
309
310 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
311 if (FrameTable) delete[] FrameTable;
312 FrameTable = new unsigned long[frameOffsets.size()];
313 std::list<unsigned long>::iterator end = frameOffsets.end();
314 std::list<unsigned long>::iterator iter = frameOffsets.begin();
315 for (int i = 0; iter != end; i++, iter++) {
316 FrameTable[i] = *iter;
317 }
318 }
319
320 /**
321 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
322 * ReleaseSampleData() to free the memory if you don't need the cached
323 * sample data anymore.
324 *
325 * @returns buffer_t structure with start address and size of the buffer
326 * in bytes
327 * @see ReleaseSampleData(), Read(), SetPos()
328 */
329 buffer_t Sample::LoadSampleData() {
330 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
331 }
332
333 /**
334 * Reads (uncompresses if needed) and caches the first \a SampleCount
335 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
336 * memory space if you don't need the cached samples anymore. There is no
337 * guarantee that exactly \a SampleCount samples will be cached; this is
338 * not an error. The size will be eventually truncated e.g. to the
339 * beginning of a frame of a compressed sample. This is done for
340 * efficiency reasons while streaming the wave by your sampler engine
341 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
342 * that will be returned to determine the actual cached samples, but note
343 * that the size is given in bytes! You get the number of actually cached
344 * samples by dividing it by the frame size of the sample:
345 * @code
346 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
347 * long cachedsamples = buf.Size / pSample->FrameSize;
348 * @endcode
349 *
350 * @param SampleCount - number of sample points to load into RAM
351 * @returns buffer_t structure with start address and size of
352 * the cached sample data in bytes
353 * @see ReleaseSampleData(), Read(), SetPos()
354 */
355 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
356 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
357 }
358
359 /**
360 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
361 * ReleaseSampleData() to free the memory if you don't need the cached
362 * sample data anymore.
363 * The method will add \a NullSamplesCount silence samples past the
364 * official buffer end (this won't affect the 'Size' member of the
365 * buffer_t structure, that means 'Size' always reflects the size of the
366 * actual sample data, the buffer might be bigger though). Silence
367 * samples past the official buffer are needed for differential
368 * algorithms that always have to take subsequent samples into account
369 * (resampling/interpolation would be an important example) and avoids
370 * memory access faults in such cases.
371 *
372 * @param NullSamplesCount - number of silence samples the buffer should
373 * be extended past it's data end
374 * @returns buffer_t structure with start address and
375 * size of the buffer in bytes
376 * @see ReleaseSampleData(), Read(), SetPos()
377 */
378 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
379 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
380 }
381
382 /**
383 * Reads (uncompresses if needed) and caches the first \a SampleCount
384 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
385 * memory space if you don't need the cached samples anymore. There is no
386 * guarantee that exactly \a SampleCount samples will be cached; this is
387 * not an error. The size will be eventually truncated e.g. to the
388 * beginning of a frame of a compressed sample. This is done for
389 * efficiency reasons while streaming the wave by your sampler engine
390 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
391 * that will be returned to determine the actual cached samples, but note
392 * that the size is given in bytes! You get the number of actually cached
393 * samples by dividing it by the frame size of the sample:
394 * @code
395 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
396 * long cachedsamples = buf.Size / pSample->FrameSize;
397 * @endcode
398 * The method will add \a NullSamplesCount silence samples past the
399 * official buffer end (this won't affect the 'Size' member of the
400 * buffer_t structure, that means 'Size' always reflects the size of the
401 * actual sample data, the buffer might be bigger though). Silence
402 * samples past the official buffer are needed for differential
403 * algorithms that always have to take subsequent samples into account
404 * (resampling/interpolation would be an important example) and avoids
405 * memory access faults in such cases.
406 *
407 * @param SampleCount - number of sample points to load into RAM
408 * @param NullSamplesCount - number of silence samples the buffer should
409 * be extended past it's data end
410 * @returns buffer_t structure with start address and
411 * size of the cached sample data in bytes
412 * @see ReleaseSampleData(), Read(), SetPos()
413 */
414 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
415 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
416 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
417 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
418 RAMCache.pStart = new int8_t[allocationsize];
419 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
420 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
421 // fill the remaining buffer space with silence samples
422 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
423 return GetCache();
424 }
425
426 /**
427 * Returns current cached sample points. A buffer_t structure will be
428 * returned which contains address pointer to the begin of the cache and
429 * the size of the cached sample data in bytes. Use
430 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
431 * RAM.
432 *
433 * @returns buffer_t structure with current cached sample points
434 * @see LoadSampleData();
435 */
436 buffer_t Sample::GetCache() {
437 // return a copy of the buffer_t structure
438 buffer_t result;
439 result.Size = this->RAMCache.Size;
440 result.pStart = this->RAMCache.pStart;
441 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
442 return result;
443 }
444
445 /**
446 * Frees the cached sample from RAM if loaded with
447 * <i>LoadSampleData()</i> previously.
448 *
449 * @see LoadSampleData();
450 */
451 void Sample::ReleaseSampleData() {
452 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
453 RAMCache.pStart = NULL;
454 RAMCache.Size = 0;
455 }
456
457 /**
458 * Sets the position within the sample (in sample points, not in
459 * bytes). Use this method and <i>Read()</i> if you don't want to load
460 * the sample into RAM, thus for disk streaming.
461 *
462 * Although the original Gigasampler engine doesn't allow positioning
463 * within compressed samples, I decided to implement it. Even though
464 * the Gigasampler format doesn't allow to define loops for compressed
465 * samples at the moment, positioning within compressed samples might be
466 * interesting for some sampler engines though. The only drawback about
467 * my decision is that it takes longer to load compressed gig Files on
468 * startup, because it's neccessary to scan the samples for some
469 * mandatory informations. But I think as it doesn't affect the runtime
470 * efficiency, nobody will have a problem with that.
471 *
472 * @param SampleCount number of sample points to jump
473 * @param Whence optional: to which relation \a SampleCount refers
474 * to, if omited <i>RIFF::stream_start</i> is assumed
475 * @returns the new sample position
476 * @see Read()
477 */
478 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
479 if (Compressed) {
480 switch (Whence) {
481 case RIFF::stream_curpos:
482 this->SamplePos += SampleCount;
483 break;
484 case RIFF::stream_end:
485 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
486 break;
487 case RIFF::stream_backward:
488 this->SamplePos -= SampleCount;
489 break;
490 case RIFF::stream_start: default:
491 this->SamplePos = SampleCount;
492 break;
493 }
494 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
495
496 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
497 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
498 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
499 return this->SamplePos;
500 }
501 else { // not compressed
502 unsigned long orderedBytes = SampleCount * this->FrameSize;
503 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
504 return (result == orderedBytes) ? SampleCount
505 : result / this->FrameSize;
506 }
507 }
508
509 /**
510 * Returns the current position in the sample (in sample points).
511 */
512 unsigned long Sample::GetPos() {
513 if (Compressed) return SamplePos;
514 else return pCkData->GetPos() / FrameSize;
515 }
516
517 /**
518 * Reads \a SampleCount number of sample points from the position stored
519 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
520 * the position within the sample respectively, this method honors the
521 * looping informations of the sample (if any). The sample wave stream
522 * will be decompressed on the fly if using a compressed sample. Use this
523 * method if you don't want to load the sample into RAM, thus for disk
524 * streaming. All this methods needs to know to proceed with streaming
525 * for the next time you call this method is stored in \a pPlaybackState.
526 * You have to allocate and initialize the playback_state_t structure by
527 * yourself before you use it to stream a sample:
528 * @code
529 * gig::playback_state_t playbackstate;
530 * playbackstate.position = 0;
531 * playbackstate.reverse = false;
532 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
533 * @endcode
534 * You don't have to take care of things like if there is actually a loop
535 * defined or if the current read position is located within a loop area.
536 * The method already handles such cases by itself.
537 *
538 * <b>Caution:</b> If you are using more than one streaming thread, you
539 * have to use an external decompression buffer for <b>EACH</b>
540 * streaming thread to avoid race conditions and crashes!
541 *
542 * @param pBuffer destination buffer
543 * @param SampleCount number of sample points to read
544 * @param pPlaybackState will be used to store and reload the playback
545 * state for the next ReadAndLoop() call
546 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
547 * @returns number of successfully read sample points
548 * @see CreateDecompressionBuffer()
549 */
550 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
551 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
552 uint8_t* pDst = (uint8_t*) pBuffer;
553
554 SetPos(pPlaybackState->position); // recover position from the last time
555
556 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
557
558 switch (this->LoopType) {
559
560 case loop_type_bidirectional: { //TODO: not tested yet!
561 do {
562 // if not endless loop check if max. number of loop cycles have been passed
563 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
564
565 if (!pPlaybackState->reverse) { // forward playback
566 do {
567 samplestoloopend = this->LoopEnd - GetPos();
568 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
569 samplestoread -= readsamples;
570 totalreadsamples += readsamples;
571 if (readsamples == samplestoloopend) {
572 pPlaybackState->reverse = true;
573 break;
574 }
575 } while (samplestoread && readsamples);
576 }
577 else { // backward playback
578
579 // as we can only read forward from disk, we have to
580 // determine the end position within the loop first,
581 // read forward from that 'end' and finally after
582 // reading, swap all sample frames so it reflects
583 // backward playback
584
585 unsigned long swapareastart = totalreadsamples;
586 unsigned long loopoffset = GetPos() - this->LoopStart;
587 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
588 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
589
590 SetPos(reverseplaybackend);
591
592 // read samples for backward playback
593 do {
594 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
595 samplestoreadinloop -= readsamples;
596 samplestoread -= readsamples;
597 totalreadsamples += readsamples;
598 } while (samplestoreadinloop && readsamples);
599
600 SetPos(reverseplaybackend); // pretend we really read backwards
601
602 if (reverseplaybackend == this->LoopStart) {
603 pPlaybackState->loop_cycles_left--;
604 pPlaybackState->reverse = false;
605 }
606
607 // reverse the sample frames for backward playback
608 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
609 }
610 } while (samplestoread && readsamples);
611 break;
612 }
613
614 case loop_type_backward: { // TODO: not tested yet!
615 // forward playback (not entered the loop yet)
616 if (!pPlaybackState->reverse) do {
617 samplestoloopend = this->LoopEnd - GetPos();
618 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
619 samplestoread -= readsamples;
620 totalreadsamples += readsamples;
621 if (readsamples == samplestoloopend) {
622 pPlaybackState->reverse = true;
623 break;
624 }
625 } while (samplestoread && readsamples);
626
627 if (!samplestoread) break;
628
629 // as we can only read forward from disk, we have to
630 // determine the end position within the loop first,
631 // read forward from that 'end' and finally after
632 // reading, swap all sample frames so it reflects
633 // backward playback
634
635 unsigned long swapareastart = totalreadsamples;
636 unsigned long loopoffset = GetPos() - this->LoopStart;
637 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
638 : samplestoread;
639 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
640
641 SetPos(reverseplaybackend);
642
643 // read samples for backward playback
644 do {
645 // if not endless loop check if max. number of loop cycles have been passed
646 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
647 samplestoloopend = this->LoopEnd - GetPos();
648 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
649 samplestoreadinloop -= readsamples;
650 samplestoread -= readsamples;
651 totalreadsamples += readsamples;
652 if (readsamples == samplestoloopend) {
653 pPlaybackState->loop_cycles_left--;
654 SetPos(this->LoopStart);
655 }
656 } while (samplestoreadinloop && readsamples);
657
658 SetPos(reverseplaybackend); // pretend we really read backwards
659
660 // reverse the sample frames for backward playback
661 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
662 break;
663 }
664
665 default: case loop_type_normal: {
666 do {
667 // if not endless loop check if max. number of loop cycles have been passed
668 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
669 samplestoloopend = this->LoopEnd - GetPos();
670 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
671 samplestoread -= readsamples;
672 totalreadsamples += readsamples;
673 if (readsamples == samplestoloopend) {
674 pPlaybackState->loop_cycles_left--;
675 SetPos(this->LoopStart);
676 }
677 } while (samplestoread && readsamples);
678 break;
679 }
680 }
681 }
682
683 // read on without looping
684 if (samplestoread) do {
685 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
686 samplestoread -= readsamples;
687 totalreadsamples += readsamples;
688 } while (readsamples && samplestoread);
689
690 // store current position
691 pPlaybackState->position = GetPos();
692
693 return totalreadsamples;
694 }
695
696 /**
697 * Reads \a SampleCount number of sample points from the current
698 * position into the buffer pointed by \a pBuffer and increments the
699 * position within the sample. The sample wave stream will be
700 * decompressed on the fly if using a compressed sample. Use this method
701 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
702 * thus for disk streaming.
703 *
704 * <b>Caution:</b> If you are using more than one streaming thread, you
705 * have to use an external decompression buffer for <b>EACH</b>
706 * streaming thread to avoid race conditions and crashes!
707 *
708 * @param pBuffer destination buffer
709 * @param SampleCount number of sample points to read
710 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
711 * @returns number of successfully read sample points
712 * @see SetPos(), CreateDecompressionBuffer()
713 */
714 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
715 if (SampleCount == 0) return 0;
716 if (!Compressed) {
717 if (BitDepth == 24) {
718 // 24 bit sample. For now just truncate to 16 bit.
719 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
720 int16_t* pDst = static_cast<int16_t*>(pBuffer);
721 if (Channels == 2) { // Stereo
722 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
723 pSrc++;
724 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
725 *pDst++ = get16(pSrc);
726 pSrc += 3;
727 }
728 return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
729 }
730 else { // Mono
731 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
732 pSrc++;
733 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
734 *pDst++ = get16(pSrc);
735 pSrc += 3;
736 }
737 return pDst - static_cast<int16_t*>(pBuffer);
738 }
739 }
740 else { // 16 bit
741 // (pCkData->Read does endian correction)
742 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
743 : pCkData->Read(pBuffer, SampleCount, 2);
744 }
745 }
746 else {
747 if (this->SamplePos >= this->SamplesTotal) return 0;
748 //TODO: efficiency: maybe we should test for an average compression rate
749 unsigned long assumedsize = GuessSize(SampleCount),
750 remainingbytes = 0, // remaining bytes in the local buffer
751 remainingsamples = SampleCount,
752 copysamples, skipsamples,
753 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
754 this->FrameOffset = 0;
755
756 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
757
758 // if decompression buffer too small, then reduce amount of samples to read
759 if (pDecompressionBuffer->Size < assumedsize) {
760 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
761 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
762 remainingsamples = SampleCount;
763 assumedsize = GuessSize(SampleCount);
764 }
765
766 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
767 int16_t* pDst = static_cast<int16_t*>(pBuffer);
768 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
769
770 while (remainingsamples && remainingbytes) {
771 unsigned long framesamples = SamplesPerFrame;
772 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
773
774 int mode_l = *pSrc++, mode_r = 0;
775
776 if (Channels == 2) {
777 mode_r = *pSrc++;
778 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
779 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
780 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
781 if (remainingbytes < framebytes) { // last frame in sample
782 framesamples = SamplesInLastFrame;
783 if (mode_l == 4 && (framesamples & 1)) {
784 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
785 }
786 else {
787 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
788 }
789 }
790 }
791 else {
792 framebytes = bytesPerFrame[mode_l] + 1;
793 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
794 if (remainingbytes < framebytes) {
795 framesamples = SamplesInLastFrame;
796 }
797 }
798
799 // determine how many samples in this frame to skip and read
800 if (currentframeoffset + remainingsamples >= framesamples) {
801 if (currentframeoffset <= framesamples) {
802 copysamples = framesamples - currentframeoffset;
803 skipsamples = currentframeoffset;
804 }
805 else {
806 copysamples = 0;
807 skipsamples = framesamples;
808 }
809 }
810 else {
811 // This frame has enough data for pBuffer, but not
812 // all of the frame is needed. Set file position
813 // to start of this frame for next call to Read.
814 copysamples = remainingsamples;
815 skipsamples = currentframeoffset;
816 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
817 this->FrameOffset = currentframeoffset + copysamples;
818 }
819 remainingsamples -= copysamples;
820
821 if (remainingbytes > framebytes) {
822 remainingbytes -= framebytes;
823 if (remainingsamples == 0 &&
824 currentframeoffset + copysamples == framesamples) {
825 // This frame has enough data for pBuffer, and
826 // all of the frame is needed. Set file
827 // position to start of next frame for next
828 // call to Read. FrameOffset is 0.
829 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
830 }
831 }
832 else remainingbytes = 0;
833
834 currentframeoffset -= skipsamples;
835
836 if (copysamples == 0) {
837 // skip this frame
838 pSrc += framebytes - Channels;
839 }
840 else {
841 const unsigned char* const param_l = pSrc;
842 if (BitDepth == 24) {
843 if (mode_l != 2) pSrc += 12;
844
845 if (Channels == 2) { // Stereo
846 const unsigned char* const param_r = pSrc;
847 if (mode_r != 2) pSrc += 12;
848
849 Decompress24(mode_l, param_l, 2, pSrc, pDst, skipsamples, copysamples);
850 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
851 skipsamples, copysamples);
852 pDst += copysamples << 1;
853 }
854 else { // Mono
855 Decompress24(mode_l, param_l, 1, pSrc, pDst, skipsamples, copysamples);
856 pDst += copysamples;
857 }
858 }
859 else { // 16 bit
860 if (mode_l) pSrc += 4;
861
862 int step;
863 if (Channels == 2) { // Stereo
864 const unsigned char* const param_r = pSrc;
865 if (mode_r) pSrc += 4;
866
867 step = (2 - mode_l) + (2 - mode_r);
868 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
869 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
870 skipsamples, copysamples);
871 pDst += copysamples << 1;
872 }
873 else { // Mono
874 step = 2 - mode_l;
875 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
876 pDst += copysamples;
877 }
878 }
879 pSrc += nextFrameOffset;
880 }
881
882 // reload from disk to local buffer if needed
883 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
884 assumedsize = GuessSize(remainingsamples);
885 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
886 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
887 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
888 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
889 }
890 } // while
891
892 this->SamplePos += (SampleCount - remainingsamples);
893 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
894 return (SampleCount - remainingsamples);
895 }
896 }
897
898 /**
899 * Allocates a decompression buffer for streaming (compressed) samples
900 * with Sample::Read(). If you are using more than one streaming thread
901 * in your application you <b>HAVE</b> to create a decompression buffer
902 * for <b>EACH</b> of your streaming threads and provide it with the
903 * Sample::Read() call in order to avoid race conditions and crashes.
904 *
905 * You should free the memory occupied by the allocated buffer(s) once
906 * you don't need one of your streaming threads anymore by calling
907 * DestroyDecompressionBuffer().
908 *
909 * @param MaxReadSize - the maximum size (in sample points) you ever
910 * expect to read with one Read() call
911 * @returns allocated decompression buffer
912 * @see DestroyDecompressionBuffer()
913 */
914 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
915 buffer_t result;
916 const double worstCaseHeaderOverhead =
917 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
918 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
919 result.pStart = new int8_t[result.Size];
920 result.NullExtensionSize = 0;
921 return result;
922 }
923
924 /**
925 * Free decompression buffer, previously created with
926 * CreateDecompressionBuffer().
927 *
928 * @param DecompressionBuffer - previously allocated decompression
929 * buffer to free
930 */
931 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
932 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
933 delete[] (int8_t*) DecompressionBuffer.pStart;
934 DecompressionBuffer.pStart = NULL;
935 DecompressionBuffer.Size = 0;
936 DecompressionBuffer.NullExtensionSize = 0;
937 }
938 }
939
940 Sample::~Sample() {
941 Instances--;
942 if (!Instances && InternalDecompressionBuffer.Size) {
943 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
944 InternalDecompressionBuffer.pStart = NULL;
945 InternalDecompressionBuffer.Size = 0;
946 }
947 if (FrameTable) delete[] FrameTable;
948 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
949 }
950
951
952
953 // *************** DimensionRegion ***************
954 // *
955
956 uint DimensionRegion::Instances = 0;
957 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
958
959 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
960 Instances++;
961
962 memcpy(&Crossfade, &SamplerOptions, 4);
963 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
964
965 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
966 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
967 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
968 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
969 _3ewa->ReadInt16(); // unknown
970 LFO1InternalDepth = _3ewa->ReadUint16();
971 _3ewa->ReadInt16(); // unknown
972 LFO3InternalDepth = _3ewa->ReadInt16();
973 _3ewa->ReadInt16(); // unknown
974 LFO1ControlDepth = _3ewa->ReadUint16();
975 _3ewa->ReadInt16(); // unknown
976 LFO3ControlDepth = _3ewa->ReadInt16();
977 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
978 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
979 _3ewa->ReadInt16(); // unknown
980 EG1Sustain = _3ewa->ReadUint16();
981 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
982 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
983 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
984 EG1ControllerInvert = eg1ctrloptions & 0x01;
985 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
986 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
987 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
988 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
989 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
990 EG2ControllerInvert = eg2ctrloptions & 0x01;
991 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
992 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
993 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
994 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
995 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
996 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
997 _3ewa->ReadInt16(); // unknown
998 EG2Sustain = _3ewa->ReadUint16();
999 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1000 _3ewa->ReadInt16(); // unknown
1001 LFO2ControlDepth = _3ewa->ReadUint16();
1002 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1003 _3ewa->ReadInt16(); // unknown
1004 LFO2InternalDepth = _3ewa->ReadUint16();
1005 int32_t eg1decay2 = _3ewa->ReadInt32();
1006 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1007 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1008 _3ewa->ReadInt16(); // unknown
1009 EG1PreAttack = _3ewa->ReadUint16();
1010 int32_t eg2decay2 = _3ewa->ReadInt32();
1011 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1012 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1013 _3ewa->ReadInt16(); // unknown
1014 EG2PreAttack = _3ewa->ReadUint16();
1015 uint8_t velocityresponse = _3ewa->ReadUint8();
1016 if (velocityresponse < 5) {
1017 VelocityResponseCurve = curve_type_nonlinear;
1018 VelocityResponseDepth = velocityresponse;
1019 }
1020 else if (velocityresponse < 10) {
1021 VelocityResponseCurve = curve_type_linear;
1022 VelocityResponseDepth = velocityresponse - 5;
1023 }
1024 else if (velocityresponse < 15) {
1025 VelocityResponseCurve = curve_type_special;
1026 VelocityResponseDepth = velocityresponse - 10;
1027 }
1028 else {
1029 VelocityResponseCurve = curve_type_unknown;
1030 VelocityResponseDepth = 0;
1031 }
1032 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1033 if (releasevelocityresponse < 5) {
1034 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1035 ReleaseVelocityResponseDepth = releasevelocityresponse;
1036 }
1037 else if (releasevelocityresponse < 10) {
1038 ReleaseVelocityResponseCurve = curve_type_linear;
1039 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1040 }
1041 else if (releasevelocityresponse < 15) {
1042 ReleaseVelocityResponseCurve = curve_type_special;
1043 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1044 }
1045 else {
1046 ReleaseVelocityResponseCurve = curve_type_unknown;
1047 ReleaseVelocityResponseDepth = 0;
1048 }
1049 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1050 AttenuationControllerThreshold = _3ewa->ReadInt8();
1051 _3ewa->ReadInt32(); // unknown
1052 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1053 _3ewa->ReadInt16(); // unknown
1054 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1055 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1056 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1057 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1058 else DimensionBypass = dim_bypass_ctrl_none;
1059 uint8_t pan = _3ewa->ReadUint8();
1060 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1061 SelfMask = _3ewa->ReadInt8() & 0x01;
1062 _3ewa->ReadInt8(); // unknown
1063 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1064 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1065 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1066 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1067 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1068 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1069 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1070 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1071 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1072 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1073 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1074 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1075 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1076 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1077 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1078 : vcf_res_ctrl_none;
1079 uint16_t eg3depth = _3ewa->ReadUint16();
1080 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1081 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1082 _3ewa->ReadInt16(); // unknown
1083 ChannelOffset = _3ewa->ReadUint8() / 4;
1084 uint8_t regoptions = _3ewa->ReadUint8();
1085 MSDecode = regoptions & 0x01; // bit 0
1086 SustainDefeat = regoptions & 0x02; // bit 1
1087 _3ewa->ReadInt16(); // unknown
1088 VelocityUpperLimit = _3ewa->ReadInt8();
1089 _3ewa->ReadInt8(); // unknown
1090 _3ewa->ReadInt16(); // unknown
1091 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1092 _3ewa->ReadInt8(); // unknown
1093 _3ewa->ReadInt8(); // unknown
1094 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1095 uint8_t vcfcutoff = _3ewa->ReadUint8();
1096 VCFEnabled = vcfcutoff & 0x80; // bit 7
1097 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1098 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1099 VCFVelocityScale = _3ewa->ReadUint8();
1100 _3ewa->ReadInt8(); // unknown
1101 uint8_t vcfresonance = _3ewa->ReadUint8();
1102 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1103 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1104 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1105 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1106 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1107 uint8_t vcfvelocity = _3ewa->ReadUint8();
1108 VCFVelocityDynamicRange = vcfvelocity % 5;
1109 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1110 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1111 if (VCFType == vcf_type_lowpass) {
1112 if (lfo3ctrl & 0x40) // bit 6
1113 VCFType = vcf_type_lowpassturbo;
1114 }
1115
1116 // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet
1117 uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;
1118 if (pVelocityTables->count(tableKey)) { // if key exists
1119 pVelocityAttenuationTable = (*pVelocityTables)[tableKey];
1120 }
1121 else {
1122 pVelocityAttenuationTable =
1123 CreateVelocityTable(VelocityResponseCurve,
1124 VelocityResponseDepth,
1125 VelocityResponseCurveScaling);
1126 (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map
1127 }
1128
1129 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1130 }
1131
1132 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1133 leverage_ctrl_t decodedcontroller;
1134 switch (EncodedController) {
1135 // special controller
1136 case _lev_ctrl_none:
1137 decodedcontroller.type = leverage_ctrl_t::type_none;
1138 decodedcontroller.controller_number = 0;
1139 break;
1140 case _lev_ctrl_velocity:
1141 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1142 decodedcontroller.controller_number = 0;
1143 break;
1144 case _lev_ctrl_channelaftertouch:
1145 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1146 decodedcontroller.controller_number = 0;
1147 break;
1148
1149 // ordinary MIDI control change controller
1150 case _lev_ctrl_modwheel:
1151 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1152 decodedcontroller.controller_number = 1;
1153 break;
1154 case _lev_ctrl_breath:
1155 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1156 decodedcontroller.controller_number = 2;
1157 break;
1158 case _lev_ctrl_foot:
1159 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1160 decodedcontroller.controller_number = 4;
1161 break;
1162 case _lev_ctrl_effect1:
1163 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1164 decodedcontroller.controller_number = 12;
1165 break;
1166 case _lev_ctrl_effect2:
1167 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1168 decodedcontroller.controller_number = 13;
1169 break;
1170 case _lev_ctrl_genpurpose1:
1171 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1172 decodedcontroller.controller_number = 16;
1173 break;
1174 case _lev_ctrl_genpurpose2:
1175 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1176 decodedcontroller.controller_number = 17;
1177 break;
1178 case _lev_ctrl_genpurpose3:
1179 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1180 decodedcontroller.controller_number = 18;
1181 break;
1182 case _lev_ctrl_genpurpose4:
1183 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1184 decodedcontroller.controller_number = 19;
1185 break;
1186 case _lev_ctrl_portamentotime:
1187 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1188 decodedcontroller.controller_number = 5;
1189 break;
1190 case _lev_ctrl_sustainpedal:
1191 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1192 decodedcontroller.controller_number = 64;
1193 break;
1194 case _lev_ctrl_portamento:
1195 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1196 decodedcontroller.controller_number = 65;
1197 break;
1198 case _lev_ctrl_sostenutopedal:
1199 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1200 decodedcontroller.controller_number = 66;
1201 break;
1202 case _lev_ctrl_softpedal:
1203 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1204 decodedcontroller.controller_number = 67;
1205 break;
1206 case _lev_ctrl_genpurpose5:
1207 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1208 decodedcontroller.controller_number = 80;
1209 break;
1210 case _lev_ctrl_genpurpose6:
1211 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1212 decodedcontroller.controller_number = 81;
1213 break;
1214 case _lev_ctrl_genpurpose7:
1215 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1216 decodedcontroller.controller_number = 82;
1217 break;
1218 case _lev_ctrl_genpurpose8:
1219 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1220 decodedcontroller.controller_number = 83;
1221 break;
1222 case _lev_ctrl_effect1depth:
1223 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1224 decodedcontroller.controller_number = 91;
1225 break;
1226 case _lev_ctrl_effect2depth:
1227 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1228 decodedcontroller.controller_number = 92;
1229 break;
1230 case _lev_ctrl_effect3depth:
1231 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1232 decodedcontroller.controller_number = 93;
1233 break;
1234 case _lev_ctrl_effect4depth:
1235 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1236 decodedcontroller.controller_number = 94;
1237 break;
1238 case _lev_ctrl_effect5depth:
1239 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1240 decodedcontroller.controller_number = 95;
1241 break;
1242
1243 // unknown controller type
1244 default:
1245 throw gig::Exception("Unknown leverage controller type.");
1246 }
1247 return decodedcontroller;
1248 }
1249
1250 DimensionRegion::~DimensionRegion() {
1251 Instances--;
1252 if (!Instances) {
1253 // delete the velocity->volume tables
1254 VelocityTableMap::iterator iter;
1255 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1256 double* pTable = iter->second;
1257 if (pTable) delete[] pTable;
1258 }
1259 pVelocityTables->clear();
1260 delete pVelocityTables;
1261 pVelocityTables = NULL;
1262 }
1263 }
1264
1265 /**
1266 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1267 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1268 * and VelocityResponseCurveScaling) involved are taken into account to
1269 * calculate the amplitude factor. Use this method when a key was
1270 * triggered to get the volume with which the sample should be played
1271 * back.
1272 *
1273 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1274 * @returns amplitude factor (between 0.0 and 1.0)
1275 */
1276 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1277 return pVelocityAttenuationTable[MIDIKeyVelocity];
1278 }
1279
1280 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1281
1282 // line-segment approximations of the 15 velocity curves
1283
1284 // linear
1285 const int lin0[] = { 1, 1, 127, 127 };
1286 const int lin1[] = { 1, 21, 127, 127 };
1287 const int lin2[] = { 1, 45, 127, 127 };
1288 const int lin3[] = { 1, 74, 127, 127 };
1289 const int lin4[] = { 1, 127, 127, 127 };
1290
1291 // non-linear
1292 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1293 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1294 127, 127 };
1295 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1296 127, 127 };
1297 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1298 127, 127 };
1299 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1300
1301 // special
1302 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1303 113, 127, 127, 127 };
1304 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1305 118, 127, 127, 127 };
1306 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
1307 85, 90, 91, 127, 127, 127 };
1308 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
1309 117, 127, 127, 127 };
1310 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
1311 127, 127 };
1312
1313 const int* const curves[] = { non0, non1, non2, non3, non4,
1314 lin0, lin1, lin2, lin3, lin4,
1315 spe0, spe1, spe2, spe3, spe4 };
1316
1317 double* const table = new double[128];
1318
1319 const int* curve = curves[curveType * 5 + depth];
1320 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
1321
1322 table[0] = 0;
1323 for (int x = 1 ; x < 128 ; x++) {
1324
1325 if (x > curve[2]) curve += 2;
1326 double y = curve[1] + (x - curve[0]) *
1327 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
1328 y = y / 127;
1329
1330 // Scale up for s > 20, down for s < 20. When
1331 // down-scaling, the curve still ends at 1.0.
1332 if (s < 20 && y >= 0.5)
1333 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
1334 else
1335 y = y * (s / 20.0);
1336 if (y > 1) y = 1;
1337
1338 table[x] = y;
1339 }
1340 return table;
1341 }
1342
1343
1344 // *************** Region ***************
1345 // *
1346
1347 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
1348 // Initialization
1349 Dimensions = 0;
1350 for (int i = 0; i < 256; i++) {
1351 pDimensionRegions[i] = NULL;
1352 }
1353 Layers = 1;
1354 File* file = (File*) GetParent()->GetParent();
1355 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
1356
1357 // Actual Loading
1358
1359 LoadDimensionRegions(rgnList);
1360
1361 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
1362 if (_3lnk) {
1363 DimensionRegions = _3lnk->ReadUint32();
1364 for (int i = 0; i < dimensionBits; i++) {
1365 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
1366 uint8_t bits = _3lnk->ReadUint8();
1367 if (dimension == dimension_none) { // inactive dimension
1368 pDimensionDefinitions[i].dimension = dimension_none;
1369 pDimensionDefinitions[i].bits = 0;
1370 pDimensionDefinitions[i].zones = 0;
1371 pDimensionDefinitions[i].split_type = split_type_bit;
1372 pDimensionDefinitions[i].ranges = NULL;
1373 pDimensionDefinitions[i].zone_size = 0;
1374 }
1375 else { // active dimension
1376 pDimensionDefinitions[i].dimension = dimension;
1377 pDimensionDefinitions[i].bits = bits;
1378 pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
1379 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
1380 dimension == dimension_samplechannel ||
1381 dimension == dimension_releasetrigger) ? split_type_bit
1382 : split_type_normal;
1383 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
1384 pDimensionDefinitions[i].zone_size =
1385 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
1386 : 0;
1387 Dimensions++;
1388
1389 // if this is a layer dimension, remember the amount of layers
1390 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
1391 }
1392 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
1393 }
1394
1395 // check velocity dimension (if there is one) for custom defined zone ranges
1396 for (uint i = 0; i < Dimensions; i++) {
1397 dimension_def_t* pDimDef = pDimensionDefinitions + i;
1398 if (pDimDef->dimension == dimension_velocity) {
1399 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
1400 // no custom defined ranges
1401 pDimDef->split_type = split_type_normal;
1402 pDimDef->ranges = NULL;
1403 }
1404 else { // custom defined ranges
1405 pDimDef->split_type = split_type_customvelocity;
1406 pDimDef->ranges = new range_t[pDimDef->zones];
1407 uint8_t bits[8] = { 0 };
1408 int previousUpperLimit = -1;
1409 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
1410 bits[i] = velocityZone;
1411 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
1412
1413 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
1414 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
1415 previousUpperLimit = pDimDef->ranges[velocityZone].high;
1416 // fill velocity table
1417 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
1418 VelocityTable[i] = velocityZone;
1419 }
1420 }
1421 }
1422 }
1423 }
1424
1425 // jump to start of the wave pool indices (if not already there)
1426 File* file = (File*) GetParent()->GetParent();
1427 if (file->pVersion && file->pVersion->major == 3)
1428 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
1429 else
1430 _3lnk->SetPos(44);
1431
1432 // load sample references
1433 for (uint i = 0; i < DimensionRegions; i++) {
1434 uint32_t wavepoolindex = _3lnk->ReadUint32();
1435 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
1436 }
1437 }
1438 else throw gig::Exception("Mandatory <3lnk> chunk not found.");
1439 }
1440
1441 void Region::LoadDimensionRegions(RIFF::List* rgn) {
1442 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
1443 if (_3prg) {
1444 int dimensionRegionNr = 0;
1445 RIFF::List* _3ewl = _3prg->GetFirstSubList();
1446 while (_3ewl) {
1447 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
1448 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
1449 dimensionRegionNr++;
1450 }
1451 _3ewl = _3prg->GetNextSubList();
1452 }
1453 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1454 }
1455 }
1456
1457 Region::~Region() {
1458 for (uint i = 0; i < Dimensions; i++) {
1459 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1460 }
1461 for (int i = 0; i < 256; i++) {
1462 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1463 }
1464 }
1465
1466 /**
1467 * Use this method in your audio engine to get the appropriate dimension
1468 * region with it's articulation data for the current situation. Just
1469 * call the method with the current MIDI controller values and you'll get
1470 * the DimensionRegion with the appropriate articulation data for the
1471 * current situation (for this Region of course only). To do that you'll
1472 * first have to look which dimensions with which controllers and in
1473 * which order are defined for this Region when you load the .gig file.
1474 * Special cases are e.g. layer or channel dimensions where you just put
1475 * in the index numbers instead of a MIDI controller value (means 0 for
1476 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1477 * etc.).
1478 *
1479 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
1480 * @returns adress to the DimensionRegion for the given situation
1481 * @see pDimensionDefinitions
1482 * @see Dimensions
1483 */
1484 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
1485 uint8_t bits[8] = { 0 };
1486 for (uint i = 0; i < Dimensions; i++) {
1487 bits[i] = DimValues[i];
1488 switch (pDimensionDefinitions[i].split_type) {
1489 case split_type_normal:
1490 bits[i] /= pDimensionDefinitions[i].zone_size;
1491 break;
1492 case split_type_customvelocity:
1493 bits[i] = VelocityTable[bits[i]];
1494 break;
1495 case split_type_bit: // the value is already the sought dimension bit number
1496 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
1497 bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
1498 break;
1499 }
1500 }
1501 return GetDimensionRegionByBit(bits);
1502 }
1503
1504 /**
1505 * Returns the appropriate DimensionRegion for the given dimension bit
1506 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1507 * instead of calling this method directly!
1508 *
1509 * @param DimBits Bit numbers for dimension 0 to 7
1510 * @returns adress to the DimensionRegion for the given dimension
1511 * bit numbers
1512 * @see GetDimensionRegionByValue()
1513 */
1514 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
1515 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
1516 << pDimensionDefinitions[5].bits | DimBits[5])
1517 << pDimensionDefinitions[4].bits | DimBits[4])
1518 << pDimensionDefinitions[3].bits | DimBits[3])
1519 << pDimensionDefinitions[2].bits | DimBits[2])
1520 << pDimensionDefinitions[1].bits | DimBits[1])
1521 << pDimensionDefinitions[0].bits | DimBits[0]];
1522 }
1523
1524 /**
1525 * Returns pointer address to the Sample referenced with this region.
1526 * This is the global Sample for the entire Region (not sure if this is
1527 * actually used by the Gigasampler engine - I would only use the Sample
1528 * referenced by the appropriate DimensionRegion instead of this sample).
1529 *
1530 * @returns address to Sample or NULL if there is no reference to a
1531 * sample saved in the .gig file
1532 */
1533 Sample* Region::GetSample() {
1534 if (pSample) return static_cast<gig::Sample*>(pSample);
1535 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1536 }
1537
1538 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {
1539 if ((int32_t)WavePoolTableIndex == -1) return NULL;
1540 File* file = (File*) GetParent()->GetParent();
1541 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1542 Sample* sample = file->GetFirstSample();
1543 while (sample) {
1544 if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);
1545 sample = file->GetNextSample();
1546 }
1547 return NULL;
1548 }
1549
1550
1551
1552 // *************** Instrument ***************
1553 // *
1554
1555 Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {
1556 // Initialization
1557 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1558 RegionIndex = -1;
1559
1560 // Loading
1561 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1562 if (lart) {
1563 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1564 if (_3ewg) {
1565 EffectSend = _3ewg->ReadUint16();
1566 Attenuation = _3ewg->ReadInt32();
1567 FineTune = _3ewg->ReadInt16();
1568 PitchbendRange = _3ewg->ReadInt16();
1569 uint8_t dimkeystart = _3ewg->ReadUint8();
1570 PianoReleaseMode = dimkeystart & 0x01;
1571 DimensionKeyRange.low = dimkeystart >> 1;
1572 DimensionKeyRange.high = _3ewg->ReadUint8();
1573 }
1574 else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1575 }
1576 else throw gig::Exception("Mandatory <lart> list chunk not found.");
1577
1578 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1579 if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1580 pRegions = new Region*[Regions];
1581 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
1582 RIFF::List* rgn = lrgn->GetFirstSubList();
1583 unsigned int iRegion = 0;
1584 while (rgn) {
1585 if (rgn->GetListType() == LIST_TYPE_RGN) {
1586 pRegions[iRegion] = new Region(this, rgn);
1587 iRegion++;
1588 }
1589 rgn = lrgn->GetNextSubList();
1590 }
1591
1592 // Creating Region Key Table for fast lookup
1593 for (uint iReg = 0; iReg < Regions; iReg++) {
1594 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1595 RegionKeyTable[iKey] = pRegions[iReg];
1596 }
1597 }
1598 }
1599
1600 Instrument::~Instrument() {
1601 for (uint i = 0; i < Regions; i++) {
1602 if (pRegions) {
1603 if (pRegions[i]) delete (pRegions[i]);
1604 }
1605 }
1606 if (pRegions) delete[] pRegions;
1607 }
1608
1609 /**
1610 * Returns the appropriate Region for a triggered note.
1611 *
1612 * @param Key MIDI Key number of triggered note / key (0 - 127)
1613 * @returns pointer adress to the appropriate Region or NULL if there
1614 * there is no Region defined for the given \a Key
1615 */
1616 Region* Instrument::GetRegion(unsigned int Key) {
1617 if (!pRegions || Key > 127) return NULL;
1618 return RegionKeyTable[Key];
1619 /*for (int i = 0; i < Regions; i++) {
1620 if (Key <= pRegions[i]->KeyRange.high &&
1621 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1622 }
1623 return NULL;*/
1624 }
1625
1626 /**
1627 * Returns the first Region of the instrument. You have to call this
1628 * method once before you use GetNextRegion().
1629 *
1630 * @returns pointer address to first region or NULL if there is none
1631 * @see GetNextRegion()
1632 */
1633 Region* Instrument::GetFirstRegion() {
1634 if (!Regions) return NULL;
1635 RegionIndex = 1;
1636 return pRegions[0];
1637 }
1638
1639 /**
1640 * Returns the next Region of the instrument. You have to call
1641 * GetFirstRegion() once before you can use this method. By calling this
1642 * method multiple times it iterates through the available Regions.
1643 *
1644 * @returns pointer address to the next region or NULL if end reached
1645 * @see GetFirstRegion()
1646 */
1647 Region* Instrument::GetNextRegion() {
1648 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
1649 return pRegions[RegionIndex++];
1650 }
1651
1652
1653
1654 // *************** File ***************
1655 // *
1656
1657 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1658 pSamples = NULL;
1659 pInstruments = NULL;
1660 }
1661
1662 File::~File() {
1663 // free samples
1664 if (pSamples) {
1665 SamplesIterator = pSamples->begin();
1666 while (SamplesIterator != pSamples->end() ) {
1667 delete (*SamplesIterator);
1668 SamplesIterator++;
1669 }
1670 pSamples->clear();
1671 delete pSamples;
1672
1673 }
1674 // free instruments
1675 if (pInstruments) {
1676 InstrumentsIterator = pInstruments->begin();
1677 while (InstrumentsIterator != pInstruments->end() ) {
1678 delete (*InstrumentsIterator);
1679 InstrumentsIterator++;
1680 }
1681 pInstruments->clear();
1682 delete pInstruments;
1683 }
1684 }
1685
1686 Sample* File::GetFirstSample() {
1687 if (!pSamples) LoadSamples();
1688 if (!pSamples) return NULL;
1689 SamplesIterator = pSamples->begin();
1690 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1691 }
1692
1693 Sample* File::GetNextSample() {
1694 if (!pSamples) return NULL;
1695 SamplesIterator++;
1696 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1697 }
1698
1699 void File::LoadSamples() {
1700 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
1701 if (wvpl) {
1702 unsigned long wvplFileOffset = wvpl->GetFilePos();
1703 RIFF::List* wave = wvpl->GetFirstSubList();
1704 while (wave) {
1705 if (wave->GetListType() == LIST_TYPE_WAVE) {
1706 if (!pSamples) pSamples = new SampleList;
1707 unsigned long waveFileOffset = wave->GetFilePos();
1708 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));
1709 }
1710 wave = wvpl->GetNextSubList();
1711 }
1712 }
1713 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1714 }
1715
1716 Instrument* File::GetFirstInstrument() {
1717 if (!pInstruments) LoadInstruments();
1718 if (!pInstruments) return NULL;
1719 InstrumentsIterator = pInstruments->begin();
1720 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1721 }
1722
1723 Instrument* File::GetNextInstrument() {
1724 if (!pInstruments) return NULL;
1725 InstrumentsIterator++;
1726 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1727 }
1728
1729 /**
1730 * Returns the instrument with the given index.
1731 *
1732 * @returns sought instrument or NULL if there's no such instrument
1733 */
1734 Instrument* File::GetInstrument(uint index) {
1735 if (!pInstruments) LoadInstruments();
1736 if (!pInstruments) return NULL;
1737 InstrumentsIterator = pInstruments->begin();
1738 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1739 if (i == index) return *InstrumentsIterator;
1740 InstrumentsIterator++;
1741 }
1742 return NULL;
1743 }
1744
1745 void File::LoadInstruments() {
1746 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1747 if (lstInstruments) {
1748 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1749 while (lstInstr) {
1750 if (lstInstr->GetListType() == LIST_TYPE_INS) {
1751 if (!pInstruments) pInstruments = new InstrumentList;
1752 pInstruments->push_back(new Instrument(this, lstInstr));
1753 }
1754 lstInstr = lstInstruments->GetNextSubList();
1755 }
1756 }
1757 else throw gig::Exception("Mandatory <lins> list chunk not found.");
1758 }
1759
1760
1761
1762 // *************** Exception ***************
1763 // *
1764
1765 Exception::Exception(String Message) : DLS::Exception(Message) {
1766 }
1767
1768 void Exception::PrintMessage() {
1769 std::cout << "gig::Exception: " << Message << std::endl;
1770 }
1771
1772 } // namespace gig

  ViewVC Help
Powered by ViewVC