/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 929 - (show annotations) (download)
Tue Oct 24 22:24:45 2006 UTC (17 years, 5 months ago) by schoenebeck
File size: 138372 byte(s)
* support for Gigasampler's sample groups added

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2006 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257 // *************** Sample ***************
258 // *
259
260 unsigned int Sample::Instances = 0;
261 buffer_t Sample::InternalDecompressionBuffer;
262
263 /** @brief Constructor.
264 *
265 * Load an existing sample or create a new one. A 'wave' list chunk must
266 * be given to this constructor. In case the given 'wave' list chunk
267 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268 * format and sample data will be loaded from there, otherwise default
269 * values will be used and those chunks will be created when
270 * File::Save() will be called later on.
271 *
272 * @param pFile - pointer to gig::File where this sample is
273 * located (or will be located)
274 * @param waveList - pointer to 'wave' list chunk which is (or
275 * will be) associated with this sample
276 * @param WavePoolOffset - offset of this sample data from wave pool
277 * ('wvpl') list chunk
278 * @param fileNo - number of an extension file where this sample
279 * is located, 0 otherwise
280 */
281 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 pInfo->UseFixedLengthStrings = true;
283 Instances++;
284 FileNo = fileNo;
285
286 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287 if (pCk3gix) {
288 uint16_t iSampleGroup = pCk3gix->ReadInt16();
289 // caution: sample groups in .gig files are indexed (1..n) whereas Groups in libgig (0..n-1)
290 pGroup = pFile->GetGroup(iSampleGroup - 1);
291 } else { // '3gix' chunk missing
292 // not assigned to a group by default
293 pGroup = NULL;
294 }
295
296 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
297 if (pCkSmpl) {
298 Manufacturer = pCkSmpl->ReadInt32();
299 Product = pCkSmpl->ReadInt32();
300 SamplePeriod = pCkSmpl->ReadInt32();
301 MIDIUnityNote = pCkSmpl->ReadInt32();
302 FineTune = pCkSmpl->ReadInt32();
303 pCkSmpl->Read(&SMPTEFormat, 1, 4);
304 SMPTEOffset = pCkSmpl->ReadInt32();
305 Loops = pCkSmpl->ReadInt32();
306 pCkSmpl->ReadInt32(); // manufByt
307 LoopID = pCkSmpl->ReadInt32();
308 pCkSmpl->Read(&LoopType, 1, 4);
309 LoopStart = pCkSmpl->ReadInt32();
310 LoopEnd = pCkSmpl->ReadInt32();
311 LoopFraction = pCkSmpl->ReadInt32();
312 LoopPlayCount = pCkSmpl->ReadInt32();
313 } else { // 'smpl' chunk missing
314 // use default values
315 Manufacturer = 0;
316 Product = 0;
317 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
318 MIDIUnityNote = 64;
319 FineTune = 0;
320 SMPTEOffset = 0;
321 Loops = 0;
322 LoopID = 0;
323 LoopStart = 0;
324 LoopEnd = 0;
325 LoopFraction = 0;
326 LoopPlayCount = 0;
327 }
328
329 FrameTable = NULL;
330 SamplePos = 0;
331 RAMCache.Size = 0;
332 RAMCache.pStart = NULL;
333 RAMCache.NullExtensionSize = 0;
334
335 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
336
337 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
338 Compressed = ewav;
339 Dithered = false;
340 TruncatedBits = 0;
341 if (Compressed) {
342 uint32_t version = ewav->ReadInt32();
343 if (version == 3 && BitDepth == 24) {
344 Dithered = ewav->ReadInt32();
345 ewav->SetPos(Channels == 2 ? 84 : 64);
346 TruncatedBits = ewav->ReadInt32();
347 }
348 ScanCompressedSample();
349 }
350
351 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
352 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
353 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
354 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
355 }
356 FrameOffset = 0; // just for streaming compressed samples
357
358 LoopSize = LoopEnd - LoopStart + 1;
359 }
360
361 /**
362 * Apply sample and its settings to the respective RIFF chunks. You have
363 * to call File::Save() to make changes persistent.
364 *
365 * Usually there is absolutely no need to call this method explicitly.
366 * It will be called automatically when File::Save() was called.
367 *
368 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
369 * was provided yet
370 * @throws gig::Exception if there is any invalid sample setting
371 */
372 void Sample::UpdateChunks() {
373 // first update base class's chunks
374 DLS::Sample::UpdateChunks();
375
376 // make sure 'smpl' chunk exists
377 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
378 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
379 // update 'smpl' chunk
380 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
381 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
382 memcpy(&pData[0], &Manufacturer, 4);
383 memcpy(&pData[4], &Product, 4);
384 memcpy(&pData[8], &SamplePeriod, 4);
385 memcpy(&pData[12], &MIDIUnityNote, 4);
386 memcpy(&pData[16], &FineTune, 4);
387 memcpy(&pData[20], &SMPTEFormat, 4);
388 memcpy(&pData[24], &SMPTEOffset, 4);
389 memcpy(&pData[28], &Loops, 4);
390
391 // we skip 'manufByt' for now (4 bytes)
392
393 memcpy(&pData[36], &LoopID, 4);
394 memcpy(&pData[40], &LoopType, 4);
395 memcpy(&pData[44], &LoopStart, 4);
396 memcpy(&pData[48], &LoopEnd, 4);
397 memcpy(&pData[52], &LoopFraction, 4);
398 memcpy(&pData[56], &LoopPlayCount, 4);
399
400 // make sure '3gix' chunk exists
401 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
402 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
403 // determine appropriate sample group index (to be stored in chunk)
404 uint16_t iSampleGroup = 0; // no sample group by default
405 File* pFile = static_cast<File*>(pParent);
406 if (pFile->pGroups) {
407 std::list<Group*>::iterator iter = pFile->pGroups->begin();
408 std::list<Group*>::iterator end = pFile->pGroups->end();
409 // caution: sample groups in .gig files are indexed (1..n) whereas Groups in libgig (0..n-1)
410 for (int i = 1; iter != end; i++, iter++) {
411 if (*iter == pGroup) {
412 iSampleGroup = i;
413 break; // found
414 }
415 }
416 }
417 // update '3gix' chunk
418 pData = (uint8_t*) pCk3gix->LoadChunkData();
419 memcpy(&pData[0], &iSampleGroup, 2);
420 }
421
422 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
423 void Sample::ScanCompressedSample() {
424 //TODO: we have to add some more scans here (e.g. determine compression rate)
425 this->SamplesTotal = 0;
426 std::list<unsigned long> frameOffsets;
427
428 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
429 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
430
431 // Scanning
432 pCkData->SetPos(0);
433 if (Channels == 2) { // Stereo
434 for (int i = 0 ; ; i++) {
435 // for 24 bit samples every 8:th frame offset is
436 // stored, to save some memory
437 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
438
439 const int mode_l = pCkData->ReadUint8();
440 const int mode_r = pCkData->ReadUint8();
441 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
442 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
443
444 if (pCkData->RemainingBytes() <= frameSize) {
445 SamplesInLastFrame =
446 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
447 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
448 SamplesTotal += SamplesInLastFrame;
449 break;
450 }
451 SamplesTotal += SamplesPerFrame;
452 pCkData->SetPos(frameSize, RIFF::stream_curpos);
453 }
454 }
455 else { // Mono
456 for (int i = 0 ; ; i++) {
457 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
458
459 const int mode = pCkData->ReadUint8();
460 if (mode > 5) throw gig::Exception("Unknown compression mode");
461 const unsigned long frameSize = bytesPerFrame[mode];
462
463 if (pCkData->RemainingBytes() <= frameSize) {
464 SamplesInLastFrame =
465 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
466 SamplesTotal += SamplesInLastFrame;
467 break;
468 }
469 SamplesTotal += SamplesPerFrame;
470 pCkData->SetPos(frameSize, RIFF::stream_curpos);
471 }
472 }
473 pCkData->SetPos(0);
474
475 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
476 if (FrameTable) delete[] FrameTable;
477 FrameTable = new unsigned long[frameOffsets.size()];
478 std::list<unsigned long>::iterator end = frameOffsets.end();
479 std::list<unsigned long>::iterator iter = frameOffsets.begin();
480 for (int i = 0; iter != end; i++, iter++) {
481 FrameTable[i] = *iter;
482 }
483 }
484
485 /**
486 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
487 * ReleaseSampleData() to free the memory if you don't need the cached
488 * sample data anymore.
489 *
490 * @returns buffer_t structure with start address and size of the buffer
491 * in bytes
492 * @see ReleaseSampleData(), Read(), SetPos()
493 */
494 buffer_t Sample::LoadSampleData() {
495 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
496 }
497
498 /**
499 * Reads (uncompresses if needed) and caches the first \a SampleCount
500 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
501 * memory space if you don't need the cached samples anymore. There is no
502 * guarantee that exactly \a SampleCount samples will be cached; this is
503 * not an error. The size will be eventually truncated e.g. to the
504 * beginning of a frame of a compressed sample. This is done for
505 * efficiency reasons while streaming the wave by your sampler engine
506 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
507 * that will be returned to determine the actual cached samples, but note
508 * that the size is given in bytes! You get the number of actually cached
509 * samples by dividing it by the frame size of the sample:
510 * @code
511 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
512 * long cachedsamples = buf.Size / pSample->FrameSize;
513 * @endcode
514 *
515 * @param SampleCount - number of sample points to load into RAM
516 * @returns buffer_t structure with start address and size of
517 * the cached sample data in bytes
518 * @see ReleaseSampleData(), Read(), SetPos()
519 */
520 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
521 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
522 }
523
524 /**
525 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
526 * ReleaseSampleData() to free the memory if you don't need the cached
527 * sample data anymore.
528 * The method will add \a NullSamplesCount silence samples past the
529 * official buffer end (this won't affect the 'Size' member of the
530 * buffer_t structure, that means 'Size' always reflects the size of the
531 * actual sample data, the buffer might be bigger though). Silence
532 * samples past the official buffer are needed for differential
533 * algorithms that always have to take subsequent samples into account
534 * (resampling/interpolation would be an important example) and avoids
535 * memory access faults in such cases.
536 *
537 * @param NullSamplesCount - number of silence samples the buffer should
538 * be extended past it's data end
539 * @returns buffer_t structure with start address and
540 * size of the buffer in bytes
541 * @see ReleaseSampleData(), Read(), SetPos()
542 */
543 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
544 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
545 }
546
547 /**
548 * Reads (uncompresses if needed) and caches the first \a SampleCount
549 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
550 * memory space if you don't need the cached samples anymore. There is no
551 * guarantee that exactly \a SampleCount samples will be cached; this is
552 * not an error. The size will be eventually truncated e.g. to the
553 * beginning of a frame of a compressed sample. This is done for
554 * efficiency reasons while streaming the wave by your sampler engine
555 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
556 * that will be returned to determine the actual cached samples, but note
557 * that the size is given in bytes! You get the number of actually cached
558 * samples by dividing it by the frame size of the sample:
559 * @code
560 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
561 * long cachedsamples = buf.Size / pSample->FrameSize;
562 * @endcode
563 * The method will add \a NullSamplesCount silence samples past the
564 * official buffer end (this won't affect the 'Size' member of the
565 * buffer_t structure, that means 'Size' always reflects the size of the
566 * actual sample data, the buffer might be bigger though). Silence
567 * samples past the official buffer are needed for differential
568 * algorithms that always have to take subsequent samples into account
569 * (resampling/interpolation would be an important example) and avoids
570 * memory access faults in such cases.
571 *
572 * @param SampleCount - number of sample points to load into RAM
573 * @param NullSamplesCount - number of silence samples the buffer should
574 * be extended past it's data end
575 * @returns buffer_t structure with start address and
576 * size of the cached sample data in bytes
577 * @see ReleaseSampleData(), Read(), SetPos()
578 */
579 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
580 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
581 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
582 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
583 RAMCache.pStart = new int8_t[allocationsize];
584 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
585 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
586 // fill the remaining buffer space with silence samples
587 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
588 return GetCache();
589 }
590
591 /**
592 * Returns current cached sample points. A buffer_t structure will be
593 * returned which contains address pointer to the begin of the cache and
594 * the size of the cached sample data in bytes. Use
595 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
596 * RAM.
597 *
598 * @returns buffer_t structure with current cached sample points
599 * @see LoadSampleData();
600 */
601 buffer_t Sample::GetCache() {
602 // return a copy of the buffer_t structure
603 buffer_t result;
604 result.Size = this->RAMCache.Size;
605 result.pStart = this->RAMCache.pStart;
606 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
607 return result;
608 }
609
610 /**
611 * Frees the cached sample from RAM if loaded with
612 * <i>LoadSampleData()</i> previously.
613 *
614 * @see LoadSampleData();
615 */
616 void Sample::ReleaseSampleData() {
617 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
618 RAMCache.pStart = NULL;
619 RAMCache.Size = 0;
620 }
621
622 /** @brief Resize sample.
623 *
624 * Resizes the sample's wave form data, that is the actual size of
625 * sample wave data possible to be written for this sample. This call
626 * will return immediately and just schedule the resize operation. You
627 * should call File::Save() to actually perform the resize operation(s)
628 * "physically" to the file. As this can take a while on large files, it
629 * is recommended to call Resize() first on all samples which have to be
630 * resized and finally to call File::Save() to perform all those resize
631 * operations in one rush.
632 *
633 * The actual size (in bytes) is dependant to the current FrameSize
634 * value. You may want to set FrameSize before calling Resize().
635 *
636 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
637 * enlarged samples before calling File::Save() as this might exceed the
638 * current sample's boundary!
639 *
640 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
641 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
642 * other formats will fail!
643 *
644 * @param iNewSize - new sample wave data size in sample points (must be
645 * greater than zero)
646 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
647 * or if \a iNewSize is less than 1
648 * @throws gig::Exception if existing sample is compressed
649 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
650 * DLS::Sample::FormatTag, File::Save()
651 */
652 void Sample::Resize(int iNewSize) {
653 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
654 DLS::Sample::Resize(iNewSize);
655 }
656
657 /**
658 * Sets the position within the sample (in sample points, not in
659 * bytes). Use this method and <i>Read()</i> if you don't want to load
660 * the sample into RAM, thus for disk streaming.
661 *
662 * Although the original Gigasampler engine doesn't allow positioning
663 * within compressed samples, I decided to implement it. Even though
664 * the Gigasampler format doesn't allow to define loops for compressed
665 * samples at the moment, positioning within compressed samples might be
666 * interesting for some sampler engines though. The only drawback about
667 * my decision is that it takes longer to load compressed gig Files on
668 * startup, because it's neccessary to scan the samples for some
669 * mandatory informations. But I think as it doesn't affect the runtime
670 * efficiency, nobody will have a problem with that.
671 *
672 * @param SampleCount number of sample points to jump
673 * @param Whence optional: to which relation \a SampleCount refers
674 * to, if omited <i>RIFF::stream_start</i> is assumed
675 * @returns the new sample position
676 * @see Read()
677 */
678 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
679 if (Compressed) {
680 switch (Whence) {
681 case RIFF::stream_curpos:
682 this->SamplePos += SampleCount;
683 break;
684 case RIFF::stream_end:
685 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
686 break;
687 case RIFF::stream_backward:
688 this->SamplePos -= SampleCount;
689 break;
690 case RIFF::stream_start: default:
691 this->SamplePos = SampleCount;
692 break;
693 }
694 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
695
696 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
697 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
698 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
699 return this->SamplePos;
700 }
701 else { // not compressed
702 unsigned long orderedBytes = SampleCount * this->FrameSize;
703 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
704 return (result == orderedBytes) ? SampleCount
705 : result / this->FrameSize;
706 }
707 }
708
709 /**
710 * Returns the current position in the sample (in sample points).
711 */
712 unsigned long Sample::GetPos() {
713 if (Compressed) return SamplePos;
714 else return pCkData->GetPos() / FrameSize;
715 }
716
717 /**
718 * Reads \a SampleCount number of sample points from the position stored
719 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
720 * the position within the sample respectively, this method honors the
721 * looping informations of the sample (if any). The sample wave stream
722 * will be decompressed on the fly if using a compressed sample. Use this
723 * method if you don't want to load the sample into RAM, thus for disk
724 * streaming. All this methods needs to know to proceed with streaming
725 * for the next time you call this method is stored in \a pPlaybackState.
726 * You have to allocate and initialize the playback_state_t structure by
727 * yourself before you use it to stream a sample:
728 * @code
729 * gig::playback_state_t playbackstate;
730 * playbackstate.position = 0;
731 * playbackstate.reverse = false;
732 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
733 * @endcode
734 * You don't have to take care of things like if there is actually a loop
735 * defined or if the current read position is located within a loop area.
736 * The method already handles such cases by itself.
737 *
738 * <b>Caution:</b> If you are using more than one streaming thread, you
739 * have to use an external decompression buffer for <b>EACH</b>
740 * streaming thread to avoid race conditions and crashes!
741 *
742 * @param pBuffer destination buffer
743 * @param SampleCount number of sample points to read
744 * @param pPlaybackState will be used to store and reload the playback
745 * state for the next ReadAndLoop() call
746 * @param pDimRgn dimension region with looping information
747 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
748 * @returns number of successfully read sample points
749 * @see CreateDecompressionBuffer()
750 */
751 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
752 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
753 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
754 uint8_t* pDst = (uint8_t*) pBuffer;
755
756 SetPos(pPlaybackState->position); // recover position from the last time
757
758 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
759
760 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
761 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
762
763 if (GetPos() <= loopEnd) {
764 switch (loop.LoopType) {
765
766 case loop_type_bidirectional: { //TODO: not tested yet!
767 do {
768 // if not endless loop check if max. number of loop cycles have been passed
769 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
770
771 if (!pPlaybackState->reverse) { // forward playback
772 do {
773 samplestoloopend = loopEnd - GetPos();
774 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
775 samplestoread -= readsamples;
776 totalreadsamples += readsamples;
777 if (readsamples == samplestoloopend) {
778 pPlaybackState->reverse = true;
779 break;
780 }
781 } while (samplestoread && readsamples);
782 }
783 else { // backward playback
784
785 // as we can only read forward from disk, we have to
786 // determine the end position within the loop first,
787 // read forward from that 'end' and finally after
788 // reading, swap all sample frames so it reflects
789 // backward playback
790
791 unsigned long swapareastart = totalreadsamples;
792 unsigned long loopoffset = GetPos() - loop.LoopStart;
793 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
794 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
795
796 SetPos(reverseplaybackend);
797
798 // read samples for backward playback
799 do {
800 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
801 samplestoreadinloop -= readsamples;
802 samplestoread -= readsamples;
803 totalreadsamples += readsamples;
804 } while (samplestoreadinloop && readsamples);
805
806 SetPos(reverseplaybackend); // pretend we really read backwards
807
808 if (reverseplaybackend == loop.LoopStart) {
809 pPlaybackState->loop_cycles_left--;
810 pPlaybackState->reverse = false;
811 }
812
813 // reverse the sample frames for backward playback
814 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
815 }
816 } while (samplestoread && readsamples);
817 break;
818 }
819
820 case loop_type_backward: { // TODO: not tested yet!
821 // forward playback (not entered the loop yet)
822 if (!pPlaybackState->reverse) do {
823 samplestoloopend = loopEnd - GetPos();
824 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
825 samplestoread -= readsamples;
826 totalreadsamples += readsamples;
827 if (readsamples == samplestoloopend) {
828 pPlaybackState->reverse = true;
829 break;
830 }
831 } while (samplestoread && readsamples);
832
833 if (!samplestoread) break;
834
835 // as we can only read forward from disk, we have to
836 // determine the end position within the loop first,
837 // read forward from that 'end' and finally after
838 // reading, swap all sample frames so it reflects
839 // backward playback
840
841 unsigned long swapareastart = totalreadsamples;
842 unsigned long loopoffset = GetPos() - loop.LoopStart;
843 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
844 : samplestoread;
845 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
846
847 SetPos(reverseplaybackend);
848
849 // read samples for backward playback
850 do {
851 // if not endless loop check if max. number of loop cycles have been passed
852 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
853 samplestoloopend = loopEnd - GetPos();
854 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
855 samplestoreadinloop -= readsamples;
856 samplestoread -= readsamples;
857 totalreadsamples += readsamples;
858 if (readsamples == samplestoloopend) {
859 pPlaybackState->loop_cycles_left--;
860 SetPos(loop.LoopStart);
861 }
862 } while (samplestoreadinloop && readsamples);
863
864 SetPos(reverseplaybackend); // pretend we really read backwards
865
866 // reverse the sample frames for backward playback
867 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
868 break;
869 }
870
871 default: case loop_type_normal: {
872 do {
873 // if not endless loop check if max. number of loop cycles have been passed
874 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
875 samplestoloopend = loopEnd - GetPos();
876 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
877 samplestoread -= readsamples;
878 totalreadsamples += readsamples;
879 if (readsamples == samplestoloopend) {
880 pPlaybackState->loop_cycles_left--;
881 SetPos(loop.LoopStart);
882 }
883 } while (samplestoread && readsamples);
884 break;
885 }
886 }
887 }
888 }
889
890 // read on without looping
891 if (samplestoread) do {
892 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
893 samplestoread -= readsamples;
894 totalreadsamples += readsamples;
895 } while (readsamples && samplestoread);
896
897 // store current position
898 pPlaybackState->position = GetPos();
899
900 return totalreadsamples;
901 }
902
903 /**
904 * Reads \a SampleCount number of sample points from the current
905 * position into the buffer pointed by \a pBuffer and increments the
906 * position within the sample. The sample wave stream will be
907 * decompressed on the fly if using a compressed sample. Use this method
908 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
909 * thus for disk streaming.
910 *
911 * <b>Caution:</b> If you are using more than one streaming thread, you
912 * have to use an external decompression buffer for <b>EACH</b>
913 * streaming thread to avoid race conditions and crashes!
914 *
915 * For 16 bit samples, the data in the buffer will be int16_t
916 * (using native endianness). For 24 bit, the buffer will
917 * contain three bytes per sample, little-endian.
918 *
919 * @param pBuffer destination buffer
920 * @param SampleCount number of sample points to read
921 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
922 * @returns number of successfully read sample points
923 * @see SetPos(), CreateDecompressionBuffer()
924 */
925 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
926 if (SampleCount == 0) return 0;
927 if (!Compressed) {
928 if (BitDepth == 24) {
929 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
930 }
931 else { // 16 bit
932 // (pCkData->Read does endian correction)
933 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
934 : pCkData->Read(pBuffer, SampleCount, 2);
935 }
936 }
937 else {
938 if (this->SamplePos >= this->SamplesTotal) return 0;
939 //TODO: efficiency: maybe we should test for an average compression rate
940 unsigned long assumedsize = GuessSize(SampleCount),
941 remainingbytes = 0, // remaining bytes in the local buffer
942 remainingsamples = SampleCount,
943 copysamples, skipsamples,
944 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
945 this->FrameOffset = 0;
946
947 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
948
949 // if decompression buffer too small, then reduce amount of samples to read
950 if (pDecompressionBuffer->Size < assumedsize) {
951 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
952 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
953 remainingsamples = SampleCount;
954 assumedsize = GuessSize(SampleCount);
955 }
956
957 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
958 int16_t* pDst = static_cast<int16_t*>(pBuffer);
959 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
960 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
961
962 while (remainingsamples && remainingbytes) {
963 unsigned long framesamples = SamplesPerFrame;
964 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
965
966 int mode_l = *pSrc++, mode_r = 0;
967
968 if (Channels == 2) {
969 mode_r = *pSrc++;
970 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
971 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
972 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
973 if (remainingbytes < framebytes) { // last frame in sample
974 framesamples = SamplesInLastFrame;
975 if (mode_l == 4 && (framesamples & 1)) {
976 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
977 }
978 else {
979 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
980 }
981 }
982 }
983 else {
984 framebytes = bytesPerFrame[mode_l] + 1;
985 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
986 if (remainingbytes < framebytes) {
987 framesamples = SamplesInLastFrame;
988 }
989 }
990
991 // determine how many samples in this frame to skip and read
992 if (currentframeoffset + remainingsamples >= framesamples) {
993 if (currentframeoffset <= framesamples) {
994 copysamples = framesamples - currentframeoffset;
995 skipsamples = currentframeoffset;
996 }
997 else {
998 copysamples = 0;
999 skipsamples = framesamples;
1000 }
1001 }
1002 else {
1003 // This frame has enough data for pBuffer, but not
1004 // all of the frame is needed. Set file position
1005 // to start of this frame for next call to Read.
1006 copysamples = remainingsamples;
1007 skipsamples = currentframeoffset;
1008 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1009 this->FrameOffset = currentframeoffset + copysamples;
1010 }
1011 remainingsamples -= copysamples;
1012
1013 if (remainingbytes > framebytes) {
1014 remainingbytes -= framebytes;
1015 if (remainingsamples == 0 &&
1016 currentframeoffset + copysamples == framesamples) {
1017 // This frame has enough data for pBuffer, and
1018 // all of the frame is needed. Set file
1019 // position to start of next frame for next
1020 // call to Read. FrameOffset is 0.
1021 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1022 }
1023 }
1024 else remainingbytes = 0;
1025
1026 currentframeoffset -= skipsamples;
1027
1028 if (copysamples == 0) {
1029 // skip this frame
1030 pSrc += framebytes - Channels;
1031 }
1032 else {
1033 const unsigned char* const param_l = pSrc;
1034 if (BitDepth == 24) {
1035 if (mode_l != 2) pSrc += 12;
1036
1037 if (Channels == 2) { // Stereo
1038 const unsigned char* const param_r = pSrc;
1039 if (mode_r != 2) pSrc += 12;
1040
1041 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1042 skipsamples, copysamples, TruncatedBits);
1043 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1044 skipsamples, copysamples, TruncatedBits);
1045 pDst24 += copysamples * 6;
1046 }
1047 else { // Mono
1048 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1049 skipsamples, copysamples, TruncatedBits);
1050 pDst24 += copysamples * 3;
1051 }
1052 }
1053 else { // 16 bit
1054 if (mode_l) pSrc += 4;
1055
1056 int step;
1057 if (Channels == 2) { // Stereo
1058 const unsigned char* const param_r = pSrc;
1059 if (mode_r) pSrc += 4;
1060
1061 step = (2 - mode_l) + (2 - mode_r);
1062 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1063 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1064 skipsamples, copysamples);
1065 pDst += copysamples << 1;
1066 }
1067 else { // Mono
1068 step = 2 - mode_l;
1069 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1070 pDst += copysamples;
1071 }
1072 }
1073 pSrc += nextFrameOffset;
1074 }
1075
1076 // reload from disk to local buffer if needed
1077 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1078 assumedsize = GuessSize(remainingsamples);
1079 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1080 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1081 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1082 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1083 }
1084 } // while
1085
1086 this->SamplePos += (SampleCount - remainingsamples);
1087 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1088 return (SampleCount - remainingsamples);
1089 }
1090 }
1091
1092 /** @brief Write sample wave data.
1093 *
1094 * Writes \a SampleCount number of sample points from the buffer pointed
1095 * by \a pBuffer and increments the position within the sample. Use this
1096 * method to directly write the sample data to disk, i.e. if you don't
1097 * want or cannot load the whole sample data into RAM.
1098 *
1099 * You have to Resize() the sample to the desired size and call
1100 * File::Save() <b>before</b> using Write().
1101 *
1102 * Note: there is currently no support for writing compressed samples.
1103 *
1104 * @param pBuffer - source buffer
1105 * @param SampleCount - number of sample points to write
1106 * @throws DLS::Exception if current sample size is too small
1107 * @throws gig::Exception if sample is compressed
1108 * @see DLS::LoadSampleData()
1109 */
1110 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1111 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1112 return DLS::Sample::Write(pBuffer, SampleCount);
1113 }
1114
1115 /**
1116 * Allocates a decompression buffer for streaming (compressed) samples
1117 * with Sample::Read(). If you are using more than one streaming thread
1118 * in your application you <b>HAVE</b> to create a decompression buffer
1119 * for <b>EACH</b> of your streaming threads and provide it with the
1120 * Sample::Read() call in order to avoid race conditions and crashes.
1121 *
1122 * You should free the memory occupied by the allocated buffer(s) once
1123 * you don't need one of your streaming threads anymore by calling
1124 * DestroyDecompressionBuffer().
1125 *
1126 * @param MaxReadSize - the maximum size (in sample points) you ever
1127 * expect to read with one Read() call
1128 * @returns allocated decompression buffer
1129 * @see DestroyDecompressionBuffer()
1130 */
1131 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1132 buffer_t result;
1133 const double worstCaseHeaderOverhead =
1134 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1135 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1136 result.pStart = new int8_t[result.Size];
1137 result.NullExtensionSize = 0;
1138 return result;
1139 }
1140
1141 /**
1142 * Free decompression buffer, previously created with
1143 * CreateDecompressionBuffer().
1144 *
1145 * @param DecompressionBuffer - previously allocated decompression
1146 * buffer to free
1147 */
1148 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1149 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1150 delete[] (int8_t*) DecompressionBuffer.pStart;
1151 DecompressionBuffer.pStart = NULL;
1152 DecompressionBuffer.Size = 0;
1153 DecompressionBuffer.NullExtensionSize = 0;
1154 }
1155 }
1156
1157 Sample::~Sample() {
1158 Instances--;
1159 if (!Instances && InternalDecompressionBuffer.Size) {
1160 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1161 InternalDecompressionBuffer.pStart = NULL;
1162 InternalDecompressionBuffer.Size = 0;
1163 }
1164 if (FrameTable) delete[] FrameTable;
1165 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1166 }
1167
1168
1169
1170 // *************** DimensionRegion ***************
1171 // *
1172
1173 uint DimensionRegion::Instances = 0;
1174 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1175
1176 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1177 Instances++;
1178
1179 pSample = NULL;
1180
1181 memcpy(&Crossfade, &SamplerOptions, 4);
1182 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1183
1184 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1185 if (_3ewa) { // if '3ewa' chunk exists
1186 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1187 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1188 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1189 _3ewa->ReadInt16(); // unknown
1190 LFO1InternalDepth = _3ewa->ReadUint16();
1191 _3ewa->ReadInt16(); // unknown
1192 LFO3InternalDepth = _3ewa->ReadInt16();
1193 _3ewa->ReadInt16(); // unknown
1194 LFO1ControlDepth = _3ewa->ReadUint16();
1195 _3ewa->ReadInt16(); // unknown
1196 LFO3ControlDepth = _3ewa->ReadInt16();
1197 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199 _3ewa->ReadInt16(); // unknown
1200 EG1Sustain = _3ewa->ReadUint16();
1201 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1202 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1203 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1204 EG1ControllerInvert = eg1ctrloptions & 0x01;
1205 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1206 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1207 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1208 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1209 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1210 EG2ControllerInvert = eg2ctrloptions & 0x01;
1211 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1212 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1213 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1214 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1215 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1216 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1217 _3ewa->ReadInt16(); // unknown
1218 EG2Sustain = _3ewa->ReadUint16();
1219 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1220 _3ewa->ReadInt16(); // unknown
1221 LFO2ControlDepth = _3ewa->ReadUint16();
1222 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1223 _3ewa->ReadInt16(); // unknown
1224 LFO2InternalDepth = _3ewa->ReadUint16();
1225 int32_t eg1decay2 = _3ewa->ReadInt32();
1226 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1227 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1228 _3ewa->ReadInt16(); // unknown
1229 EG1PreAttack = _3ewa->ReadUint16();
1230 int32_t eg2decay2 = _3ewa->ReadInt32();
1231 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1232 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1233 _3ewa->ReadInt16(); // unknown
1234 EG2PreAttack = _3ewa->ReadUint16();
1235 uint8_t velocityresponse = _3ewa->ReadUint8();
1236 if (velocityresponse < 5) {
1237 VelocityResponseCurve = curve_type_nonlinear;
1238 VelocityResponseDepth = velocityresponse;
1239 } else if (velocityresponse < 10) {
1240 VelocityResponseCurve = curve_type_linear;
1241 VelocityResponseDepth = velocityresponse - 5;
1242 } else if (velocityresponse < 15) {
1243 VelocityResponseCurve = curve_type_special;
1244 VelocityResponseDepth = velocityresponse - 10;
1245 } else {
1246 VelocityResponseCurve = curve_type_unknown;
1247 VelocityResponseDepth = 0;
1248 }
1249 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1250 if (releasevelocityresponse < 5) {
1251 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1252 ReleaseVelocityResponseDepth = releasevelocityresponse;
1253 } else if (releasevelocityresponse < 10) {
1254 ReleaseVelocityResponseCurve = curve_type_linear;
1255 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1256 } else if (releasevelocityresponse < 15) {
1257 ReleaseVelocityResponseCurve = curve_type_special;
1258 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1259 } else {
1260 ReleaseVelocityResponseCurve = curve_type_unknown;
1261 ReleaseVelocityResponseDepth = 0;
1262 }
1263 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1264 AttenuationControllerThreshold = _3ewa->ReadInt8();
1265 _3ewa->ReadInt32(); // unknown
1266 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1267 _3ewa->ReadInt16(); // unknown
1268 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1269 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1270 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1271 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1272 else DimensionBypass = dim_bypass_ctrl_none;
1273 uint8_t pan = _3ewa->ReadUint8();
1274 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1275 SelfMask = _3ewa->ReadInt8() & 0x01;
1276 _3ewa->ReadInt8(); // unknown
1277 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1278 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1279 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1280 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1281 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1282 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1283 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1284 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1285 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1286 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1287 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1288 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1289 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1290 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1291 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1292 : vcf_res_ctrl_none;
1293 uint16_t eg3depth = _3ewa->ReadUint16();
1294 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1295 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1296 _3ewa->ReadInt16(); // unknown
1297 ChannelOffset = _3ewa->ReadUint8() / 4;
1298 uint8_t regoptions = _3ewa->ReadUint8();
1299 MSDecode = regoptions & 0x01; // bit 0
1300 SustainDefeat = regoptions & 0x02; // bit 1
1301 _3ewa->ReadInt16(); // unknown
1302 VelocityUpperLimit = _3ewa->ReadInt8();
1303 _3ewa->ReadInt8(); // unknown
1304 _3ewa->ReadInt16(); // unknown
1305 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1306 _3ewa->ReadInt8(); // unknown
1307 _3ewa->ReadInt8(); // unknown
1308 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1309 uint8_t vcfcutoff = _3ewa->ReadUint8();
1310 VCFEnabled = vcfcutoff & 0x80; // bit 7
1311 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1312 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1313 uint8_t vcfvelscale = _3ewa->ReadUint8();
1314 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1315 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1316 _3ewa->ReadInt8(); // unknown
1317 uint8_t vcfresonance = _3ewa->ReadUint8();
1318 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1319 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1320 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1321 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1322 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1323 uint8_t vcfvelocity = _3ewa->ReadUint8();
1324 VCFVelocityDynamicRange = vcfvelocity % 5;
1325 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1326 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1327 if (VCFType == vcf_type_lowpass) {
1328 if (lfo3ctrl & 0x40) // bit 6
1329 VCFType = vcf_type_lowpassturbo;
1330 }
1331 } else { // '3ewa' chunk does not exist yet
1332 // use default values
1333 LFO3Frequency = 1.0;
1334 EG3Attack = 0.0;
1335 LFO1InternalDepth = 0;
1336 LFO3InternalDepth = 0;
1337 LFO1ControlDepth = 0;
1338 LFO3ControlDepth = 0;
1339 EG1Attack = 0.0;
1340 EG1Decay1 = 0.0;
1341 EG1Sustain = 0;
1342 EG1Release = 0.0;
1343 EG1Controller.type = eg1_ctrl_t::type_none;
1344 EG1Controller.controller_number = 0;
1345 EG1ControllerInvert = false;
1346 EG1ControllerAttackInfluence = 0;
1347 EG1ControllerDecayInfluence = 0;
1348 EG1ControllerReleaseInfluence = 0;
1349 EG2Controller.type = eg2_ctrl_t::type_none;
1350 EG2Controller.controller_number = 0;
1351 EG2ControllerInvert = false;
1352 EG2ControllerAttackInfluence = 0;
1353 EG2ControllerDecayInfluence = 0;
1354 EG2ControllerReleaseInfluence = 0;
1355 LFO1Frequency = 1.0;
1356 EG2Attack = 0.0;
1357 EG2Decay1 = 0.0;
1358 EG2Sustain = 0;
1359 EG2Release = 0.0;
1360 LFO2ControlDepth = 0;
1361 LFO2Frequency = 1.0;
1362 LFO2InternalDepth = 0;
1363 EG1Decay2 = 0.0;
1364 EG1InfiniteSustain = false;
1365 EG1PreAttack = 1000;
1366 EG2Decay2 = 0.0;
1367 EG2InfiniteSustain = false;
1368 EG2PreAttack = 1000;
1369 VelocityResponseCurve = curve_type_nonlinear;
1370 VelocityResponseDepth = 3;
1371 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1372 ReleaseVelocityResponseDepth = 3;
1373 VelocityResponseCurveScaling = 32;
1374 AttenuationControllerThreshold = 0;
1375 SampleStartOffset = 0;
1376 PitchTrack = true;
1377 DimensionBypass = dim_bypass_ctrl_none;
1378 Pan = 0;
1379 SelfMask = true;
1380 LFO3Controller = lfo3_ctrl_modwheel;
1381 LFO3Sync = false;
1382 InvertAttenuationController = false;
1383 AttenuationController.type = attenuation_ctrl_t::type_none;
1384 AttenuationController.controller_number = 0;
1385 LFO2Controller = lfo2_ctrl_internal;
1386 LFO2FlipPhase = false;
1387 LFO2Sync = false;
1388 LFO1Controller = lfo1_ctrl_internal;
1389 LFO1FlipPhase = false;
1390 LFO1Sync = false;
1391 VCFResonanceController = vcf_res_ctrl_none;
1392 EG3Depth = 0;
1393 ChannelOffset = 0;
1394 MSDecode = false;
1395 SustainDefeat = false;
1396 VelocityUpperLimit = 0;
1397 ReleaseTriggerDecay = 0;
1398 EG1Hold = false;
1399 VCFEnabled = false;
1400 VCFCutoff = 0;
1401 VCFCutoffController = vcf_cutoff_ctrl_none;
1402 VCFCutoffControllerInvert = false;
1403 VCFVelocityScale = 0;
1404 VCFResonance = 0;
1405 VCFResonanceDynamic = false;
1406 VCFKeyboardTracking = false;
1407 VCFKeyboardTrackingBreakpoint = 0;
1408 VCFVelocityDynamicRange = 0x04;
1409 VCFVelocityCurve = curve_type_linear;
1410 VCFType = vcf_type_lowpass;
1411 }
1412
1413 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1414 VelocityResponseDepth,
1415 VelocityResponseCurveScaling);
1416
1417 curve_type_t curveType = ReleaseVelocityResponseCurve;
1418 uint8_t depth = ReleaseVelocityResponseDepth;
1419
1420 // this models a strange behaviour or bug in GSt: two of the
1421 // velocity response curves for release time are not used even
1422 // if specified, instead another curve is chosen.
1423 if ((curveType == curve_type_nonlinear && depth == 0) ||
1424 (curveType == curve_type_special && depth == 4)) {
1425 curveType = curve_type_nonlinear;
1426 depth = 3;
1427 }
1428 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1429
1430 curveType = VCFVelocityCurve;
1431 depth = VCFVelocityDynamicRange;
1432
1433 // even stranger GSt: two of the velocity response curves for
1434 // filter cutoff are not used, instead another special curve
1435 // is chosen. This curve is not used anywhere else.
1436 if ((curveType == curve_type_nonlinear && depth == 0) ||
1437 (curveType == curve_type_special && depth == 4)) {
1438 curveType = curve_type_special;
1439 depth = 5;
1440 }
1441 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1442 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1443
1444 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1445 VelocityTable = 0;
1446 }
1447
1448 /**
1449 * Apply dimension region settings to the respective RIFF chunks. You
1450 * have to call File::Save() to make changes persistent.
1451 *
1452 * Usually there is absolutely no need to call this method explicitly.
1453 * It will be called automatically when File::Save() was called.
1454 */
1455 void DimensionRegion::UpdateChunks() {
1456 // first update base class's chunk
1457 DLS::Sampler::UpdateChunks();
1458
1459 // make sure '3ewa' chunk exists
1460 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1461 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1462 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1463
1464 // update '3ewa' chunk with DimensionRegion's current settings
1465
1466 const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?
1467 memcpy(&pData[0], &unknown, 4);
1468
1469 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1470 memcpy(&pData[4], &lfo3freq, 4);
1471
1472 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1473 memcpy(&pData[8], &eg3attack, 4);
1474
1475 // next 2 bytes unknown
1476
1477 memcpy(&pData[14], &LFO1InternalDepth, 2);
1478
1479 // next 2 bytes unknown
1480
1481 memcpy(&pData[18], &LFO3InternalDepth, 2);
1482
1483 // next 2 bytes unknown
1484
1485 memcpy(&pData[22], &LFO1ControlDepth, 2);
1486
1487 // next 2 bytes unknown
1488
1489 memcpy(&pData[26], &LFO3ControlDepth, 2);
1490
1491 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1492 memcpy(&pData[28], &eg1attack, 4);
1493
1494 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1495 memcpy(&pData[32], &eg1decay1, 4);
1496
1497 // next 2 bytes unknown
1498
1499 memcpy(&pData[38], &EG1Sustain, 2);
1500
1501 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1502 memcpy(&pData[40], &eg1release, 4);
1503
1504 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1505 memcpy(&pData[44], &eg1ctl, 1);
1506
1507 const uint8_t eg1ctrloptions =
1508 (EG1ControllerInvert) ? 0x01 : 0x00 |
1509 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1510 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1511 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1512 memcpy(&pData[45], &eg1ctrloptions, 1);
1513
1514 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1515 memcpy(&pData[46], &eg2ctl, 1);
1516
1517 const uint8_t eg2ctrloptions =
1518 (EG2ControllerInvert) ? 0x01 : 0x00 |
1519 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1520 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1521 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1522 memcpy(&pData[47], &eg2ctrloptions, 1);
1523
1524 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1525 memcpy(&pData[48], &lfo1freq, 4);
1526
1527 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1528 memcpy(&pData[52], &eg2attack, 4);
1529
1530 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1531 memcpy(&pData[56], &eg2decay1, 4);
1532
1533 // next 2 bytes unknown
1534
1535 memcpy(&pData[62], &EG2Sustain, 2);
1536
1537 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1538 memcpy(&pData[64], &eg2release, 4);
1539
1540 // next 2 bytes unknown
1541
1542 memcpy(&pData[70], &LFO2ControlDepth, 2);
1543
1544 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1545 memcpy(&pData[72], &lfo2freq, 4);
1546
1547 // next 2 bytes unknown
1548
1549 memcpy(&pData[78], &LFO2InternalDepth, 2);
1550
1551 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1552 memcpy(&pData[80], &eg1decay2, 4);
1553
1554 // next 2 bytes unknown
1555
1556 memcpy(&pData[86], &EG1PreAttack, 2);
1557
1558 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1559 memcpy(&pData[88], &eg2decay2, 4);
1560
1561 // next 2 bytes unknown
1562
1563 memcpy(&pData[94], &EG2PreAttack, 2);
1564
1565 {
1566 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1567 uint8_t velocityresponse = VelocityResponseDepth;
1568 switch (VelocityResponseCurve) {
1569 case curve_type_nonlinear:
1570 break;
1571 case curve_type_linear:
1572 velocityresponse += 5;
1573 break;
1574 case curve_type_special:
1575 velocityresponse += 10;
1576 break;
1577 case curve_type_unknown:
1578 default:
1579 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1580 }
1581 memcpy(&pData[96], &velocityresponse, 1);
1582 }
1583
1584 {
1585 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1586 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1587 switch (ReleaseVelocityResponseCurve) {
1588 case curve_type_nonlinear:
1589 break;
1590 case curve_type_linear:
1591 releasevelocityresponse += 5;
1592 break;
1593 case curve_type_special:
1594 releasevelocityresponse += 10;
1595 break;
1596 case curve_type_unknown:
1597 default:
1598 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1599 }
1600 memcpy(&pData[97], &releasevelocityresponse, 1);
1601 }
1602
1603 memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1604
1605 memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1606
1607 // next 4 bytes unknown
1608
1609 memcpy(&pData[104], &SampleStartOffset, 2);
1610
1611 // next 2 bytes unknown
1612
1613 {
1614 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1615 switch (DimensionBypass) {
1616 case dim_bypass_ctrl_94:
1617 pitchTrackDimensionBypass |= 0x10;
1618 break;
1619 case dim_bypass_ctrl_95:
1620 pitchTrackDimensionBypass |= 0x20;
1621 break;
1622 case dim_bypass_ctrl_none:
1623 //FIXME: should we set anything here?
1624 break;
1625 default:
1626 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1627 }
1628 memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1629 }
1630
1631 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1632 memcpy(&pData[109], &pan, 1);
1633
1634 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1635 memcpy(&pData[110], &selfmask, 1);
1636
1637 // next byte unknown
1638
1639 {
1640 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1641 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1642 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1643 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1644 memcpy(&pData[112], &lfo3ctrl, 1);
1645 }
1646
1647 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1648 memcpy(&pData[113], &attenctl, 1);
1649
1650 {
1651 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1652 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1653 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1654 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1655 memcpy(&pData[114], &lfo2ctrl, 1);
1656 }
1657
1658 {
1659 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1660 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1661 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1662 if (VCFResonanceController != vcf_res_ctrl_none)
1663 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1664 memcpy(&pData[115], &lfo1ctrl, 1);
1665 }
1666
1667 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1668 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1669 memcpy(&pData[116], &eg3depth, 1);
1670
1671 // next 2 bytes unknown
1672
1673 const uint8_t channeloffset = ChannelOffset * 4;
1674 memcpy(&pData[120], &channeloffset, 1);
1675
1676 {
1677 uint8_t regoptions = 0;
1678 if (MSDecode) regoptions |= 0x01; // bit 0
1679 if (SustainDefeat) regoptions |= 0x02; // bit 1
1680 memcpy(&pData[121], &regoptions, 1);
1681 }
1682
1683 // next 2 bytes unknown
1684
1685 memcpy(&pData[124], &VelocityUpperLimit, 1);
1686
1687 // next 3 bytes unknown
1688
1689 memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1690
1691 // next 2 bytes unknown
1692
1693 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1694 memcpy(&pData[131], &eg1hold, 1);
1695
1696 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1697 (VCFCutoff & 0x7f); /* lower 7 bits */
1698 memcpy(&pData[132], &vcfcutoff, 1);
1699
1700 memcpy(&pData[133], &VCFCutoffController, 1);
1701
1702 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1703 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1704 memcpy(&pData[134], &vcfvelscale, 1);
1705
1706 // next byte unknown
1707
1708 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1709 (VCFResonance & 0x7f); /* lower 7 bits */
1710 memcpy(&pData[136], &vcfresonance, 1);
1711
1712 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1713 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1714 memcpy(&pData[137], &vcfbreakpoint, 1);
1715
1716 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1717 VCFVelocityCurve * 5;
1718 memcpy(&pData[138], &vcfvelocity, 1);
1719
1720 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1721 memcpy(&pData[139], &vcftype, 1);
1722 }
1723
1724 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1725 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1726 {
1727 double* table;
1728 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1729 if (pVelocityTables->count(tableKey)) { // if key exists
1730 table = (*pVelocityTables)[tableKey];
1731 }
1732 else {
1733 table = CreateVelocityTable(curveType, depth, scaling);
1734 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1735 }
1736 return table;
1737 }
1738
1739 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1740 leverage_ctrl_t decodedcontroller;
1741 switch (EncodedController) {
1742 // special controller
1743 case _lev_ctrl_none:
1744 decodedcontroller.type = leverage_ctrl_t::type_none;
1745 decodedcontroller.controller_number = 0;
1746 break;
1747 case _lev_ctrl_velocity:
1748 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1749 decodedcontroller.controller_number = 0;
1750 break;
1751 case _lev_ctrl_channelaftertouch:
1752 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1753 decodedcontroller.controller_number = 0;
1754 break;
1755
1756 // ordinary MIDI control change controller
1757 case _lev_ctrl_modwheel:
1758 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1759 decodedcontroller.controller_number = 1;
1760 break;
1761 case _lev_ctrl_breath:
1762 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1763 decodedcontroller.controller_number = 2;
1764 break;
1765 case _lev_ctrl_foot:
1766 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1767 decodedcontroller.controller_number = 4;
1768 break;
1769 case _lev_ctrl_effect1:
1770 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1771 decodedcontroller.controller_number = 12;
1772 break;
1773 case _lev_ctrl_effect2:
1774 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1775 decodedcontroller.controller_number = 13;
1776 break;
1777 case _lev_ctrl_genpurpose1:
1778 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779 decodedcontroller.controller_number = 16;
1780 break;
1781 case _lev_ctrl_genpurpose2:
1782 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783 decodedcontroller.controller_number = 17;
1784 break;
1785 case _lev_ctrl_genpurpose3:
1786 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787 decodedcontroller.controller_number = 18;
1788 break;
1789 case _lev_ctrl_genpurpose4:
1790 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791 decodedcontroller.controller_number = 19;
1792 break;
1793 case _lev_ctrl_portamentotime:
1794 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795 decodedcontroller.controller_number = 5;
1796 break;
1797 case _lev_ctrl_sustainpedal:
1798 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799 decodedcontroller.controller_number = 64;
1800 break;
1801 case _lev_ctrl_portamento:
1802 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803 decodedcontroller.controller_number = 65;
1804 break;
1805 case _lev_ctrl_sostenutopedal:
1806 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807 decodedcontroller.controller_number = 66;
1808 break;
1809 case _lev_ctrl_softpedal:
1810 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811 decodedcontroller.controller_number = 67;
1812 break;
1813 case _lev_ctrl_genpurpose5:
1814 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815 decodedcontroller.controller_number = 80;
1816 break;
1817 case _lev_ctrl_genpurpose6:
1818 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819 decodedcontroller.controller_number = 81;
1820 break;
1821 case _lev_ctrl_genpurpose7:
1822 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823 decodedcontroller.controller_number = 82;
1824 break;
1825 case _lev_ctrl_genpurpose8:
1826 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827 decodedcontroller.controller_number = 83;
1828 break;
1829 case _lev_ctrl_effect1depth:
1830 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831 decodedcontroller.controller_number = 91;
1832 break;
1833 case _lev_ctrl_effect2depth:
1834 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835 decodedcontroller.controller_number = 92;
1836 break;
1837 case _lev_ctrl_effect3depth:
1838 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839 decodedcontroller.controller_number = 93;
1840 break;
1841 case _lev_ctrl_effect4depth:
1842 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843 decodedcontroller.controller_number = 94;
1844 break;
1845 case _lev_ctrl_effect5depth:
1846 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847 decodedcontroller.controller_number = 95;
1848 break;
1849
1850 // unknown controller type
1851 default:
1852 throw gig::Exception("Unknown leverage controller type.");
1853 }
1854 return decodedcontroller;
1855 }
1856
1857 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1858 _lev_ctrl_t encodedcontroller;
1859 switch (DecodedController.type) {
1860 // special controller
1861 case leverage_ctrl_t::type_none:
1862 encodedcontroller = _lev_ctrl_none;
1863 break;
1864 case leverage_ctrl_t::type_velocity:
1865 encodedcontroller = _lev_ctrl_velocity;
1866 break;
1867 case leverage_ctrl_t::type_channelaftertouch:
1868 encodedcontroller = _lev_ctrl_channelaftertouch;
1869 break;
1870
1871 // ordinary MIDI control change controller
1872 case leverage_ctrl_t::type_controlchange:
1873 switch (DecodedController.controller_number) {
1874 case 1:
1875 encodedcontroller = _lev_ctrl_modwheel;
1876 break;
1877 case 2:
1878 encodedcontroller = _lev_ctrl_breath;
1879 break;
1880 case 4:
1881 encodedcontroller = _lev_ctrl_foot;
1882 break;
1883 case 12:
1884 encodedcontroller = _lev_ctrl_effect1;
1885 break;
1886 case 13:
1887 encodedcontroller = _lev_ctrl_effect2;
1888 break;
1889 case 16:
1890 encodedcontroller = _lev_ctrl_genpurpose1;
1891 break;
1892 case 17:
1893 encodedcontroller = _lev_ctrl_genpurpose2;
1894 break;
1895 case 18:
1896 encodedcontroller = _lev_ctrl_genpurpose3;
1897 break;
1898 case 19:
1899 encodedcontroller = _lev_ctrl_genpurpose4;
1900 break;
1901 case 5:
1902 encodedcontroller = _lev_ctrl_portamentotime;
1903 break;
1904 case 64:
1905 encodedcontroller = _lev_ctrl_sustainpedal;
1906 break;
1907 case 65:
1908 encodedcontroller = _lev_ctrl_portamento;
1909 break;
1910 case 66:
1911 encodedcontroller = _lev_ctrl_sostenutopedal;
1912 break;
1913 case 67:
1914 encodedcontroller = _lev_ctrl_softpedal;
1915 break;
1916 case 80:
1917 encodedcontroller = _lev_ctrl_genpurpose5;
1918 break;
1919 case 81:
1920 encodedcontroller = _lev_ctrl_genpurpose6;
1921 break;
1922 case 82:
1923 encodedcontroller = _lev_ctrl_genpurpose7;
1924 break;
1925 case 83:
1926 encodedcontroller = _lev_ctrl_genpurpose8;
1927 break;
1928 case 91:
1929 encodedcontroller = _lev_ctrl_effect1depth;
1930 break;
1931 case 92:
1932 encodedcontroller = _lev_ctrl_effect2depth;
1933 break;
1934 case 93:
1935 encodedcontroller = _lev_ctrl_effect3depth;
1936 break;
1937 case 94:
1938 encodedcontroller = _lev_ctrl_effect4depth;
1939 break;
1940 case 95:
1941 encodedcontroller = _lev_ctrl_effect5depth;
1942 break;
1943 default:
1944 throw gig::Exception("leverage controller number is not supported by the gig format");
1945 }
1946 default:
1947 throw gig::Exception("Unknown leverage controller type.");
1948 }
1949 return encodedcontroller;
1950 }
1951
1952 DimensionRegion::~DimensionRegion() {
1953 Instances--;
1954 if (!Instances) {
1955 // delete the velocity->volume tables
1956 VelocityTableMap::iterator iter;
1957 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1958 double* pTable = iter->second;
1959 if (pTable) delete[] pTable;
1960 }
1961 pVelocityTables->clear();
1962 delete pVelocityTables;
1963 pVelocityTables = NULL;
1964 }
1965 if (VelocityTable) delete[] VelocityTable;
1966 }
1967
1968 /**
1969 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1970 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1971 * and VelocityResponseCurveScaling) involved are taken into account to
1972 * calculate the amplitude factor. Use this method when a key was
1973 * triggered to get the volume with which the sample should be played
1974 * back.
1975 *
1976 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1977 * @returns amplitude factor (between 0.0 and 1.0)
1978 */
1979 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1980 return pVelocityAttenuationTable[MIDIKeyVelocity];
1981 }
1982
1983 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1984 return pVelocityReleaseTable[MIDIKeyVelocity];
1985 }
1986
1987 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1988 return pVelocityCutoffTable[MIDIKeyVelocity];
1989 }
1990
1991 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1992
1993 // line-segment approximations of the 15 velocity curves
1994
1995 // linear
1996 const int lin0[] = { 1, 1, 127, 127 };
1997 const int lin1[] = { 1, 21, 127, 127 };
1998 const int lin2[] = { 1, 45, 127, 127 };
1999 const int lin3[] = { 1, 74, 127, 127 };
2000 const int lin4[] = { 1, 127, 127, 127 };
2001
2002 // non-linear
2003 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2004 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2005 127, 127 };
2006 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2007 127, 127 };
2008 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2009 127, 127 };
2010 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2011
2012 // special
2013 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2014 113, 127, 127, 127 };
2015 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2016 118, 127, 127, 127 };
2017 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2018 85, 90, 91, 127, 127, 127 };
2019 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2020 117, 127, 127, 127 };
2021 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2022 127, 127 };
2023
2024 // this is only used by the VCF velocity curve
2025 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2026 91, 127, 127, 127 };
2027
2028 const int* const curves[] = { non0, non1, non2, non3, non4,
2029 lin0, lin1, lin2, lin3, lin4,
2030 spe0, spe1, spe2, spe3, spe4, spe5 };
2031
2032 double* const table = new double[128];
2033
2034 const int* curve = curves[curveType * 5 + depth];
2035 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2036
2037 table[0] = 0;
2038 for (int x = 1 ; x < 128 ; x++) {
2039
2040 if (x > curve[2]) curve += 2;
2041 double y = curve[1] + (x - curve[0]) *
2042 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2043 y = y / 127;
2044
2045 // Scale up for s > 20, down for s < 20. When
2046 // down-scaling, the curve still ends at 1.0.
2047 if (s < 20 && y >= 0.5)
2048 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2049 else
2050 y = y * (s / 20.0);
2051 if (y > 1) y = 1;
2052
2053 table[x] = y;
2054 }
2055 return table;
2056 }
2057
2058
2059 // *************** Region ***************
2060 // *
2061
2062 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2063 pInfo->UseFixedLengthStrings = true;
2064
2065 // Initialization
2066 Dimensions = 0;
2067 for (int i = 0; i < 256; i++) {
2068 pDimensionRegions[i] = NULL;
2069 }
2070 Layers = 1;
2071 File* file = (File*) GetParent()->GetParent();
2072 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2073
2074 // Actual Loading
2075
2076 LoadDimensionRegions(rgnList);
2077
2078 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2079 if (_3lnk) {
2080 DimensionRegions = _3lnk->ReadUint32();
2081 for (int i = 0; i < dimensionBits; i++) {
2082 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2083 uint8_t bits = _3lnk->ReadUint8();
2084 _3lnk->ReadUint8(); // probably the position of the dimension
2085 _3lnk->ReadUint8(); // unknown
2086 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2087 if (dimension == dimension_none) { // inactive dimension
2088 pDimensionDefinitions[i].dimension = dimension_none;
2089 pDimensionDefinitions[i].bits = 0;
2090 pDimensionDefinitions[i].zones = 0;
2091 pDimensionDefinitions[i].split_type = split_type_bit;
2092 pDimensionDefinitions[i].zone_size = 0;
2093 }
2094 else { // active dimension
2095 pDimensionDefinitions[i].dimension = dimension;
2096 pDimensionDefinitions[i].bits = bits;
2097 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2098 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2099 dimension == dimension_samplechannel ||
2100 dimension == dimension_releasetrigger ||
2101 dimension == dimension_keyboard ||
2102 dimension == dimension_roundrobin ||
2103 dimension == dimension_random) ? split_type_bit
2104 : split_type_normal;
2105 pDimensionDefinitions[i].zone_size =
2106 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2107 : 0;
2108 Dimensions++;
2109
2110 // if this is a layer dimension, remember the amount of layers
2111 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2112 }
2113 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2114 }
2115 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2116
2117 // if there's a velocity dimension and custom velocity zone splits are used,
2118 // update the VelocityTables in the dimension regions
2119 UpdateVelocityTable();
2120
2121 // jump to start of the wave pool indices (if not already there)
2122 if (file->pVersion && file->pVersion->major == 3)
2123 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2124 else
2125 _3lnk->SetPos(44);
2126
2127 // load sample references
2128 for (uint i = 0; i < DimensionRegions; i++) {
2129 uint32_t wavepoolindex = _3lnk->ReadUint32();
2130 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2131 }
2132 GetSample(); // load global region sample reference
2133 }
2134
2135 // make sure there is at least one dimension region
2136 if (!DimensionRegions) {
2137 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2138 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2139 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2140 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2141 DimensionRegions = 1;
2142 }
2143 }
2144
2145 /**
2146 * Apply Region settings and all its DimensionRegions to the respective
2147 * RIFF chunks. You have to call File::Save() to make changes persistent.
2148 *
2149 * Usually there is absolutely no need to call this method explicitly.
2150 * It will be called automatically when File::Save() was called.
2151 *
2152 * @throws gig::Exception if samples cannot be dereferenced
2153 */
2154 void Region::UpdateChunks() {
2155 // first update base class's chunks
2156 DLS::Region::UpdateChunks();
2157
2158 // update dimension region's chunks
2159 for (int i = 0; i < DimensionRegions; i++) {
2160 pDimensionRegions[i]->UpdateChunks();
2161 }
2162
2163 File* pFile = (File*) GetParent()->GetParent();
2164 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2165 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2166
2167 // make sure '3lnk' chunk exists
2168 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2169 if (!_3lnk) {
2170 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2171 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2172 }
2173
2174 // update dimension definitions in '3lnk' chunk
2175 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2176 memcpy(&pData[0], &DimensionRegions, 4);
2177 for (int i = 0; i < iMaxDimensions; i++) {
2178 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2179 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2180 // next 2 bytes unknown
2181 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2182 // next 3 bytes unknown
2183 }
2184
2185 // update wave pool table in '3lnk' chunk
2186 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2187 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2188 int iWaveIndex = -1;
2189 if (i < DimensionRegions) {
2190 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2191 File::SampleList::iterator iter = pFile->pSamples->begin();
2192 File::SampleList::iterator end = pFile->pSamples->end();
2193 for (int index = 0; iter != end; ++iter, ++index) {
2194 if (*iter == pDimensionRegions[i]->pSample) {
2195 iWaveIndex = index;
2196 break;
2197 }
2198 }
2199 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2200 }
2201 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2202 }
2203 }
2204
2205 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2206 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2207 if (_3prg) {
2208 int dimensionRegionNr = 0;
2209 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2210 while (_3ewl) {
2211 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2212 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2213 dimensionRegionNr++;
2214 }
2215 _3ewl = _3prg->GetNextSubList();
2216 }
2217 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2218 }
2219 }
2220
2221 void Region::UpdateVelocityTable() {
2222 // get velocity dimension's index
2223 int veldim = -1;
2224 for (int i = 0 ; i < Dimensions ; i++) {
2225 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2226 veldim = i;
2227 break;
2228 }
2229 }
2230 if (veldim == -1) return;
2231
2232 int step = 1;
2233 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2234 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2235 int end = step * pDimensionDefinitions[veldim].zones;
2236
2237 // loop through all dimension regions for all dimensions except the velocity dimension
2238 int dim[8] = { 0 };
2239 for (int i = 0 ; i < DimensionRegions ; i++) {
2240
2241 if (pDimensionRegions[i]->VelocityUpperLimit) {
2242 // create the velocity table
2243 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2244 if (!table) {
2245 table = new uint8_t[128];
2246 pDimensionRegions[i]->VelocityTable = table;
2247 }
2248 int tableidx = 0;
2249 int velocityZone = 0;
2250 for (int k = i ; k < end ; k += step) {
2251 DimensionRegion *d = pDimensionRegions[k];
2252 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2253 velocityZone++;
2254 }
2255 } else {
2256 if (pDimensionRegions[i]->VelocityTable) {
2257 delete[] pDimensionRegions[i]->VelocityTable;
2258 pDimensionRegions[i]->VelocityTable = 0;
2259 }
2260 }
2261
2262 int j;
2263 int shift = 0;
2264 for (j = 0 ; j < Dimensions ; j++) {
2265 if (j == veldim) i += skipveldim; // skip velocity dimension
2266 else {
2267 dim[j]++;
2268 if (dim[j] < pDimensionDefinitions[j].zones) break;
2269 else {
2270 // skip unused dimension regions
2271 dim[j] = 0;
2272 i += ((1 << pDimensionDefinitions[j].bits) -
2273 pDimensionDefinitions[j].zones) << shift;
2274 }
2275 }
2276 shift += pDimensionDefinitions[j].bits;
2277 }
2278 if (j == Dimensions) break;
2279 }
2280 }
2281
2282 /** @brief Einstein would have dreamed of it - create a new dimension.
2283 *
2284 * Creates a new dimension with the dimension definition given by
2285 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2286 * There is a hard limit of dimensions and total amount of "bits" all
2287 * dimensions can have. This limit is dependant to what gig file format
2288 * version this file refers to. The gig v2 (and lower) format has a
2289 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2290 * format has a limit of 8.
2291 *
2292 * @param pDimDef - defintion of the new dimension
2293 * @throws gig::Exception if dimension of the same type exists already
2294 * @throws gig::Exception if amount of dimensions or total amount of
2295 * dimension bits limit is violated
2296 */
2297 void Region::AddDimension(dimension_def_t* pDimDef) {
2298 // check if max. amount of dimensions reached
2299 File* file = (File*) GetParent()->GetParent();
2300 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2301 if (Dimensions >= iMaxDimensions)
2302 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2303 // check if max. amount of dimension bits reached
2304 int iCurrentBits = 0;
2305 for (int i = 0; i < Dimensions; i++)
2306 iCurrentBits += pDimensionDefinitions[i].bits;
2307 if (iCurrentBits >= iMaxDimensions)
2308 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2309 const int iNewBits = iCurrentBits + pDimDef->bits;
2310 if (iNewBits > iMaxDimensions)
2311 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2312 // check if there's already a dimensions of the same type
2313 for (int i = 0; i < Dimensions; i++)
2314 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2315 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2316
2317 // assign definition of new dimension
2318 pDimensionDefinitions[Dimensions] = *pDimDef;
2319
2320 // create new dimension region(s) for this new dimension
2321 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2322 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2323 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2324 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2325 DimensionRegions++;
2326 }
2327
2328 Dimensions++;
2329
2330 // if this is a layer dimension, update 'Layers' attribute
2331 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2332
2333 UpdateVelocityTable();
2334 }
2335
2336 /** @brief Delete an existing dimension.
2337 *
2338 * Deletes the dimension given by \a pDimDef and deletes all respective
2339 * dimension regions, that is all dimension regions where the dimension's
2340 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2341 * for example this would delete all dimension regions for the case(s)
2342 * where the sustain pedal is pressed down.
2343 *
2344 * @param pDimDef - dimension to delete
2345 * @throws gig::Exception if given dimension cannot be found
2346 */
2347 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2348 // get dimension's index
2349 int iDimensionNr = -1;
2350 for (int i = 0; i < Dimensions; i++) {
2351 if (&pDimensionDefinitions[i] == pDimDef) {
2352 iDimensionNr = i;
2353 break;
2354 }
2355 }
2356 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2357
2358 // get amount of bits below the dimension to delete
2359 int iLowerBits = 0;
2360 for (int i = 0; i < iDimensionNr; i++)
2361 iLowerBits += pDimensionDefinitions[i].bits;
2362
2363 // get amount ot bits above the dimension to delete
2364 int iUpperBits = 0;
2365 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2366 iUpperBits += pDimensionDefinitions[i].bits;
2367
2368 // delete dimension regions which belong to the given dimension
2369 // (that is where the dimension's bit > 0)
2370 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2371 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2372 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2373 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2374 iObsoleteBit << iLowerBits |
2375 iLowerBit;
2376 delete pDimensionRegions[iToDelete];
2377 pDimensionRegions[iToDelete] = NULL;
2378 DimensionRegions--;
2379 }
2380 }
2381 }
2382
2383 // defrag pDimensionRegions array
2384 // (that is remove the NULL spaces within the pDimensionRegions array)
2385 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2386 if (!pDimensionRegions[iTo]) {
2387 if (iFrom <= iTo) iFrom = iTo + 1;
2388 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2389 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2390 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2391 pDimensionRegions[iFrom] = NULL;
2392 }
2393 }
2394 }
2395
2396 // 'remove' dimension definition
2397 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2398 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2399 }
2400 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2401 pDimensionDefinitions[Dimensions - 1].bits = 0;
2402 pDimensionDefinitions[Dimensions - 1].zones = 0;
2403
2404 Dimensions--;
2405
2406 // if this was a layer dimension, update 'Layers' attribute
2407 if (pDimDef->dimension == dimension_layer) Layers = 1;
2408 }
2409
2410 Region::~Region() {
2411 for (int i = 0; i < 256; i++) {
2412 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2413 }
2414 }
2415
2416 /**
2417 * Use this method in your audio engine to get the appropriate dimension
2418 * region with it's articulation data for the current situation. Just
2419 * call the method with the current MIDI controller values and you'll get
2420 * the DimensionRegion with the appropriate articulation data for the
2421 * current situation (for this Region of course only). To do that you'll
2422 * first have to look which dimensions with which controllers and in
2423 * which order are defined for this Region when you load the .gig file.
2424 * Special cases are e.g. layer or channel dimensions where you just put
2425 * in the index numbers instead of a MIDI controller value (means 0 for
2426 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2427 * etc.).
2428 *
2429 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2430 * @returns adress to the DimensionRegion for the given situation
2431 * @see pDimensionDefinitions
2432 * @see Dimensions
2433 */
2434 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2435 uint8_t bits;
2436 int veldim = -1;
2437 int velbitpos;
2438 int bitpos = 0;
2439 int dimregidx = 0;
2440 for (uint i = 0; i < Dimensions; i++) {
2441 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2442 // the velocity dimension must be handled after the other dimensions
2443 veldim = i;
2444 velbitpos = bitpos;
2445 } else {
2446 switch (pDimensionDefinitions[i].split_type) {
2447 case split_type_normal:
2448 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2449 break;
2450 case split_type_bit: // the value is already the sought dimension bit number
2451 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2452 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2453 break;
2454 }
2455 dimregidx |= bits << bitpos;
2456 }
2457 bitpos += pDimensionDefinitions[i].bits;
2458 }
2459 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2460 if (veldim != -1) {
2461 // (dimreg is now the dimension region for the lowest velocity)
2462 if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2463 bits = dimreg->VelocityTable[DimValues[veldim]];
2464 else // normal split type
2465 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2466
2467 dimregidx |= bits << velbitpos;
2468 dimreg = pDimensionRegions[dimregidx];
2469 }
2470 return dimreg;
2471 }
2472
2473 /**
2474 * Returns the appropriate DimensionRegion for the given dimension bit
2475 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2476 * instead of calling this method directly!
2477 *
2478 * @param DimBits Bit numbers for dimension 0 to 7
2479 * @returns adress to the DimensionRegion for the given dimension
2480 * bit numbers
2481 * @see GetDimensionRegionByValue()
2482 */
2483 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2484 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2485 << pDimensionDefinitions[5].bits | DimBits[5])
2486 << pDimensionDefinitions[4].bits | DimBits[4])
2487 << pDimensionDefinitions[3].bits | DimBits[3])
2488 << pDimensionDefinitions[2].bits | DimBits[2])
2489 << pDimensionDefinitions[1].bits | DimBits[1])
2490 << pDimensionDefinitions[0].bits | DimBits[0]];
2491 }
2492
2493 /**
2494 * Returns pointer address to the Sample referenced with this region.
2495 * This is the global Sample for the entire Region (not sure if this is
2496 * actually used by the Gigasampler engine - I would only use the Sample
2497 * referenced by the appropriate DimensionRegion instead of this sample).
2498 *
2499 * @returns address to Sample or NULL if there is no reference to a
2500 * sample saved in the .gig file
2501 */
2502 Sample* Region::GetSample() {
2503 if (pSample) return static_cast<gig::Sample*>(pSample);
2504 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2505 }
2506
2507 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2508 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2509 File* file = (File*) GetParent()->GetParent();
2510 if (!file->pWavePoolTable) return NULL;
2511 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2512 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2513 Sample* sample = file->GetFirstSample(pProgress);
2514 while (sample) {
2515 if (sample->ulWavePoolOffset == soughtoffset &&
2516 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2517 sample = file->GetNextSample();
2518 }
2519 return NULL;
2520 }
2521
2522
2523
2524 // *************** Instrument ***************
2525 // *
2526
2527 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2528 pInfo->UseFixedLengthStrings = true;
2529
2530 // Initialization
2531 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2532
2533 // Loading
2534 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2535 if (lart) {
2536 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2537 if (_3ewg) {
2538 EffectSend = _3ewg->ReadUint16();
2539 Attenuation = _3ewg->ReadInt32();
2540 FineTune = _3ewg->ReadInt16();
2541 PitchbendRange = _3ewg->ReadInt16();
2542 uint8_t dimkeystart = _3ewg->ReadUint8();
2543 PianoReleaseMode = dimkeystart & 0x01;
2544 DimensionKeyRange.low = dimkeystart >> 1;
2545 DimensionKeyRange.high = _3ewg->ReadUint8();
2546 }
2547 }
2548
2549 if (!pRegions) pRegions = new RegionList;
2550 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2551 if (lrgn) {
2552 RIFF::List* rgn = lrgn->GetFirstSubList();
2553 while (rgn) {
2554 if (rgn->GetListType() == LIST_TYPE_RGN) {
2555 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2556 pRegions->push_back(new Region(this, rgn));
2557 }
2558 rgn = lrgn->GetNextSubList();
2559 }
2560 // Creating Region Key Table for fast lookup
2561 UpdateRegionKeyTable();
2562 }
2563
2564 __notify_progress(pProgress, 1.0f); // notify done
2565 }
2566
2567 void Instrument::UpdateRegionKeyTable() {
2568 RegionList::iterator iter = pRegions->begin();
2569 RegionList::iterator end = pRegions->end();
2570 for (; iter != end; ++iter) {
2571 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2572 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2573 RegionKeyTable[iKey] = pRegion;
2574 }
2575 }
2576 }
2577
2578 Instrument::~Instrument() {
2579 }
2580
2581 /**
2582 * Apply Instrument with all its Regions to the respective RIFF chunks.
2583 * You have to call File::Save() to make changes persistent.
2584 *
2585 * Usually there is absolutely no need to call this method explicitly.
2586 * It will be called automatically when File::Save() was called.
2587 *
2588 * @throws gig::Exception if samples cannot be dereferenced
2589 */
2590 void Instrument::UpdateChunks() {
2591 // first update base classes' chunks
2592 DLS::Instrument::UpdateChunks();
2593
2594 // update Regions' chunks
2595 {
2596 RegionList::iterator iter = pRegions->begin();
2597 RegionList::iterator end = pRegions->end();
2598 for (; iter != end; ++iter)
2599 (*iter)->UpdateChunks();
2600 }
2601
2602 // make sure 'lart' RIFF list chunk exists
2603 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2604 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2605 // make sure '3ewg' RIFF chunk exists
2606 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2607 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2608 // update '3ewg' RIFF chunk
2609 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2610 memcpy(&pData[0], &EffectSend, 2);
2611 memcpy(&pData[2], &Attenuation, 4);
2612 memcpy(&pData[6], &FineTune, 2);
2613 memcpy(&pData[8], &PitchbendRange, 2);
2614 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2615 DimensionKeyRange.low << 1;
2616 memcpy(&pData[10], &dimkeystart, 1);
2617 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2618 }
2619
2620 /**
2621 * Returns the appropriate Region for a triggered note.
2622 *
2623 * @param Key MIDI Key number of triggered note / key (0 - 127)
2624 * @returns pointer adress to the appropriate Region or NULL if there
2625 * there is no Region defined for the given \a Key
2626 */
2627 Region* Instrument::GetRegion(unsigned int Key) {
2628 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2629 return RegionKeyTable[Key];
2630
2631 /*for (int i = 0; i < Regions; i++) {
2632 if (Key <= pRegions[i]->KeyRange.high &&
2633 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2634 }
2635 return NULL;*/
2636 }
2637
2638 /**
2639 * Returns the first Region of the instrument. You have to call this
2640 * method once before you use GetNextRegion().
2641 *
2642 * @returns pointer address to first region or NULL if there is none
2643 * @see GetNextRegion()
2644 */
2645 Region* Instrument::GetFirstRegion() {
2646 if (!pRegions) return NULL;
2647 RegionsIterator = pRegions->begin();
2648 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2649 }
2650
2651 /**
2652 * Returns the next Region of the instrument. You have to call
2653 * GetFirstRegion() once before you can use this method. By calling this
2654 * method multiple times it iterates through the available Regions.
2655 *
2656 * @returns pointer address to the next region or NULL if end reached
2657 * @see GetFirstRegion()
2658 */
2659 Region* Instrument::GetNextRegion() {
2660 if (!pRegions) return NULL;
2661 RegionsIterator++;
2662 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2663 }
2664
2665 Region* Instrument::AddRegion() {
2666 // create new Region object (and its RIFF chunks)
2667 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2668 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2669 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2670 Region* pNewRegion = new Region(this, rgn);
2671 pRegions->push_back(pNewRegion);
2672 Regions = pRegions->size();
2673 // update Region key table for fast lookup
2674 UpdateRegionKeyTable();
2675 // done
2676 return pNewRegion;
2677 }
2678
2679 void Instrument::DeleteRegion(Region* pRegion) {
2680 if (!pRegions) return;
2681 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2682 // update Region key table for fast lookup
2683 UpdateRegionKeyTable();
2684 }
2685
2686
2687
2688 // *************** Group ***************
2689 // *
2690
2691 /** @brief Constructor.
2692 *
2693 * @param file - pointer to the RIFF::File object of this .gig file
2694 * @param ck3gnm - pointer to 3gnm chunk associated with this group
2695 */
2696 Group::Group(RIFF::File* file, RIFF::Chunk* ck3gnm) {
2697 pFile = file;
2698 pNameChunk = ck3gnm;
2699 ::LoadString(pNameChunk, Name);
2700 }
2701
2702 Group::~Group() {
2703 }
2704
2705 /** @brief Update chunks with current group settings.
2706 *
2707 * Apply current Group field values to the respective. You have to call
2708 * File::Save() to make changes persistent.
2709 */
2710 void Group::UpdateChunks() {
2711 // make sure <3gri> and <3gnl> list chunks exist
2712 RIFF::List* _3gri = pFile->GetSubList(LIST_TYPE_3GRI);
2713 if (!_3gri) _3gri = pFile->AddSubList(LIST_TYPE_3GRI);
2714 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2715 if (!_3gnl) _3gnl = pFile->AddSubList(LIST_TYPE_3GNL);
2716 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2717 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2718 }
2719
2720
2721
2722 // *************** File ***************
2723 // *
2724
2725 File::File() : DLS::File() {
2726 pGroups = NULL;
2727 pInfo->UseFixedLengthStrings = true;
2728 }
2729
2730 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2731 pGroups = NULL;
2732 pInfo->UseFixedLengthStrings = true;
2733 }
2734
2735 File::~File() {
2736 if (pGroups) {
2737 std::list<Group*>::iterator iter = pGroups->begin();
2738 std::list<Group*>::iterator end = pGroups->end();
2739 while (iter != end) {
2740 delete *iter;
2741 ++iter;
2742 }
2743 delete pGroups;
2744 }
2745 }
2746
2747 Sample* File::GetFirstSample(progress_t* pProgress) {
2748 if (!pSamples) LoadSamples(pProgress);
2749 if (!pSamples) return NULL;
2750 SamplesIterator = pSamples->begin();
2751 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2752 }
2753
2754 Sample* File::GetNextSample() {
2755 if (!pSamples) return NULL;
2756 SamplesIterator++;
2757 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2758 }
2759
2760 /** @brief Add a new sample.
2761 *
2762 * This will create a new Sample object for the gig file. You have to
2763 * call Save() to make this persistent to the file.
2764 *
2765 * @returns pointer to new Sample object
2766 */
2767 Sample* File::AddSample() {
2768 if (!pSamples) LoadSamples();
2769 __ensureMandatoryChunksExist();
2770 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2771 // create new Sample object and its respective 'wave' list chunk
2772 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2773 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2774 pSamples->push_back(pSample);
2775 return pSample;
2776 }
2777
2778 /** @brief Delete a sample.
2779 *
2780 * This will delete the given Sample object from the gig file. You have
2781 * to call Save() to make this persistent to the file.
2782 *
2783 * @param pSample - sample to delete
2784 * @throws gig::Exception if given sample could not be found
2785 */
2786 void File::DeleteSample(Sample* pSample) {
2787 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2788 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2789 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2790 pSamples->erase(iter);
2791 delete pSample;
2792 }
2793
2794 void File::LoadSamples() {
2795 LoadSamples(NULL);
2796 }
2797
2798 void File::LoadSamples(progress_t* pProgress) {
2799 if (!pSamples) pSamples = new SampleList;
2800
2801 RIFF::File* file = pRIFF;
2802
2803 // just for progress calculation
2804 int iSampleIndex = 0;
2805 int iTotalSamples = WavePoolCount;
2806
2807 // check if samples should be loaded from extension files
2808 int lastFileNo = 0;
2809 for (int i = 0 ; i < WavePoolCount ; i++) {
2810 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2811 }
2812 String name(pRIFF->GetFileName());
2813 int nameLen = name.length();
2814 char suffix[6];
2815 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2816
2817 for (int fileNo = 0 ; ; ) {
2818 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2819 if (wvpl) {
2820 unsigned long wvplFileOffset = wvpl->GetFilePos();
2821 RIFF::List* wave = wvpl->GetFirstSubList();
2822 while (wave) {
2823 if (wave->GetListType() == LIST_TYPE_WAVE) {
2824 // notify current progress
2825 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2826 __notify_progress(pProgress, subprogress);
2827
2828 unsigned long waveFileOffset = wave->GetFilePos();
2829 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2830
2831 iSampleIndex++;
2832 }
2833 wave = wvpl->GetNextSubList();
2834 }
2835
2836 if (fileNo == lastFileNo) break;
2837
2838 // open extension file (*.gx01, *.gx02, ...)
2839 fileNo++;
2840 sprintf(suffix, ".gx%02d", fileNo);
2841 name.replace(nameLen, 5, suffix);
2842 file = new RIFF::File(name);
2843 ExtensionFiles.push_back(file);
2844 } else break;
2845 }
2846
2847 __notify_progress(pProgress, 1.0); // notify done
2848 }
2849
2850 Instrument* File::GetFirstInstrument() {
2851 if (!pInstruments) LoadInstruments();
2852 if (!pInstruments) return NULL;
2853 InstrumentsIterator = pInstruments->begin();
2854 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2855 }
2856
2857 Instrument* File::GetNextInstrument() {
2858 if (!pInstruments) return NULL;
2859 InstrumentsIterator++;
2860 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2861 }
2862
2863 /**
2864 * Returns the instrument with the given index.
2865 *
2866 * @param index - number of the sought instrument (0..n)
2867 * @param pProgress - optional: callback function for progress notification
2868 * @returns sought instrument or NULL if there's no such instrument
2869 */
2870 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2871 if (!pInstruments) {
2872 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2873
2874 // sample loading subtask
2875 progress_t subprogress;
2876 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2877 __notify_progress(&subprogress, 0.0f);
2878 GetFirstSample(&subprogress); // now force all samples to be loaded
2879 __notify_progress(&subprogress, 1.0f);
2880
2881 // instrument loading subtask
2882 if (pProgress && pProgress->callback) {
2883 subprogress.__range_min = subprogress.__range_max;
2884 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2885 }
2886 __notify_progress(&subprogress, 0.0f);
2887 LoadInstruments(&subprogress);
2888 __notify_progress(&subprogress, 1.0f);
2889 }
2890 if (!pInstruments) return NULL;
2891 InstrumentsIterator = pInstruments->begin();
2892 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2893 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2894 InstrumentsIterator++;
2895 }
2896 return NULL;
2897 }
2898
2899 /** @brief Add a new instrument definition.
2900 *
2901 * This will create a new Instrument object for the gig file. You have
2902 * to call Save() to make this persistent to the file.
2903 *
2904 * @returns pointer to new Instrument object
2905 */
2906 Instrument* File::AddInstrument() {
2907 if (!pInstruments) LoadInstruments();
2908 __ensureMandatoryChunksExist();
2909 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2910 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2911 Instrument* pInstrument = new Instrument(this, lstInstr);
2912 pInstruments->push_back(pInstrument);
2913 return pInstrument;
2914 }
2915
2916 /** @brief Delete an instrument.
2917 *
2918 * This will delete the given Instrument object from the gig file. You
2919 * have to call Save() to make this persistent to the file.
2920 *
2921 * @param pInstrument - instrument to delete
2922 * @throws gig::Excption if given instrument could not be found
2923 */
2924 void File::DeleteInstrument(Instrument* pInstrument) {
2925 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2926 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2927 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2928 pInstruments->erase(iter);
2929 delete pInstrument;
2930 }
2931
2932 void File::LoadInstruments() {
2933 LoadInstruments(NULL);
2934 }
2935
2936 void File::LoadInstruments(progress_t* pProgress) {
2937 if (!pInstruments) pInstruments = new InstrumentList;
2938 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2939 if (lstInstruments) {
2940 int iInstrumentIndex = 0;
2941 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2942 while (lstInstr) {
2943 if (lstInstr->GetListType() == LIST_TYPE_INS) {
2944 // notify current progress
2945 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2946 __notify_progress(pProgress, localProgress);
2947
2948 // divide local progress into subprogress for loading current Instrument
2949 progress_t subprogress;
2950 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2951
2952 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2953
2954 iInstrumentIndex++;
2955 }
2956 lstInstr = lstInstruments->GetNextSubList();
2957 }
2958 __notify_progress(pProgress, 1.0); // notify done
2959 }
2960 }
2961
2962 Group* File::GetFirstGroup() {
2963 if (!pGroups) LoadGroups();
2964 if (!pGroups) return NULL;
2965 GroupsIterator = pGroups->begin();
2966 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
2967 }
2968
2969 Group* File::GetNextGroup() {
2970 if (!pGroups) return NULL;
2971 ++GroupsIterator;
2972 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
2973 }
2974
2975 /**
2976 * Returns the group with the given index.
2977 *
2978 * @param index - number of the sought group (0..n)
2979 * @returns sought group or NULL if there's no such group
2980 */
2981 Group* File::GetGroup(uint index) {
2982 if (!pGroups) LoadGroups();
2983 if (!pGroups) return NULL;
2984 GroupsIterator = pGroups->begin();
2985 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
2986 if (i == index) return *GroupsIterator;
2987 ++GroupsIterator;
2988 }
2989 return NULL;
2990 }
2991
2992 Group* File::AddGroup() {
2993 if (!pGroups) LoadGroups();
2994 if (!pGroups) pGroups = new std::list<Group*>;
2995 __ensureMandatoryChunksExist();
2996 Group* pGroup = new Group(pRIFF, NULL);
2997 pGroups->push_back(pGroup);
2998 return pGroup;
2999 }
3000
3001 void File::DeleteGroup(Group* pGroup) {
3002 if (!pGroups) throw gig::Exception("Could not delete group as there are no groups");
3003 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3004 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3005 pGroups->erase(iter);
3006 delete pGroup;
3007 }
3008
3009 void File::LoadGroups() {
3010 if (!pGroups) pGroups = new std::list<Group*>;
3011 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3012 if (!lst3gri) return;
3013 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3014 if (!lst3gnl) return;
3015 {
3016 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3017 while (ck) {
3018 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3019 pGroups->push_back(new Group(pRIFF, ck));
3020 }
3021 ck = lst3gnl->GetNextSubChunk();
3022 }
3023 }
3024 }
3025
3026
3027
3028 // *************** Exception ***************
3029 // *
3030
3031 Exception::Exception(String Message) : DLS::Exception(Message) {
3032 }
3033
3034 void Exception::PrintMessage() {
3035 std::cout << "gig::Exception: " << Message << std::endl;
3036 }
3037
3038
3039 // *************** functions ***************
3040 // *
3041
3042 /**
3043 * Returns the name of this C++ library. This is usually "libgig" of
3044 * course. This call is equivalent to RIFF::libraryName() and
3045 * DLS::libraryName().
3046 */
3047 String libraryName() {
3048 return PACKAGE;
3049 }
3050
3051 /**
3052 * Returns version of this C++ library. This call is equivalent to
3053 * RIFF::libraryVersion() and DLS::libraryVersion().
3054 */
3055 String libraryVersion() {
3056 return VERSION;
3057 }
3058
3059 } // namespace gig

  ViewVC Help
Powered by ViewVC