/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 773 - (show annotations) (download)
Sat Sep 17 14:24:45 2005 UTC (13 years, 9 months ago) by persson
File size: 90817 byte(s)
* fixed the GetVelocityCutoff function, it wasn't always using the
  VCFVelocityScale parameter when no cutoff controller was defined

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include <iostream>
27
28 namespace gig {
29
30 // *************** progress_t ***************
31 // *
32
33 progress_t::progress_t() {
34 callback = NULL;
35 custom = NULL;
36 __range_min = 0.0f;
37 __range_max = 1.0f;
38 }
39
40 // private helper function to convert progress of a subprocess into the global progress
41 static void __notify_progress(progress_t* pProgress, float subprogress) {
42 if (pProgress && pProgress->callback) {
43 const float totalrange = pProgress->__range_max - pProgress->__range_min;
44 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
45 pProgress->factor = totalprogress;
46 pProgress->callback(pProgress); // now actually notify about the progress
47 }
48 }
49
50 // private helper function to divide a progress into subprogresses
51 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
52 if (pParentProgress && pParentProgress->callback) {
53 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
54 pSubProgress->callback = pParentProgress->callback;
55 pSubProgress->custom = pParentProgress->custom;
56 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
57 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
58 }
59 }
60
61
62 // *************** Internal functions for sample decopmression ***************
63 // *
64
65 namespace {
66
67 inline int get12lo(const unsigned char* pSrc)
68 {
69 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
70 return x & 0x800 ? x - 0x1000 : x;
71 }
72
73 inline int get12hi(const unsigned char* pSrc)
74 {
75 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
76 return x & 0x800 ? x - 0x1000 : x;
77 }
78
79 inline int16_t get16(const unsigned char* pSrc)
80 {
81 return int16_t(pSrc[0] | pSrc[1] << 8);
82 }
83
84 inline int get24(const unsigned char* pSrc)
85 {
86 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
87 return x & 0x800000 ? x - 0x1000000 : x;
88 }
89
90 void Decompress16(int compressionmode, const unsigned char* params,
91 int srcStep, int dstStep,
92 const unsigned char* pSrc, int16_t* pDst,
93 unsigned long currentframeoffset,
94 unsigned long copysamples)
95 {
96 switch (compressionmode) {
97 case 0: // 16 bit uncompressed
98 pSrc += currentframeoffset * srcStep;
99 while (copysamples) {
100 *pDst = get16(pSrc);
101 pDst += dstStep;
102 pSrc += srcStep;
103 copysamples--;
104 }
105 break;
106
107 case 1: // 16 bit compressed to 8 bit
108 int y = get16(params);
109 int dy = get16(params + 2);
110 while (currentframeoffset) {
111 dy -= int8_t(*pSrc);
112 y -= dy;
113 pSrc += srcStep;
114 currentframeoffset--;
115 }
116 while (copysamples) {
117 dy -= int8_t(*pSrc);
118 y -= dy;
119 *pDst = y;
120 pDst += dstStep;
121 pSrc += srcStep;
122 copysamples--;
123 }
124 break;
125 }
126 }
127
128 void Decompress24(int compressionmode, const unsigned char* params,
129 int dstStep, const unsigned char* pSrc, int16_t* pDst,
130 unsigned long currentframeoffset,
131 unsigned long copysamples, int truncatedBits)
132 {
133 // Note: The 24 bits are truncated to 16 bits for now.
134
135 int y, dy, ddy, dddy;
136 const int shift = 8 - truncatedBits;
137
138 #define GET_PARAMS(params) \
139 y = get24(params); \
140 dy = y - get24((params) + 3); \
141 ddy = get24((params) + 6); \
142 dddy = get24((params) + 9)
143
144 #define SKIP_ONE(x) \
145 dddy -= (x); \
146 ddy -= dddy; \
147 dy = -dy - ddy; \
148 y += dy
149
150 #define COPY_ONE(x) \
151 SKIP_ONE(x); \
152 *pDst = y >> shift; \
153 pDst += dstStep
154
155 switch (compressionmode) {
156 case 2: // 24 bit uncompressed
157 pSrc += currentframeoffset * 3;
158 while (copysamples) {
159 *pDst = get24(pSrc) >> shift;
160 pDst += dstStep;
161 pSrc += 3;
162 copysamples--;
163 }
164 break;
165
166 case 3: // 24 bit compressed to 16 bit
167 GET_PARAMS(params);
168 while (currentframeoffset) {
169 SKIP_ONE(get16(pSrc));
170 pSrc += 2;
171 currentframeoffset--;
172 }
173 while (copysamples) {
174 COPY_ONE(get16(pSrc));
175 pSrc += 2;
176 copysamples--;
177 }
178 break;
179
180 case 4: // 24 bit compressed to 12 bit
181 GET_PARAMS(params);
182 while (currentframeoffset > 1) {
183 SKIP_ONE(get12lo(pSrc));
184 SKIP_ONE(get12hi(pSrc));
185 pSrc += 3;
186 currentframeoffset -= 2;
187 }
188 if (currentframeoffset) {
189 SKIP_ONE(get12lo(pSrc));
190 currentframeoffset--;
191 if (copysamples) {
192 COPY_ONE(get12hi(pSrc));
193 pSrc += 3;
194 copysamples--;
195 }
196 }
197 while (copysamples > 1) {
198 COPY_ONE(get12lo(pSrc));
199 COPY_ONE(get12hi(pSrc));
200 pSrc += 3;
201 copysamples -= 2;
202 }
203 if (copysamples) {
204 COPY_ONE(get12lo(pSrc));
205 }
206 break;
207
208 case 5: // 24 bit compressed to 8 bit
209 GET_PARAMS(params);
210 while (currentframeoffset) {
211 SKIP_ONE(int8_t(*pSrc++));
212 currentframeoffset--;
213 }
214 while (copysamples) {
215 COPY_ONE(int8_t(*pSrc++));
216 copysamples--;
217 }
218 break;
219 }
220 }
221
222 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
223 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
224 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
225 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
226 }
227
228
229 // *************** Sample ***************
230 // *
231
232 unsigned int Sample::Instances = 0;
233 buffer_t Sample::InternalDecompressionBuffer;
234
235 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
236 Instances++;
237 FileNo = fileNo;
238
239 RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
240 if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
241 SampleGroup = _3gix->ReadInt16();
242
243 RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
244 if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
245 Manufacturer = smpl->ReadInt32();
246 Product = smpl->ReadInt32();
247 SamplePeriod = smpl->ReadInt32();
248 MIDIUnityNote = smpl->ReadInt32();
249 FineTune = smpl->ReadInt32();
250 smpl->Read(&SMPTEFormat, 1, 4);
251 SMPTEOffset = smpl->ReadInt32();
252 Loops = smpl->ReadInt32();
253 smpl->ReadInt32(); // manufByt
254 LoopID = smpl->ReadInt32();
255 smpl->Read(&LoopType, 1, 4);
256 LoopStart = smpl->ReadInt32();
257 LoopEnd = smpl->ReadInt32();
258 LoopFraction = smpl->ReadInt32();
259 LoopPlayCount = smpl->ReadInt32();
260
261 FrameTable = NULL;
262 SamplePos = 0;
263 RAMCache.Size = 0;
264 RAMCache.pStart = NULL;
265 RAMCache.NullExtensionSize = 0;
266
267 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
268
269 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
270 Compressed = ewav;
271 Dithered = false;
272 TruncatedBits = 0;
273 if (Compressed) {
274 uint32_t version = ewav->ReadInt32();
275 if (version == 3 && BitDepth == 24) {
276 Dithered = ewav->ReadInt32();
277 ewav->SetPos(Channels == 2 ? 84 : 64);
278 TruncatedBits = ewav->ReadInt32();
279 }
280 ScanCompressedSample();
281 }
282
283 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
284 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
285 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
286 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
287 }
288 FrameOffset = 0; // just for streaming compressed samples
289
290 LoopSize = LoopEnd - LoopStart;
291 }
292
293 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
294 void Sample::ScanCompressedSample() {
295 //TODO: we have to add some more scans here (e.g. determine compression rate)
296 this->SamplesTotal = 0;
297 std::list<unsigned long> frameOffsets;
298
299 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
300 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
301
302 // Scanning
303 pCkData->SetPos(0);
304 if (Channels == 2) { // Stereo
305 for (int i = 0 ; ; i++) {
306 // for 24 bit samples every 8:th frame offset is
307 // stored, to save some memory
308 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
309
310 const int mode_l = pCkData->ReadUint8();
311 const int mode_r = pCkData->ReadUint8();
312 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
313 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
314
315 if (pCkData->RemainingBytes() <= frameSize) {
316 SamplesInLastFrame =
317 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
318 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
319 SamplesTotal += SamplesInLastFrame;
320 break;
321 }
322 SamplesTotal += SamplesPerFrame;
323 pCkData->SetPos(frameSize, RIFF::stream_curpos);
324 }
325 }
326 else { // Mono
327 for (int i = 0 ; ; i++) {
328 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
329
330 const int mode = pCkData->ReadUint8();
331 if (mode > 5) throw gig::Exception("Unknown compression mode");
332 const unsigned long frameSize = bytesPerFrame[mode];
333
334 if (pCkData->RemainingBytes() <= frameSize) {
335 SamplesInLastFrame =
336 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
337 SamplesTotal += SamplesInLastFrame;
338 break;
339 }
340 SamplesTotal += SamplesPerFrame;
341 pCkData->SetPos(frameSize, RIFF::stream_curpos);
342 }
343 }
344 pCkData->SetPos(0);
345
346 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
347 if (FrameTable) delete[] FrameTable;
348 FrameTable = new unsigned long[frameOffsets.size()];
349 std::list<unsigned long>::iterator end = frameOffsets.end();
350 std::list<unsigned long>::iterator iter = frameOffsets.begin();
351 for (int i = 0; iter != end; i++, iter++) {
352 FrameTable[i] = *iter;
353 }
354 }
355
356 /**
357 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
358 * ReleaseSampleData() to free the memory if you don't need the cached
359 * sample data anymore.
360 *
361 * @returns buffer_t structure with start address and size of the buffer
362 * in bytes
363 * @see ReleaseSampleData(), Read(), SetPos()
364 */
365 buffer_t Sample::LoadSampleData() {
366 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
367 }
368
369 /**
370 * Reads (uncompresses if needed) and caches the first \a SampleCount
371 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
372 * memory space if you don't need the cached samples anymore. There is no
373 * guarantee that exactly \a SampleCount samples will be cached; this is
374 * not an error. The size will be eventually truncated e.g. to the
375 * beginning of a frame of a compressed sample. This is done for
376 * efficiency reasons while streaming the wave by your sampler engine
377 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
378 * that will be returned to determine the actual cached samples, but note
379 * that the size is given in bytes! You get the number of actually cached
380 * samples by dividing it by the frame size of the sample:
381 * @code
382 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
383 * long cachedsamples = buf.Size / pSample->FrameSize;
384 * @endcode
385 *
386 * @param SampleCount - number of sample points to load into RAM
387 * @returns buffer_t structure with start address and size of
388 * the cached sample data in bytes
389 * @see ReleaseSampleData(), Read(), SetPos()
390 */
391 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
392 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
393 }
394
395 /**
396 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
397 * ReleaseSampleData() to free the memory if you don't need the cached
398 * sample data anymore.
399 * The method will add \a NullSamplesCount silence samples past the
400 * official buffer end (this won't affect the 'Size' member of the
401 * buffer_t structure, that means 'Size' always reflects the size of the
402 * actual sample data, the buffer might be bigger though). Silence
403 * samples past the official buffer are needed for differential
404 * algorithms that always have to take subsequent samples into account
405 * (resampling/interpolation would be an important example) and avoids
406 * memory access faults in such cases.
407 *
408 * @param NullSamplesCount - number of silence samples the buffer should
409 * be extended past it's data end
410 * @returns buffer_t structure with start address and
411 * size of the buffer in bytes
412 * @see ReleaseSampleData(), Read(), SetPos()
413 */
414 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
415 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
416 }
417
418 /**
419 * Reads (uncompresses if needed) and caches the first \a SampleCount
420 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
421 * memory space if you don't need the cached samples anymore. There is no
422 * guarantee that exactly \a SampleCount samples will be cached; this is
423 * not an error. The size will be eventually truncated e.g. to the
424 * beginning of a frame of a compressed sample. This is done for
425 * efficiency reasons while streaming the wave by your sampler engine
426 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
427 * that will be returned to determine the actual cached samples, but note
428 * that the size is given in bytes! You get the number of actually cached
429 * samples by dividing it by the frame size of the sample:
430 * @code
431 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
432 * long cachedsamples = buf.Size / pSample->FrameSize;
433 * @endcode
434 * The method will add \a NullSamplesCount silence samples past the
435 * official buffer end (this won't affect the 'Size' member of the
436 * buffer_t structure, that means 'Size' always reflects the size of the
437 * actual sample data, the buffer might be bigger though). Silence
438 * samples past the official buffer are needed for differential
439 * algorithms that always have to take subsequent samples into account
440 * (resampling/interpolation would be an important example) and avoids
441 * memory access faults in such cases.
442 *
443 * @param SampleCount - number of sample points to load into RAM
444 * @param NullSamplesCount - number of silence samples the buffer should
445 * be extended past it's data end
446 * @returns buffer_t structure with start address and
447 * size of the cached sample data in bytes
448 * @see ReleaseSampleData(), Read(), SetPos()
449 */
450 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
451 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
452 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
453 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
454 RAMCache.pStart = new int8_t[allocationsize];
455 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
456 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
457 // fill the remaining buffer space with silence samples
458 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
459 return GetCache();
460 }
461
462 /**
463 * Returns current cached sample points. A buffer_t structure will be
464 * returned which contains address pointer to the begin of the cache and
465 * the size of the cached sample data in bytes. Use
466 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
467 * RAM.
468 *
469 * @returns buffer_t structure with current cached sample points
470 * @see LoadSampleData();
471 */
472 buffer_t Sample::GetCache() {
473 // return a copy of the buffer_t structure
474 buffer_t result;
475 result.Size = this->RAMCache.Size;
476 result.pStart = this->RAMCache.pStart;
477 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
478 return result;
479 }
480
481 /**
482 * Frees the cached sample from RAM if loaded with
483 * <i>LoadSampleData()</i> previously.
484 *
485 * @see LoadSampleData();
486 */
487 void Sample::ReleaseSampleData() {
488 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
489 RAMCache.pStart = NULL;
490 RAMCache.Size = 0;
491 }
492
493 /**
494 * Sets the position within the sample (in sample points, not in
495 * bytes). Use this method and <i>Read()</i> if you don't want to load
496 * the sample into RAM, thus for disk streaming.
497 *
498 * Although the original Gigasampler engine doesn't allow positioning
499 * within compressed samples, I decided to implement it. Even though
500 * the Gigasampler format doesn't allow to define loops for compressed
501 * samples at the moment, positioning within compressed samples might be
502 * interesting for some sampler engines though. The only drawback about
503 * my decision is that it takes longer to load compressed gig Files on
504 * startup, because it's neccessary to scan the samples for some
505 * mandatory informations. But I think as it doesn't affect the runtime
506 * efficiency, nobody will have a problem with that.
507 *
508 * @param SampleCount number of sample points to jump
509 * @param Whence optional: to which relation \a SampleCount refers
510 * to, if omited <i>RIFF::stream_start</i> is assumed
511 * @returns the new sample position
512 * @see Read()
513 */
514 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
515 if (Compressed) {
516 switch (Whence) {
517 case RIFF::stream_curpos:
518 this->SamplePos += SampleCount;
519 break;
520 case RIFF::stream_end:
521 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
522 break;
523 case RIFF::stream_backward:
524 this->SamplePos -= SampleCount;
525 break;
526 case RIFF::stream_start: default:
527 this->SamplePos = SampleCount;
528 break;
529 }
530 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
531
532 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
533 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
534 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
535 return this->SamplePos;
536 }
537 else { // not compressed
538 unsigned long orderedBytes = SampleCount * this->FrameSize;
539 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
540 return (result == orderedBytes) ? SampleCount
541 : result / this->FrameSize;
542 }
543 }
544
545 /**
546 * Returns the current position in the sample (in sample points).
547 */
548 unsigned long Sample::GetPos() {
549 if (Compressed) return SamplePos;
550 else return pCkData->GetPos() / FrameSize;
551 }
552
553 /**
554 * Reads \a SampleCount number of sample points from the position stored
555 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
556 * the position within the sample respectively, this method honors the
557 * looping informations of the sample (if any). The sample wave stream
558 * will be decompressed on the fly if using a compressed sample. Use this
559 * method if you don't want to load the sample into RAM, thus for disk
560 * streaming. All this methods needs to know to proceed with streaming
561 * for the next time you call this method is stored in \a pPlaybackState.
562 * You have to allocate and initialize the playback_state_t structure by
563 * yourself before you use it to stream a sample:
564 * @code
565 * gig::playback_state_t playbackstate;
566 * playbackstate.position = 0;
567 * playbackstate.reverse = false;
568 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
569 * @endcode
570 * You don't have to take care of things like if there is actually a loop
571 * defined or if the current read position is located within a loop area.
572 * The method already handles such cases by itself.
573 *
574 * <b>Caution:</b> If you are using more than one streaming thread, you
575 * have to use an external decompression buffer for <b>EACH</b>
576 * streaming thread to avoid race conditions and crashes!
577 *
578 * @param pBuffer destination buffer
579 * @param SampleCount number of sample points to read
580 * @param pPlaybackState will be used to store and reload the playback
581 * state for the next ReadAndLoop() call
582 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
583 * @returns number of successfully read sample points
584 * @see CreateDecompressionBuffer()
585 */
586 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
587 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
588 uint8_t* pDst = (uint8_t*) pBuffer;
589
590 SetPos(pPlaybackState->position); // recover position from the last time
591
592 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
593
594 switch (this->LoopType) {
595
596 case loop_type_bidirectional: { //TODO: not tested yet!
597 do {
598 // if not endless loop check if max. number of loop cycles have been passed
599 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
600
601 if (!pPlaybackState->reverse) { // forward playback
602 do {
603 samplestoloopend = this->LoopEnd - GetPos();
604 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
605 samplestoread -= readsamples;
606 totalreadsamples += readsamples;
607 if (readsamples == samplestoloopend) {
608 pPlaybackState->reverse = true;
609 break;
610 }
611 } while (samplestoread && readsamples);
612 }
613 else { // backward playback
614
615 // as we can only read forward from disk, we have to
616 // determine the end position within the loop first,
617 // read forward from that 'end' and finally after
618 // reading, swap all sample frames so it reflects
619 // backward playback
620
621 unsigned long swapareastart = totalreadsamples;
622 unsigned long loopoffset = GetPos() - this->LoopStart;
623 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
624 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
625
626 SetPos(reverseplaybackend);
627
628 // read samples for backward playback
629 do {
630 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
631 samplestoreadinloop -= readsamples;
632 samplestoread -= readsamples;
633 totalreadsamples += readsamples;
634 } while (samplestoreadinloop && readsamples);
635
636 SetPos(reverseplaybackend); // pretend we really read backwards
637
638 if (reverseplaybackend == this->LoopStart) {
639 pPlaybackState->loop_cycles_left--;
640 pPlaybackState->reverse = false;
641 }
642
643 // reverse the sample frames for backward playback
644 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
645 }
646 } while (samplestoread && readsamples);
647 break;
648 }
649
650 case loop_type_backward: { // TODO: not tested yet!
651 // forward playback (not entered the loop yet)
652 if (!pPlaybackState->reverse) do {
653 samplestoloopend = this->LoopEnd - GetPos();
654 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
655 samplestoread -= readsamples;
656 totalreadsamples += readsamples;
657 if (readsamples == samplestoloopend) {
658 pPlaybackState->reverse = true;
659 break;
660 }
661 } while (samplestoread && readsamples);
662
663 if (!samplestoread) break;
664
665 // as we can only read forward from disk, we have to
666 // determine the end position within the loop first,
667 // read forward from that 'end' and finally after
668 // reading, swap all sample frames so it reflects
669 // backward playback
670
671 unsigned long swapareastart = totalreadsamples;
672 unsigned long loopoffset = GetPos() - this->LoopStart;
673 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
674 : samplestoread;
675 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
676
677 SetPos(reverseplaybackend);
678
679 // read samples for backward playback
680 do {
681 // if not endless loop check if max. number of loop cycles have been passed
682 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
683 samplestoloopend = this->LoopEnd - GetPos();
684 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
685 samplestoreadinloop -= readsamples;
686 samplestoread -= readsamples;
687 totalreadsamples += readsamples;
688 if (readsamples == samplestoloopend) {
689 pPlaybackState->loop_cycles_left--;
690 SetPos(this->LoopStart);
691 }
692 } while (samplestoreadinloop && readsamples);
693
694 SetPos(reverseplaybackend); // pretend we really read backwards
695
696 // reverse the sample frames for backward playback
697 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
698 break;
699 }
700
701 default: case loop_type_normal: {
702 do {
703 // if not endless loop check if max. number of loop cycles have been passed
704 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
705 samplestoloopend = this->LoopEnd - GetPos();
706 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
707 samplestoread -= readsamples;
708 totalreadsamples += readsamples;
709 if (readsamples == samplestoloopend) {
710 pPlaybackState->loop_cycles_left--;
711 SetPos(this->LoopStart);
712 }
713 } while (samplestoread && readsamples);
714 break;
715 }
716 }
717 }
718
719 // read on without looping
720 if (samplestoread) do {
721 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
722 samplestoread -= readsamples;
723 totalreadsamples += readsamples;
724 } while (readsamples && samplestoread);
725
726 // store current position
727 pPlaybackState->position = GetPos();
728
729 return totalreadsamples;
730 }
731
732 /**
733 * Reads \a SampleCount number of sample points from the current
734 * position into the buffer pointed by \a pBuffer and increments the
735 * position within the sample. The sample wave stream will be
736 * decompressed on the fly if using a compressed sample. Use this method
737 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
738 * thus for disk streaming.
739 *
740 * <b>Caution:</b> If you are using more than one streaming thread, you
741 * have to use an external decompression buffer for <b>EACH</b>
742 * streaming thread to avoid race conditions and crashes!
743 *
744 * @param pBuffer destination buffer
745 * @param SampleCount number of sample points to read
746 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
747 * @returns number of successfully read sample points
748 * @see SetPos(), CreateDecompressionBuffer()
749 */
750 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
751 if (SampleCount == 0) return 0;
752 if (!Compressed) {
753 if (BitDepth == 24) {
754 // 24 bit sample. For now just truncate to 16 bit.
755 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
756 int16_t* pDst = static_cast<int16_t*>(pBuffer);
757 if (Channels == 2) { // Stereo
758 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
759 pSrc++;
760 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
761 *pDst++ = get16(pSrc);
762 pSrc += 3;
763 }
764 return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
765 }
766 else { // Mono
767 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
768 pSrc++;
769 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
770 *pDst++ = get16(pSrc);
771 pSrc += 3;
772 }
773 return pDst - static_cast<int16_t*>(pBuffer);
774 }
775 }
776 else { // 16 bit
777 // (pCkData->Read does endian correction)
778 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
779 : pCkData->Read(pBuffer, SampleCount, 2);
780 }
781 }
782 else {
783 if (this->SamplePos >= this->SamplesTotal) return 0;
784 //TODO: efficiency: maybe we should test for an average compression rate
785 unsigned long assumedsize = GuessSize(SampleCount),
786 remainingbytes = 0, // remaining bytes in the local buffer
787 remainingsamples = SampleCount,
788 copysamples, skipsamples,
789 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
790 this->FrameOffset = 0;
791
792 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
793
794 // if decompression buffer too small, then reduce amount of samples to read
795 if (pDecompressionBuffer->Size < assumedsize) {
796 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
797 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
798 remainingsamples = SampleCount;
799 assumedsize = GuessSize(SampleCount);
800 }
801
802 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
803 int16_t* pDst = static_cast<int16_t*>(pBuffer);
804 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
805
806 while (remainingsamples && remainingbytes) {
807 unsigned long framesamples = SamplesPerFrame;
808 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
809
810 int mode_l = *pSrc++, mode_r = 0;
811
812 if (Channels == 2) {
813 mode_r = *pSrc++;
814 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
815 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
816 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
817 if (remainingbytes < framebytes) { // last frame in sample
818 framesamples = SamplesInLastFrame;
819 if (mode_l == 4 && (framesamples & 1)) {
820 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
821 }
822 else {
823 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
824 }
825 }
826 }
827 else {
828 framebytes = bytesPerFrame[mode_l] + 1;
829 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
830 if (remainingbytes < framebytes) {
831 framesamples = SamplesInLastFrame;
832 }
833 }
834
835 // determine how many samples in this frame to skip and read
836 if (currentframeoffset + remainingsamples >= framesamples) {
837 if (currentframeoffset <= framesamples) {
838 copysamples = framesamples - currentframeoffset;
839 skipsamples = currentframeoffset;
840 }
841 else {
842 copysamples = 0;
843 skipsamples = framesamples;
844 }
845 }
846 else {
847 // This frame has enough data for pBuffer, but not
848 // all of the frame is needed. Set file position
849 // to start of this frame for next call to Read.
850 copysamples = remainingsamples;
851 skipsamples = currentframeoffset;
852 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
853 this->FrameOffset = currentframeoffset + copysamples;
854 }
855 remainingsamples -= copysamples;
856
857 if (remainingbytes > framebytes) {
858 remainingbytes -= framebytes;
859 if (remainingsamples == 0 &&
860 currentframeoffset + copysamples == framesamples) {
861 // This frame has enough data for pBuffer, and
862 // all of the frame is needed. Set file
863 // position to start of next frame for next
864 // call to Read. FrameOffset is 0.
865 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
866 }
867 }
868 else remainingbytes = 0;
869
870 currentframeoffset -= skipsamples;
871
872 if (copysamples == 0) {
873 // skip this frame
874 pSrc += framebytes - Channels;
875 }
876 else {
877 const unsigned char* const param_l = pSrc;
878 if (BitDepth == 24) {
879 if (mode_l != 2) pSrc += 12;
880
881 if (Channels == 2) { // Stereo
882 const unsigned char* const param_r = pSrc;
883 if (mode_r != 2) pSrc += 12;
884
885 Decompress24(mode_l, param_l, 2, pSrc, pDst,
886 skipsamples, copysamples, TruncatedBits);
887 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
888 skipsamples, copysamples, TruncatedBits);
889 pDst += copysamples << 1;
890 }
891 else { // Mono
892 Decompress24(mode_l, param_l, 1, pSrc, pDst,
893 skipsamples, copysamples, TruncatedBits);
894 pDst += copysamples;
895 }
896 }
897 else { // 16 bit
898 if (mode_l) pSrc += 4;
899
900 int step;
901 if (Channels == 2) { // Stereo
902 const unsigned char* const param_r = pSrc;
903 if (mode_r) pSrc += 4;
904
905 step = (2 - mode_l) + (2 - mode_r);
906 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
907 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
908 skipsamples, copysamples);
909 pDst += copysamples << 1;
910 }
911 else { // Mono
912 step = 2 - mode_l;
913 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
914 pDst += copysamples;
915 }
916 }
917 pSrc += nextFrameOffset;
918 }
919
920 // reload from disk to local buffer if needed
921 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
922 assumedsize = GuessSize(remainingsamples);
923 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
924 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
925 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
926 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
927 }
928 } // while
929
930 this->SamplePos += (SampleCount - remainingsamples);
931 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
932 return (SampleCount - remainingsamples);
933 }
934 }
935
936 /**
937 * Allocates a decompression buffer for streaming (compressed) samples
938 * with Sample::Read(). If you are using more than one streaming thread
939 * in your application you <b>HAVE</b> to create a decompression buffer
940 * for <b>EACH</b> of your streaming threads and provide it with the
941 * Sample::Read() call in order to avoid race conditions and crashes.
942 *
943 * You should free the memory occupied by the allocated buffer(s) once
944 * you don't need one of your streaming threads anymore by calling
945 * DestroyDecompressionBuffer().
946 *
947 * @param MaxReadSize - the maximum size (in sample points) you ever
948 * expect to read with one Read() call
949 * @returns allocated decompression buffer
950 * @see DestroyDecompressionBuffer()
951 */
952 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
953 buffer_t result;
954 const double worstCaseHeaderOverhead =
955 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
956 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
957 result.pStart = new int8_t[result.Size];
958 result.NullExtensionSize = 0;
959 return result;
960 }
961
962 /**
963 * Free decompression buffer, previously created with
964 * CreateDecompressionBuffer().
965 *
966 * @param DecompressionBuffer - previously allocated decompression
967 * buffer to free
968 */
969 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
970 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
971 delete[] (int8_t*) DecompressionBuffer.pStart;
972 DecompressionBuffer.pStart = NULL;
973 DecompressionBuffer.Size = 0;
974 DecompressionBuffer.NullExtensionSize = 0;
975 }
976 }
977
978 Sample::~Sample() {
979 Instances--;
980 if (!Instances && InternalDecompressionBuffer.Size) {
981 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
982 InternalDecompressionBuffer.pStart = NULL;
983 InternalDecompressionBuffer.Size = 0;
984 }
985 if (FrameTable) delete[] FrameTable;
986 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
987 }
988
989
990
991 // *************** DimensionRegion ***************
992 // *
993
994 uint DimensionRegion::Instances = 0;
995 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
996
997 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
998 Instances++;
999
1000 memcpy(&Crossfade, &SamplerOptions, 4);
1001 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1002
1003 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1004 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1005 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1006 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1007 _3ewa->ReadInt16(); // unknown
1008 LFO1InternalDepth = _3ewa->ReadUint16();
1009 _3ewa->ReadInt16(); // unknown
1010 LFO3InternalDepth = _3ewa->ReadInt16();
1011 _3ewa->ReadInt16(); // unknown
1012 LFO1ControlDepth = _3ewa->ReadUint16();
1013 _3ewa->ReadInt16(); // unknown
1014 LFO3ControlDepth = _3ewa->ReadInt16();
1015 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1016 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1017 _3ewa->ReadInt16(); // unknown
1018 EG1Sustain = _3ewa->ReadUint16();
1019 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1020 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1021 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1022 EG1ControllerInvert = eg1ctrloptions & 0x01;
1023 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1024 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1025 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1026 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1027 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1028 EG2ControllerInvert = eg2ctrloptions & 0x01;
1029 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1030 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1031 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1032 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1033 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1034 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1035 _3ewa->ReadInt16(); // unknown
1036 EG2Sustain = _3ewa->ReadUint16();
1037 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1038 _3ewa->ReadInt16(); // unknown
1039 LFO2ControlDepth = _3ewa->ReadUint16();
1040 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1041 _3ewa->ReadInt16(); // unknown
1042 LFO2InternalDepth = _3ewa->ReadUint16();
1043 int32_t eg1decay2 = _3ewa->ReadInt32();
1044 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1045 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1046 _3ewa->ReadInt16(); // unknown
1047 EG1PreAttack = _3ewa->ReadUint16();
1048 int32_t eg2decay2 = _3ewa->ReadInt32();
1049 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1050 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1051 _3ewa->ReadInt16(); // unknown
1052 EG2PreAttack = _3ewa->ReadUint16();
1053 uint8_t velocityresponse = _3ewa->ReadUint8();
1054 if (velocityresponse < 5) {
1055 VelocityResponseCurve = curve_type_nonlinear;
1056 VelocityResponseDepth = velocityresponse;
1057 }
1058 else if (velocityresponse < 10) {
1059 VelocityResponseCurve = curve_type_linear;
1060 VelocityResponseDepth = velocityresponse - 5;
1061 }
1062 else if (velocityresponse < 15) {
1063 VelocityResponseCurve = curve_type_special;
1064 VelocityResponseDepth = velocityresponse - 10;
1065 }
1066 else {
1067 VelocityResponseCurve = curve_type_unknown;
1068 VelocityResponseDepth = 0;
1069 }
1070 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1071 if (releasevelocityresponse < 5) {
1072 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1073 ReleaseVelocityResponseDepth = releasevelocityresponse;
1074 }
1075 else if (releasevelocityresponse < 10) {
1076 ReleaseVelocityResponseCurve = curve_type_linear;
1077 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1078 }
1079 else if (releasevelocityresponse < 15) {
1080 ReleaseVelocityResponseCurve = curve_type_special;
1081 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1082 }
1083 else {
1084 ReleaseVelocityResponseCurve = curve_type_unknown;
1085 ReleaseVelocityResponseDepth = 0;
1086 }
1087 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1088 AttenuationControllerThreshold = _3ewa->ReadInt8();
1089 _3ewa->ReadInt32(); // unknown
1090 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1091 _3ewa->ReadInt16(); // unknown
1092 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1093 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1094 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1095 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1096 else DimensionBypass = dim_bypass_ctrl_none;
1097 uint8_t pan = _3ewa->ReadUint8();
1098 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1099 SelfMask = _3ewa->ReadInt8() & 0x01;
1100 _3ewa->ReadInt8(); // unknown
1101 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1102 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1103 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1104 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1105 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1106 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1107 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1108 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1109 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1110 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1111 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1112 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1113 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1114 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1115 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1116 : vcf_res_ctrl_none;
1117 uint16_t eg3depth = _3ewa->ReadUint16();
1118 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1119 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1120 _3ewa->ReadInt16(); // unknown
1121 ChannelOffset = _3ewa->ReadUint8() / 4;
1122 uint8_t regoptions = _3ewa->ReadUint8();
1123 MSDecode = regoptions & 0x01; // bit 0
1124 SustainDefeat = regoptions & 0x02; // bit 1
1125 _3ewa->ReadInt16(); // unknown
1126 VelocityUpperLimit = _3ewa->ReadInt8();
1127 _3ewa->ReadInt8(); // unknown
1128 _3ewa->ReadInt16(); // unknown
1129 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1130 _3ewa->ReadInt8(); // unknown
1131 _3ewa->ReadInt8(); // unknown
1132 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1133 uint8_t vcfcutoff = _3ewa->ReadUint8();
1134 VCFEnabled = vcfcutoff & 0x80; // bit 7
1135 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1136 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1137 uint8_t vcfvelscale = _3ewa->ReadUint8();
1138 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1139 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1140 _3ewa->ReadInt8(); // unknown
1141 uint8_t vcfresonance = _3ewa->ReadUint8();
1142 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1143 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1144 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1145 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1146 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1147 uint8_t vcfvelocity = _3ewa->ReadUint8();
1148 VCFVelocityDynamicRange = vcfvelocity % 5;
1149 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1150 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1151 if (VCFType == vcf_type_lowpass) {
1152 if (lfo3ctrl & 0x40) // bit 6
1153 VCFType = vcf_type_lowpassturbo;
1154 }
1155
1156 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1157 VelocityResponseDepth,
1158 VelocityResponseCurveScaling);
1159
1160 curve_type_t curveType = ReleaseVelocityResponseCurve;
1161 uint8_t depth = ReleaseVelocityResponseDepth;
1162
1163 // this models a strange behaviour or bug in GSt: two of the
1164 // velocity response curves for release time are not used even
1165 // if specified, instead another curve is chosen.
1166 if ((curveType == curve_type_nonlinear && depth == 0) ||
1167 (curveType == curve_type_special && depth == 4)) {
1168 curveType = curve_type_nonlinear;
1169 depth = 3;
1170 }
1171 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1172
1173 curveType = VCFVelocityCurve;
1174 depth = VCFVelocityDynamicRange;
1175
1176 // even stranger GSt: two of the velocity response curves for
1177 // filter cutoff are not used, instead another special curve
1178 // is chosen. This curve is not used anywhere else.
1179 if ((curveType == curve_type_nonlinear && depth == 0) ||
1180 (curveType == curve_type_special && depth == 4)) {
1181 curveType = curve_type_special;
1182 depth = 5;
1183 }
1184 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1185 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1186
1187 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1188 }
1189
1190 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1191 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1192 {
1193 double* table;
1194 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1195 if (pVelocityTables->count(tableKey)) { // if key exists
1196 table = (*pVelocityTables)[tableKey];
1197 }
1198 else {
1199 table = CreateVelocityTable(curveType, depth, scaling);
1200 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1201 }
1202 return table;
1203 }
1204
1205 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1206 leverage_ctrl_t decodedcontroller;
1207 switch (EncodedController) {
1208 // special controller
1209 case _lev_ctrl_none:
1210 decodedcontroller.type = leverage_ctrl_t::type_none;
1211 decodedcontroller.controller_number = 0;
1212 break;
1213 case _lev_ctrl_velocity:
1214 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1215 decodedcontroller.controller_number = 0;
1216 break;
1217 case _lev_ctrl_channelaftertouch:
1218 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1219 decodedcontroller.controller_number = 0;
1220 break;
1221
1222 // ordinary MIDI control change controller
1223 case _lev_ctrl_modwheel:
1224 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1225 decodedcontroller.controller_number = 1;
1226 break;
1227 case _lev_ctrl_breath:
1228 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1229 decodedcontroller.controller_number = 2;
1230 break;
1231 case _lev_ctrl_foot:
1232 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1233 decodedcontroller.controller_number = 4;
1234 break;
1235 case _lev_ctrl_effect1:
1236 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1237 decodedcontroller.controller_number = 12;
1238 break;
1239 case _lev_ctrl_effect2:
1240 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1241 decodedcontroller.controller_number = 13;
1242 break;
1243 case _lev_ctrl_genpurpose1:
1244 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1245 decodedcontroller.controller_number = 16;
1246 break;
1247 case _lev_ctrl_genpurpose2:
1248 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1249 decodedcontroller.controller_number = 17;
1250 break;
1251 case _lev_ctrl_genpurpose3:
1252 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1253 decodedcontroller.controller_number = 18;
1254 break;
1255 case _lev_ctrl_genpurpose4:
1256 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1257 decodedcontroller.controller_number = 19;
1258 break;
1259 case _lev_ctrl_portamentotime:
1260 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1261 decodedcontroller.controller_number = 5;
1262 break;
1263 case _lev_ctrl_sustainpedal:
1264 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1265 decodedcontroller.controller_number = 64;
1266 break;
1267 case _lev_ctrl_portamento:
1268 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1269 decodedcontroller.controller_number = 65;
1270 break;
1271 case _lev_ctrl_sostenutopedal:
1272 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1273 decodedcontroller.controller_number = 66;
1274 break;
1275 case _lev_ctrl_softpedal:
1276 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1277 decodedcontroller.controller_number = 67;
1278 break;
1279 case _lev_ctrl_genpurpose5:
1280 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1281 decodedcontroller.controller_number = 80;
1282 break;
1283 case _lev_ctrl_genpurpose6:
1284 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1285 decodedcontroller.controller_number = 81;
1286 break;
1287 case _lev_ctrl_genpurpose7:
1288 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1289 decodedcontroller.controller_number = 82;
1290 break;
1291 case _lev_ctrl_genpurpose8:
1292 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1293 decodedcontroller.controller_number = 83;
1294 break;
1295 case _lev_ctrl_effect1depth:
1296 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1297 decodedcontroller.controller_number = 91;
1298 break;
1299 case _lev_ctrl_effect2depth:
1300 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1301 decodedcontroller.controller_number = 92;
1302 break;
1303 case _lev_ctrl_effect3depth:
1304 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1305 decodedcontroller.controller_number = 93;
1306 break;
1307 case _lev_ctrl_effect4depth:
1308 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1309 decodedcontroller.controller_number = 94;
1310 break;
1311 case _lev_ctrl_effect5depth:
1312 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1313 decodedcontroller.controller_number = 95;
1314 break;
1315
1316 // unknown controller type
1317 default:
1318 throw gig::Exception("Unknown leverage controller type.");
1319 }
1320 return decodedcontroller;
1321 }
1322
1323 DimensionRegion::~DimensionRegion() {
1324 Instances--;
1325 if (!Instances) {
1326 // delete the velocity->volume tables
1327 VelocityTableMap::iterator iter;
1328 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1329 double* pTable = iter->second;
1330 if (pTable) delete[] pTable;
1331 }
1332 pVelocityTables->clear();
1333 delete pVelocityTables;
1334 pVelocityTables = NULL;
1335 }
1336 }
1337
1338 /**
1339 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1340 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1341 * and VelocityResponseCurveScaling) involved are taken into account to
1342 * calculate the amplitude factor. Use this method when a key was
1343 * triggered to get the volume with which the sample should be played
1344 * back.
1345 *
1346 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1347 * @returns amplitude factor (between 0.0 and 1.0)
1348 */
1349 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1350 return pVelocityAttenuationTable[MIDIKeyVelocity];
1351 }
1352
1353 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1354 return pVelocityReleaseTable[MIDIKeyVelocity];
1355 }
1356
1357 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1358 return pVelocityCutoffTable[MIDIKeyVelocity];
1359 }
1360
1361 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1362
1363 // line-segment approximations of the 15 velocity curves
1364
1365 // linear
1366 const int lin0[] = { 1, 1, 127, 127 };
1367 const int lin1[] = { 1, 21, 127, 127 };
1368 const int lin2[] = { 1, 45, 127, 127 };
1369 const int lin3[] = { 1, 74, 127, 127 };
1370 const int lin4[] = { 1, 127, 127, 127 };
1371
1372 // non-linear
1373 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1374 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1375 127, 127 };
1376 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1377 127, 127 };
1378 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1379 127, 127 };
1380 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1381
1382 // special
1383 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1384 113, 127, 127, 127 };
1385 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1386 118, 127, 127, 127 };
1387 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
1388 85, 90, 91, 127, 127, 127 };
1389 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
1390 117, 127, 127, 127 };
1391 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
1392 127, 127 };
1393
1394 // this is only used by the VCF velocity curve
1395 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
1396 91, 127, 127, 127 };
1397
1398 const int* const curves[] = { non0, non1, non2, non3, non4,
1399 lin0, lin1, lin2, lin3, lin4,
1400 spe0, spe1, spe2, spe3, spe4, spe5 };
1401
1402 double* const table = new double[128];
1403
1404 const int* curve = curves[curveType * 5 + depth];
1405 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
1406
1407 table[0] = 0;
1408 for (int x = 1 ; x < 128 ; x++) {
1409
1410 if (x > curve[2]) curve += 2;
1411 double y = curve[1] + (x - curve[0]) *
1412 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
1413 y = y / 127;
1414
1415 // Scale up for s > 20, down for s < 20. When
1416 // down-scaling, the curve still ends at 1.0.
1417 if (s < 20 && y >= 0.5)
1418 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
1419 else
1420 y = y * (s / 20.0);
1421 if (y > 1) y = 1;
1422
1423 table[x] = y;
1424 }
1425 return table;
1426 }
1427
1428
1429 // *************** Region ***************
1430 // *
1431
1432 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
1433 // Initialization
1434 Dimensions = 0;
1435 for (int i = 0; i < 256; i++) {
1436 pDimensionRegions[i] = NULL;
1437 }
1438 Layers = 1;
1439 File* file = (File*) GetParent()->GetParent();
1440 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
1441
1442 // Actual Loading
1443
1444 LoadDimensionRegions(rgnList);
1445
1446 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
1447 if (_3lnk) {
1448 DimensionRegions = _3lnk->ReadUint32();
1449 for (int i = 0; i < dimensionBits; i++) {
1450 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
1451 uint8_t bits = _3lnk->ReadUint8();
1452 if (dimension == dimension_none) { // inactive dimension
1453 pDimensionDefinitions[i].dimension = dimension_none;
1454 pDimensionDefinitions[i].bits = 0;
1455 pDimensionDefinitions[i].zones = 0;
1456 pDimensionDefinitions[i].split_type = split_type_bit;
1457 pDimensionDefinitions[i].ranges = NULL;
1458 pDimensionDefinitions[i].zone_size = 0;
1459 }
1460 else { // active dimension
1461 pDimensionDefinitions[i].dimension = dimension;
1462 pDimensionDefinitions[i].bits = bits;
1463 pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
1464 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
1465 dimension == dimension_samplechannel ||
1466 dimension == dimension_releasetrigger ||
1467 dimension == dimension_roundrobin ||
1468 dimension == dimension_random) ? split_type_bit
1469 : split_type_normal;
1470 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
1471 pDimensionDefinitions[i].zone_size =
1472 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
1473 : 0;
1474 Dimensions++;
1475
1476 // if this is a layer dimension, remember the amount of layers
1477 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
1478 }
1479 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
1480 }
1481
1482 // check velocity dimension (if there is one) for custom defined zone ranges
1483 for (uint i = 0; i < Dimensions; i++) {
1484 dimension_def_t* pDimDef = pDimensionDefinitions + i;
1485 if (pDimDef->dimension == dimension_velocity) {
1486 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
1487 // no custom defined ranges
1488 pDimDef->split_type = split_type_normal;
1489 pDimDef->ranges = NULL;
1490 }
1491 else { // custom defined ranges
1492 pDimDef->split_type = split_type_customvelocity;
1493 pDimDef->ranges = new range_t[pDimDef->zones];
1494 uint8_t bits[8] = { 0 };
1495 int previousUpperLimit = -1;
1496 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
1497 bits[i] = velocityZone;
1498 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
1499
1500 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
1501 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
1502 previousUpperLimit = pDimDef->ranges[velocityZone].high;
1503 // fill velocity table
1504 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
1505 VelocityTable[i] = velocityZone;
1506 }
1507 }
1508 }
1509 }
1510 }
1511
1512 // jump to start of the wave pool indices (if not already there)
1513 File* file = (File*) GetParent()->GetParent();
1514 if (file->pVersion && file->pVersion->major == 3)
1515 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
1516 else
1517 _3lnk->SetPos(44);
1518
1519 // load sample references
1520 for (uint i = 0; i < DimensionRegions; i++) {
1521 uint32_t wavepoolindex = _3lnk->ReadUint32();
1522 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
1523 }
1524 }
1525 else throw gig::Exception("Mandatory <3lnk> chunk not found.");
1526 }
1527
1528 void Region::LoadDimensionRegions(RIFF::List* rgn) {
1529 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
1530 if (_3prg) {
1531 int dimensionRegionNr = 0;
1532 RIFF::List* _3ewl = _3prg->GetFirstSubList();
1533 while (_3ewl) {
1534 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
1535 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
1536 dimensionRegionNr++;
1537 }
1538 _3ewl = _3prg->GetNextSubList();
1539 }
1540 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1541 }
1542 }
1543
1544 Region::~Region() {
1545 for (uint i = 0; i < Dimensions; i++) {
1546 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1547 }
1548 for (int i = 0; i < 256; i++) {
1549 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1550 }
1551 }
1552
1553 /**
1554 * Use this method in your audio engine to get the appropriate dimension
1555 * region with it's articulation data for the current situation. Just
1556 * call the method with the current MIDI controller values and you'll get
1557 * the DimensionRegion with the appropriate articulation data for the
1558 * current situation (for this Region of course only). To do that you'll
1559 * first have to look which dimensions with which controllers and in
1560 * which order are defined for this Region when you load the .gig file.
1561 * Special cases are e.g. layer or channel dimensions where you just put
1562 * in the index numbers instead of a MIDI controller value (means 0 for
1563 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1564 * etc.).
1565 *
1566 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
1567 * @returns adress to the DimensionRegion for the given situation
1568 * @see pDimensionDefinitions
1569 * @see Dimensions
1570 */
1571 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
1572 uint8_t bits[8] = { 0 };
1573 for (uint i = 0; i < Dimensions; i++) {
1574 bits[i] = DimValues[i];
1575 switch (pDimensionDefinitions[i].split_type) {
1576 case split_type_normal:
1577 bits[i] /= pDimensionDefinitions[i].zone_size;
1578 break;
1579 case split_type_customvelocity:
1580 bits[i] = VelocityTable[bits[i]];
1581 break;
1582 case split_type_bit: // the value is already the sought dimension bit number
1583 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
1584 bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
1585 break;
1586 }
1587 }
1588 return GetDimensionRegionByBit(bits);
1589 }
1590
1591 /**
1592 * Returns the appropriate DimensionRegion for the given dimension bit
1593 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1594 * instead of calling this method directly!
1595 *
1596 * @param DimBits Bit numbers for dimension 0 to 7
1597 * @returns adress to the DimensionRegion for the given dimension
1598 * bit numbers
1599 * @see GetDimensionRegionByValue()
1600 */
1601 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
1602 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
1603 << pDimensionDefinitions[5].bits | DimBits[5])
1604 << pDimensionDefinitions[4].bits | DimBits[4])
1605 << pDimensionDefinitions[3].bits | DimBits[3])
1606 << pDimensionDefinitions[2].bits | DimBits[2])
1607 << pDimensionDefinitions[1].bits | DimBits[1])
1608 << pDimensionDefinitions[0].bits | DimBits[0]];
1609 }
1610
1611 /**
1612 * Returns pointer address to the Sample referenced with this region.
1613 * This is the global Sample for the entire Region (not sure if this is
1614 * actually used by the Gigasampler engine - I would only use the Sample
1615 * referenced by the appropriate DimensionRegion instead of this sample).
1616 *
1617 * @returns address to Sample or NULL if there is no reference to a
1618 * sample saved in the .gig file
1619 */
1620 Sample* Region::GetSample() {
1621 if (pSample) return static_cast<gig::Sample*>(pSample);
1622 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1623 }
1624
1625 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
1626 if ((int32_t)WavePoolTableIndex == -1) return NULL;
1627 File* file = (File*) GetParent()->GetParent();
1628 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1629 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
1630 Sample* sample = file->GetFirstSample(pProgress);
1631 while (sample) {
1632 if (sample->ulWavePoolOffset == soughtoffset &&
1633 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
1634 sample = file->GetNextSample();
1635 }
1636 return NULL;
1637 }
1638
1639
1640
1641 // *************** Instrument ***************
1642 // *
1643
1644 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
1645 // Initialization
1646 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1647 RegionIndex = -1;
1648
1649 // Loading
1650 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1651 if (lart) {
1652 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1653 if (_3ewg) {
1654 EffectSend = _3ewg->ReadUint16();
1655 Attenuation = _3ewg->ReadInt32();
1656 FineTune = _3ewg->ReadInt16();
1657 PitchbendRange = _3ewg->ReadInt16();
1658 uint8_t dimkeystart = _3ewg->ReadUint8();
1659 PianoReleaseMode = dimkeystart & 0x01;
1660 DimensionKeyRange.low = dimkeystart >> 1;
1661 DimensionKeyRange.high = _3ewg->ReadUint8();
1662 }
1663 else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1664 }
1665 else throw gig::Exception("Mandatory <lart> list chunk not found.");
1666
1667 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1668 if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1669 pRegions = new Region*[Regions];
1670 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
1671 RIFF::List* rgn = lrgn->GetFirstSubList();
1672 unsigned int iRegion = 0;
1673 while (rgn) {
1674 if (rgn->GetListType() == LIST_TYPE_RGN) {
1675 __notify_progress(pProgress, (float) iRegion / (float) Regions);
1676 pRegions[iRegion] = new Region(this, rgn);
1677 iRegion++;
1678 }
1679 rgn = lrgn->GetNextSubList();
1680 }
1681
1682 // Creating Region Key Table for fast lookup
1683 for (uint iReg = 0; iReg < Regions; iReg++) {
1684 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1685 RegionKeyTable[iKey] = pRegions[iReg];
1686 }
1687 }
1688
1689 __notify_progress(pProgress, 1.0f); // notify done
1690 }
1691
1692 Instrument::~Instrument() {
1693 for (uint i = 0; i < Regions; i++) {
1694 if (pRegions) {
1695 if (pRegions[i]) delete (pRegions[i]);
1696 }
1697 }
1698 if (pRegions) delete[] pRegions;
1699 }
1700
1701 /**
1702 * Returns the appropriate Region for a triggered note.
1703 *
1704 * @param Key MIDI Key number of triggered note / key (0 - 127)
1705 * @returns pointer adress to the appropriate Region or NULL if there
1706 * there is no Region defined for the given \a Key
1707 */
1708 Region* Instrument::GetRegion(unsigned int Key) {
1709 if (!pRegions || Key > 127) return NULL;
1710 return RegionKeyTable[Key];
1711 /*for (int i = 0; i < Regions; i++) {
1712 if (Key <= pRegions[i]->KeyRange.high &&
1713 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1714 }
1715 return NULL;*/
1716 }
1717
1718 /**
1719 * Returns the first Region of the instrument. You have to call this
1720 * method once before you use GetNextRegion().
1721 *
1722 * @returns pointer address to first region or NULL if there is none
1723 * @see GetNextRegion()
1724 */
1725 Region* Instrument::GetFirstRegion() {
1726 if (!Regions) return NULL;
1727 RegionIndex = 1;
1728 return pRegions[0];
1729 }
1730
1731 /**
1732 * Returns the next Region of the instrument. You have to call
1733 * GetFirstRegion() once before you can use this method. By calling this
1734 * method multiple times it iterates through the available Regions.
1735 *
1736 * @returns pointer address to the next region or NULL if end reached
1737 * @see GetFirstRegion()
1738 */
1739 Region* Instrument::GetNextRegion() {
1740 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
1741 return pRegions[RegionIndex++];
1742 }
1743
1744
1745
1746 // *************** File ***************
1747 // *
1748
1749 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1750 pSamples = NULL;
1751 pInstruments = NULL;
1752 }
1753
1754 File::~File() {
1755 // free samples
1756 if (pSamples) {
1757 SamplesIterator = pSamples->begin();
1758 while (SamplesIterator != pSamples->end() ) {
1759 delete (*SamplesIterator);
1760 SamplesIterator++;
1761 }
1762 pSamples->clear();
1763 delete pSamples;
1764
1765 }
1766 // free instruments
1767 if (pInstruments) {
1768 InstrumentsIterator = pInstruments->begin();
1769 while (InstrumentsIterator != pInstruments->end() ) {
1770 delete (*InstrumentsIterator);
1771 InstrumentsIterator++;
1772 }
1773 pInstruments->clear();
1774 delete pInstruments;
1775 }
1776 // free extension files
1777 for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
1778 delete *i;
1779 }
1780
1781 Sample* File::GetFirstSample(progress_t* pProgress) {
1782 if (!pSamples) LoadSamples(pProgress);
1783 if (!pSamples) return NULL;
1784 SamplesIterator = pSamples->begin();
1785 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1786 }
1787
1788 Sample* File::GetNextSample() {
1789 if (!pSamples) return NULL;
1790 SamplesIterator++;
1791 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1792 }
1793
1794 void File::LoadSamples(progress_t* pProgress) {
1795 RIFF::File* file = pRIFF;
1796
1797 // just for progress calculation
1798 int iSampleIndex = 0;
1799 int iTotalSamples = WavePoolCount;
1800
1801 // check if samples should be loaded from extension files
1802 int lastFileNo = 0;
1803 for (int i = 0 ; i < WavePoolCount ; i++) {
1804 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
1805 }
1806 String name(pRIFF->Filename);
1807 int nameLen = pRIFF->Filename.length();
1808 char suffix[6];
1809 if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;
1810
1811 for (int fileNo = 0 ; ; ) {
1812 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
1813 if (wvpl) {
1814 unsigned long wvplFileOffset = wvpl->GetFilePos();
1815 RIFF::List* wave = wvpl->GetFirstSubList();
1816 while (wave) {
1817 if (wave->GetListType() == LIST_TYPE_WAVE) {
1818 // notify current progress
1819 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
1820 __notify_progress(pProgress, subprogress);
1821
1822 if (!pSamples) pSamples = new SampleList;
1823 unsigned long waveFileOffset = wave->GetFilePos();
1824 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
1825
1826 iSampleIndex++;
1827 }
1828 wave = wvpl->GetNextSubList();
1829 }
1830
1831 if (fileNo == lastFileNo) break;
1832
1833 // open extension file (*.gx01, *.gx02, ...)
1834 fileNo++;
1835 sprintf(suffix, ".gx%02d", fileNo);
1836 name.replace(nameLen, 5, suffix);
1837 file = new RIFF::File(name);
1838 ExtensionFiles.push_back(file);
1839 }
1840 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1841 }
1842
1843 __notify_progress(pProgress, 1.0); // notify done
1844 }
1845
1846 Instrument* File::GetFirstInstrument() {
1847 if (!pInstruments) LoadInstruments();
1848 if (!pInstruments) return NULL;
1849 InstrumentsIterator = pInstruments->begin();
1850 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1851 }
1852
1853 Instrument* File::GetNextInstrument() {
1854 if (!pInstruments) return NULL;
1855 InstrumentsIterator++;
1856 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1857 }
1858
1859 /**
1860 * Returns the instrument with the given index.
1861 *
1862 * @param index - number of the sought instrument (0..n)
1863 * @param pProgress - optional: callback function for progress notification
1864 * @returns sought instrument or NULL if there's no such instrument
1865 */
1866 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
1867 if (!pInstruments) {
1868 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
1869
1870 // sample loading subtask
1871 progress_t subprogress;
1872 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
1873 __notify_progress(&subprogress, 0.0f);
1874 GetFirstSample(&subprogress); // now force all samples to be loaded
1875 __notify_progress(&subprogress, 1.0f);
1876
1877 // instrument loading subtask
1878 if (pProgress && pProgress->callback) {
1879 subprogress.__range_min = subprogress.__range_max;
1880 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
1881 }
1882 __notify_progress(&subprogress, 0.0f);
1883 LoadInstruments(&subprogress);
1884 __notify_progress(&subprogress, 1.0f);
1885 }
1886 if (!pInstruments) return NULL;
1887 InstrumentsIterator = pInstruments->begin();
1888 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1889 if (i == index) return *InstrumentsIterator;
1890 InstrumentsIterator++;
1891 }
1892 return NULL;
1893 }
1894
1895 void File::LoadInstruments(progress_t* pProgress) {
1896 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1897 if (lstInstruments) {
1898 int iInstrumentIndex = 0;
1899 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1900 while (lstInstr) {
1901 if (lstInstr->GetListType() == LIST_TYPE_INS) {
1902 // notify current progress
1903 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
1904 __notify_progress(pProgress, localProgress);
1905
1906 // divide local progress into subprogress for loading current Instrument
1907 progress_t subprogress;
1908 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
1909
1910 if (!pInstruments) pInstruments = new InstrumentList;
1911 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
1912
1913 iInstrumentIndex++;
1914 }
1915 lstInstr = lstInstruments->GetNextSubList();
1916 }
1917 __notify_progress(pProgress, 1.0); // notify done
1918 }
1919 else throw gig::Exception("Mandatory <lins> list chunk not found.");
1920 }
1921
1922
1923
1924 // *************** Exception ***************
1925 // *
1926
1927 Exception::Exception(String Message) : DLS::Exception(Message) {
1928 }
1929
1930 void Exception::PrintMessage() {
1931 std::cout << "gig::Exception: " << Message << std::endl;
1932 }
1933
1934
1935 // *************** functions ***************
1936 // *
1937
1938 /**
1939 * Returns the name of this C++ library. This is usually "libgig" of
1940 * course. This call is equivalent to RIFF::libraryName() and
1941 * DLS::libraryName().
1942 */
1943 String libraryName() {
1944 return PACKAGE;
1945 }
1946
1947 /**
1948 * Returns version of this C++ library. This call is equivalent to
1949 * RIFF::libraryVersion() and DLS::libraryVersion().
1950 */
1951 String libraryVersion() {
1952 return VERSION;
1953 }
1954
1955 } // namespace gig

  ViewVC Help
Powered by ViewVC