/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 902 - (show annotations) (download)
Sat Jul 22 14:22:01 2006 UTC (17 years, 8 months ago) by persson
File size: 133408 byte(s)
* real support for 24 bit samples
* support for reading of .art files

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257 // *************** Sample ***************
258 // *
259
260 unsigned int Sample::Instances = 0;
261 buffer_t Sample::InternalDecompressionBuffer;
262
263 /** @brief Constructor.
264 *
265 * Load an existing sample or create a new one. A 'wave' list chunk must
266 * be given to this constructor. In case the given 'wave' list chunk
267 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268 * format and sample data will be loaded from there, otherwise default
269 * values will be used and those chunks will be created when
270 * File::Save() will be called later on.
271 *
272 * @param pFile - pointer to gig::File where this sample is
273 * located (or will be located)
274 * @param waveList - pointer to 'wave' list chunk which is (or
275 * will be) associated with this sample
276 * @param WavePoolOffset - offset of this sample data from wave pool
277 * ('wvpl') list chunk
278 * @param fileNo - number of an extension file where this sample
279 * is located, 0 otherwise
280 */
281 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 Instances++;
283 FileNo = fileNo;
284
285 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
286 if (pCk3gix) {
287 SampleGroup = pCk3gix->ReadInt16();
288 } else { // '3gix' chunk missing
289 // use default value(s)
290 SampleGroup = 0;
291 }
292
293 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
294 if (pCkSmpl) {
295 Manufacturer = pCkSmpl->ReadInt32();
296 Product = pCkSmpl->ReadInt32();
297 SamplePeriod = pCkSmpl->ReadInt32();
298 MIDIUnityNote = pCkSmpl->ReadInt32();
299 FineTune = pCkSmpl->ReadInt32();
300 pCkSmpl->Read(&SMPTEFormat, 1, 4);
301 SMPTEOffset = pCkSmpl->ReadInt32();
302 Loops = pCkSmpl->ReadInt32();
303 pCkSmpl->ReadInt32(); // manufByt
304 LoopID = pCkSmpl->ReadInt32();
305 pCkSmpl->Read(&LoopType, 1, 4);
306 LoopStart = pCkSmpl->ReadInt32();
307 LoopEnd = pCkSmpl->ReadInt32();
308 LoopFraction = pCkSmpl->ReadInt32();
309 LoopPlayCount = pCkSmpl->ReadInt32();
310 } else { // 'smpl' chunk missing
311 // use default values
312 Manufacturer = 0;
313 Product = 0;
314 SamplePeriod = 1 / SamplesPerSecond;
315 MIDIUnityNote = 64;
316 FineTune = 0;
317 SMPTEOffset = 0;
318 Loops = 0;
319 LoopID = 0;
320 LoopStart = 0;
321 LoopEnd = 0;
322 LoopFraction = 0;
323 LoopPlayCount = 0;
324 }
325
326 FrameTable = NULL;
327 SamplePos = 0;
328 RAMCache.Size = 0;
329 RAMCache.pStart = NULL;
330 RAMCache.NullExtensionSize = 0;
331
332 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
333
334 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
335 Compressed = ewav;
336 Dithered = false;
337 TruncatedBits = 0;
338 if (Compressed) {
339 uint32_t version = ewav->ReadInt32();
340 if (version == 3 && BitDepth == 24) {
341 Dithered = ewav->ReadInt32();
342 ewav->SetPos(Channels == 2 ? 84 : 64);
343 TruncatedBits = ewav->ReadInt32();
344 }
345 ScanCompressedSample();
346 }
347
348 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
349 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
350 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
351 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
352 }
353 FrameOffset = 0; // just for streaming compressed samples
354
355 LoopSize = LoopEnd - LoopStart + 1;
356 }
357
358 /**
359 * Apply sample and its settings to the respective RIFF chunks. You have
360 * to call File::Save() to make changes persistent.
361 *
362 * Usually there is absolutely no need to call this method explicitly.
363 * It will be called automatically when File::Save() was called.
364 *
365 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
366 * was provided yet
367 * @throws gig::Exception if there is any invalid sample setting
368 */
369 void Sample::UpdateChunks() {
370 // first update base class's chunks
371 DLS::Sample::UpdateChunks();
372
373 // make sure 'smpl' chunk exists
374 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
375 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
376 // update 'smpl' chunk
377 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
378 SamplePeriod = 1 / SamplesPerSecond;
379 memcpy(&pData[0], &Manufacturer, 4);
380 memcpy(&pData[4], &Product, 4);
381 memcpy(&pData[8], &SamplePeriod, 4);
382 memcpy(&pData[12], &MIDIUnityNote, 4);
383 memcpy(&pData[16], &FineTune, 4);
384 memcpy(&pData[20], &SMPTEFormat, 4);
385 memcpy(&pData[24], &SMPTEOffset, 4);
386 memcpy(&pData[28], &Loops, 4);
387
388 // we skip 'manufByt' for now (4 bytes)
389
390 memcpy(&pData[36], &LoopID, 4);
391 memcpy(&pData[40], &LoopType, 4);
392 memcpy(&pData[44], &LoopStart, 4);
393 memcpy(&pData[48], &LoopEnd, 4);
394 memcpy(&pData[52], &LoopFraction, 4);
395 memcpy(&pData[56], &LoopPlayCount, 4);
396
397 // make sure '3gix' chunk exists
398 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
399 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
400 // update '3gix' chunk
401 pData = (uint8_t*) pCk3gix->LoadChunkData();
402 memcpy(&pData[0], &SampleGroup, 2);
403 }
404
405 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
406 void Sample::ScanCompressedSample() {
407 //TODO: we have to add some more scans here (e.g. determine compression rate)
408 this->SamplesTotal = 0;
409 std::list<unsigned long> frameOffsets;
410
411 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
412 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
413
414 // Scanning
415 pCkData->SetPos(0);
416 if (Channels == 2) { // Stereo
417 for (int i = 0 ; ; i++) {
418 // for 24 bit samples every 8:th frame offset is
419 // stored, to save some memory
420 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
421
422 const int mode_l = pCkData->ReadUint8();
423 const int mode_r = pCkData->ReadUint8();
424 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
425 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
426
427 if (pCkData->RemainingBytes() <= frameSize) {
428 SamplesInLastFrame =
429 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
430 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
431 SamplesTotal += SamplesInLastFrame;
432 break;
433 }
434 SamplesTotal += SamplesPerFrame;
435 pCkData->SetPos(frameSize, RIFF::stream_curpos);
436 }
437 }
438 else { // Mono
439 for (int i = 0 ; ; i++) {
440 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
441
442 const int mode = pCkData->ReadUint8();
443 if (mode > 5) throw gig::Exception("Unknown compression mode");
444 const unsigned long frameSize = bytesPerFrame[mode];
445
446 if (pCkData->RemainingBytes() <= frameSize) {
447 SamplesInLastFrame =
448 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
449 SamplesTotal += SamplesInLastFrame;
450 break;
451 }
452 SamplesTotal += SamplesPerFrame;
453 pCkData->SetPos(frameSize, RIFF::stream_curpos);
454 }
455 }
456 pCkData->SetPos(0);
457
458 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
459 if (FrameTable) delete[] FrameTable;
460 FrameTable = new unsigned long[frameOffsets.size()];
461 std::list<unsigned long>::iterator end = frameOffsets.end();
462 std::list<unsigned long>::iterator iter = frameOffsets.begin();
463 for (int i = 0; iter != end; i++, iter++) {
464 FrameTable[i] = *iter;
465 }
466 }
467
468 /**
469 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
470 * ReleaseSampleData() to free the memory if you don't need the cached
471 * sample data anymore.
472 *
473 * @returns buffer_t structure with start address and size of the buffer
474 * in bytes
475 * @see ReleaseSampleData(), Read(), SetPos()
476 */
477 buffer_t Sample::LoadSampleData() {
478 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
479 }
480
481 /**
482 * Reads (uncompresses if needed) and caches the first \a SampleCount
483 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
484 * memory space if you don't need the cached samples anymore. There is no
485 * guarantee that exactly \a SampleCount samples will be cached; this is
486 * not an error. The size will be eventually truncated e.g. to the
487 * beginning of a frame of a compressed sample. This is done for
488 * efficiency reasons while streaming the wave by your sampler engine
489 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
490 * that will be returned to determine the actual cached samples, but note
491 * that the size is given in bytes! You get the number of actually cached
492 * samples by dividing it by the frame size of the sample:
493 * @code
494 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
495 * long cachedsamples = buf.Size / pSample->FrameSize;
496 * @endcode
497 *
498 * @param SampleCount - number of sample points to load into RAM
499 * @returns buffer_t structure with start address and size of
500 * the cached sample data in bytes
501 * @see ReleaseSampleData(), Read(), SetPos()
502 */
503 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
504 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
505 }
506
507 /**
508 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
509 * ReleaseSampleData() to free the memory if you don't need the cached
510 * sample data anymore.
511 * The method will add \a NullSamplesCount silence samples past the
512 * official buffer end (this won't affect the 'Size' member of the
513 * buffer_t structure, that means 'Size' always reflects the size of the
514 * actual sample data, the buffer might be bigger though). Silence
515 * samples past the official buffer are needed for differential
516 * algorithms that always have to take subsequent samples into account
517 * (resampling/interpolation would be an important example) and avoids
518 * memory access faults in such cases.
519 *
520 * @param NullSamplesCount - number of silence samples the buffer should
521 * be extended past it's data end
522 * @returns buffer_t structure with start address and
523 * size of the buffer in bytes
524 * @see ReleaseSampleData(), Read(), SetPos()
525 */
526 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
527 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
528 }
529
530 /**
531 * Reads (uncompresses if needed) and caches the first \a SampleCount
532 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
533 * memory space if you don't need the cached samples anymore. There is no
534 * guarantee that exactly \a SampleCount samples will be cached; this is
535 * not an error. The size will be eventually truncated e.g. to the
536 * beginning of a frame of a compressed sample. This is done for
537 * efficiency reasons while streaming the wave by your sampler engine
538 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
539 * that will be returned to determine the actual cached samples, but note
540 * that the size is given in bytes! You get the number of actually cached
541 * samples by dividing it by the frame size of the sample:
542 * @code
543 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
544 * long cachedsamples = buf.Size / pSample->FrameSize;
545 * @endcode
546 * The method will add \a NullSamplesCount silence samples past the
547 * official buffer end (this won't affect the 'Size' member of the
548 * buffer_t structure, that means 'Size' always reflects the size of the
549 * actual sample data, the buffer might be bigger though). Silence
550 * samples past the official buffer are needed for differential
551 * algorithms that always have to take subsequent samples into account
552 * (resampling/interpolation would be an important example) and avoids
553 * memory access faults in such cases.
554 *
555 * @param SampleCount - number of sample points to load into RAM
556 * @param NullSamplesCount - number of silence samples the buffer should
557 * be extended past it's data end
558 * @returns buffer_t structure with start address and
559 * size of the cached sample data in bytes
560 * @see ReleaseSampleData(), Read(), SetPos()
561 */
562 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
563 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
564 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
565 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
566 RAMCache.pStart = new int8_t[allocationsize];
567 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
568 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
569 // fill the remaining buffer space with silence samples
570 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
571 return GetCache();
572 }
573
574 /**
575 * Returns current cached sample points. A buffer_t structure will be
576 * returned which contains address pointer to the begin of the cache and
577 * the size of the cached sample data in bytes. Use
578 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
579 * RAM.
580 *
581 * @returns buffer_t structure with current cached sample points
582 * @see LoadSampleData();
583 */
584 buffer_t Sample::GetCache() {
585 // return a copy of the buffer_t structure
586 buffer_t result;
587 result.Size = this->RAMCache.Size;
588 result.pStart = this->RAMCache.pStart;
589 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
590 return result;
591 }
592
593 /**
594 * Frees the cached sample from RAM if loaded with
595 * <i>LoadSampleData()</i> previously.
596 *
597 * @see LoadSampleData();
598 */
599 void Sample::ReleaseSampleData() {
600 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
601 RAMCache.pStart = NULL;
602 RAMCache.Size = 0;
603 }
604
605 /** @brief Resize sample.
606 *
607 * Resizes the sample's wave form data, that is the actual size of
608 * sample wave data possible to be written for this sample. This call
609 * will return immediately and just schedule the resize operation. You
610 * should call File::Save() to actually perform the resize operation(s)
611 * "physically" to the file. As this can take a while on large files, it
612 * is recommended to call Resize() first on all samples which have to be
613 * resized and finally to call File::Save() to perform all those resize
614 * operations in one rush.
615 *
616 * The actual size (in bytes) is dependant to the current FrameSize
617 * value. You may want to set FrameSize before calling Resize().
618 *
619 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
620 * enlarged samples before calling File::Save() as this might exceed the
621 * current sample's boundary!
622 *
623 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
624 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
625 * other formats will fail!
626 *
627 * @param iNewSize - new sample wave data size in sample points (must be
628 * greater than zero)
629 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
630 * or if \a iNewSize is less than 1
631 * @throws gig::Exception if existing sample is compressed
632 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
633 * DLS::Sample::FormatTag, File::Save()
634 */
635 void Sample::Resize(int iNewSize) {
636 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
637 DLS::Sample::Resize(iNewSize);
638 }
639
640 /**
641 * Sets the position within the sample (in sample points, not in
642 * bytes). Use this method and <i>Read()</i> if you don't want to load
643 * the sample into RAM, thus for disk streaming.
644 *
645 * Although the original Gigasampler engine doesn't allow positioning
646 * within compressed samples, I decided to implement it. Even though
647 * the Gigasampler format doesn't allow to define loops for compressed
648 * samples at the moment, positioning within compressed samples might be
649 * interesting for some sampler engines though. The only drawback about
650 * my decision is that it takes longer to load compressed gig Files on
651 * startup, because it's neccessary to scan the samples for some
652 * mandatory informations. But I think as it doesn't affect the runtime
653 * efficiency, nobody will have a problem with that.
654 *
655 * @param SampleCount number of sample points to jump
656 * @param Whence optional: to which relation \a SampleCount refers
657 * to, if omited <i>RIFF::stream_start</i> is assumed
658 * @returns the new sample position
659 * @see Read()
660 */
661 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
662 if (Compressed) {
663 switch (Whence) {
664 case RIFF::stream_curpos:
665 this->SamplePos += SampleCount;
666 break;
667 case RIFF::stream_end:
668 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
669 break;
670 case RIFF::stream_backward:
671 this->SamplePos -= SampleCount;
672 break;
673 case RIFF::stream_start: default:
674 this->SamplePos = SampleCount;
675 break;
676 }
677 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
678
679 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
680 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
681 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
682 return this->SamplePos;
683 }
684 else { // not compressed
685 unsigned long orderedBytes = SampleCount * this->FrameSize;
686 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
687 return (result == orderedBytes) ? SampleCount
688 : result / this->FrameSize;
689 }
690 }
691
692 /**
693 * Returns the current position in the sample (in sample points).
694 */
695 unsigned long Sample::GetPos() {
696 if (Compressed) return SamplePos;
697 else return pCkData->GetPos() / FrameSize;
698 }
699
700 /**
701 * Reads \a SampleCount number of sample points from the position stored
702 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
703 * the position within the sample respectively, this method honors the
704 * looping informations of the sample (if any). The sample wave stream
705 * will be decompressed on the fly if using a compressed sample. Use this
706 * method if you don't want to load the sample into RAM, thus for disk
707 * streaming. All this methods needs to know to proceed with streaming
708 * for the next time you call this method is stored in \a pPlaybackState.
709 * You have to allocate and initialize the playback_state_t structure by
710 * yourself before you use it to stream a sample:
711 * @code
712 * gig::playback_state_t playbackstate;
713 * playbackstate.position = 0;
714 * playbackstate.reverse = false;
715 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
716 * @endcode
717 * You don't have to take care of things like if there is actually a loop
718 * defined or if the current read position is located within a loop area.
719 * The method already handles such cases by itself.
720 *
721 * <b>Caution:</b> If you are using more than one streaming thread, you
722 * have to use an external decompression buffer for <b>EACH</b>
723 * streaming thread to avoid race conditions and crashes!
724 *
725 * @param pBuffer destination buffer
726 * @param SampleCount number of sample points to read
727 * @param pPlaybackState will be used to store and reload the playback
728 * state for the next ReadAndLoop() call
729 * @param pDimRgn dimension region with looping information
730 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
731 * @returns number of successfully read sample points
732 * @see CreateDecompressionBuffer()
733 */
734 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
735 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
736 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
737 uint8_t* pDst = (uint8_t*) pBuffer;
738
739 SetPos(pPlaybackState->position); // recover position from the last time
740
741 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
742
743 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
744 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
745
746 if (GetPos() <= loopEnd) {
747 switch (loop.LoopType) {
748
749 case loop_type_bidirectional: { //TODO: not tested yet!
750 do {
751 // if not endless loop check if max. number of loop cycles have been passed
752 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
753
754 if (!pPlaybackState->reverse) { // forward playback
755 do {
756 samplestoloopend = loopEnd - GetPos();
757 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
758 samplestoread -= readsamples;
759 totalreadsamples += readsamples;
760 if (readsamples == samplestoloopend) {
761 pPlaybackState->reverse = true;
762 break;
763 }
764 } while (samplestoread && readsamples);
765 }
766 else { // backward playback
767
768 // as we can only read forward from disk, we have to
769 // determine the end position within the loop first,
770 // read forward from that 'end' and finally after
771 // reading, swap all sample frames so it reflects
772 // backward playback
773
774 unsigned long swapareastart = totalreadsamples;
775 unsigned long loopoffset = GetPos() - loop.LoopStart;
776 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
777 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
778
779 SetPos(reverseplaybackend);
780
781 // read samples for backward playback
782 do {
783 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
784 samplestoreadinloop -= readsamples;
785 samplestoread -= readsamples;
786 totalreadsamples += readsamples;
787 } while (samplestoreadinloop && readsamples);
788
789 SetPos(reverseplaybackend); // pretend we really read backwards
790
791 if (reverseplaybackend == loop.LoopStart) {
792 pPlaybackState->loop_cycles_left--;
793 pPlaybackState->reverse = false;
794 }
795
796 // reverse the sample frames for backward playback
797 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
798 }
799 } while (samplestoread && readsamples);
800 break;
801 }
802
803 case loop_type_backward: { // TODO: not tested yet!
804 // forward playback (not entered the loop yet)
805 if (!pPlaybackState->reverse) do {
806 samplestoloopend = loopEnd - GetPos();
807 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
808 samplestoread -= readsamples;
809 totalreadsamples += readsamples;
810 if (readsamples == samplestoloopend) {
811 pPlaybackState->reverse = true;
812 break;
813 }
814 } while (samplestoread && readsamples);
815
816 if (!samplestoread) break;
817
818 // as we can only read forward from disk, we have to
819 // determine the end position within the loop first,
820 // read forward from that 'end' and finally after
821 // reading, swap all sample frames so it reflects
822 // backward playback
823
824 unsigned long swapareastart = totalreadsamples;
825 unsigned long loopoffset = GetPos() - loop.LoopStart;
826 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
827 : samplestoread;
828 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
829
830 SetPos(reverseplaybackend);
831
832 // read samples for backward playback
833 do {
834 // if not endless loop check if max. number of loop cycles have been passed
835 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
836 samplestoloopend = loopEnd - GetPos();
837 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
838 samplestoreadinloop -= readsamples;
839 samplestoread -= readsamples;
840 totalreadsamples += readsamples;
841 if (readsamples == samplestoloopend) {
842 pPlaybackState->loop_cycles_left--;
843 SetPos(loop.LoopStart);
844 }
845 } while (samplestoreadinloop && readsamples);
846
847 SetPos(reverseplaybackend); // pretend we really read backwards
848
849 // reverse the sample frames for backward playback
850 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
851 break;
852 }
853
854 default: case loop_type_normal: {
855 do {
856 // if not endless loop check if max. number of loop cycles have been passed
857 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
858 samplestoloopend = loopEnd - GetPos();
859 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
860 samplestoread -= readsamples;
861 totalreadsamples += readsamples;
862 if (readsamples == samplestoloopend) {
863 pPlaybackState->loop_cycles_left--;
864 SetPos(loop.LoopStart);
865 }
866 } while (samplestoread && readsamples);
867 break;
868 }
869 }
870 }
871 }
872
873 // read on without looping
874 if (samplestoread) do {
875 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
876 samplestoread -= readsamples;
877 totalreadsamples += readsamples;
878 } while (readsamples && samplestoread);
879
880 // store current position
881 pPlaybackState->position = GetPos();
882
883 return totalreadsamples;
884 }
885
886 /**
887 * Reads \a SampleCount number of sample points from the current
888 * position into the buffer pointed by \a pBuffer and increments the
889 * position within the sample. The sample wave stream will be
890 * decompressed on the fly if using a compressed sample. Use this method
891 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
892 * thus for disk streaming.
893 *
894 * <b>Caution:</b> If you are using more than one streaming thread, you
895 * have to use an external decompression buffer for <b>EACH</b>
896 * streaming thread to avoid race conditions and crashes!
897 *
898 * For 16 bit samples, the data in the buffer will be int16_t
899 * (using native endianness). For 24 bit, the buffer will
900 * contain three bytes per sample, little-endian.
901 *
902 * @param pBuffer destination buffer
903 * @param SampleCount number of sample points to read
904 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
905 * @returns number of successfully read sample points
906 * @see SetPos(), CreateDecompressionBuffer()
907 */
908 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
909 if (SampleCount == 0) return 0;
910 if (!Compressed) {
911 if (BitDepth == 24) {
912 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
913 }
914 else { // 16 bit
915 // (pCkData->Read does endian correction)
916 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
917 : pCkData->Read(pBuffer, SampleCount, 2);
918 }
919 }
920 else {
921 if (this->SamplePos >= this->SamplesTotal) return 0;
922 //TODO: efficiency: maybe we should test for an average compression rate
923 unsigned long assumedsize = GuessSize(SampleCount),
924 remainingbytes = 0, // remaining bytes in the local buffer
925 remainingsamples = SampleCount,
926 copysamples, skipsamples,
927 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
928 this->FrameOffset = 0;
929
930 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
931
932 // if decompression buffer too small, then reduce amount of samples to read
933 if (pDecompressionBuffer->Size < assumedsize) {
934 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
935 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
936 remainingsamples = SampleCount;
937 assumedsize = GuessSize(SampleCount);
938 }
939
940 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
941 int16_t* pDst = static_cast<int16_t*>(pBuffer);
942 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
943 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
944
945 while (remainingsamples && remainingbytes) {
946 unsigned long framesamples = SamplesPerFrame;
947 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
948
949 int mode_l = *pSrc++, mode_r = 0;
950
951 if (Channels == 2) {
952 mode_r = *pSrc++;
953 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
954 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
955 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
956 if (remainingbytes < framebytes) { // last frame in sample
957 framesamples = SamplesInLastFrame;
958 if (mode_l == 4 && (framesamples & 1)) {
959 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
960 }
961 else {
962 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
963 }
964 }
965 }
966 else {
967 framebytes = bytesPerFrame[mode_l] + 1;
968 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
969 if (remainingbytes < framebytes) {
970 framesamples = SamplesInLastFrame;
971 }
972 }
973
974 // determine how many samples in this frame to skip and read
975 if (currentframeoffset + remainingsamples >= framesamples) {
976 if (currentframeoffset <= framesamples) {
977 copysamples = framesamples - currentframeoffset;
978 skipsamples = currentframeoffset;
979 }
980 else {
981 copysamples = 0;
982 skipsamples = framesamples;
983 }
984 }
985 else {
986 // This frame has enough data for pBuffer, but not
987 // all of the frame is needed. Set file position
988 // to start of this frame for next call to Read.
989 copysamples = remainingsamples;
990 skipsamples = currentframeoffset;
991 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
992 this->FrameOffset = currentframeoffset + copysamples;
993 }
994 remainingsamples -= copysamples;
995
996 if (remainingbytes > framebytes) {
997 remainingbytes -= framebytes;
998 if (remainingsamples == 0 &&
999 currentframeoffset + copysamples == framesamples) {
1000 // This frame has enough data for pBuffer, and
1001 // all of the frame is needed. Set file
1002 // position to start of next frame for next
1003 // call to Read. FrameOffset is 0.
1004 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1005 }
1006 }
1007 else remainingbytes = 0;
1008
1009 currentframeoffset -= skipsamples;
1010
1011 if (copysamples == 0) {
1012 // skip this frame
1013 pSrc += framebytes - Channels;
1014 }
1015 else {
1016 const unsigned char* const param_l = pSrc;
1017 if (BitDepth == 24) {
1018 if (mode_l != 2) pSrc += 12;
1019
1020 if (Channels == 2) { // Stereo
1021 const unsigned char* const param_r = pSrc;
1022 if (mode_r != 2) pSrc += 12;
1023
1024 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1025 skipsamples, copysamples, TruncatedBits);
1026 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1027 skipsamples, copysamples, TruncatedBits);
1028 pDst24 += copysamples * 6;
1029 }
1030 else { // Mono
1031 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1032 skipsamples, copysamples, TruncatedBits);
1033 pDst24 += copysamples * 3;
1034 }
1035 }
1036 else { // 16 bit
1037 if (mode_l) pSrc += 4;
1038
1039 int step;
1040 if (Channels == 2) { // Stereo
1041 const unsigned char* const param_r = pSrc;
1042 if (mode_r) pSrc += 4;
1043
1044 step = (2 - mode_l) + (2 - mode_r);
1045 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1046 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1047 skipsamples, copysamples);
1048 pDst += copysamples << 1;
1049 }
1050 else { // Mono
1051 step = 2 - mode_l;
1052 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1053 pDst += copysamples;
1054 }
1055 }
1056 pSrc += nextFrameOffset;
1057 }
1058
1059 // reload from disk to local buffer if needed
1060 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1061 assumedsize = GuessSize(remainingsamples);
1062 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1063 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1064 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1065 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1066 }
1067 } // while
1068
1069 this->SamplePos += (SampleCount - remainingsamples);
1070 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1071 return (SampleCount - remainingsamples);
1072 }
1073 }
1074
1075 /** @brief Write sample wave data.
1076 *
1077 * Writes \a SampleCount number of sample points from the buffer pointed
1078 * by \a pBuffer and increments the position within the sample. Use this
1079 * method to directly write the sample data to disk, i.e. if you don't
1080 * want or cannot load the whole sample data into RAM.
1081 *
1082 * You have to Resize() the sample to the desired size and call
1083 * File::Save() <b>before</b> using Write().
1084 *
1085 * Note: there is currently no support for writing compressed samples.
1086 *
1087 * @param pBuffer - source buffer
1088 * @param SampleCount - number of sample points to write
1089 * @throws DLS::Exception if current sample size is too small
1090 * @throws gig::Exception if sample is compressed
1091 * @see DLS::LoadSampleData()
1092 */
1093 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1094 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1095 return DLS::Sample::Write(pBuffer, SampleCount);
1096 }
1097
1098 /**
1099 * Allocates a decompression buffer for streaming (compressed) samples
1100 * with Sample::Read(). If you are using more than one streaming thread
1101 * in your application you <b>HAVE</b> to create a decompression buffer
1102 * for <b>EACH</b> of your streaming threads and provide it with the
1103 * Sample::Read() call in order to avoid race conditions and crashes.
1104 *
1105 * You should free the memory occupied by the allocated buffer(s) once
1106 * you don't need one of your streaming threads anymore by calling
1107 * DestroyDecompressionBuffer().
1108 *
1109 * @param MaxReadSize - the maximum size (in sample points) you ever
1110 * expect to read with one Read() call
1111 * @returns allocated decompression buffer
1112 * @see DestroyDecompressionBuffer()
1113 */
1114 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1115 buffer_t result;
1116 const double worstCaseHeaderOverhead =
1117 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1118 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1119 result.pStart = new int8_t[result.Size];
1120 result.NullExtensionSize = 0;
1121 return result;
1122 }
1123
1124 /**
1125 * Free decompression buffer, previously created with
1126 * CreateDecompressionBuffer().
1127 *
1128 * @param DecompressionBuffer - previously allocated decompression
1129 * buffer to free
1130 */
1131 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1132 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1133 delete[] (int8_t*) DecompressionBuffer.pStart;
1134 DecompressionBuffer.pStart = NULL;
1135 DecompressionBuffer.Size = 0;
1136 DecompressionBuffer.NullExtensionSize = 0;
1137 }
1138 }
1139
1140 Sample::~Sample() {
1141 Instances--;
1142 if (!Instances && InternalDecompressionBuffer.Size) {
1143 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1144 InternalDecompressionBuffer.pStart = NULL;
1145 InternalDecompressionBuffer.Size = 0;
1146 }
1147 if (FrameTable) delete[] FrameTable;
1148 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1149 }
1150
1151
1152
1153 // *************** DimensionRegion ***************
1154 // *
1155
1156 uint DimensionRegion::Instances = 0;
1157 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1158
1159 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1160 Instances++;
1161
1162 pSample = NULL;
1163
1164 memcpy(&Crossfade, &SamplerOptions, 4);
1165 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1166
1167 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1168 if (_3ewa) { // if '3ewa' chunk exists
1169 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1170 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1171 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1172 _3ewa->ReadInt16(); // unknown
1173 LFO1InternalDepth = _3ewa->ReadUint16();
1174 _3ewa->ReadInt16(); // unknown
1175 LFO3InternalDepth = _3ewa->ReadInt16();
1176 _3ewa->ReadInt16(); // unknown
1177 LFO1ControlDepth = _3ewa->ReadUint16();
1178 _3ewa->ReadInt16(); // unknown
1179 LFO3ControlDepth = _3ewa->ReadInt16();
1180 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1181 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1182 _3ewa->ReadInt16(); // unknown
1183 EG1Sustain = _3ewa->ReadUint16();
1184 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1185 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1186 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1187 EG1ControllerInvert = eg1ctrloptions & 0x01;
1188 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1189 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1190 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1191 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1192 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1193 EG2ControllerInvert = eg2ctrloptions & 0x01;
1194 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1195 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1196 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1197 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1200 _3ewa->ReadInt16(); // unknown
1201 EG2Sustain = _3ewa->ReadUint16();
1202 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1203 _3ewa->ReadInt16(); // unknown
1204 LFO2ControlDepth = _3ewa->ReadUint16();
1205 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1206 _3ewa->ReadInt16(); // unknown
1207 LFO2InternalDepth = _3ewa->ReadUint16();
1208 int32_t eg1decay2 = _3ewa->ReadInt32();
1209 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1210 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1211 _3ewa->ReadInt16(); // unknown
1212 EG1PreAttack = _3ewa->ReadUint16();
1213 int32_t eg2decay2 = _3ewa->ReadInt32();
1214 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1215 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1216 _3ewa->ReadInt16(); // unknown
1217 EG2PreAttack = _3ewa->ReadUint16();
1218 uint8_t velocityresponse = _3ewa->ReadUint8();
1219 if (velocityresponse < 5) {
1220 VelocityResponseCurve = curve_type_nonlinear;
1221 VelocityResponseDepth = velocityresponse;
1222 } else if (velocityresponse < 10) {
1223 VelocityResponseCurve = curve_type_linear;
1224 VelocityResponseDepth = velocityresponse - 5;
1225 } else if (velocityresponse < 15) {
1226 VelocityResponseCurve = curve_type_special;
1227 VelocityResponseDepth = velocityresponse - 10;
1228 } else {
1229 VelocityResponseCurve = curve_type_unknown;
1230 VelocityResponseDepth = 0;
1231 }
1232 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1233 if (releasevelocityresponse < 5) {
1234 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1235 ReleaseVelocityResponseDepth = releasevelocityresponse;
1236 } else if (releasevelocityresponse < 10) {
1237 ReleaseVelocityResponseCurve = curve_type_linear;
1238 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1239 } else if (releasevelocityresponse < 15) {
1240 ReleaseVelocityResponseCurve = curve_type_special;
1241 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1242 } else {
1243 ReleaseVelocityResponseCurve = curve_type_unknown;
1244 ReleaseVelocityResponseDepth = 0;
1245 }
1246 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1247 AttenuationControllerThreshold = _3ewa->ReadInt8();
1248 _3ewa->ReadInt32(); // unknown
1249 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1250 _3ewa->ReadInt16(); // unknown
1251 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1252 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1253 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1254 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1255 else DimensionBypass = dim_bypass_ctrl_none;
1256 uint8_t pan = _3ewa->ReadUint8();
1257 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1258 SelfMask = _3ewa->ReadInt8() & 0x01;
1259 _3ewa->ReadInt8(); // unknown
1260 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1261 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1262 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1263 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1264 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1265 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1266 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1267 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1268 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1269 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1270 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1271 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1272 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1273 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1274 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1275 : vcf_res_ctrl_none;
1276 uint16_t eg3depth = _3ewa->ReadUint16();
1277 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1278 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1279 _3ewa->ReadInt16(); // unknown
1280 ChannelOffset = _3ewa->ReadUint8() / 4;
1281 uint8_t regoptions = _3ewa->ReadUint8();
1282 MSDecode = regoptions & 0x01; // bit 0
1283 SustainDefeat = regoptions & 0x02; // bit 1
1284 _3ewa->ReadInt16(); // unknown
1285 VelocityUpperLimit = _3ewa->ReadInt8();
1286 _3ewa->ReadInt8(); // unknown
1287 _3ewa->ReadInt16(); // unknown
1288 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1289 _3ewa->ReadInt8(); // unknown
1290 _3ewa->ReadInt8(); // unknown
1291 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1292 uint8_t vcfcutoff = _3ewa->ReadUint8();
1293 VCFEnabled = vcfcutoff & 0x80; // bit 7
1294 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1295 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1296 uint8_t vcfvelscale = _3ewa->ReadUint8();
1297 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1298 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1299 _3ewa->ReadInt8(); // unknown
1300 uint8_t vcfresonance = _3ewa->ReadUint8();
1301 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1302 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1303 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1304 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1305 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1306 uint8_t vcfvelocity = _3ewa->ReadUint8();
1307 VCFVelocityDynamicRange = vcfvelocity % 5;
1308 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1309 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1310 if (VCFType == vcf_type_lowpass) {
1311 if (lfo3ctrl & 0x40) // bit 6
1312 VCFType = vcf_type_lowpassturbo;
1313 }
1314 } else { // '3ewa' chunk does not exist yet
1315 // use default values
1316 LFO3Frequency = 1.0;
1317 EG3Attack = 0.0;
1318 LFO1InternalDepth = 0;
1319 LFO3InternalDepth = 0;
1320 LFO1ControlDepth = 0;
1321 LFO3ControlDepth = 0;
1322 EG1Attack = 0.0;
1323 EG1Decay1 = 0.0;
1324 EG1Sustain = 0;
1325 EG1Release = 0.0;
1326 EG1Controller.type = eg1_ctrl_t::type_none;
1327 EG1Controller.controller_number = 0;
1328 EG1ControllerInvert = false;
1329 EG1ControllerAttackInfluence = 0;
1330 EG1ControllerDecayInfluence = 0;
1331 EG1ControllerReleaseInfluence = 0;
1332 EG2Controller.type = eg2_ctrl_t::type_none;
1333 EG2Controller.controller_number = 0;
1334 EG2ControllerInvert = false;
1335 EG2ControllerAttackInfluence = 0;
1336 EG2ControllerDecayInfluence = 0;
1337 EG2ControllerReleaseInfluence = 0;
1338 LFO1Frequency = 1.0;
1339 EG2Attack = 0.0;
1340 EG2Decay1 = 0.0;
1341 EG2Sustain = 0;
1342 EG2Release = 0.0;
1343 LFO2ControlDepth = 0;
1344 LFO2Frequency = 1.0;
1345 LFO2InternalDepth = 0;
1346 EG1Decay2 = 0.0;
1347 EG1InfiniteSustain = false;
1348 EG1PreAttack = 1000;
1349 EG2Decay2 = 0.0;
1350 EG2InfiniteSustain = false;
1351 EG2PreAttack = 1000;
1352 VelocityResponseCurve = curve_type_nonlinear;
1353 VelocityResponseDepth = 3;
1354 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1355 ReleaseVelocityResponseDepth = 3;
1356 VelocityResponseCurveScaling = 32;
1357 AttenuationControllerThreshold = 0;
1358 SampleStartOffset = 0;
1359 PitchTrack = true;
1360 DimensionBypass = dim_bypass_ctrl_none;
1361 Pan = 0;
1362 SelfMask = true;
1363 LFO3Controller = lfo3_ctrl_modwheel;
1364 LFO3Sync = false;
1365 InvertAttenuationController = false;
1366 AttenuationController.type = attenuation_ctrl_t::type_none;
1367 AttenuationController.controller_number = 0;
1368 LFO2Controller = lfo2_ctrl_internal;
1369 LFO2FlipPhase = false;
1370 LFO2Sync = false;
1371 LFO1Controller = lfo1_ctrl_internal;
1372 LFO1FlipPhase = false;
1373 LFO1Sync = false;
1374 VCFResonanceController = vcf_res_ctrl_none;
1375 EG3Depth = 0;
1376 ChannelOffset = 0;
1377 MSDecode = false;
1378 SustainDefeat = false;
1379 VelocityUpperLimit = 0;
1380 ReleaseTriggerDecay = 0;
1381 EG1Hold = false;
1382 VCFEnabled = false;
1383 VCFCutoff = 0;
1384 VCFCutoffController = vcf_cutoff_ctrl_none;
1385 VCFCutoffControllerInvert = false;
1386 VCFVelocityScale = 0;
1387 VCFResonance = 0;
1388 VCFResonanceDynamic = false;
1389 VCFKeyboardTracking = false;
1390 VCFKeyboardTrackingBreakpoint = 0;
1391 VCFVelocityDynamicRange = 0x04;
1392 VCFVelocityCurve = curve_type_linear;
1393 VCFType = vcf_type_lowpass;
1394 }
1395
1396 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1397 VelocityResponseDepth,
1398 VelocityResponseCurveScaling);
1399
1400 curve_type_t curveType = ReleaseVelocityResponseCurve;
1401 uint8_t depth = ReleaseVelocityResponseDepth;
1402
1403 // this models a strange behaviour or bug in GSt: two of the
1404 // velocity response curves for release time are not used even
1405 // if specified, instead another curve is chosen.
1406 if ((curveType == curve_type_nonlinear && depth == 0) ||
1407 (curveType == curve_type_special && depth == 4)) {
1408 curveType = curve_type_nonlinear;
1409 depth = 3;
1410 }
1411 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1412
1413 curveType = VCFVelocityCurve;
1414 depth = VCFVelocityDynamicRange;
1415
1416 // even stranger GSt: two of the velocity response curves for
1417 // filter cutoff are not used, instead another special curve
1418 // is chosen. This curve is not used anywhere else.
1419 if ((curveType == curve_type_nonlinear && depth == 0) ||
1420 (curveType == curve_type_special && depth == 4)) {
1421 curveType = curve_type_special;
1422 depth = 5;
1423 }
1424 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1425 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1426
1427 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1428 VelocityTable = 0;
1429 }
1430
1431 /**
1432 * Apply dimension region settings to the respective RIFF chunks. You
1433 * have to call File::Save() to make changes persistent.
1434 *
1435 * Usually there is absolutely no need to call this method explicitly.
1436 * It will be called automatically when File::Save() was called.
1437 */
1438 void DimensionRegion::UpdateChunks() {
1439 // first update base class's chunk
1440 DLS::Sampler::UpdateChunks();
1441
1442 // make sure '3ewa' chunk exists
1443 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1444 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1445 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1446
1447 // update '3ewa' chunk with DimensionRegion's current settings
1448
1449 const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1450 memcpy(&pData[0], &unknown, 4);
1451
1452 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1453 memcpy(&pData[4], &lfo3freq, 4);
1454
1455 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1456 memcpy(&pData[4], &eg3attack, 4);
1457
1458 // next 2 bytes unknown
1459
1460 memcpy(&pData[10], &LFO1InternalDepth, 2);
1461
1462 // next 2 bytes unknown
1463
1464 memcpy(&pData[14], &LFO3InternalDepth, 2);
1465
1466 // next 2 bytes unknown
1467
1468 memcpy(&pData[18], &LFO1ControlDepth, 2);
1469
1470 // next 2 bytes unknown
1471
1472 memcpy(&pData[22], &LFO3ControlDepth, 2);
1473
1474 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1475 memcpy(&pData[24], &eg1attack, 4);
1476
1477 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1478 memcpy(&pData[28], &eg1decay1, 4);
1479
1480 // next 2 bytes unknown
1481
1482 memcpy(&pData[34], &EG1Sustain, 2);
1483
1484 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1485 memcpy(&pData[36], &eg1release, 4);
1486
1487 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1488 memcpy(&pData[40], &eg1ctl, 1);
1489
1490 const uint8_t eg1ctrloptions =
1491 (EG1ControllerInvert) ? 0x01 : 0x00 |
1492 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1493 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1494 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1495 memcpy(&pData[41], &eg1ctrloptions, 1);
1496
1497 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1498 memcpy(&pData[42], &eg2ctl, 1);
1499
1500 const uint8_t eg2ctrloptions =
1501 (EG2ControllerInvert) ? 0x01 : 0x00 |
1502 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1503 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1504 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1505 memcpy(&pData[43], &eg2ctrloptions, 1);
1506
1507 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1508 memcpy(&pData[44], &lfo1freq, 4);
1509
1510 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1511 memcpy(&pData[48], &eg2attack, 4);
1512
1513 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1514 memcpy(&pData[52], &eg2decay1, 4);
1515
1516 // next 2 bytes unknown
1517
1518 memcpy(&pData[58], &EG2Sustain, 2);
1519
1520 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1521 memcpy(&pData[60], &eg2release, 4);
1522
1523 // next 2 bytes unknown
1524
1525 memcpy(&pData[66], &LFO2ControlDepth, 2);
1526
1527 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1528 memcpy(&pData[68], &lfo2freq, 4);
1529
1530 // next 2 bytes unknown
1531
1532 memcpy(&pData[72], &LFO2InternalDepth, 2);
1533
1534 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1535 memcpy(&pData[74], &eg1decay2, 4);
1536
1537 // next 2 bytes unknown
1538
1539 memcpy(&pData[80], &EG1PreAttack, 2);
1540
1541 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1542 memcpy(&pData[82], &eg2decay2, 4);
1543
1544 // next 2 bytes unknown
1545
1546 memcpy(&pData[88], &EG2PreAttack, 2);
1547
1548 {
1549 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1550 uint8_t velocityresponse = VelocityResponseDepth;
1551 switch (VelocityResponseCurve) {
1552 case curve_type_nonlinear:
1553 break;
1554 case curve_type_linear:
1555 velocityresponse += 5;
1556 break;
1557 case curve_type_special:
1558 velocityresponse += 10;
1559 break;
1560 case curve_type_unknown:
1561 default:
1562 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1563 }
1564 memcpy(&pData[90], &velocityresponse, 1);
1565 }
1566
1567 {
1568 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1569 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1570 switch (ReleaseVelocityResponseCurve) {
1571 case curve_type_nonlinear:
1572 break;
1573 case curve_type_linear:
1574 releasevelocityresponse += 5;
1575 break;
1576 case curve_type_special:
1577 releasevelocityresponse += 10;
1578 break;
1579 case curve_type_unknown:
1580 default:
1581 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1582 }
1583 memcpy(&pData[91], &releasevelocityresponse, 1);
1584 }
1585
1586 memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1587
1588 memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1589
1590 // next 4 bytes unknown
1591
1592 memcpy(&pData[98], &SampleStartOffset, 2);
1593
1594 // next 2 bytes unknown
1595
1596 {
1597 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1598 switch (DimensionBypass) {
1599 case dim_bypass_ctrl_94:
1600 pitchTrackDimensionBypass |= 0x10;
1601 break;
1602 case dim_bypass_ctrl_95:
1603 pitchTrackDimensionBypass |= 0x20;
1604 break;
1605 case dim_bypass_ctrl_none:
1606 //FIXME: should we set anything here?
1607 break;
1608 default:
1609 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1610 }
1611 memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1612 }
1613
1614 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1615 memcpy(&pData[103], &pan, 1);
1616
1617 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1618 memcpy(&pData[104], &selfmask, 1);
1619
1620 // next byte unknown
1621
1622 {
1623 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1624 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1625 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1626 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1627 memcpy(&pData[106], &lfo3ctrl, 1);
1628 }
1629
1630 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1631 memcpy(&pData[107], &attenctl, 1);
1632
1633 {
1634 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1635 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1636 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1637 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1638 memcpy(&pData[108], &lfo2ctrl, 1);
1639 }
1640
1641 {
1642 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1643 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1644 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1645 if (VCFResonanceController != vcf_res_ctrl_none)
1646 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1647 memcpy(&pData[109], &lfo1ctrl, 1);
1648 }
1649
1650 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1651 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1652 memcpy(&pData[110], &eg3depth, 1);
1653
1654 // next 2 bytes unknown
1655
1656 const uint8_t channeloffset = ChannelOffset * 4;
1657 memcpy(&pData[113], &channeloffset, 1);
1658
1659 {
1660 uint8_t regoptions = 0;
1661 if (MSDecode) regoptions |= 0x01; // bit 0
1662 if (SustainDefeat) regoptions |= 0x02; // bit 1
1663 memcpy(&pData[114], &regoptions, 1);
1664 }
1665
1666 // next 2 bytes unknown
1667
1668 memcpy(&pData[117], &VelocityUpperLimit, 1);
1669
1670 // next 3 bytes unknown
1671
1672 memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1673
1674 // next 2 bytes unknown
1675
1676 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1677 memcpy(&pData[124], &eg1hold, 1);
1678
1679 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1680 (VCFCutoff) ? 0x7f : 0x00; /* lower 7 bits */
1681 memcpy(&pData[125], &vcfcutoff, 1);
1682
1683 memcpy(&pData[126], &VCFCutoffController, 1);
1684
1685 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1686 (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1687 memcpy(&pData[127], &vcfvelscale, 1);
1688
1689 // next byte unknown
1690
1691 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1692 (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1693 memcpy(&pData[129], &vcfresonance, 1);
1694
1695 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1696 (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1697 memcpy(&pData[130], &vcfbreakpoint, 1);
1698
1699 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1700 VCFVelocityCurve * 5;
1701 memcpy(&pData[131], &vcfvelocity, 1);
1702
1703 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1704 memcpy(&pData[132], &vcftype, 1);
1705 }
1706
1707 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1708 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1709 {
1710 double* table;
1711 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1712 if (pVelocityTables->count(tableKey)) { // if key exists
1713 table = (*pVelocityTables)[tableKey];
1714 }
1715 else {
1716 table = CreateVelocityTable(curveType, depth, scaling);
1717 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1718 }
1719 return table;
1720 }
1721
1722 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1723 leverage_ctrl_t decodedcontroller;
1724 switch (EncodedController) {
1725 // special controller
1726 case _lev_ctrl_none:
1727 decodedcontroller.type = leverage_ctrl_t::type_none;
1728 decodedcontroller.controller_number = 0;
1729 break;
1730 case _lev_ctrl_velocity:
1731 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1732 decodedcontroller.controller_number = 0;
1733 break;
1734 case _lev_ctrl_channelaftertouch:
1735 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1736 decodedcontroller.controller_number = 0;
1737 break;
1738
1739 // ordinary MIDI control change controller
1740 case _lev_ctrl_modwheel:
1741 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1742 decodedcontroller.controller_number = 1;
1743 break;
1744 case _lev_ctrl_breath:
1745 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1746 decodedcontroller.controller_number = 2;
1747 break;
1748 case _lev_ctrl_foot:
1749 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1750 decodedcontroller.controller_number = 4;
1751 break;
1752 case _lev_ctrl_effect1:
1753 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1754 decodedcontroller.controller_number = 12;
1755 break;
1756 case _lev_ctrl_effect2:
1757 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1758 decodedcontroller.controller_number = 13;
1759 break;
1760 case _lev_ctrl_genpurpose1:
1761 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1762 decodedcontroller.controller_number = 16;
1763 break;
1764 case _lev_ctrl_genpurpose2:
1765 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1766 decodedcontroller.controller_number = 17;
1767 break;
1768 case _lev_ctrl_genpurpose3:
1769 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1770 decodedcontroller.controller_number = 18;
1771 break;
1772 case _lev_ctrl_genpurpose4:
1773 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1774 decodedcontroller.controller_number = 19;
1775 break;
1776 case _lev_ctrl_portamentotime:
1777 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1778 decodedcontroller.controller_number = 5;
1779 break;
1780 case _lev_ctrl_sustainpedal:
1781 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1782 decodedcontroller.controller_number = 64;
1783 break;
1784 case _lev_ctrl_portamento:
1785 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1786 decodedcontroller.controller_number = 65;
1787 break;
1788 case _lev_ctrl_sostenutopedal:
1789 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1790 decodedcontroller.controller_number = 66;
1791 break;
1792 case _lev_ctrl_softpedal:
1793 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1794 decodedcontroller.controller_number = 67;
1795 break;
1796 case _lev_ctrl_genpurpose5:
1797 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1798 decodedcontroller.controller_number = 80;
1799 break;
1800 case _lev_ctrl_genpurpose6:
1801 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1802 decodedcontroller.controller_number = 81;
1803 break;
1804 case _lev_ctrl_genpurpose7:
1805 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1806 decodedcontroller.controller_number = 82;
1807 break;
1808 case _lev_ctrl_genpurpose8:
1809 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1810 decodedcontroller.controller_number = 83;
1811 break;
1812 case _lev_ctrl_effect1depth:
1813 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1814 decodedcontroller.controller_number = 91;
1815 break;
1816 case _lev_ctrl_effect2depth:
1817 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1818 decodedcontroller.controller_number = 92;
1819 break;
1820 case _lev_ctrl_effect3depth:
1821 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1822 decodedcontroller.controller_number = 93;
1823 break;
1824 case _lev_ctrl_effect4depth:
1825 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1826 decodedcontroller.controller_number = 94;
1827 break;
1828 case _lev_ctrl_effect5depth:
1829 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1830 decodedcontroller.controller_number = 95;
1831 break;
1832
1833 // unknown controller type
1834 default:
1835 throw gig::Exception("Unknown leverage controller type.");
1836 }
1837 return decodedcontroller;
1838 }
1839
1840 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1841 _lev_ctrl_t encodedcontroller;
1842 switch (DecodedController.type) {
1843 // special controller
1844 case leverage_ctrl_t::type_none:
1845 encodedcontroller = _lev_ctrl_none;
1846 break;
1847 case leverage_ctrl_t::type_velocity:
1848 encodedcontroller = _lev_ctrl_velocity;
1849 break;
1850 case leverage_ctrl_t::type_channelaftertouch:
1851 encodedcontroller = _lev_ctrl_channelaftertouch;
1852 break;
1853
1854 // ordinary MIDI control change controller
1855 case leverage_ctrl_t::type_controlchange:
1856 switch (DecodedController.controller_number) {
1857 case 1:
1858 encodedcontroller = _lev_ctrl_modwheel;
1859 break;
1860 case 2:
1861 encodedcontroller = _lev_ctrl_breath;
1862 break;
1863 case 4:
1864 encodedcontroller = _lev_ctrl_foot;
1865 break;
1866 case 12:
1867 encodedcontroller = _lev_ctrl_effect1;
1868 break;
1869 case 13:
1870 encodedcontroller = _lev_ctrl_effect2;
1871 break;
1872 case 16:
1873 encodedcontroller = _lev_ctrl_genpurpose1;
1874 break;
1875 case 17:
1876 encodedcontroller = _lev_ctrl_genpurpose2;
1877 break;
1878 case 18:
1879 encodedcontroller = _lev_ctrl_genpurpose3;
1880 break;
1881 case 19:
1882 encodedcontroller = _lev_ctrl_genpurpose4;
1883 break;
1884 case 5:
1885 encodedcontroller = _lev_ctrl_portamentotime;
1886 break;
1887 case 64:
1888 encodedcontroller = _lev_ctrl_sustainpedal;
1889 break;
1890 case 65:
1891 encodedcontroller = _lev_ctrl_portamento;
1892 break;
1893 case 66:
1894 encodedcontroller = _lev_ctrl_sostenutopedal;
1895 break;
1896 case 67:
1897 encodedcontroller = _lev_ctrl_softpedal;
1898 break;
1899 case 80:
1900 encodedcontroller = _lev_ctrl_genpurpose5;
1901 break;
1902 case 81:
1903 encodedcontroller = _lev_ctrl_genpurpose6;
1904 break;
1905 case 82:
1906 encodedcontroller = _lev_ctrl_genpurpose7;
1907 break;
1908 case 83:
1909 encodedcontroller = _lev_ctrl_genpurpose8;
1910 break;
1911 case 91:
1912 encodedcontroller = _lev_ctrl_effect1depth;
1913 break;
1914 case 92:
1915 encodedcontroller = _lev_ctrl_effect2depth;
1916 break;
1917 case 93:
1918 encodedcontroller = _lev_ctrl_effect3depth;
1919 break;
1920 case 94:
1921 encodedcontroller = _lev_ctrl_effect4depth;
1922 break;
1923 case 95:
1924 encodedcontroller = _lev_ctrl_effect5depth;
1925 break;
1926 default:
1927 throw gig::Exception("leverage controller number is not supported by the gig format");
1928 }
1929 default:
1930 throw gig::Exception("Unknown leverage controller type.");
1931 }
1932 return encodedcontroller;
1933 }
1934
1935 DimensionRegion::~DimensionRegion() {
1936 Instances--;
1937 if (!Instances) {
1938 // delete the velocity->volume tables
1939 VelocityTableMap::iterator iter;
1940 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1941 double* pTable = iter->second;
1942 if (pTable) delete[] pTable;
1943 }
1944 pVelocityTables->clear();
1945 delete pVelocityTables;
1946 pVelocityTables = NULL;
1947 }
1948 if (VelocityTable) delete[] VelocityTable;
1949 }
1950
1951 /**
1952 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1953 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1954 * and VelocityResponseCurveScaling) involved are taken into account to
1955 * calculate the amplitude factor. Use this method when a key was
1956 * triggered to get the volume with which the sample should be played
1957 * back.
1958 *
1959 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1960 * @returns amplitude factor (between 0.0 and 1.0)
1961 */
1962 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1963 return pVelocityAttenuationTable[MIDIKeyVelocity];
1964 }
1965
1966 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1967 return pVelocityReleaseTable[MIDIKeyVelocity];
1968 }
1969
1970 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1971 return pVelocityCutoffTable[MIDIKeyVelocity];
1972 }
1973
1974 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1975
1976 // line-segment approximations of the 15 velocity curves
1977
1978 // linear
1979 const int lin0[] = { 1, 1, 127, 127 };
1980 const int lin1[] = { 1, 21, 127, 127 };
1981 const int lin2[] = { 1, 45, 127, 127 };
1982 const int lin3[] = { 1, 74, 127, 127 };
1983 const int lin4[] = { 1, 127, 127, 127 };
1984
1985 // non-linear
1986 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1987 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1988 127, 127 };
1989 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1990 127, 127 };
1991 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1992 127, 127 };
1993 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1994
1995 // special
1996 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1997 113, 127, 127, 127 };
1998 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1999 118, 127, 127, 127 };
2000 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2001 85, 90, 91, 127, 127, 127 };
2002 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2003 117, 127, 127, 127 };
2004 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2005 127, 127 };
2006
2007 // this is only used by the VCF velocity curve
2008 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2009 91, 127, 127, 127 };
2010
2011 const int* const curves[] = { non0, non1, non2, non3, non4,
2012 lin0, lin1, lin2, lin3, lin4,
2013 spe0, spe1, spe2, spe3, spe4, spe5 };
2014
2015 double* const table = new double[128];
2016
2017 const int* curve = curves[curveType * 5 + depth];
2018 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2019
2020 table[0] = 0;
2021 for (int x = 1 ; x < 128 ; x++) {
2022
2023 if (x > curve[2]) curve += 2;
2024 double y = curve[1] + (x - curve[0]) *
2025 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2026 y = y / 127;
2027
2028 // Scale up for s > 20, down for s < 20. When
2029 // down-scaling, the curve still ends at 1.0.
2030 if (s < 20 && y >= 0.5)
2031 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2032 else
2033 y = y * (s / 20.0);
2034 if (y > 1) y = 1;
2035
2036 table[x] = y;
2037 }
2038 return table;
2039 }
2040
2041
2042 // *************** Region ***************
2043 // *
2044
2045 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2046 // Initialization
2047 Dimensions = 0;
2048 for (int i = 0; i < 256; i++) {
2049 pDimensionRegions[i] = NULL;
2050 }
2051 Layers = 1;
2052 File* file = (File*) GetParent()->GetParent();
2053 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2054
2055 // Actual Loading
2056
2057 LoadDimensionRegions(rgnList);
2058
2059 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2060 if (_3lnk) {
2061 DimensionRegions = _3lnk->ReadUint32();
2062 for (int i = 0; i < dimensionBits; i++) {
2063 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2064 uint8_t bits = _3lnk->ReadUint8();
2065 _3lnk->ReadUint8(); // probably the position of the dimension
2066 _3lnk->ReadUint8(); // unknown
2067 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2068 if (dimension == dimension_none) { // inactive dimension
2069 pDimensionDefinitions[i].dimension = dimension_none;
2070 pDimensionDefinitions[i].bits = 0;
2071 pDimensionDefinitions[i].zones = 0;
2072 pDimensionDefinitions[i].split_type = split_type_bit;
2073 pDimensionDefinitions[i].zone_size = 0;
2074 }
2075 else { // active dimension
2076 pDimensionDefinitions[i].dimension = dimension;
2077 pDimensionDefinitions[i].bits = bits;
2078 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2079 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2080 dimension == dimension_samplechannel ||
2081 dimension == dimension_releasetrigger ||
2082 dimension == dimension_keyboard ||
2083 dimension == dimension_roundrobin ||
2084 dimension == dimension_random) ? split_type_bit
2085 : split_type_normal;
2086 pDimensionDefinitions[i].zone_size =
2087 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2088 : 0;
2089 Dimensions++;
2090
2091 // if this is a layer dimension, remember the amount of layers
2092 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2093 }
2094 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2095 }
2096 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2097
2098 // if there's a velocity dimension and custom velocity zone splits are used,
2099 // update the VelocityTables in the dimension regions
2100 UpdateVelocityTable();
2101
2102 // jump to start of the wave pool indices (if not already there)
2103 if (file->pVersion && file->pVersion->major == 3)
2104 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2105 else
2106 _3lnk->SetPos(44);
2107
2108 // load sample references
2109 for (uint i = 0; i < DimensionRegions; i++) {
2110 uint32_t wavepoolindex = _3lnk->ReadUint32();
2111 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2112 }
2113 }
2114
2115 // make sure there is at least one dimension region
2116 if (!DimensionRegions) {
2117 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2118 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2119 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2120 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2121 DimensionRegions = 1;
2122 }
2123 }
2124
2125 /**
2126 * Apply Region settings and all its DimensionRegions to the respective
2127 * RIFF chunks. You have to call File::Save() to make changes persistent.
2128 *
2129 * Usually there is absolutely no need to call this method explicitly.
2130 * It will be called automatically when File::Save() was called.
2131 *
2132 * @throws gig::Exception if samples cannot be dereferenced
2133 */
2134 void Region::UpdateChunks() {
2135 // first update base class's chunks
2136 DLS::Region::UpdateChunks();
2137
2138 // update dimension region's chunks
2139 for (int i = 0; i < DimensionRegions; i++) {
2140 pDimensionRegions[i]->UpdateChunks();
2141 }
2142
2143 File* pFile = (File*) GetParent()->GetParent();
2144 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2145 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2146
2147 // make sure '3lnk' chunk exists
2148 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2149 if (!_3lnk) {
2150 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2151 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2152 }
2153
2154 // update dimension definitions in '3lnk' chunk
2155 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2156 for (int i = 0; i < iMaxDimensions; i++) {
2157 pData[i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2158 pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2159 // next 2 bytes unknown
2160 pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2161 // next 3 bytes unknown
2162 }
2163
2164 // update wave pool table in '3lnk' chunk
2165 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2166 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2167 int iWaveIndex = -1;
2168 if (i < DimensionRegions) {
2169 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2170 File::SampleList::iterator iter = pFile->pSamples->begin();
2171 File::SampleList::iterator end = pFile->pSamples->end();
2172 for (int index = 0; iter != end; ++iter, ++index) {
2173 if (*iter == pDimensionRegions[i]->pSample) {
2174 iWaveIndex = index;
2175 break;
2176 }
2177 }
2178 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2179 }
2180 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2181 }
2182 }
2183
2184 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2185 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2186 if (_3prg) {
2187 int dimensionRegionNr = 0;
2188 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2189 while (_3ewl) {
2190 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2191 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2192 dimensionRegionNr++;
2193 }
2194 _3ewl = _3prg->GetNextSubList();
2195 }
2196 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2197 }
2198 }
2199
2200 void Region::UpdateVelocityTable() {
2201 // get velocity dimension's index
2202 int veldim = -1;
2203 for (int i = 0 ; i < Dimensions ; i++) {
2204 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2205 veldim = i;
2206 break;
2207 }
2208 }
2209 if (veldim == -1) return;
2210
2211 int step = 1;
2212 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2213 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2214 int end = step * pDimensionDefinitions[veldim].zones;
2215
2216 // loop through all dimension regions for all dimensions except the velocity dimension
2217 int dim[8] = { 0 };
2218 for (int i = 0 ; i < DimensionRegions ; i++) {
2219
2220 if (pDimensionRegions[i]->VelocityUpperLimit) {
2221 // create the velocity table
2222 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2223 if (!table) {
2224 table = new uint8_t[128];
2225 pDimensionRegions[i]->VelocityTable = table;
2226 }
2227 int tableidx = 0;
2228 int velocityZone = 0;
2229 for (int k = i ; k < end ; k += step) {
2230 DimensionRegion *d = pDimensionRegions[k];
2231 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2232 velocityZone++;
2233 }
2234 } else {
2235 if (pDimensionRegions[i]->VelocityTable) {
2236 delete[] pDimensionRegions[i]->VelocityTable;
2237 pDimensionRegions[i]->VelocityTable = 0;
2238 }
2239 }
2240
2241 int j;
2242 int shift = 0;
2243 for (j = 0 ; j < Dimensions ; j++) {
2244 if (j == veldim) i += skipveldim; // skip velocity dimension
2245 else {
2246 dim[j]++;
2247 if (dim[j] < pDimensionDefinitions[j].zones) break;
2248 else {
2249 // skip unused dimension regions
2250 dim[j] = 0;
2251 i += ((1 << pDimensionDefinitions[j].bits) -
2252 pDimensionDefinitions[j].zones) << shift;
2253 }
2254 }
2255 shift += pDimensionDefinitions[j].bits;
2256 }
2257 if (j == Dimensions) break;
2258 }
2259 }
2260
2261 /** @brief Einstein would have dreamed of it - create a new dimension.
2262 *
2263 * Creates a new dimension with the dimension definition given by
2264 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2265 * There is a hard limit of dimensions and total amount of "bits" all
2266 * dimensions can have. This limit is dependant to what gig file format
2267 * version this file refers to. The gig v2 (and lower) format has a
2268 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2269 * format has a limit of 8.
2270 *
2271 * @param pDimDef - defintion of the new dimension
2272 * @throws gig::Exception if dimension of the same type exists already
2273 * @throws gig::Exception if amount of dimensions or total amount of
2274 * dimension bits limit is violated
2275 */
2276 void Region::AddDimension(dimension_def_t* pDimDef) {
2277 // check if max. amount of dimensions reached
2278 File* file = (File*) GetParent()->GetParent();
2279 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2280 if (Dimensions >= iMaxDimensions)
2281 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2282 // check if max. amount of dimension bits reached
2283 int iCurrentBits = 0;
2284 for (int i = 0; i < Dimensions; i++)
2285 iCurrentBits += pDimensionDefinitions[i].bits;
2286 if (iCurrentBits >= iMaxDimensions)
2287 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2288 const int iNewBits = iCurrentBits + pDimDef->bits;
2289 if (iNewBits > iMaxDimensions)
2290 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2291 // check if there's already a dimensions of the same type
2292 for (int i = 0; i < Dimensions; i++)
2293 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2294 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2295
2296 // assign definition of new dimension
2297 pDimensionDefinitions[Dimensions] = *pDimDef;
2298
2299 // create new dimension region(s) for this new dimension
2300 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2301 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2302 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2303 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2304 DimensionRegions++;
2305 }
2306
2307 Dimensions++;
2308
2309 // if this is a layer dimension, update 'Layers' attribute
2310 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2311
2312 UpdateVelocityTable();
2313 }
2314
2315 /** @brief Delete an existing dimension.
2316 *
2317 * Deletes the dimension given by \a pDimDef and deletes all respective
2318 * dimension regions, that is all dimension regions where the dimension's
2319 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2320 * for example this would delete all dimension regions for the case(s)
2321 * where the sustain pedal is pressed down.
2322 *
2323 * @param pDimDef - dimension to delete
2324 * @throws gig::Exception if given dimension cannot be found
2325 */
2326 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2327 // get dimension's index
2328 int iDimensionNr = -1;
2329 for (int i = 0; i < Dimensions; i++) {
2330 if (&pDimensionDefinitions[i] == pDimDef) {
2331 iDimensionNr = i;
2332 break;
2333 }
2334 }
2335 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2336
2337 // get amount of bits below the dimension to delete
2338 int iLowerBits = 0;
2339 for (int i = 0; i < iDimensionNr; i++)
2340 iLowerBits += pDimensionDefinitions[i].bits;
2341
2342 // get amount ot bits above the dimension to delete
2343 int iUpperBits = 0;
2344 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2345 iUpperBits += pDimensionDefinitions[i].bits;
2346
2347 // delete dimension regions which belong to the given dimension
2348 // (that is where the dimension's bit > 0)
2349 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2350 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2351 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2352 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2353 iObsoleteBit << iLowerBits |
2354 iLowerBit;
2355 delete pDimensionRegions[iToDelete];
2356 pDimensionRegions[iToDelete] = NULL;
2357 DimensionRegions--;
2358 }
2359 }
2360 }
2361
2362 // defrag pDimensionRegions array
2363 // (that is remove the NULL spaces within the pDimensionRegions array)
2364 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2365 if (!pDimensionRegions[iTo]) {
2366 if (iFrom <= iTo) iFrom = iTo + 1;
2367 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2368 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2369 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2370 pDimensionRegions[iFrom] = NULL;
2371 }
2372 }
2373 }
2374
2375 // 'remove' dimension definition
2376 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2377 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2378 }
2379 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2380 pDimensionDefinitions[Dimensions - 1].bits = 0;
2381 pDimensionDefinitions[Dimensions - 1].zones = 0;
2382
2383 Dimensions--;
2384
2385 // if this was a layer dimension, update 'Layers' attribute
2386 if (pDimDef->dimension == dimension_layer) Layers = 1;
2387 }
2388
2389 Region::~Region() {
2390 for (int i = 0; i < 256; i++) {
2391 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2392 }
2393 }
2394
2395 /**
2396 * Use this method in your audio engine to get the appropriate dimension
2397 * region with it's articulation data for the current situation. Just
2398 * call the method with the current MIDI controller values and you'll get
2399 * the DimensionRegion with the appropriate articulation data for the
2400 * current situation (for this Region of course only). To do that you'll
2401 * first have to look which dimensions with which controllers and in
2402 * which order are defined for this Region when you load the .gig file.
2403 * Special cases are e.g. layer or channel dimensions where you just put
2404 * in the index numbers instead of a MIDI controller value (means 0 for
2405 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2406 * etc.).
2407 *
2408 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2409 * @returns adress to the DimensionRegion for the given situation
2410 * @see pDimensionDefinitions
2411 * @see Dimensions
2412 */
2413 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2414 uint8_t bits;
2415 int veldim = -1;
2416 int velbitpos;
2417 int bitpos = 0;
2418 int dimregidx = 0;
2419 for (uint i = 0; i < Dimensions; i++) {
2420 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2421 // the velocity dimension must be handled after the other dimensions
2422 veldim = i;
2423 velbitpos = bitpos;
2424 } else {
2425 switch (pDimensionDefinitions[i].split_type) {
2426 case split_type_normal:
2427 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2428 break;
2429 case split_type_bit: // the value is already the sought dimension bit number
2430 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2431 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2432 break;
2433 }
2434 dimregidx |= bits << bitpos;
2435 }
2436 bitpos += pDimensionDefinitions[i].bits;
2437 }
2438 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2439 if (veldim != -1) {
2440 // (dimreg is now the dimension region for the lowest velocity)
2441 if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2442 bits = dimreg->VelocityTable[DimValues[veldim]];
2443 else // normal split type
2444 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2445
2446 dimregidx |= bits << velbitpos;
2447 dimreg = pDimensionRegions[dimregidx];
2448 }
2449 return dimreg;
2450 }
2451
2452 /**
2453 * Returns the appropriate DimensionRegion for the given dimension bit
2454 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2455 * instead of calling this method directly!
2456 *
2457 * @param DimBits Bit numbers for dimension 0 to 7
2458 * @returns adress to the DimensionRegion for the given dimension
2459 * bit numbers
2460 * @see GetDimensionRegionByValue()
2461 */
2462 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2463 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2464 << pDimensionDefinitions[5].bits | DimBits[5])
2465 << pDimensionDefinitions[4].bits | DimBits[4])
2466 << pDimensionDefinitions[3].bits | DimBits[3])
2467 << pDimensionDefinitions[2].bits | DimBits[2])
2468 << pDimensionDefinitions[1].bits | DimBits[1])
2469 << pDimensionDefinitions[0].bits | DimBits[0]];
2470 }
2471
2472 /**
2473 * Returns pointer address to the Sample referenced with this region.
2474 * This is the global Sample for the entire Region (not sure if this is
2475 * actually used by the Gigasampler engine - I would only use the Sample
2476 * referenced by the appropriate DimensionRegion instead of this sample).
2477 *
2478 * @returns address to Sample or NULL if there is no reference to a
2479 * sample saved in the .gig file
2480 */
2481 Sample* Region::GetSample() {
2482 if (pSample) return static_cast<gig::Sample*>(pSample);
2483 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2484 }
2485
2486 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2487 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2488 File* file = (File*) GetParent()->GetParent();
2489 if (!file->pWavePoolTable) return NULL;
2490 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2491 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2492 Sample* sample = file->GetFirstSample(pProgress);
2493 while (sample) {
2494 if (sample->ulWavePoolOffset == soughtoffset &&
2495 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2496 sample = file->GetNextSample();
2497 }
2498 return NULL;
2499 }
2500
2501
2502
2503 // *************** Instrument ***************
2504 // *
2505
2506 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2507 // Initialization
2508 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2509
2510 // Loading
2511 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2512 if (lart) {
2513 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2514 if (_3ewg) {
2515 EffectSend = _3ewg->ReadUint16();
2516 Attenuation = _3ewg->ReadInt32();
2517 FineTune = _3ewg->ReadInt16();
2518 PitchbendRange = _3ewg->ReadInt16();
2519 uint8_t dimkeystart = _3ewg->ReadUint8();
2520 PianoReleaseMode = dimkeystart & 0x01;
2521 DimensionKeyRange.low = dimkeystart >> 1;
2522 DimensionKeyRange.high = _3ewg->ReadUint8();
2523 }
2524 }
2525
2526 if (!pRegions) pRegions = new RegionList;
2527 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2528 if (lrgn) {
2529 RIFF::List* rgn = lrgn->GetFirstSubList();
2530 while (rgn) {
2531 if (rgn->GetListType() == LIST_TYPE_RGN) {
2532 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2533 pRegions->push_back(new Region(this, rgn));
2534 }
2535 rgn = lrgn->GetNextSubList();
2536 }
2537 // Creating Region Key Table for fast lookup
2538 UpdateRegionKeyTable();
2539 }
2540
2541 __notify_progress(pProgress, 1.0f); // notify done
2542 }
2543
2544 void Instrument::UpdateRegionKeyTable() {
2545 RegionList::iterator iter = pRegions->begin();
2546 RegionList::iterator end = pRegions->end();
2547 for (; iter != end; ++iter) {
2548 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2549 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2550 RegionKeyTable[iKey] = pRegion;
2551 }
2552 }
2553 }
2554
2555 Instrument::~Instrument() {
2556 }
2557
2558 /**
2559 * Apply Instrument with all its Regions to the respective RIFF chunks.
2560 * You have to call File::Save() to make changes persistent.
2561 *
2562 * Usually there is absolutely no need to call this method explicitly.
2563 * It will be called automatically when File::Save() was called.
2564 *
2565 * @throws gig::Exception if samples cannot be dereferenced
2566 */
2567 void Instrument::UpdateChunks() {
2568 // first update base classes' chunks
2569 DLS::Instrument::UpdateChunks();
2570
2571 // update Regions' chunks
2572 {
2573 RegionList::iterator iter = pRegions->begin();
2574 RegionList::iterator end = pRegions->end();
2575 for (; iter != end; ++iter)
2576 (*iter)->UpdateChunks();
2577 }
2578
2579 // make sure 'lart' RIFF list chunk exists
2580 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2581 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2582 // make sure '3ewg' RIFF chunk exists
2583 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2584 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2585 // update '3ewg' RIFF chunk
2586 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2587 memcpy(&pData[0], &EffectSend, 2);
2588 memcpy(&pData[2], &Attenuation, 4);
2589 memcpy(&pData[6], &FineTune, 2);
2590 memcpy(&pData[8], &PitchbendRange, 2);
2591 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2592 DimensionKeyRange.low << 1;
2593 memcpy(&pData[10], &dimkeystart, 1);
2594 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2595 }
2596
2597 /**
2598 * Returns the appropriate Region for a triggered note.
2599 *
2600 * @param Key MIDI Key number of triggered note / key (0 - 127)
2601 * @returns pointer adress to the appropriate Region or NULL if there
2602 * there is no Region defined for the given \a Key
2603 */
2604 Region* Instrument::GetRegion(unsigned int Key) {
2605 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2606 return RegionKeyTable[Key];
2607
2608 /*for (int i = 0; i < Regions; i++) {
2609 if (Key <= pRegions[i]->KeyRange.high &&
2610 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2611 }
2612 return NULL;*/
2613 }
2614
2615 /**
2616 * Returns the first Region of the instrument. You have to call this
2617 * method once before you use GetNextRegion().
2618 *
2619 * @returns pointer address to first region or NULL if there is none
2620 * @see GetNextRegion()
2621 */
2622 Region* Instrument::GetFirstRegion() {
2623 if (!pRegions) return NULL;
2624 RegionsIterator = pRegions->begin();
2625 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2626 }
2627
2628 /**
2629 * Returns the next Region of the instrument. You have to call
2630 * GetFirstRegion() once before you can use this method. By calling this
2631 * method multiple times it iterates through the available Regions.
2632 *
2633 * @returns pointer address to the next region or NULL if end reached
2634 * @see GetFirstRegion()
2635 */
2636 Region* Instrument::GetNextRegion() {
2637 if (!pRegions) return NULL;
2638 RegionsIterator++;
2639 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2640 }
2641
2642 Region* Instrument::AddRegion() {
2643 // create new Region object (and its RIFF chunks)
2644 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2645 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2646 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2647 Region* pNewRegion = new Region(this, rgn);
2648 pRegions->push_back(pNewRegion);
2649 Regions = pRegions->size();
2650 // update Region key table for fast lookup
2651 UpdateRegionKeyTable();
2652 // done
2653 return pNewRegion;
2654 }
2655
2656 void Instrument::DeleteRegion(Region* pRegion) {
2657 if (!pRegions) return;
2658 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2659 // update Region key table for fast lookup
2660 UpdateRegionKeyTable();
2661 }
2662
2663
2664
2665 // *************** File ***************
2666 // *
2667
2668 File::File() : DLS::File() {
2669 }
2670
2671 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2672 }
2673
2674 Sample* File::GetFirstSample(progress_t* pProgress) {
2675 if (!pSamples) LoadSamples(pProgress);
2676 if (!pSamples) return NULL;
2677 SamplesIterator = pSamples->begin();
2678 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2679 }
2680
2681 Sample* File::GetNextSample() {
2682 if (!pSamples) return NULL;
2683 SamplesIterator++;
2684 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2685 }
2686
2687 /** @brief Add a new sample.
2688 *
2689 * This will create a new Sample object for the gig file. You have to
2690 * call Save() to make this persistent to the file.
2691 *
2692 * @returns pointer to new Sample object
2693 */
2694 Sample* File::AddSample() {
2695 if (!pSamples) LoadSamples();
2696 __ensureMandatoryChunksExist();
2697 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2698 // create new Sample object and its respective 'wave' list chunk
2699 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2700 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2701 pSamples->push_back(pSample);
2702 return pSample;
2703 }
2704
2705 /** @brief Delete a sample.
2706 *
2707 * This will delete the given Sample object from the gig file. You have
2708 * to call Save() to make this persistent to the file.
2709 *
2710 * @param pSample - sample to delete
2711 * @throws gig::Exception if given sample could not be found
2712 */
2713 void File::DeleteSample(Sample* pSample) {
2714 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2715 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2716 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2717 pSamples->erase(iter);
2718 delete pSample;
2719 }
2720
2721 void File::LoadSamples() {
2722 LoadSamples(NULL);
2723 }
2724
2725 void File::LoadSamples(progress_t* pProgress) {
2726 if (!pSamples) pSamples = new SampleList;
2727
2728 RIFF::File* file = pRIFF;
2729
2730 // just for progress calculation
2731 int iSampleIndex = 0;
2732 int iTotalSamples = WavePoolCount;
2733
2734 // check if samples should be loaded from extension files
2735 int lastFileNo = 0;
2736 for (int i = 0 ; i < WavePoolCount ; i++) {
2737 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2738 }
2739 String name(pRIFF->GetFileName());
2740 int nameLen = name.length();
2741 char suffix[6];
2742 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2743
2744 for (int fileNo = 0 ; ; ) {
2745 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2746 if (wvpl) {
2747 unsigned long wvplFileOffset = wvpl->GetFilePos();
2748 RIFF::List* wave = wvpl->GetFirstSubList();
2749 while (wave) {
2750 if (wave->GetListType() == LIST_TYPE_WAVE) {
2751 // notify current progress
2752 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2753 __notify_progress(pProgress, subprogress);
2754
2755 unsigned long waveFileOffset = wave->GetFilePos();
2756 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2757
2758 iSampleIndex++;
2759 }
2760 wave = wvpl->GetNextSubList();
2761 }
2762
2763 if (fileNo == lastFileNo) break;
2764
2765 // open extension file (*.gx01, *.gx02, ...)
2766 fileNo++;
2767 sprintf(suffix, ".gx%02d", fileNo);
2768 name.replace(nameLen, 5, suffix);
2769 file = new RIFF::File(name);
2770 ExtensionFiles.push_back(file);
2771 } else break;
2772 }
2773
2774 __notify_progress(pProgress, 1.0); // notify done
2775 }
2776
2777 Instrument* File::GetFirstInstrument() {
2778 if (!pInstruments) LoadInstruments();
2779 if (!pInstruments) return NULL;
2780 InstrumentsIterator = pInstruments->begin();
2781 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2782 }
2783
2784 Instrument* File::GetNextInstrument() {
2785 if (!pInstruments) return NULL;
2786 InstrumentsIterator++;
2787 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2788 }
2789
2790 /**
2791 * Returns the instrument with the given index.
2792 *
2793 * @param index - number of the sought instrument (0..n)
2794 * @param pProgress - optional: callback function for progress notification
2795 * @returns sought instrument or NULL if there's no such instrument
2796 */
2797 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2798 if (!pInstruments) {
2799 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2800
2801 // sample loading subtask
2802 progress_t subprogress;
2803 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2804 __notify_progress(&subprogress, 0.0f);
2805 GetFirstSample(&subprogress); // now force all samples to be loaded
2806 __notify_progress(&subprogress, 1.0f);
2807
2808 // instrument loading subtask
2809 if (pProgress && pProgress->callback) {
2810 subprogress.__range_min = subprogress.__range_max;
2811 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2812 }
2813 __notify_progress(&subprogress, 0.0f);
2814 LoadInstruments(&subprogress);
2815 __notify_progress(&subprogress, 1.0f);
2816 }
2817 if (!pInstruments) return NULL;
2818 InstrumentsIterator = pInstruments->begin();
2819 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2820 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2821 InstrumentsIterator++;
2822 }
2823 return NULL;
2824 }
2825
2826 /** @brief Add a new instrument definition.
2827 *
2828 * This will create a new Instrument object for the gig file. You have
2829 * to call Save() to make this persistent to the file.
2830 *
2831 * @returns pointer to new Instrument object
2832 */
2833 Instrument* File::AddInstrument() {
2834 if (!pInstruments) LoadInstruments();
2835 __ensureMandatoryChunksExist();
2836 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2837 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2838 Instrument* pInstrument = new Instrument(this, lstInstr);
2839 pInstruments->push_back(pInstrument);
2840 return pInstrument;
2841 }
2842
2843 /** @brief Delete an instrument.
2844 *
2845 * This will delete the given Instrument object from the gig file. You
2846 * have to call Save() to make this persistent to the file.
2847 *
2848 * @param pInstrument - instrument to delete
2849 * @throws gig::Excption if given instrument could not be found
2850 */
2851 void File::DeleteInstrument(Instrument* pInstrument) {
2852 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2853 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2854 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2855 pInstruments->erase(iter);
2856 delete pInstrument;
2857 }
2858
2859 void File::LoadInstruments() {
2860 LoadInstruments(NULL);
2861 }
2862
2863 void File::LoadInstruments(progress_t* pProgress) {
2864 if (!pInstruments) pInstruments = new InstrumentList;
2865 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2866 if (lstInstruments) {
2867 int iInstrumentIndex = 0;
2868 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2869 while (lstInstr) {
2870 if (lstInstr->GetListType() == LIST_TYPE_INS) {
2871 // notify current progress
2872 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2873 __notify_progress(pProgress, localProgress);
2874
2875 // divide local progress into subprogress for loading current Instrument
2876 progress_t subprogress;
2877 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2878
2879 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2880
2881 iInstrumentIndex++;
2882 }
2883 lstInstr = lstInstruments->GetNextSubList();
2884 }
2885 __notify_progress(pProgress, 1.0); // notify done
2886 }
2887 }
2888
2889
2890
2891 // *************** Exception ***************
2892 // *
2893
2894 Exception::Exception(String Message) : DLS::Exception(Message) {
2895 }
2896
2897 void Exception::PrintMessage() {
2898 std::cout << "gig::Exception: " << Message << std::endl;
2899 }
2900
2901
2902 // *************** functions ***************
2903 // *
2904
2905 /**
2906 * Returns the name of this C++ library. This is usually "libgig" of
2907 * course. This call is equivalent to RIFF::libraryName() and
2908 * DLS::libraryName().
2909 */
2910 String libraryName() {
2911 return PACKAGE;
2912 }
2913
2914 /**
2915 * Returns version of this C++ library. This call is equivalent to
2916 * RIFF::libraryVersion() and DLS::libraryVersion().
2917 */
2918 String libraryVersion() {
2919 return VERSION;
2920 }
2921
2922 } // namespace gig

  ViewVC Help
Powered by ViewVC