/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 918 - (show annotations) (download)
Sat Sep 2 08:45:37 2006 UTC (13 years, 2 months ago) by persson
File size: 133746 byte(s)
* several fixes for the write support

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257 // *************** Sample ***************
258 // *
259
260 unsigned int Sample::Instances = 0;
261 buffer_t Sample::InternalDecompressionBuffer;
262
263 /** @brief Constructor.
264 *
265 * Load an existing sample or create a new one. A 'wave' list chunk must
266 * be given to this constructor. In case the given 'wave' list chunk
267 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268 * format and sample data will be loaded from there, otherwise default
269 * values will be used and those chunks will be created when
270 * File::Save() will be called later on.
271 *
272 * @param pFile - pointer to gig::File where this sample is
273 * located (or will be located)
274 * @param waveList - pointer to 'wave' list chunk which is (or
275 * will be) associated with this sample
276 * @param WavePoolOffset - offset of this sample data from wave pool
277 * ('wvpl') list chunk
278 * @param fileNo - number of an extension file where this sample
279 * is located, 0 otherwise
280 */
281 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 pInfo->UseFixedLengthStrings = true;
283 Instances++;
284 FileNo = fileNo;
285
286 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287 if (pCk3gix) {
288 SampleGroup = pCk3gix->ReadInt16();
289 } else { // '3gix' chunk missing
290 // use default value(s)
291 SampleGroup = 0;
292 }
293
294 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
295 if (pCkSmpl) {
296 Manufacturer = pCkSmpl->ReadInt32();
297 Product = pCkSmpl->ReadInt32();
298 SamplePeriod = pCkSmpl->ReadInt32();
299 MIDIUnityNote = pCkSmpl->ReadInt32();
300 FineTune = pCkSmpl->ReadInt32();
301 pCkSmpl->Read(&SMPTEFormat, 1, 4);
302 SMPTEOffset = pCkSmpl->ReadInt32();
303 Loops = pCkSmpl->ReadInt32();
304 pCkSmpl->ReadInt32(); // manufByt
305 LoopID = pCkSmpl->ReadInt32();
306 pCkSmpl->Read(&LoopType, 1, 4);
307 LoopStart = pCkSmpl->ReadInt32();
308 LoopEnd = pCkSmpl->ReadInt32();
309 LoopFraction = pCkSmpl->ReadInt32();
310 LoopPlayCount = pCkSmpl->ReadInt32();
311 } else { // 'smpl' chunk missing
312 // use default values
313 Manufacturer = 0;
314 Product = 0;
315 SamplePeriod = 1 / SamplesPerSecond;
316 MIDIUnityNote = 64;
317 FineTune = 0;
318 SMPTEOffset = 0;
319 Loops = 0;
320 LoopID = 0;
321 LoopStart = 0;
322 LoopEnd = 0;
323 LoopFraction = 0;
324 LoopPlayCount = 0;
325 }
326
327 FrameTable = NULL;
328 SamplePos = 0;
329 RAMCache.Size = 0;
330 RAMCache.pStart = NULL;
331 RAMCache.NullExtensionSize = 0;
332
333 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
334
335 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
336 Compressed = ewav;
337 Dithered = false;
338 TruncatedBits = 0;
339 if (Compressed) {
340 uint32_t version = ewav->ReadInt32();
341 if (version == 3 && BitDepth == 24) {
342 Dithered = ewav->ReadInt32();
343 ewav->SetPos(Channels == 2 ? 84 : 64);
344 TruncatedBits = ewav->ReadInt32();
345 }
346 ScanCompressedSample();
347 }
348
349 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
350 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
351 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
352 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
353 }
354 FrameOffset = 0; // just for streaming compressed samples
355
356 LoopSize = LoopEnd - LoopStart + 1;
357 }
358
359 /**
360 * Apply sample and its settings to the respective RIFF chunks. You have
361 * to call File::Save() to make changes persistent.
362 *
363 * Usually there is absolutely no need to call this method explicitly.
364 * It will be called automatically when File::Save() was called.
365 *
366 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
367 * was provided yet
368 * @throws gig::Exception if there is any invalid sample setting
369 */
370 void Sample::UpdateChunks() {
371 // first update base class's chunks
372 DLS::Sample::UpdateChunks();
373
374 // make sure 'smpl' chunk exists
375 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
376 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
377 // update 'smpl' chunk
378 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
379 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
380 memcpy(&pData[0], &Manufacturer, 4);
381 memcpy(&pData[4], &Product, 4);
382 memcpy(&pData[8], &SamplePeriod, 4);
383 memcpy(&pData[12], &MIDIUnityNote, 4);
384 memcpy(&pData[16], &FineTune, 4);
385 memcpy(&pData[20], &SMPTEFormat, 4);
386 memcpy(&pData[24], &SMPTEOffset, 4);
387 memcpy(&pData[28], &Loops, 4);
388
389 // we skip 'manufByt' for now (4 bytes)
390
391 memcpy(&pData[36], &LoopID, 4);
392 memcpy(&pData[40], &LoopType, 4);
393 memcpy(&pData[44], &LoopStart, 4);
394 memcpy(&pData[48], &LoopEnd, 4);
395 memcpy(&pData[52], &LoopFraction, 4);
396 memcpy(&pData[56], &LoopPlayCount, 4);
397
398 // make sure '3gix' chunk exists
399 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
400 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
401 // update '3gix' chunk
402 pData = (uint8_t*) pCk3gix->LoadChunkData();
403 memcpy(&pData[0], &SampleGroup, 2);
404 }
405
406 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
407 void Sample::ScanCompressedSample() {
408 //TODO: we have to add some more scans here (e.g. determine compression rate)
409 this->SamplesTotal = 0;
410 std::list<unsigned long> frameOffsets;
411
412 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
413 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
414
415 // Scanning
416 pCkData->SetPos(0);
417 if (Channels == 2) { // Stereo
418 for (int i = 0 ; ; i++) {
419 // for 24 bit samples every 8:th frame offset is
420 // stored, to save some memory
421 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
422
423 const int mode_l = pCkData->ReadUint8();
424 const int mode_r = pCkData->ReadUint8();
425 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
426 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
427
428 if (pCkData->RemainingBytes() <= frameSize) {
429 SamplesInLastFrame =
430 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
431 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
432 SamplesTotal += SamplesInLastFrame;
433 break;
434 }
435 SamplesTotal += SamplesPerFrame;
436 pCkData->SetPos(frameSize, RIFF::stream_curpos);
437 }
438 }
439 else { // Mono
440 for (int i = 0 ; ; i++) {
441 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
442
443 const int mode = pCkData->ReadUint8();
444 if (mode > 5) throw gig::Exception("Unknown compression mode");
445 const unsigned long frameSize = bytesPerFrame[mode];
446
447 if (pCkData->RemainingBytes() <= frameSize) {
448 SamplesInLastFrame =
449 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
450 SamplesTotal += SamplesInLastFrame;
451 break;
452 }
453 SamplesTotal += SamplesPerFrame;
454 pCkData->SetPos(frameSize, RIFF::stream_curpos);
455 }
456 }
457 pCkData->SetPos(0);
458
459 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
460 if (FrameTable) delete[] FrameTable;
461 FrameTable = new unsigned long[frameOffsets.size()];
462 std::list<unsigned long>::iterator end = frameOffsets.end();
463 std::list<unsigned long>::iterator iter = frameOffsets.begin();
464 for (int i = 0; iter != end; i++, iter++) {
465 FrameTable[i] = *iter;
466 }
467 }
468
469 /**
470 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
471 * ReleaseSampleData() to free the memory if you don't need the cached
472 * sample data anymore.
473 *
474 * @returns buffer_t structure with start address and size of the buffer
475 * in bytes
476 * @see ReleaseSampleData(), Read(), SetPos()
477 */
478 buffer_t Sample::LoadSampleData() {
479 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
480 }
481
482 /**
483 * Reads (uncompresses if needed) and caches the first \a SampleCount
484 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
485 * memory space if you don't need the cached samples anymore. There is no
486 * guarantee that exactly \a SampleCount samples will be cached; this is
487 * not an error. The size will be eventually truncated e.g. to the
488 * beginning of a frame of a compressed sample. This is done for
489 * efficiency reasons while streaming the wave by your sampler engine
490 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
491 * that will be returned to determine the actual cached samples, but note
492 * that the size is given in bytes! You get the number of actually cached
493 * samples by dividing it by the frame size of the sample:
494 * @code
495 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
496 * long cachedsamples = buf.Size / pSample->FrameSize;
497 * @endcode
498 *
499 * @param SampleCount - number of sample points to load into RAM
500 * @returns buffer_t structure with start address and size of
501 * the cached sample data in bytes
502 * @see ReleaseSampleData(), Read(), SetPos()
503 */
504 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
505 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
506 }
507
508 /**
509 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
510 * ReleaseSampleData() to free the memory if you don't need the cached
511 * sample data anymore.
512 * The method will add \a NullSamplesCount silence samples past the
513 * official buffer end (this won't affect the 'Size' member of the
514 * buffer_t structure, that means 'Size' always reflects the size of the
515 * actual sample data, the buffer might be bigger though). Silence
516 * samples past the official buffer are needed for differential
517 * algorithms that always have to take subsequent samples into account
518 * (resampling/interpolation would be an important example) and avoids
519 * memory access faults in such cases.
520 *
521 * @param NullSamplesCount - number of silence samples the buffer should
522 * be extended past it's data end
523 * @returns buffer_t structure with start address and
524 * size of the buffer in bytes
525 * @see ReleaseSampleData(), Read(), SetPos()
526 */
527 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
528 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
529 }
530
531 /**
532 * Reads (uncompresses if needed) and caches the first \a SampleCount
533 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
534 * memory space if you don't need the cached samples anymore. There is no
535 * guarantee that exactly \a SampleCount samples will be cached; this is
536 * not an error. The size will be eventually truncated e.g. to the
537 * beginning of a frame of a compressed sample. This is done for
538 * efficiency reasons while streaming the wave by your sampler engine
539 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
540 * that will be returned to determine the actual cached samples, but note
541 * that the size is given in bytes! You get the number of actually cached
542 * samples by dividing it by the frame size of the sample:
543 * @code
544 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
545 * long cachedsamples = buf.Size / pSample->FrameSize;
546 * @endcode
547 * The method will add \a NullSamplesCount silence samples past the
548 * official buffer end (this won't affect the 'Size' member of the
549 * buffer_t structure, that means 'Size' always reflects the size of the
550 * actual sample data, the buffer might be bigger though). Silence
551 * samples past the official buffer are needed for differential
552 * algorithms that always have to take subsequent samples into account
553 * (resampling/interpolation would be an important example) and avoids
554 * memory access faults in such cases.
555 *
556 * @param SampleCount - number of sample points to load into RAM
557 * @param NullSamplesCount - number of silence samples the buffer should
558 * be extended past it's data end
559 * @returns buffer_t structure with start address and
560 * size of the cached sample data in bytes
561 * @see ReleaseSampleData(), Read(), SetPos()
562 */
563 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
564 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
565 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
566 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
567 RAMCache.pStart = new int8_t[allocationsize];
568 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
569 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
570 // fill the remaining buffer space with silence samples
571 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
572 return GetCache();
573 }
574
575 /**
576 * Returns current cached sample points. A buffer_t structure will be
577 * returned which contains address pointer to the begin of the cache and
578 * the size of the cached sample data in bytes. Use
579 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
580 * RAM.
581 *
582 * @returns buffer_t structure with current cached sample points
583 * @see LoadSampleData();
584 */
585 buffer_t Sample::GetCache() {
586 // return a copy of the buffer_t structure
587 buffer_t result;
588 result.Size = this->RAMCache.Size;
589 result.pStart = this->RAMCache.pStart;
590 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
591 return result;
592 }
593
594 /**
595 * Frees the cached sample from RAM if loaded with
596 * <i>LoadSampleData()</i> previously.
597 *
598 * @see LoadSampleData();
599 */
600 void Sample::ReleaseSampleData() {
601 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
602 RAMCache.pStart = NULL;
603 RAMCache.Size = 0;
604 }
605
606 /** @brief Resize sample.
607 *
608 * Resizes the sample's wave form data, that is the actual size of
609 * sample wave data possible to be written for this sample. This call
610 * will return immediately and just schedule the resize operation. You
611 * should call File::Save() to actually perform the resize operation(s)
612 * "physically" to the file. As this can take a while on large files, it
613 * is recommended to call Resize() first on all samples which have to be
614 * resized and finally to call File::Save() to perform all those resize
615 * operations in one rush.
616 *
617 * The actual size (in bytes) is dependant to the current FrameSize
618 * value. You may want to set FrameSize before calling Resize().
619 *
620 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
621 * enlarged samples before calling File::Save() as this might exceed the
622 * current sample's boundary!
623 *
624 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
625 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
626 * other formats will fail!
627 *
628 * @param iNewSize - new sample wave data size in sample points (must be
629 * greater than zero)
630 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
631 * or if \a iNewSize is less than 1
632 * @throws gig::Exception if existing sample is compressed
633 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
634 * DLS::Sample::FormatTag, File::Save()
635 */
636 void Sample::Resize(int iNewSize) {
637 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
638 DLS::Sample::Resize(iNewSize);
639 }
640
641 /**
642 * Sets the position within the sample (in sample points, not in
643 * bytes). Use this method and <i>Read()</i> if you don't want to load
644 * the sample into RAM, thus for disk streaming.
645 *
646 * Although the original Gigasampler engine doesn't allow positioning
647 * within compressed samples, I decided to implement it. Even though
648 * the Gigasampler format doesn't allow to define loops for compressed
649 * samples at the moment, positioning within compressed samples might be
650 * interesting for some sampler engines though. The only drawback about
651 * my decision is that it takes longer to load compressed gig Files on
652 * startup, because it's neccessary to scan the samples for some
653 * mandatory informations. But I think as it doesn't affect the runtime
654 * efficiency, nobody will have a problem with that.
655 *
656 * @param SampleCount number of sample points to jump
657 * @param Whence optional: to which relation \a SampleCount refers
658 * to, if omited <i>RIFF::stream_start</i> is assumed
659 * @returns the new sample position
660 * @see Read()
661 */
662 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
663 if (Compressed) {
664 switch (Whence) {
665 case RIFF::stream_curpos:
666 this->SamplePos += SampleCount;
667 break;
668 case RIFF::stream_end:
669 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
670 break;
671 case RIFF::stream_backward:
672 this->SamplePos -= SampleCount;
673 break;
674 case RIFF::stream_start: default:
675 this->SamplePos = SampleCount;
676 break;
677 }
678 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
679
680 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
681 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
682 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
683 return this->SamplePos;
684 }
685 else { // not compressed
686 unsigned long orderedBytes = SampleCount * this->FrameSize;
687 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
688 return (result == orderedBytes) ? SampleCount
689 : result / this->FrameSize;
690 }
691 }
692
693 /**
694 * Returns the current position in the sample (in sample points).
695 */
696 unsigned long Sample::GetPos() {
697 if (Compressed) return SamplePos;
698 else return pCkData->GetPos() / FrameSize;
699 }
700
701 /**
702 * Reads \a SampleCount number of sample points from the position stored
703 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
704 * the position within the sample respectively, this method honors the
705 * looping informations of the sample (if any). The sample wave stream
706 * will be decompressed on the fly if using a compressed sample. Use this
707 * method if you don't want to load the sample into RAM, thus for disk
708 * streaming. All this methods needs to know to proceed with streaming
709 * for the next time you call this method is stored in \a pPlaybackState.
710 * You have to allocate and initialize the playback_state_t structure by
711 * yourself before you use it to stream a sample:
712 * @code
713 * gig::playback_state_t playbackstate;
714 * playbackstate.position = 0;
715 * playbackstate.reverse = false;
716 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
717 * @endcode
718 * You don't have to take care of things like if there is actually a loop
719 * defined or if the current read position is located within a loop area.
720 * The method already handles such cases by itself.
721 *
722 * <b>Caution:</b> If you are using more than one streaming thread, you
723 * have to use an external decompression buffer for <b>EACH</b>
724 * streaming thread to avoid race conditions and crashes!
725 *
726 * @param pBuffer destination buffer
727 * @param SampleCount number of sample points to read
728 * @param pPlaybackState will be used to store and reload the playback
729 * state for the next ReadAndLoop() call
730 * @param pDimRgn dimension region with looping information
731 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
732 * @returns number of successfully read sample points
733 * @see CreateDecompressionBuffer()
734 */
735 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
736 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
737 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
738 uint8_t* pDst = (uint8_t*) pBuffer;
739
740 SetPos(pPlaybackState->position); // recover position from the last time
741
742 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
743
744 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
745 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
746
747 if (GetPos() <= loopEnd) {
748 switch (loop.LoopType) {
749
750 case loop_type_bidirectional: { //TODO: not tested yet!
751 do {
752 // if not endless loop check if max. number of loop cycles have been passed
753 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
754
755 if (!pPlaybackState->reverse) { // forward playback
756 do {
757 samplestoloopend = loopEnd - GetPos();
758 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
759 samplestoread -= readsamples;
760 totalreadsamples += readsamples;
761 if (readsamples == samplestoloopend) {
762 pPlaybackState->reverse = true;
763 break;
764 }
765 } while (samplestoread && readsamples);
766 }
767 else { // backward playback
768
769 // as we can only read forward from disk, we have to
770 // determine the end position within the loop first,
771 // read forward from that 'end' and finally after
772 // reading, swap all sample frames so it reflects
773 // backward playback
774
775 unsigned long swapareastart = totalreadsamples;
776 unsigned long loopoffset = GetPos() - loop.LoopStart;
777 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
778 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
779
780 SetPos(reverseplaybackend);
781
782 // read samples for backward playback
783 do {
784 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
785 samplestoreadinloop -= readsamples;
786 samplestoread -= readsamples;
787 totalreadsamples += readsamples;
788 } while (samplestoreadinloop && readsamples);
789
790 SetPos(reverseplaybackend); // pretend we really read backwards
791
792 if (reverseplaybackend == loop.LoopStart) {
793 pPlaybackState->loop_cycles_left--;
794 pPlaybackState->reverse = false;
795 }
796
797 // reverse the sample frames for backward playback
798 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
799 }
800 } while (samplestoread && readsamples);
801 break;
802 }
803
804 case loop_type_backward: { // TODO: not tested yet!
805 // forward playback (not entered the loop yet)
806 if (!pPlaybackState->reverse) do {
807 samplestoloopend = loopEnd - GetPos();
808 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
809 samplestoread -= readsamples;
810 totalreadsamples += readsamples;
811 if (readsamples == samplestoloopend) {
812 pPlaybackState->reverse = true;
813 break;
814 }
815 } while (samplestoread && readsamples);
816
817 if (!samplestoread) break;
818
819 // as we can only read forward from disk, we have to
820 // determine the end position within the loop first,
821 // read forward from that 'end' and finally after
822 // reading, swap all sample frames so it reflects
823 // backward playback
824
825 unsigned long swapareastart = totalreadsamples;
826 unsigned long loopoffset = GetPos() - loop.LoopStart;
827 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
828 : samplestoread;
829 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
830
831 SetPos(reverseplaybackend);
832
833 // read samples for backward playback
834 do {
835 // if not endless loop check if max. number of loop cycles have been passed
836 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
837 samplestoloopend = loopEnd - GetPos();
838 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
839 samplestoreadinloop -= readsamples;
840 samplestoread -= readsamples;
841 totalreadsamples += readsamples;
842 if (readsamples == samplestoloopend) {
843 pPlaybackState->loop_cycles_left--;
844 SetPos(loop.LoopStart);
845 }
846 } while (samplestoreadinloop && readsamples);
847
848 SetPos(reverseplaybackend); // pretend we really read backwards
849
850 // reverse the sample frames for backward playback
851 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
852 break;
853 }
854
855 default: case loop_type_normal: {
856 do {
857 // if not endless loop check if max. number of loop cycles have been passed
858 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
859 samplestoloopend = loopEnd - GetPos();
860 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
861 samplestoread -= readsamples;
862 totalreadsamples += readsamples;
863 if (readsamples == samplestoloopend) {
864 pPlaybackState->loop_cycles_left--;
865 SetPos(loop.LoopStart);
866 }
867 } while (samplestoread && readsamples);
868 break;
869 }
870 }
871 }
872 }
873
874 // read on without looping
875 if (samplestoread) do {
876 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
877 samplestoread -= readsamples;
878 totalreadsamples += readsamples;
879 } while (readsamples && samplestoread);
880
881 // store current position
882 pPlaybackState->position = GetPos();
883
884 return totalreadsamples;
885 }
886
887 /**
888 * Reads \a SampleCount number of sample points from the current
889 * position into the buffer pointed by \a pBuffer and increments the
890 * position within the sample. The sample wave stream will be
891 * decompressed on the fly if using a compressed sample. Use this method
892 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
893 * thus for disk streaming.
894 *
895 * <b>Caution:</b> If you are using more than one streaming thread, you
896 * have to use an external decompression buffer for <b>EACH</b>
897 * streaming thread to avoid race conditions and crashes!
898 *
899 * For 16 bit samples, the data in the buffer will be int16_t
900 * (using native endianness). For 24 bit, the buffer will
901 * contain three bytes per sample, little-endian.
902 *
903 * @param pBuffer destination buffer
904 * @param SampleCount number of sample points to read
905 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
906 * @returns number of successfully read sample points
907 * @see SetPos(), CreateDecompressionBuffer()
908 */
909 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
910 if (SampleCount == 0) return 0;
911 if (!Compressed) {
912 if (BitDepth == 24) {
913 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
914 }
915 else { // 16 bit
916 // (pCkData->Read does endian correction)
917 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
918 : pCkData->Read(pBuffer, SampleCount, 2);
919 }
920 }
921 else {
922 if (this->SamplePos >= this->SamplesTotal) return 0;
923 //TODO: efficiency: maybe we should test for an average compression rate
924 unsigned long assumedsize = GuessSize(SampleCount),
925 remainingbytes = 0, // remaining bytes in the local buffer
926 remainingsamples = SampleCount,
927 copysamples, skipsamples,
928 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
929 this->FrameOffset = 0;
930
931 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
932
933 // if decompression buffer too small, then reduce amount of samples to read
934 if (pDecompressionBuffer->Size < assumedsize) {
935 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
936 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
937 remainingsamples = SampleCount;
938 assumedsize = GuessSize(SampleCount);
939 }
940
941 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
942 int16_t* pDst = static_cast<int16_t*>(pBuffer);
943 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
944 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
945
946 while (remainingsamples && remainingbytes) {
947 unsigned long framesamples = SamplesPerFrame;
948 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
949
950 int mode_l = *pSrc++, mode_r = 0;
951
952 if (Channels == 2) {
953 mode_r = *pSrc++;
954 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
955 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
956 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
957 if (remainingbytes < framebytes) { // last frame in sample
958 framesamples = SamplesInLastFrame;
959 if (mode_l == 4 && (framesamples & 1)) {
960 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
961 }
962 else {
963 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
964 }
965 }
966 }
967 else {
968 framebytes = bytesPerFrame[mode_l] + 1;
969 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
970 if (remainingbytes < framebytes) {
971 framesamples = SamplesInLastFrame;
972 }
973 }
974
975 // determine how many samples in this frame to skip and read
976 if (currentframeoffset + remainingsamples >= framesamples) {
977 if (currentframeoffset <= framesamples) {
978 copysamples = framesamples - currentframeoffset;
979 skipsamples = currentframeoffset;
980 }
981 else {
982 copysamples = 0;
983 skipsamples = framesamples;
984 }
985 }
986 else {
987 // This frame has enough data for pBuffer, but not
988 // all of the frame is needed. Set file position
989 // to start of this frame for next call to Read.
990 copysamples = remainingsamples;
991 skipsamples = currentframeoffset;
992 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
993 this->FrameOffset = currentframeoffset + copysamples;
994 }
995 remainingsamples -= copysamples;
996
997 if (remainingbytes > framebytes) {
998 remainingbytes -= framebytes;
999 if (remainingsamples == 0 &&
1000 currentframeoffset + copysamples == framesamples) {
1001 // This frame has enough data for pBuffer, and
1002 // all of the frame is needed. Set file
1003 // position to start of next frame for next
1004 // call to Read. FrameOffset is 0.
1005 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1006 }
1007 }
1008 else remainingbytes = 0;
1009
1010 currentframeoffset -= skipsamples;
1011
1012 if (copysamples == 0) {
1013 // skip this frame
1014 pSrc += framebytes - Channels;
1015 }
1016 else {
1017 const unsigned char* const param_l = pSrc;
1018 if (BitDepth == 24) {
1019 if (mode_l != 2) pSrc += 12;
1020
1021 if (Channels == 2) { // Stereo
1022 const unsigned char* const param_r = pSrc;
1023 if (mode_r != 2) pSrc += 12;
1024
1025 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1026 skipsamples, copysamples, TruncatedBits);
1027 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1028 skipsamples, copysamples, TruncatedBits);
1029 pDst24 += copysamples * 6;
1030 }
1031 else { // Mono
1032 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1033 skipsamples, copysamples, TruncatedBits);
1034 pDst24 += copysamples * 3;
1035 }
1036 }
1037 else { // 16 bit
1038 if (mode_l) pSrc += 4;
1039
1040 int step;
1041 if (Channels == 2) { // Stereo
1042 const unsigned char* const param_r = pSrc;
1043 if (mode_r) pSrc += 4;
1044
1045 step = (2 - mode_l) + (2 - mode_r);
1046 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1047 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1048 skipsamples, copysamples);
1049 pDst += copysamples << 1;
1050 }
1051 else { // Mono
1052 step = 2 - mode_l;
1053 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1054 pDst += copysamples;
1055 }
1056 }
1057 pSrc += nextFrameOffset;
1058 }
1059
1060 // reload from disk to local buffer if needed
1061 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1062 assumedsize = GuessSize(remainingsamples);
1063 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1064 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1065 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1066 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1067 }
1068 } // while
1069
1070 this->SamplePos += (SampleCount - remainingsamples);
1071 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1072 return (SampleCount - remainingsamples);
1073 }
1074 }
1075
1076 /** @brief Write sample wave data.
1077 *
1078 * Writes \a SampleCount number of sample points from the buffer pointed
1079 * by \a pBuffer and increments the position within the sample. Use this
1080 * method to directly write the sample data to disk, i.e. if you don't
1081 * want or cannot load the whole sample data into RAM.
1082 *
1083 * You have to Resize() the sample to the desired size and call
1084 * File::Save() <b>before</b> using Write().
1085 *
1086 * Note: there is currently no support for writing compressed samples.
1087 *
1088 * @param pBuffer - source buffer
1089 * @param SampleCount - number of sample points to write
1090 * @throws DLS::Exception if current sample size is too small
1091 * @throws gig::Exception if sample is compressed
1092 * @see DLS::LoadSampleData()
1093 */
1094 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1095 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1096 return DLS::Sample::Write(pBuffer, SampleCount);
1097 }
1098
1099 /**
1100 * Allocates a decompression buffer for streaming (compressed) samples
1101 * with Sample::Read(). If you are using more than one streaming thread
1102 * in your application you <b>HAVE</b> to create a decompression buffer
1103 * for <b>EACH</b> of your streaming threads and provide it with the
1104 * Sample::Read() call in order to avoid race conditions and crashes.
1105 *
1106 * You should free the memory occupied by the allocated buffer(s) once
1107 * you don't need one of your streaming threads anymore by calling
1108 * DestroyDecompressionBuffer().
1109 *
1110 * @param MaxReadSize - the maximum size (in sample points) you ever
1111 * expect to read with one Read() call
1112 * @returns allocated decompression buffer
1113 * @see DestroyDecompressionBuffer()
1114 */
1115 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1116 buffer_t result;
1117 const double worstCaseHeaderOverhead =
1118 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1119 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1120 result.pStart = new int8_t[result.Size];
1121 result.NullExtensionSize = 0;
1122 return result;
1123 }
1124
1125 /**
1126 * Free decompression buffer, previously created with
1127 * CreateDecompressionBuffer().
1128 *
1129 * @param DecompressionBuffer - previously allocated decompression
1130 * buffer to free
1131 */
1132 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1133 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1134 delete[] (int8_t*) DecompressionBuffer.pStart;
1135 DecompressionBuffer.pStart = NULL;
1136 DecompressionBuffer.Size = 0;
1137 DecompressionBuffer.NullExtensionSize = 0;
1138 }
1139 }
1140
1141 Sample::~Sample() {
1142 Instances--;
1143 if (!Instances && InternalDecompressionBuffer.Size) {
1144 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1145 InternalDecompressionBuffer.pStart = NULL;
1146 InternalDecompressionBuffer.Size = 0;
1147 }
1148 if (FrameTable) delete[] FrameTable;
1149 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1150 }
1151
1152
1153
1154 // *************** DimensionRegion ***************
1155 // *
1156
1157 uint DimensionRegion::Instances = 0;
1158 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1159
1160 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1161 Instances++;
1162
1163 pSample = NULL;
1164
1165 memcpy(&Crossfade, &SamplerOptions, 4);
1166 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1167
1168 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1169 if (_3ewa) { // if '3ewa' chunk exists
1170 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1171 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1172 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1173 _3ewa->ReadInt16(); // unknown
1174 LFO1InternalDepth = _3ewa->ReadUint16();
1175 _3ewa->ReadInt16(); // unknown
1176 LFO3InternalDepth = _3ewa->ReadInt16();
1177 _3ewa->ReadInt16(); // unknown
1178 LFO1ControlDepth = _3ewa->ReadUint16();
1179 _3ewa->ReadInt16(); // unknown
1180 LFO3ControlDepth = _3ewa->ReadInt16();
1181 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1182 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1183 _3ewa->ReadInt16(); // unknown
1184 EG1Sustain = _3ewa->ReadUint16();
1185 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1186 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1187 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1188 EG1ControllerInvert = eg1ctrloptions & 0x01;
1189 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1190 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1191 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1192 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1193 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1194 EG2ControllerInvert = eg2ctrloptions & 0x01;
1195 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1196 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1197 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1198 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1200 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1201 _3ewa->ReadInt16(); // unknown
1202 EG2Sustain = _3ewa->ReadUint16();
1203 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204 _3ewa->ReadInt16(); // unknown
1205 LFO2ControlDepth = _3ewa->ReadUint16();
1206 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207 _3ewa->ReadInt16(); // unknown
1208 LFO2InternalDepth = _3ewa->ReadUint16();
1209 int32_t eg1decay2 = _3ewa->ReadInt32();
1210 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1211 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1212 _3ewa->ReadInt16(); // unknown
1213 EG1PreAttack = _3ewa->ReadUint16();
1214 int32_t eg2decay2 = _3ewa->ReadInt32();
1215 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1216 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1217 _3ewa->ReadInt16(); // unknown
1218 EG2PreAttack = _3ewa->ReadUint16();
1219 uint8_t velocityresponse = _3ewa->ReadUint8();
1220 if (velocityresponse < 5) {
1221 VelocityResponseCurve = curve_type_nonlinear;
1222 VelocityResponseDepth = velocityresponse;
1223 } else if (velocityresponse < 10) {
1224 VelocityResponseCurve = curve_type_linear;
1225 VelocityResponseDepth = velocityresponse - 5;
1226 } else if (velocityresponse < 15) {
1227 VelocityResponseCurve = curve_type_special;
1228 VelocityResponseDepth = velocityresponse - 10;
1229 } else {
1230 VelocityResponseCurve = curve_type_unknown;
1231 VelocityResponseDepth = 0;
1232 }
1233 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1234 if (releasevelocityresponse < 5) {
1235 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1236 ReleaseVelocityResponseDepth = releasevelocityresponse;
1237 } else if (releasevelocityresponse < 10) {
1238 ReleaseVelocityResponseCurve = curve_type_linear;
1239 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1240 } else if (releasevelocityresponse < 15) {
1241 ReleaseVelocityResponseCurve = curve_type_special;
1242 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1243 } else {
1244 ReleaseVelocityResponseCurve = curve_type_unknown;
1245 ReleaseVelocityResponseDepth = 0;
1246 }
1247 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1248 AttenuationControllerThreshold = _3ewa->ReadInt8();
1249 _3ewa->ReadInt32(); // unknown
1250 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1251 _3ewa->ReadInt16(); // unknown
1252 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1253 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1254 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1255 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1256 else DimensionBypass = dim_bypass_ctrl_none;
1257 uint8_t pan = _3ewa->ReadUint8();
1258 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1259 SelfMask = _3ewa->ReadInt8() & 0x01;
1260 _3ewa->ReadInt8(); // unknown
1261 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1262 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1263 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1264 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1265 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1266 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1267 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1268 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1269 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1270 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1271 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1272 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1273 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1274 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1275 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1276 : vcf_res_ctrl_none;
1277 uint16_t eg3depth = _3ewa->ReadUint16();
1278 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1279 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1280 _3ewa->ReadInt16(); // unknown
1281 ChannelOffset = _3ewa->ReadUint8() / 4;
1282 uint8_t regoptions = _3ewa->ReadUint8();
1283 MSDecode = regoptions & 0x01; // bit 0
1284 SustainDefeat = regoptions & 0x02; // bit 1
1285 _3ewa->ReadInt16(); // unknown
1286 VelocityUpperLimit = _3ewa->ReadInt8();
1287 _3ewa->ReadInt8(); // unknown
1288 _3ewa->ReadInt16(); // unknown
1289 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1290 _3ewa->ReadInt8(); // unknown
1291 _3ewa->ReadInt8(); // unknown
1292 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1293 uint8_t vcfcutoff = _3ewa->ReadUint8();
1294 VCFEnabled = vcfcutoff & 0x80; // bit 7
1295 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1296 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1297 uint8_t vcfvelscale = _3ewa->ReadUint8();
1298 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1299 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1300 _3ewa->ReadInt8(); // unknown
1301 uint8_t vcfresonance = _3ewa->ReadUint8();
1302 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1303 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1304 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1305 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1306 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1307 uint8_t vcfvelocity = _3ewa->ReadUint8();
1308 VCFVelocityDynamicRange = vcfvelocity % 5;
1309 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1310 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1311 if (VCFType == vcf_type_lowpass) {
1312 if (lfo3ctrl & 0x40) // bit 6
1313 VCFType = vcf_type_lowpassturbo;
1314 }
1315 } else { // '3ewa' chunk does not exist yet
1316 // use default values
1317 LFO3Frequency = 1.0;
1318 EG3Attack = 0.0;
1319 LFO1InternalDepth = 0;
1320 LFO3InternalDepth = 0;
1321 LFO1ControlDepth = 0;
1322 LFO3ControlDepth = 0;
1323 EG1Attack = 0.0;
1324 EG1Decay1 = 0.0;
1325 EG1Sustain = 0;
1326 EG1Release = 0.0;
1327 EG1Controller.type = eg1_ctrl_t::type_none;
1328 EG1Controller.controller_number = 0;
1329 EG1ControllerInvert = false;
1330 EG1ControllerAttackInfluence = 0;
1331 EG1ControllerDecayInfluence = 0;
1332 EG1ControllerReleaseInfluence = 0;
1333 EG2Controller.type = eg2_ctrl_t::type_none;
1334 EG2Controller.controller_number = 0;
1335 EG2ControllerInvert = false;
1336 EG2ControllerAttackInfluence = 0;
1337 EG2ControllerDecayInfluence = 0;
1338 EG2ControllerReleaseInfluence = 0;
1339 LFO1Frequency = 1.0;
1340 EG2Attack = 0.0;
1341 EG2Decay1 = 0.0;
1342 EG2Sustain = 0;
1343 EG2Release = 0.0;
1344 LFO2ControlDepth = 0;
1345 LFO2Frequency = 1.0;
1346 LFO2InternalDepth = 0;
1347 EG1Decay2 = 0.0;
1348 EG1InfiniteSustain = false;
1349 EG1PreAttack = 1000;
1350 EG2Decay2 = 0.0;
1351 EG2InfiniteSustain = false;
1352 EG2PreAttack = 1000;
1353 VelocityResponseCurve = curve_type_nonlinear;
1354 VelocityResponseDepth = 3;
1355 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1356 ReleaseVelocityResponseDepth = 3;
1357 VelocityResponseCurveScaling = 32;
1358 AttenuationControllerThreshold = 0;
1359 SampleStartOffset = 0;
1360 PitchTrack = true;
1361 DimensionBypass = dim_bypass_ctrl_none;
1362 Pan = 0;
1363 SelfMask = true;
1364 LFO3Controller = lfo3_ctrl_modwheel;
1365 LFO3Sync = false;
1366 InvertAttenuationController = false;
1367 AttenuationController.type = attenuation_ctrl_t::type_none;
1368 AttenuationController.controller_number = 0;
1369 LFO2Controller = lfo2_ctrl_internal;
1370 LFO2FlipPhase = false;
1371 LFO2Sync = false;
1372 LFO1Controller = lfo1_ctrl_internal;
1373 LFO1FlipPhase = false;
1374 LFO1Sync = false;
1375 VCFResonanceController = vcf_res_ctrl_none;
1376 EG3Depth = 0;
1377 ChannelOffset = 0;
1378 MSDecode = false;
1379 SustainDefeat = false;
1380 VelocityUpperLimit = 0;
1381 ReleaseTriggerDecay = 0;
1382 EG1Hold = false;
1383 VCFEnabled = false;
1384 VCFCutoff = 0;
1385 VCFCutoffController = vcf_cutoff_ctrl_none;
1386 VCFCutoffControllerInvert = false;
1387 VCFVelocityScale = 0;
1388 VCFResonance = 0;
1389 VCFResonanceDynamic = false;
1390 VCFKeyboardTracking = false;
1391 VCFKeyboardTrackingBreakpoint = 0;
1392 VCFVelocityDynamicRange = 0x04;
1393 VCFVelocityCurve = curve_type_linear;
1394 VCFType = vcf_type_lowpass;
1395 }
1396
1397 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1398 VelocityResponseDepth,
1399 VelocityResponseCurveScaling);
1400
1401 curve_type_t curveType = ReleaseVelocityResponseCurve;
1402 uint8_t depth = ReleaseVelocityResponseDepth;
1403
1404 // this models a strange behaviour or bug in GSt: two of the
1405 // velocity response curves for release time are not used even
1406 // if specified, instead another curve is chosen.
1407 if ((curveType == curve_type_nonlinear && depth == 0) ||
1408 (curveType == curve_type_special && depth == 4)) {
1409 curveType = curve_type_nonlinear;
1410 depth = 3;
1411 }
1412 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1413
1414 curveType = VCFVelocityCurve;
1415 depth = VCFVelocityDynamicRange;
1416
1417 // even stranger GSt: two of the velocity response curves for
1418 // filter cutoff are not used, instead another special curve
1419 // is chosen. This curve is not used anywhere else.
1420 if ((curveType == curve_type_nonlinear && depth == 0) ||
1421 (curveType == curve_type_special && depth == 4)) {
1422 curveType = curve_type_special;
1423 depth = 5;
1424 }
1425 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1426 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1427
1428 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1429 VelocityTable = 0;
1430 }
1431
1432 /**
1433 * Apply dimension region settings to the respective RIFF chunks. You
1434 * have to call File::Save() to make changes persistent.
1435 *
1436 * Usually there is absolutely no need to call this method explicitly.
1437 * It will be called automatically when File::Save() was called.
1438 */
1439 void DimensionRegion::UpdateChunks() {
1440 // first update base class's chunk
1441 DLS::Sampler::UpdateChunks();
1442
1443 // make sure '3ewa' chunk exists
1444 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1445 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1446 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1447
1448 // update '3ewa' chunk with DimensionRegion's current settings
1449
1450 const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?
1451 memcpy(&pData[0], &unknown, 4);
1452
1453 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1454 memcpy(&pData[4], &lfo3freq, 4);
1455
1456 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1457 memcpy(&pData[8], &eg3attack, 4);
1458
1459 // next 2 bytes unknown
1460
1461 memcpy(&pData[14], &LFO1InternalDepth, 2);
1462
1463 // next 2 bytes unknown
1464
1465 memcpy(&pData[18], &LFO3InternalDepth, 2);
1466
1467 // next 2 bytes unknown
1468
1469 memcpy(&pData[22], &LFO1ControlDepth, 2);
1470
1471 // next 2 bytes unknown
1472
1473 memcpy(&pData[26], &LFO3ControlDepth, 2);
1474
1475 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1476 memcpy(&pData[28], &eg1attack, 4);
1477
1478 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1479 memcpy(&pData[32], &eg1decay1, 4);
1480
1481 // next 2 bytes unknown
1482
1483 memcpy(&pData[38], &EG1Sustain, 2);
1484
1485 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1486 memcpy(&pData[40], &eg1release, 4);
1487
1488 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1489 memcpy(&pData[44], &eg1ctl, 1);
1490
1491 const uint8_t eg1ctrloptions =
1492 (EG1ControllerInvert) ? 0x01 : 0x00 |
1493 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1494 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1495 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1496 memcpy(&pData[45], &eg1ctrloptions, 1);
1497
1498 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1499 memcpy(&pData[46], &eg2ctl, 1);
1500
1501 const uint8_t eg2ctrloptions =
1502 (EG2ControllerInvert) ? 0x01 : 0x00 |
1503 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1504 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1505 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1506 memcpy(&pData[47], &eg2ctrloptions, 1);
1507
1508 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1509 memcpy(&pData[48], &lfo1freq, 4);
1510
1511 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1512 memcpy(&pData[52], &eg2attack, 4);
1513
1514 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1515 memcpy(&pData[56], &eg2decay1, 4);
1516
1517 // next 2 bytes unknown
1518
1519 memcpy(&pData[62], &EG2Sustain, 2);
1520
1521 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1522 memcpy(&pData[64], &eg2release, 4);
1523
1524 // next 2 bytes unknown
1525
1526 memcpy(&pData[70], &LFO2ControlDepth, 2);
1527
1528 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1529 memcpy(&pData[72], &lfo2freq, 4);
1530
1531 // next 2 bytes unknown
1532
1533 memcpy(&pData[78], &LFO2InternalDepth, 2);
1534
1535 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1536 memcpy(&pData[80], &eg1decay2, 4);
1537
1538 // next 2 bytes unknown
1539
1540 memcpy(&pData[86], &EG1PreAttack, 2);
1541
1542 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1543 memcpy(&pData[88], &eg2decay2, 4);
1544
1545 // next 2 bytes unknown
1546
1547 memcpy(&pData[94], &EG2PreAttack, 2);
1548
1549 {
1550 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1551 uint8_t velocityresponse = VelocityResponseDepth;
1552 switch (VelocityResponseCurve) {
1553 case curve_type_nonlinear:
1554 break;
1555 case curve_type_linear:
1556 velocityresponse += 5;
1557 break;
1558 case curve_type_special:
1559 velocityresponse += 10;
1560 break;
1561 case curve_type_unknown:
1562 default:
1563 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1564 }
1565 memcpy(&pData[96], &velocityresponse, 1);
1566 }
1567
1568 {
1569 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1570 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1571 switch (ReleaseVelocityResponseCurve) {
1572 case curve_type_nonlinear:
1573 break;
1574 case curve_type_linear:
1575 releasevelocityresponse += 5;
1576 break;
1577 case curve_type_special:
1578 releasevelocityresponse += 10;
1579 break;
1580 case curve_type_unknown:
1581 default:
1582 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1583 }
1584 memcpy(&pData[97], &releasevelocityresponse, 1);
1585 }
1586
1587 memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1588
1589 memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1590
1591 // next 4 bytes unknown
1592
1593 memcpy(&pData[104], &SampleStartOffset, 2);
1594
1595 // next 2 bytes unknown
1596
1597 {
1598 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1599 switch (DimensionBypass) {
1600 case dim_bypass_ctrl_94:
1601 pitchTrackDimensionBypass |= 0x10;
1602 break;
1603 case dim_bypass_ctrl_95:
1604 pitchTrackDimensionBypass |= 0x20;
1605 break;
1606 case dim_bypass_ctrl_none:
1607 //FIXME: should we set anything here?
1608 break;
1609 default:
1610 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1611 }
1612 memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1613 }
1614
1615 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1616 memcpy(&pData[109], &pan, 1);
1617
1618 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1619 memcpy(&pData[110], &selfmask, 1);
1620
1621 // next byte unknown
1622
1623 {
1624 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1625 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1626 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1627 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1628 memcpy(&pData[112], &lfo3ctrl, 1);
1629 }
1630
1631 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1632 memcpy(&pData[113], &attenctl, 1);
1633
1634 {
1635 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1636 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1637 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1638 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1639 memcpy(&pData[114], &lfo2ctrl, 1);
1640 }
1641
1642 {
1643 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1644 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1645 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1646 if (VCFResonanceController != vcf_res_ctrl_none)
1647 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1648 memcpy(&pData[115], &lfo1ctrl, 1);
1649 }
1650
1651 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1652 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1653 memcpy(&pData[116], &eg3depth, 1);
1654
1655 // next 2 bytes unknown
1656
1657 const uint8_t channeloffset = ChannelOffset * 4;
1658 memcpy(&pData[120], &channeloffset, 1);
1659
1660 {
1661 uint8_t regoptions = 0;
1662 if (MSDecode) regoptions |= 0x01; // bit 0
1663 if (SustainDefeat) regoptions |= 0x02; // bit 1
1664 memcpy(&pData[121], &regoptions, 1);
1665 }
1666
1667 // next 2 bytes unknown
1668
1669 memcpy(&pData[124], &VelocityUpperLimit, 1);
1670
1671 // next 3 bytes unknown
1672
1673 memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1674
1675 // next 2 bytes unknown
1676
1677 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1678 memcpy(&pData[131], &eg1hold, 1);
1679
1680 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1681 (VCFCutoff & 0x7f); /* lower 7 bits */
1682 memcpy(&pData[132], &vcfcutoff, 1);
1683
1684 memcpy(&pData[133], &VCFCutoffController, 1);
1685
1686 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1687 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1688 memcpy(&pData[134], &vcfvelscale, 1);
1689
1690 // next byte unknown
1691
1692 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1693 (VCFResonance & 0x7f); /* lower 7 bits */
1694 memcpy(&pData[136], &vcfresonance, 1);
1695
1696 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1697 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1698 memcpy(&pData[137], &vcfbreakpoint, 1);
1699
1700 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1701 VCFVelocityCurve * 5;
1702 memcpy(&pData[138], &vcfvelocity, 1);
1703
1704 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1705 memcpy(&pData[139], &vcftype, 1);
1706 }
1707
1708 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1709 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1710 {
1711 double* table;
1712 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1713 if (pVelocityTables->count(tableKey)) { // if key exists
1714 table = (*pVelocityTables)[tableKey];
1715 }
1716 else {
1717 table = CreateVelocityTable(curveType, depth, scaling);
1718 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1719 }
1720 return table;
1721 }
1722
1723 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1724 leverage_ctrl_t decodedcontroller;
1725 switch (EncodedController) {
1726 // special controller
1727 case _lev_ctrl_none:
1728 decodedcontroller.type = leverage_ctrl_t::type_none;
1729 decodedcontroller.controller_number = 0;
1730 break;
1731 case _lev_ctrl_velocity:
1732 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1733 decodedcontroller.controller_number = 0;
1734 break;
1735 case _lev_ctrl_channelaftertouch:
1736 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1737 decodedcontroller.controller_number = 0;
1738 break;
1739
1740 // ordinary MIDI control change controller
1741 case _lev_ctrl_modwheel:
1742 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1743 decodedcontroller.controller_number = 1;
1744 break;
1745 case _lev_ctrl_breath:
1746 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1747 decodedcontroller.controller_number = 2;
1748 break;
1749 case _lev_ctrl_foot:
1750 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1751 decodedcontroller.controller_number = 4;
1752 break;
1753 case _lev_ctrl_effect1:
1754 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1755 decodedcontroller.controller_number = 12;
1756 break;
1757 case _lev_ctrl_effect2:
1758 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1759 decodedcontroller.controller_number = 13;
1760 break;
1761 case _lev_ctrl_genpurpose1:
1762 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1763 decodedcontroller.controller_number = 16;
1764 break;
1765 case _lev_ctrl_genpurpose2:
1766 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1767 decodedcontroller.controller_number = 17;
1768 break;
1769 case _lev_ctrl_genpurpose3:
1770 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1771 decodedcontroller.controller_number = 18;
1772 break;
1773 case _lev_ctrl_genpurpose4:
1774 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1775 decodedcontroller.controller_number = 19;
1776 break;
1777 case _lev_ctrl_portamentotime:
1778 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779 decodedcontroller.controller_number = 5;
1780 break;
1781 case _lev_ctrl_sustainpedal:
1782 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783 decodedcontroller.controller_number = 64;
1784 break;
1785 case _lev_ctrl_portamento:
1786 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787 decodedcontroller.controller_number = 65;
1788 break;
1789 case _lev_ctrl_sostenutopedal:
1790 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791 decodedcontroller.controller_number = 66;
1792 break;
1793 case _lev_ctrl_softpedal:
1794 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795 decodedcontroller.controller_number = 67;
1796 break;
1797 case _lev_ctrl_genpurpose5:
1798 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799 decodedcontroller.controller_number = 80;
1800 break;
1801 case _lev_ctrl_genpurpose6:
1802 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803 decodedcontroller.controller_number = 81;
1804 break;
1805 case _lev_ctrl_genpurpose7:
1806 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807 decodedcontroller.controller_number = 82;
1808 break;
1809 case _lev_ctrl_genpurpose8:
1810 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811 decodedcontroller.controller_number = 83;
1812 break;
1813 case _lev_ctrl_effect1depth:
1814 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815 decodedcontroller.controller_number = 91;
1816 break;
1817 case _lev_ctrl_effect2depth:
1818 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819 decodedcontroller.controller_number = 92;
1820 break;
1821 case _lev_ctrl_effect3depth:
1822 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823 decodedcontroller.controller_number = 93;
1824 break;
1825 case _lev_ctrl_effect4depth:
1826 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827 decodedcontroller.controller_number = 94;
1828 break;
1829 case _lev_ctrl_effect5depth:
1830 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831 decodedcontroller.controller_number = 95;
1832 break;
1833
1834 // unknown controller type
1835 default:
1836 throw gig::Exception("Unknown leverage controller type.");
1837 }
1838 return decodedcontroller;
1839 }
1840
1841 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1842 _lev_ctrl_t encodedcontroller;
1843 switch (DecodedController.type) {
1844 // special controller
1845 case leverage_ctrl_t::type_none:
1846 encodedcontroller = _lev_ctrl_none;
1847 break;
1848 case leverage_ctrl_t::type_velocity:
1849 encodedcontroller = _lev_ctrl_velocity;
1850 break;
1851 case leverage_ctrl_t::type_channelaftertouch:
1852 encodedcontroller = _lev_ctrl_channelaftertouch;
1853 break;
1854
1855 // ordinary MIDI control change controller
1856 case leverage_ctrl_t::type_controlchange:
1857 switch (DecodedController.controller_number) {
1858 case 1:
1859 encodedcontroller = _lev_ctrl_modwheel;
1860 break;
1861 case 2:
1862 encodedcontroller = _lev_ctrl_breath;
1863 break;
1864 case 4:
1865 encodedcontroller = _lev_ctrl_foot;
1866 break;
1867 case 12:
1868 encodedcontroller = _lev_ctrl_effect1;
1869 break;
1870 case 13:
1871 encodedcontroller = _lev_ctrl_effect2;
1872 break;
1873 case 16:
1874 encodedcontroller = _lev_ctrl_genpurpose1;
1875 break;
1876 case 17:
1877 encodedcontroller = _lev_ctrl_genpurpose2;
1878 break;
1879 case 18:
1880 encodedcontroller = _lev_ctrl_genpurpose3;
1881 break;
1882 case 19:
1883 encodedcontroller = _lev_ctrl_genpurpose4;
1884 break;
1885 case 5:
1886 encodedcontroller = _lev_ctrl_portamentotime;
1887 break;
1888 case 64:
1889 encodedcontroller = _lev_ctrl_sustainpedal;
1890 break;
1891 case 65:
1892 encodedcontroller = _lev_ctrl_portamento;
1893 break;
1894 case 66:
1895 encodedcontroller = _lev_ctrl_sostenutopedal;
1896 break;
1897 case 67:
1898 encodedcontroller = _lev_ctrl_softpedal;
1899 break;
1900 case 80:
1901 encodedcontroller = _lev_ctrl_genpurpose5;
1902 break;
1903 case 81:
1904 encodedcontroller = _lev_ctrl_genpurpose6;
1905 break;
1906 case 82:
1907 encodedcontroller = _lev_ctrl_genpurpose7;
1908 break;
1909 case 83:
1910 encodedcontroller = _lev_ctrl_genpurpose8;
1911 break;
1912 case 91:
1913 encodedcontroller = _lev_ctrl_effect1depth;
1914 break;
1915 case 92:
1916 encodedcontroller = _lev_ctrl_effect2depth;
1917 break;
1918 case 93:
1919 encodedcontroller = _lev_ctrl_effect3depth;
1920 break;
1921 case 94:
1922 encodedcontroller = _lev_ctrl_effect4depth;
1923 break;
1924 case 95:
1925 encodedcontroller = _lev_ctrl_effect5depth;
1926 break;
1927 default:
1928 throw gig::Exception("leverage controller number is not supported by the gig format");
1929 }
1930 default:
1931 throw gig::Exception("Unknown leverage controller type.");
1932 }
1933 return encodedcontroller;
1934 }
1935
1936 DimensionRegion::~DimensionRegion() {
1937 Instances--;
1938 if (!Instances) {
1939 // delete the velocity->volume tables
1940 VelocityTableMap::iterator iter;
1941 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1942 double* pTable = iter->second;
1943 if (pTable) delete[] pTable;
1944 }
1945 pVelocityTables->clear();
1946 delete pVelocityTables;
1947 pVelocityTables = NULL;
1948 }
1949 if (VelocityTable) delete[] VelocityTable;
1950 }
1951
1952 /**
1953 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1954 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1955 * and VelocityResponseCurveScaling) involved are taken into account to
1956 * calculate the amplitude factor. Use this method when a key was
1957 * triggered to get the volume with which the sample should be played
1958 * back.
1959 *
1960 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1961 * @returns amplitude factor (between 0.0 and 1.0)
1962 */
1963 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1964 return pVelocityAttenuationTable[MIDIKeyVelocity];
1965 }
1966
1967 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1968 return pVelocityReleaseTable[MIDIKeyVelocity];
1969 }
1970
1971 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1972 return pVelocityCutoffTable[MIDIKeyVelocity];
1973 }
1974
1975 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1976
1977 // line-segment approximations of the 15 velocity curves
1978
1979 // linear
1980 const int lin0[] = { 1, 1, 127, 127 };
1981 const int lin1[] = { 1, 21, 127, 127 };
1982 const int lin2[] = { 1, 45, 127, 127 };
1983 const int lin3[] = { 1, 74, 127, 127 };
1984 const int lin4[] = { 1, 127, 127, 127 };
1985
1986 // non-linear
1987 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1988 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1989 127, 127 };
1990 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1991 127, 127 };
1992 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1993 127, 127 };
1994 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1995
1996 // special
1997 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1998 113, 127, 127, 127 };
1999 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2000 118, 127, 127, 127 };
2001 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2002 85, 90, 91, 127, 127, 127 };
2003 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2004 117, 127, 127, 127 };
2005 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2006 127, 127 };
2007
2008 // this is only used by the VCF velocity curve
2009 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2010 91, 127, 127, 127 };
2011
2012 const int* const curves[] = { non0, non1, non2, non3, non4,
2013 lin0, lin1, lin2, lin3, lin4,
2014 spe0, spe1, spe2, spe3, spe4, spe5 };
2015
2016 double* const table = new double[128];
2017
2018 const int* curve = curves[curveType * 5 + depth];
2019 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2020
2021 table[0] = 0;
2022 for (int x = 1 ; x < 128 ; x++) {
2023
2024 if (x > curve[2]) curve += 2;
2025 double y = curve[1] + (x - curve[0]) *
2026 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2027 y = y / 127;
2028
2029 // Scale up for s > 20, down for s < 20. When
2030 // down-scaling, the curve still ends at 1.0.
2031 if (s < 20 && y >= 0.5)
2032 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2033 else
2034 y = y * (s / 20.0);
2035 if (y > 1) y = 1;
2036
2037 table[x] = y;
2038 }
2039 return table;
2040 }
2041
2042
2043 // *************** Region ***************
2044 // *
2045
2046 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2047 pInfo->UseFixedLengthStrings = true;
2048
2049 // Initialization
2050 Dimensions = 0;
2051 for (int i = 0; i < 256; i++) {
2052 pDimensionRegions[i] = NULL;
2053 }
2054 Layers = 1;
2055 File* file = (File*) GetParent()->GetParent();
2056 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2057
2058 // Actual Loading
2059
2060 LoadDimensionRegions(rgnList);
2061
2062 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2063 if (_3lnk) {
2064 DimensionRegions = _3lnk->ReadUint32();
2065 for (int i = 0; i < dimensionBits; i++) {
2066 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2067 uint8_t bits = _3lnk->ReadUint8();
2068 _3lnk->ReadUint8(); // probably the position of the dimension
2069 _3lnk->ReadUint8(); // unknown
2070 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2071 if (dimension == dimension_none) { // inactive dimension
2072 pDimensionDefinitions[i].dimension = dimension_none;
2073 pDimensionDefinitions[i].bits = 0;
2074 pDimensionDefinitions[i].zones = 0;
2075 pDimensionDefinitions[i].split_type = split_type_bit;
2076 pDimensionDefinitions[i].zone_size = 0;
2077 }
2078 else { // active dimension
2079 pDimensionDefinitions[i].dimension = dimension;
2080 pDimensionDefinitions[i].bits = bits;
2081 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2082 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2083 dimension == dimension_samplechannel ||
2084 dimension == dimension_releasetrigger ||
2085 dimension == dimension_keyboard ||
2086 dimension == dimension_roundrobin ||
2087 dimension == dimension_random) ? split_type_bit
2088 : split_type_normal;
2089 pDimensionDefinitions[i].zone_size =
2090 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2091 : 0;
2092 Dimensions++;
2093
2094 // if this is a layer dimension, remember the amount of layers
2095 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2096 }
2097 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2098 }
2099 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2100
2101 // if there's a velocity dimension and custom velocity zone splits are used,
2102 // update the VelocityTables in the dimension regions
2103 UpdateVelocityTable();
2104
2105 // jump to start of the wave pool indices (if not already there)
2106 if (file->pVersion && file->pVersion->major == 3)
2107 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2108 else
2109 _3lnk->SetPos(44);
2110
2111 // load sample references
2112 for (uint i = 0; i < DimensionRegions; i++) {
2113 uint32_t wavepoolindex = _3lnk->ReadUint32();
2114 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2115 }
2116 GetSample(); // load global region sample reference
2117 }
2118
2119 // make sure there is at least one dimension region
2120 if (!DimensionRegions) {
2121 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2122 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2123 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2124 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2125 DimensionRegions = 1;
2126 }
2127 }
2128
2129 /**
2130 * Apply Region settings and all its DimensionRegions to the respective
2131 * RIFF chunks. You have to call File::Save() to make changes persistent.
2132 *
2133 * Usually there is absolutely no need to call this method explicitly.
2134 * It will be called automatically when File::Save() was called.
2135 *
2136 * @throws gig::Exception if samples cannot be dereferenced
2137 */
2138 void Region::UpdateChunks() {
2139 // first update base class's chunks
2140 DLS::Region::UpdateChunks();
2141
2142 // update dimension region's chunks
2143 for (int i = 0; i < DimensionRegions; i++) {
2144 pDimensionRegions[i]->UpdateChunks();
2145 }
2146
2147 File* pFile = (File*) GetParent()->GetParent();
2148 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2149 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2150
2151 // make sure '3lnk' chunk exists
2152 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2153 if (!_3lnk) {
2154 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2155 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2156 }
2157
2158 // update dimension definitions in '3lnk' chunk
2159 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2160 memcpy(&pData[0], &DimensionRegions, 4);
2161 for (int i = 0; i < iMaxDimensions; i++) {
2162 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2163 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2164 // next 2 bytes unknown
2165 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2166 // next 3 bytes unknown
2167 }
2168
2169 // update wave pool table in '3lnk' chunk
2170 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2171 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2172 int iWaveIndex = -1;
2173 if (i < DimensionRegions) {
2174 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2175 File::SampleList::iterator iter = pFile->pSamples->begin();
2176 File::SampleList::iterator end = pFile->pSamples->end();
2177 for (int index = 0; iter != end; ++iter, ++index) {
2178 if (*iter == pDimensionRegions[i]->pSample) {
2179 iWaveIndex = index;
2180 break;
2181 }
2182 }
2183 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2184 }
2185 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2186 }
2187 }
2188
2189 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2190 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2191 if (_3prg) {
2192 int dimensionRegionNr = 0;
2193 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2194 while (_3ewl) {
2195 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2196 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2197 dimensionRegionNr++;
2198 }
2199 _3ewl = _3prg->GetNextSubList();
2200 }
2201 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2202 }
2203 }
2204
2205 void Region::UpdateVelocityTable() {
2206 // get velocity dimension's index
2207 int veldim = -1;
2208 for (int i = 0 ; i < Dimensions ; i++) {
2209 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2210 veldim = i;
2211 break;
2212 }
2213 }
2214 if (veldim == -1) return;
2215
2216 int step = 1;
2217 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2218 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2219 int end = step * pDimensionDefinitions[veldim].zones;
2220
2221 // loop through all dimension regions for all dimensions except the velocity dimension
2222 int dim[8] = { 0 };
2223 for (int i = 0 ; i < DimensionRegions ; i++) {
2224
2225 if (pDimensionRegions[i]->VelocityUpperLimit) {
2226 // create the velocity table
2227 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2228 if (!table) {
2229 table = new uint8_t[128];
2230 pDimensionRegions[i]->VelocityTable = table;
2231 }
2232 int tableidx = 0;
2233 int velocityZone = 0;
2234 for (int k = i ; k < end ; k += step) {
2235 DimensionRegion *d = pDimensionRegions[k];
2236 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2237 velocityZone++;
2238 }
2239 } else {
2240 if (pDimensionRegions[i]->VelocityTable) {
2241 delete[] pDimensionRegions[i]->VelocityTable;
2242 pDimensionRegions[i]->VelocityTable = 0;
2243 }
2244 }
2245
2246 int j;
2247 int shift = 0;
2248 for (j = 0 ; j < Dimensions ; j++) {
2249 if (j == veldim) i += skipveldim; // skip velocity dimension
2250 else {
2251 dim[j]++;
2252 if (dim[j] < pDimensionDefinitions[j].zones) break;
2253 else {
2254 // skip unused dimension regions
2255 dim[j] = 0;
2256 i += ((1 << pDimensionDefinitions[j].bits) -
2257 pDimensionDefinitions[j].zones) << shift;
2258 }
2259 }
2260 shift += pDimensionDefinitions[j].bits;
2261 }
2262 if (j == Dimensions) break;
2263 }
2264 }
2265
2266 /** @brief Einstein would have dreamed of it - create a new dimension.
2267 *
2268 * Creates a new dimension with the dimension definition given by
2269 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2270 * There is a hard limit of dimensions and total amount of "bits" all
2271 * dimensions can have. This limit is dependant to what gig file format
2272 * version this file refers to. The gig v2 (and lower) format has a
2273 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2274 * format has a limit of 8.
2275 *
2276 * @param pDimDef - defintion of the new dimension
2277 * @throws gig::Exception if dimension of the same type exists already
2278 * @throws gig::Exception if amount of dimensions or total amount of
2279 * dimension bits limit is violated
2280 */
2281 void Region::AddDimension(dimension_def_t* pDimDef) {
2282 // check if max. amount of dimensions reached
2283 File* file = (File*) GetParent()->GetParent();
2284 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2285 if (Dimensions >= iMaxDimensions)
2286 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2287 // check if max. amount of dimension bits reached
2288 int iCurrentBits = 0;
2289 for (int i = 0; i < Dimensions; i++)
2290 iCurrentBits += pDimensionDefinitions[i].bits;
2291 if (iCurrentBits >= iMaxDimensions)
2292 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2293 const int iNewBits = iCurrentBits + pDimDef->bits;
2294 if (iNewBits > iMaxDimensions)
2295 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2296 // check if there's already a dimensions of the same type
2297 for (int i = 0; i < Dimensions; i++)
2298 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2299 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2300
2301 // assign definition of new dimension
2302 pDimensionDefinitions[Dimensions] = *pDimDef;
2303
2304 // create new dimension region(s) for this new dimension
2305 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2306 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2307 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2308 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2309 DimensionRegions++;
2310 }
2311
2312 Dimensions++;
2313
2314 // if this is a layer dimension, update 'Layers' attribute
2315 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2316
2317 UpdateVelocityTable();
2318 }
2319
2320 /** @brief Delete an existing dimension.
2321 *
2322 * Deletes the dimension given by \a pDimDef and deletes all respective
2323 * dimension regions, that is all dimension regions where the dimension's
2324 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2325 * for example this would delete all dimension regions for the case(s)
2326 * where the sustain pedal is pressed down.
2327 *
2328 * @param pDimDef - dimension to delete
2329 * @throws gig::Exception if given dimension cannot be found
2330 */
2331 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2332 // get dimension's index
2333 int iDimensionNr = -1;
2334 for (int i = 0; i < Dimensions; i++) {
2335 if (&pDimensionDefinitions[i] == pDimDef) {
2336 iDimensionNr = i;
2337 break;
2338 }
2339 }
2340 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2341
2342 // get amount of bits below the dimension to delete
2343 int iLowerBits = 0;
2344 for (int i = 0; i < iDimensionNr; i++)
2345 iLowerBits += pDimensionDefinitions[i].bits;
2346
2347 // get amount ot bits above the dimension to delete
2348 int iUpperBits = 0;
2349 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2350 iUpperBits += pDimensionDefinitions[i].bits;
2351
2352 // delete dimension regions which belong to the given dimension
2353 // (that is where the dimension's bit > 0)
2354 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2355 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2356 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2357 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2358 iObsoleteBit << iLowerBits |
2359 iLowerBit;
2360 delete pDimensionRegions[iToDelete];
2361 pDimensionRegions[iToDelete] = NULL;
2362 DimensionRegions--;
2363 }
2364 }
2365 }
2366
2367 // defrag pDimensionRegions array
2368 // (that is remove the NULL spaces within the pDimensionRegions array)
2369 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2370 if (!pDimensionRegions[iTo]) {
2371 if (iFrom <= iTo) iFrom = iTo + 1;
2372 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2373 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2374 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2375 pDimensionRegions[iFrom] = NULL;
2376 }
2377 }
2378 }
2379
2380 // 'remove' dimension definition
2381 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2382 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2383 }
2384 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2385 pDimensionDefinitions[Dimensions - 1].bits = 0;
2386 pDimensionDefinitions[Dimensions - 1].zones = 0;
2387
2388 Dimensions--;
2389
2390 // if this was a layer dimension, update 'Layers' attribute
2391 if (pDimDef->dimension == dimension_layer) Layers = 1;
2392 }
2393
2394 Region::~Region() {
2395 for (int i = 0; i < 256; i++) {
2396 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2397 }
2398 }
2399
2400 /**
2401 * Use this method in your audio engine to get the appropriate dimension
2402 * region with it's articulation data for the current situation. Just
2403 * call the method with the current MIDI controller values and you'll get
2404 * the DimensionRegion with the appropriate articulation data for the
2405 * current situation (for this Region of course only). To do that you'll
2406 * first have to look which dimensions with which controllers and in
2407 * which order are defined for this Region when you load the .gig file.
2408 * Special cases are e.g. layer or channel dimensions where you just put
2409 * in the index numbers instead of a MIDI controller value (means 0 for
2410 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2411 * etc.).
2412 *
2413 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2414 * @returns adress to the DimensionRegion for the given situation
2415 * @see pDimensionDefinitions
2416 * @see Dimensions
2417 */
2418 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2419 uint8_t bits;
2420 int veldim = -1;
2421 int velbitpos;
2422 int bitpos = 0;
2423 int dimregidx = 0;
2424 for (uint i = 0; i < Dimensions; i++) {
2425 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2426 // the velocity dimension must be handled after the other dimensions
2427 veldim = i;
2428 velbitpos = bitpos;
2429 } else {
2430 switch (pDimensionDefinitions[i].split_type) {
2431 case split_type_normal:
2432 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2433 break;
2434 case split_type_bit: // the value is already the sought dimension bit number
2435 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2436 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2437 break;
2438 }
2439 dimregidx |= bits << bitpos;
2440 }
2441 bitpos += pDimensionDefinitions[i].bits;
2442 }
2443 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2444 if (veldim != -1) {
2445 // (dimreg is now the dimension region for the lowest velocity)
2446 if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2447 bits = dimreg->VelocityTable[DimValues[veldim]];
2448 else // normal split type
2449 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2450
2451 dimregidx |= bits << velbitpos;
2452 dimreg = pDimensionRegions[dimregidx];
2453 }
2454 return dimreg;
2455 }
2456
2457 /**
2458 * Returns the appropriate DimensionRegion for the given dimension bit
2459 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2460 * instead of calling this method directly!
2461 *
2462 * @param DimBits Bit numbers for dimension 0 to 7
2463 * @returns adress to the DimensionRegion for the given dimension
2464 * bit numbers
2465 * @see GetDimensionRegionByValue()
2466 */
2467 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2468 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2469 << pDimensionDefinitions[5].bits | DimBits[5])
2470 << pDimensionDefinitions[4].bits | DimBits[4])
2471 << pDimensionDefinitions[3].bits | DimBits[3])
2472 << pDimensionDefinitions[2].bits | DimBits[2])
2473 << pDimensionDefinitions[1].bits | DimBits[1])
2474 << pDimensionDefinitions[0].bits | DimBits[0]];
2475 }
2476
2477 /**
2478 * Returns pointer address to the Sample referenced with this region.
2479 * This is the global Sample for the entire Region (not sure if this is
2480 * actually used by the Gigasampler engine - I would only use the Sample
2481 * referenced by the appropriate DimensionRegion instead of this sample).
2482 *
2483 * @returns address to Sample or NULL if there is no reference to a
2484 * sample saved in the .gig file
2485 */
2486 Sample* Region::GetSample() {
2487 if (pSample) return static_cast<gig::Sample*>(pSample);
2488 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2489 }
2490
2491 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2492 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2493 File* file = (File*) GetParent()->GetParent();
2494 if (!file->pWavePoolTable) return NULL;
2495 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2496 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2497 Sample* sample = file->GetFirstSample(pProgress);
2498 while (sample) {
2499 if (sample->ulWavePoolOffset == soughtoffset &&
2500 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2501 sample = file->GetNextSample();
2502 }
2503 return NULL;
2504 }
2505
2506
2507
2508 // *************** Instrument ***************
2509 // *
2510
2511 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2512 pInfo->UseFixedLengthStrings = true;
2513
2514 // Initialization
2515 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2516
2517 // Loading
2518 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2519 if (lart) {
2520 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2521 if (_3ewg) {
2522 EffectSend = _3ewg->ReadUint16();
2523 Attenuation = _3ewg->ReadInt32();
2524 FineTune = _3ewg->ReadInt16();
2525 PitchbendRange = _3ewg->ReadInt16();
2526 uint8_t dimkeystart = _3ewg->ReadUint8();
2527 PianoReleaseMode = dimkeystart & 0x01;
2528 DimensionKeyRange.low = dimkeystart >> 1;
2529 DimensionKeyRange.high = _3ewg->ReadUint8();
2530 }
2531 }
2532
2533 if (!pRegions) pRegions = new RegionList;
2534 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2535 if (lrgn) {
2536 RIFF::List* rgn = lrgn->GetFirstSubList();
2537 while (rgn) {
2538 if (rgn->GetListType() == LIST_TYPE_RGN) {
2539 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2540 pRegions->push_back(new Region(this, rgn));
2541 }
2542 rgn = lrgn->GetNextSubList();
2543 }
2544 // Creating Region Key Table for fast lookup
2545 UpdateRegionKeyTable();
2546 }
2547
2548 __notify_progress(pProgress, 1.0f); // notify done
2549 }
2550
2551 void Instrument::UpdateRegionKeyTable() {
2552 RegionList::iterator iter = pRegions->begin();
2553 RegionList::iterator end = pRegions->end();
2554 for (; iter != end; ++iter) {
2555 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2556 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2557 RegionKeyTable[iKey] = pRegion;
2558 }
2559 }
2560 }
2561
2562 Instrument::~Instrument() {
2563 }
2564
2565 /**
2566 * Apply Instrument with all its Regions to the respective RIFF chunks.
2567 * You have to call File::Save() to make changes persistent.
2568 *
2569 * Usually there is absolutely no need to call this method explicitly.
2570 * It will be called automatically when File::Save() was called.
2571 *
2572 * @throws gig::Exception if samples cannot be dereferenced
2573 */
2574 void Instrument::UpdateChunks() {
2575 // first update base classes' chunks
2576 DLS::Instrument::UpdateChunks();
2577
2578 // update Regions' chunks
2579 {
2580 RegionList::iterator iter = pRegions->begin();
2581 RegionList::iterator end = pRegions->end();
2582 for (; iter != end; ++iter)
2583 (*iter)->UpdateChunks();
2584 }
2585
2586 // make sure 'lart' RIFF list chunk exists
2587 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2588 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2589 // make sure '3ewg' RIFF chunk exists
2590 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2591 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2592 // update '3ewg' RIFF chunk
2593 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2594 memcpy(&pData[0], &EffectSend, 2);
2595 memcpy(&pData[2], &Attenuation, 4);
2596 memcpy(&pData[6], &FineTune, 2);
2597 memcpy(&pData[8], &PitchbendRange, 2);
2598 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2599 DimensionKeyRange.low << 1;
2600 memcpy(&pData[10], &dimkeystart, 1);
2601 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2602 }
2603
2604 /**
2605 * Returns the appropriate Region for a triggered note.
2606 *
2607 * @param Key MIDI Key number of triggered note / key (0 - 127)
2608 * @returns pointer adress to the appropriate Region or NULL if there
2609 * there is no Region defined for the given \a Key
2610 */
2611 Region* Instrument::GetRegion(unsigned int Key) {
2612 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2613 return RegionKeyTable[Key];
2614
2615 /*for (int i = 0; i < Regions; i++) {
2616 if (Key <= pRegions[i]->KeyRange.high &&
2617 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2618 }
2619 return NULL;*/
2620 }
2621
2622 /**
2623 * Returns the first Region of the instrument. You have to call this
2624 * method once before you use GetNextRegion().
2625 *
2626 * @returns pointer address to first region or NULL if there is none
2627 * @see GetNextRegion()
2628 */
2629 Region* Instrument::GetFirstRegion() {
2630 if (!pRegions) return NULL;
2631 RegionsIterator = pRegions->begin();
2632 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2633 }
2634
2635 /**
2636 * Returns the next Region of the instrument. You have to call
2637 * GetFirstRegion() once before you can use this method. By calling this
2638 * method multiple times it iterates through the available Regions.
2639 *
2640 * @returns pointer address to the next region or NULL if end reached
2641 * @see GetFirstRegion()
2642 */
2643 Region* Instrument::GetNextRegion() {
2644 if (!pRegions) return NULL;
2645 RegionsIterator++;
2646 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2647 }
2648
2649 Region* Instrument::AddRegion() {
2650 // create new Region object (and its RIFF chunks)
2651 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2652 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2653 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2654 Region* pNewRegion = new Region(this, rgn);
2655 pRegions->push_back(pNewRegion);
2656 Regions = pRegions->size();
2657 // update Region key table for fast lookup
2658 UpdateRegionKeyTable();
2659 // done
2660 return pNewRegion;
2661 }
2662
2663 void Instrument::DeleteRegion(Region* pRegion) {
2664 if (!pRegions) return;
2665 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2666 // update Region key table for fast lookup
2667 UpdateRegionKeyTable();
2668 }
2669
2670
2671
2672 // *************** File ***************
2673 // *
2674
2675 File::File() : DLS::File() {
2676 pInfo->UseFixedLengthStrings = true;
2677 }
2678
2679 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2680 pInfo->UseFixedLengthStrings = true;
2681 }
2682
2683 Sample* File::GetFirstSample(progress_t* pProgress) {
2684 if (!pSamples) LoadSamples(pProgress);
2685 if (!pSamples) return NULL;
2686 SamplesIterator = pSamples->begin();
2687 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2688 }
2689
2690 Sample* File::GetNextSample() {
2691 if (!pSamples) return NULL;
2692 SamplesIterator++;
2693 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2694 }
2695
2696 /** @brief Add a new sample.
2697 *
2698 * This will create a new Sample object for the gig file. You have to
2699 * call Save() to make this persistent to the file.
2700 *
2701 * @returns pointer to new Sample object
2702 */
2703 Sample* File::AddSample() {
2704 if (!pSamples) LoadSamples();
2705 __ensureMandatoryChunksExist();
2706 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2707 // create new Sample object and its respective 'wave' list chunk
2708 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2709 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2710 pSamples->push_back(pSample);
2711 return pSample;
2712 }
2713
2714 /** @brief Delete a sample.
2715 *
2716 * This will delete the given Sample object from the gig file. You have
2717 * to call Save() to make this persistent to the file.
2718 *
2719 * @param pSample - sample to delete
2720 * @throws gig::Exception if given sample could not be found
2721 */
2722 void File::DeleteSample(Sample* pSample) {
2723 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2724 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2725 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2726 pSamples->erase(iter);
2727 delete pSample;
2728 }
2729
2730 void File::LoadSamples() {
2731 LoadSamples(NULL);
2732 }
2733
2734 void File::LoadSamples(progress_t* pProgress) {
2735 if (!pSamples) pSamples = new SampleList;
2736
2737 RIFF::File* file = pRIFF;
2738
2739 // just for progress calculation
2740 int iSampleIndex = 0;
2741 int iTotalSamples = WavePoolCount;
2742
2743 // check if samples should be loaded from extension files
2744 int lastFileNo = 0;
2745 for (int i = 0 ; i < WavePoolCount ; i++) {
2746 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2747 }
2748 String name(pRIFF->GetFileName());
2749 int nameLen = name.length();
2750 char suffix[6];
2751 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2752
2753 for (int fileNo = 0 ; ; ) {
2754 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2755 if (wvpl) {
2756 unsigned long wvplFileOffset = wvpl->GetFilePos();
2757 RIFF::List* wave = wvpl->GetFirstSubList();
2758 while (wave) {
2759 if (wave->GetListType() == LIST_TYPE_WAVE) {
2760 // notify current progress
2761 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2762 __notify_progress(pProgress, subprogress);
2763
2764 unsigned long waveFileOffset = wave->GetFilePos();
2765 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2766
2767 iSampleIndex++;
2768 }
2769 wave = wvpl->GetNextSubList();
2770 }
2771
2772 if (fileNo == lastFileNo) break;
2773
2774 // open extension file (*.gx01, *.gx02, ...)
2775 fileNo++;
2776 sprintf(suffix, ".gx%02d", fileNo);
2777 name.replace(nameLen, 5, suffix);
2778 file = new RIFF::File(name);
2779 ExtensionFiles.push_back(file);
2780 } else break;
2781 }
2782
2783 __notify_progress(pProgress, 1.0); // notify done
2784 }
2785
2786 Instrument* File::GetFirstInstrument() {
2787 if (!pInstruments) LoadInstruments();
2788 if (!pInstruments) return NULL;
2789 InstrumentsIterator = pInstruments->begin();
2790 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2791 }
2792
2793 Instrument* File::GetNextInstrument() {
2794 if (!pInstruments) return NULL;
2795 InstrumentsIterator++;
2796 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2797 }
2798
2799 /**
2800 * Returns the instrument with the given index.
2801 *
2802 * @param index - number of the sought instrument (0..n)
2803 * @param pProgress - optional: callback function for progress notification
2804 * @returns sought instrument or NULL if there's no such instrument
2805 */
2806 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2807 if (!pInstruments) {
2808 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2809
2810 // sample loading subtask
2811 progress_t subprogress;
2812 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2813 __notify_progress(&subprogress, 0.0f);
2814 GetFirstSample(&subprogress); // now force all samples to be loaded
2815 __notify_progress(&subprogress, 1.0f);
2816
2817 // instrument loading subtask
2818 if (pProgress && pProgress->callback) {
2819 subprogress.__range_min = subprogress.__range_max;
2820 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2821 }
2822 __notify_progress(&subprogress, 0.0f);
2823 LoadInstruments(&subprogress);
2824 __notify_progress(&subprogress, 1.0f);
2825 }
2826 if (!pInstruments) return NULL;
2827 InstrumentsIterator = pInstruments->begin();
2828 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2829 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2830 InstrumentsIterator++;
2831 }
2832 return NULL;
2833 }
2834
2835 /** @brief Add a new instrument definition.
2836 *
2837 * This will create a new Instrument object for the gig file. You have
2838 * to call Save() to make this persistent to the file.
2839 *
2840 * @returns pointer to new Instrument object
2841 */
2842 Instrument* File::AddInstrument() {
2843 if (!pInstruments) LoadInstruments();
2844 __ensureMandatoryChunksExist();
2845 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2846 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2847 Instrument* pInstrument = new Instrument(this, lstInstr);
2848 pInstruments->push_back(pInstrument);
2849 return pInstrument;
2850 }
2851
2852 /** @brief Delete an instrument.
2853 *
2854 * This will delete the given Instrument object from the gig file. You
2855 * have to call Save() to make this persistent to the file.
2856 *
2857 * @param pInstrument - instrument to delete
2858 * @throws gig::Excption if given instrument could not be found
2859 */
2860 void File::DeleteInstrument(Instrument* pInstrument) {
2861 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2862 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2863 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2864 pInstruments->erase(iter);
2865 delete pInstrument;
2866 }
2867
2868 void File::LoadInstruments() {
2869 LoadInstruments(NULL);
2870 }
2871
2872 void File::LoadInstruments(progress_t* pProgress) {
2873 if (!pInstruments) pInstruments = new InstrumentList;
2874 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2875 if (lstInstruments) {
2876 int iInstrumentIndex = 0;
2877 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2878 while (lstInstr) {
2879 if (lstInstr->GetListType() == LIST_TYPE_INS) {
2880 // notify current progress
2881 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2882 __notify_progress(pProgress, localProgress);
2883
2884 // divide local progress into subprogress for loading current Instrument
2885 progress_t subprogress;
2886 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2887
2888 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2889
2890 iInstrumentIndex++;
2891 }
2892 lstInstr = lstInstruments->GetNextSubList();
2893 }
2894 __notify_progress(pProgress, 1.0); // notify done
2895 }
2896 }
2897
2898
2899
2900 // *************** Exception ***************
2901 // *
2902
2903 Exception::Exception(String Message) : DLS::Exception(Message) {
2904 }
2905
2906 void Exception::PrintMessage() {
2907 std::cout << "gig::Exception: " << Message << std::endl;
2908 }
2909
2910
2911 // *************** functions ***************
2912 // *
2913
2914 /**
2915 * Returns the name of this C++ library. This is usually "libgig" of
2916 * course. This call is equivalent to RIFF::libraryName() and
2917 * DLS::libraryName().
2918 */
2919 String libraryName() {
2920 return PACKAGE;
2921 }
2922
2923 /**
2924 * Returns version of this C++ library. This call is equivalent to
2925 * RIFF::libraryVersion() and DLS::libraryVersion().
2926 */
2927 String libraryVersion() {
2928 return VERSION;
2929 }
2930
2931 } // namespace gig

  ViewVC Help
Powered by ViewVC