/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 933 - (show annotations) (download)
Fri Nov 24 12:50:05 2006 UTC (12 years, 6 months ago) by schoenebeck
File size: 141748 byte(s)
* preparations for release 3.1.0

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2006 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257 // *************** Sample ***************
258 // *
259
260 unsigned int Sample::Instances = 0;
261 buffer_t Sample::InternalDecompressionBuffer;
262
263 /** @brief Constructor.
264 *
265 * Load an existing sample or create a new one. A 'wave' list chunk must
266 * be given to this constructor. In case the given 'wave' list chunk
267 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268 * format and sample data will be loaded from there, otherwise default
269 * values will be used and those chunks will be created when
270 * File::Save() will be called later on.
271 *
272 * @param pFile - pointer to gig::File where this sample is
273 * located (or will be located)
274 * @param waveList - pointer to 'wave' list chunk which is (or
275 * will be) associated with this sample
276 * @param WavePoolOffset - offset of this sample data from wave pool
277 * ('wvpl') list chunk
278 * @param fileNo - number of an extension file where this sample
279 * is located, 0 otherwise
280 */
281 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 pInfo->UseFixedLengthStrings = true;
283 Instances++;
284 FileNo = fileNo;
285
286 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287 if (pCk3gix) {
288 uint16_t iSampleGroup = pCk3gix->ReadInt16();
289 pGroup = pFile->GetGroup(iSampleGroup);
290 } else { // '3gix' chunk missing
291 // by default assigned to that mandatory "Default Group"
292 pGroup = pFile->GetGroup(0);
293 }
294
295 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
296 if (pCkSmpl) {
297 Manufacturer = pCkSmpl->ReadInt32();
298 Product = pCkSmpl->ReadInt32();
299 SamplePeriod = pCkSmpl->ReadInt32();
300 MIDIUnityNote = pCkSmpl->ReadInt32();
301 FineTune = pCkSmpl->ReadInt32();
302 pCkSmpl->Read(&SMPTEFormat, 1, 4);
303 SMPTEOffset = pCkSmpl->ReadInt32();
304 Loops = pCkSmpl->ReadInt32();
305 pCkSmpl->ReadInt32(); // manufByt
306 LoopID = pCkSmpl->ReadInt32();
307 pCkSmpl->Read(&LoopType, 1, 4);
308 LoopStart = pCkSmpl->ReadInt32();
309 LoopEnd = pCkSmpl->ReadInt32();
310 LoopFraction = pCkSmpl->ReadInt32();
311 LoopPlayCount = pCkSmpl->ReadInt32();
312 } else { // 'smpl' chunk missing
313 // use default values
314 Manufacturer = 0;
315 Product = 0;
316 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
317 MIDIUnityNote = 64;
318 FineTune = 0;
319 SMPTEOffset = 0;
320 Loops = 0;
321 LoopID = 0;
322 LoopStart = 0;
323 LoopEnd = 0;
324 LoopFraction = 0;
325 LoopPlayCount = 0;
326 }
327
328 FrameTable = NULL;
329 SamplePos = 0;
330 RAMCache.Size = 0;
331 RAMCache.pStart = NULL;
332 RAMCache.NullExtensionSize = 0;
333
334 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
335
336 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
337 Compressed = ewav;
338 Dithered = false;
339 TruncatedBits = 0;
340 if (Compressed) {
341 uint32_t version = ewav->ReadInt32();
342 if (version == 3 && BitDepth == 24) {
343 Dithered = ewav->ReadInt32();
344 ewav->SetPos(Channels == 2 ? 84 : 64);
345 TruncatedBits = ewav->ReadInt32();
346 }
347 ScanCompressedSample();
348 }
349
350 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
351 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
352 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
353 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
354 }
355 FrameOffset = 0; // just for streaming compressed samples
356
357 LoopSize = LoopEnd - LoopStart + 1;
358 }
359
360 /**
361 * Apply sample and its settings to the respective RIFF chunks. You have
362 * to call File::Save() to make changes persistent.
363 *
364 * Usually there is absolutely no need to call this method explicitly.
365 * It will be called automatically when File::Save() was called.
366 *
367 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
368 * was provided yet
369 * @throws gig::Exception if there is any invalid sample setting
370 */
371 void Sample::UpdateChunks() {
372 // first update base class's chunks
373 DLS::Sample::UpdateChunks();
374
375 // make sure 'smpl' chunk exists
376 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
377 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
378 // update 'smpl' chunk
379 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
380 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
381 memcpy(&pData[0], &Manufacturer, 4);
382 memcpy(&pData[4], &Product, 4);
383 memcpy(&pData[8], &SamplePeriod, 4);
384 memcpy(&pData[12], &MIDIUnityNote, 4);
385 memcpy(&pData[16], &FineTune, 4);
386 memcpy(&pData[20], &SMPTEFormat, 4);
387 memcpy(&pData[24], &SMPTEOffset, 4);
388 memcpy(&pData[28], &Loops, 4);
389
390 // we skip 'manufByt' for now (4 bytes)
391
392 memcpy(&pData[36], &LoopID, 4);
393 memcpy(&pData[40], &LoopType, 4);
394 memcpy(&pData[44], &LoopStart, 4);
395 memcpy(&pData[48], &LoopEnd, 4);
396 memcpy(&pData[52], &LoopFraction, 4);
397 memcpy(&pData[56], &LoopPlayCount, 4);
398
399 // make sure '3gix' chunk exists
400 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
401 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
402 // determine appropriate sample group index (to be stored in chunk)
403 uint16_t iSampleGroup = 0; // 0 refers to default sample group
404 File* pFile = static_cast<File*>(pParent);
405 if (pFile->pGroups) {
406 std::list<Group*>::iterator iter = pFile->pGroups->begin();
407 std::list<Group*>::iterator end = pFile->pGroups->end();
408 for (int i = 0; iter != end; i++, iter++) {
409 if (*iter == pGroup) {
410 iSampleGroup = i;
411 break; // found
412 }
413 }
414 }
415 // update '3gix' chunk
416 pData = (uint8_t*) pCk3gix->LoadChunkData();
417 memcpy(&pData[0], &iSampleGroup, 2);
418 }
419
420 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
421 void Sample::ScanCompressedSample() {
422 //TODO: we have to add some more scans here (e.g. determine compression rate)
423 this->SamplesTotal = 0;
424 std::list<unsigned long> frameOffsets;
425
426 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
427 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
428
429 // Scanning
430 pCkData->SetPos(0);
431 if (Channels == 2) { // Stereo
432 for (int i = 0 ; ; i++) {
433 // for 24 bit samples every 8:th frame offset is
434 // stored, to save some memory
435 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
436
437 const int mode_l = pCkData->ReadUint8();
438 const int mode_r = pCkData->ReadUint8();
439 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
440 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
441
442 if (pCkData->RemainingBytes() <= frameSize) {
443 SamplesInLastFrame =
444 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
445 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
446 SamplesTotal += SamplesInLastFrame;
447 break;
448 }
449 SamplesTotal += SamplesPerFrame;
450 pCkData->SetPos(frameSize, RIFF::stream_curpos);
451 }
452 }
453 else { // Mono
454 for (int i = 0 ; ; i++) {
455 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
456
457 const int mode = pCkData->ReadUint8();
458 if (mode > 5) throw gig::Exception("Unknown compression mode");
459 const unsigned long frameSize = bytesPerFrame[mode];
460
461 if (pCkData->RemainingBytes() <= frameSize) {
462 SamplesInLastFrame =
463 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
464 SamplesTotal += SamplesInLastFrame;
465 break;
466 }
467 SamplesTotal += SamplesPerFrame;
468 pCkData->SetPos(frameSize, RIFF::stream_curpos);
469 }
470 }
471 pCkData->SetPos(0);
472
473 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
474 if (FrameTable) delete[] FrameTable;
475 FrameTable = new unsigned long[frameOffsets.size()];
476 std::list<unsigned long>::iterator end = frameOffsets.end();
477 std::list<unsigned long>::iterator iter = frameOffsets.begin();
478 for (int i = 0; iter != end; i++, iter++) {
479 FrameTable[i] = *iter;
480 }
481 }
482
483 /**
484 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
485 * ReleaseSampleData() to free the memory if you don't need the cached
486 * sample data anymore.
487 *
488 * @returns buffer_t structure with start address and size of the buffer
489 * in bytes
490 * @see ReleaseSampleData(), Read(), SetPos()
491 */
492 buffer_t Sample::LoadSampleData() {
493 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
494 }
495
496 /**
497 * Reads (uncompresses if needed) and caches the first \a SampleCount
498 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
499 * memory space if you don't need the cached samples anymore. There is no
500 * guarantee that exactly \a SampleCount samples will be cached; this is
501 * not an error. The size will be eventually truncated e.g. to the
502 * beginning of a frame of a compressed sample. This is done for
503 * efficiency reasons while streaming the wave by your sampler engine
504 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
505 * that will be returned to determine the actual cached samples, but note
506 * that the size is given in bytes! You get the number of actually cached
507 * samples by dividing it by the frame size of the sample:
508 * @code
509 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
510 * long cachedsamples = buf.Size / pSample->FrameSize;
511 * @endcode
512 *
513 * @param SampleCount - number of sample points to load into RAM
514 * @returns buffer_t structure with start address and size of
515 * the cached sample data in bytes
516 * @see ReleaseSampleData(), Read(), SetPos()
517 */
518 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
519 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
520 }
521
522 /**
523 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
524 * ReleaseSampleData() to free the memory if you don't need the cached
525 * sample data anymore.
526 * The method will add \a NullSamplesCount silence samples past the
527 * official buffer end (this won't affect the 'Size' member of the
528 * buffer_t structure, that means 'Size' always reflects the size of the
529 * actual sample data, the buffer might be bigger though). Silence
530 * samples past the official buffer are needed for differential
531 * algorithms that always have to take subsequent samples into account
532 * (resampling/interpolation would be an important example) and avoids
533 * memory access faults in such cases.
534 *
535 * @param NullSamplesCount - number of silence samples the buffer should
536 * be extended past it's data end
537 * @returns buffer_t structure with start address and
538 * size of the buffer in bytes
539 * @see ReleaseSampleData(), Read(), SetPos()
540 */
541 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
542 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
543 }
544
545 /**
546 * Reads (uncompresses if needed) and caches the first \a SampleCount
547 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
548 * memory space if you don't need the cached samples anymore. There is no
549 * guarantee that exactly \a SampleCount samples will be cached; this is
550 * not an error. The size will be eventually truncated e.g. to the
551 * beginning of a frame of a compressed sample. This is done for
552 * efficiency reasons while streaming the wave by your sampler engine
553 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
554 * that will be returned to determine the actual cached samples, but note
555 * that the size is given in bytes! You get the number of actually cached
556 * samples by dividing it by the frame size of the sample:
557 * @code
558 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
559 * long cachedsamples = buf.Size / pSample->FrameSize;
560 * @endcode
561 * The method will add \a NullSamplesCount silence samples past the
562 * official buffer end (this won't affect the 'Size' member of the
563 * buffer_t structure, that means 'Size' always reflects the size of the
564 * actual sample data, the buffer might be bigger though). Silence
565 * samples past the official buffer are needed for differential
566 * algorithms that always have to take subsequent samples into account
567 * (resampling/interpolation would be an important example) and avoids
568 * memory access faults in such cases.
569 *
570 * @param SampleCount - number of sample points to load into RAM
571 * @param NullSamplesCount - number of silence samples the buffer should
572 * be extended past it's data end
573 * @returns buffer_t structure with start address and
574 * size of the cached sample data in bytes
575 * @see ReleaseSampleData(), Read(), SetPos()
576 */
577 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
578 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
579 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
580 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
581 RAMCache.pStart = new int8_t[allocationsize];
582 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
583 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
584 // fill the remaining buffer space with silence samples
585 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
586 return GetCache();
587 }
588
589 /**
590 * Returns current cached sample points. A buffer_t structure will be
591 * returned which contains address pointer to the begin of the cache and
592 * the size of the cached sample data in bytes. Use
593 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
594 * RAM.
595 *
596 * @returns buffer_t structure with current cached sample points
597 * @see LoadSampleData();
598 */
599 buffer_t Sample::GetCache() {
600 // return a copy of the buffer_t structure
601 buffer_t result;
602 result.Size = this->RAMCache.Size;
603 result.pStart = this->RAMCache.pStart;
604 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
605 return result;
606 }
607
608 /**
609 * Frees the cached sample from RAM if loaded with
610 * <i>LoadSampleData()</i> previously.
611 *
612 * @see LoadSampleData();
613 */
614 void Sample::ReleaseSampleData() {
615 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
616 RAMCache.pStart = NULL;
617 RAMCache.Size = 0;
618 }
619
620 /** @brief Resize sample.
621 *
622 * Resizes the sample's wave form data, that is the actual size of
623 * sample wave data possible to be written for this sample. This call
624 * will return immediately and just schedule the resize operation. You
625 * should call File::Save() to actually perform the resize operation(s)
626 * "physically" to the file. As this can take a while on large files, it
627 * is recommended to call Resize() first on all samples which have to be
628 * resized and finally to call File::Save() to perform all those resize
629 * operations in one rush.
630 *
631 * The actual size (in bytes) is dependant to the current FrameSize
632 * value. You may want to set FrameSize before calling Resize().
633 *
634 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
635 * enlarged samples before calling File::Save() as this might exceed the
636 * current sample's boundary!
637 *
638 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
639 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
640 * other formats will fail!
641 *
642 * @param iNewSize - new sample wave data size in sample points (must be
643 * greater than zero)
644 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
645 * or if \a iNewSize is less than 1
646 * @throws gig::Exception if existing sample is compressed
647 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
648 * DLS::Sample::FormatTag, File::Save()
649 */
650 void Sample::Resize(int iNewSize) {
651 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
652 DLS::Sample::Resize(iNewSize);
653 }
654
655 /**
656 * Sets the position within the sample (in sample points, not in
657 * bytes). Use this method and <i>Read()</i> if you don't want to load
658 * the sample into RAM, thus for disk streaming.
659 *
660 * Although the original Gigasampler engine doesn't allow positioning
661 * within compressed samples, I decided to implement it. Even though
662 * the Gigasampler format doesn't allow to define loops for compressed
663 * samples at the moment, positioning within compressed samples might be
664 * interesting for some sampler engines though. The only drawback about
665 * my decision is that it takes longer to load compressed gig Files on
666 * startup, because it's neccessary to scan the samples for some
667 * mandatory informations. But I think as it doesn't affect the runtime
668 * efficiency, nobody will have a problem with that.
669 *
670 * @param SampleCount number of sample points to jump
671 * @param Whence optional: to which relation \a SampleCount refers
672 * to, if omited <i>RIFF::stream_start</i> is assumed
673 * @returns the new sample position
674 * @see Read()
675 */
676 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
677 if (Compressed) {
678 switch (Whence) {
679 case RIFF::stream_curpos:
680 this->SamplePos += SampleCount;
681 break;
682 case RIFF::stream_end:
683 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
684 break;
685 case RIFF::stream_backward:
686 this->SamplePos -= SampleCount;
687 break;
688 case RIFF::stream_start: default:
689 this->SamplePos = SampleCount;
690 break;
691 }
692 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
693
694 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
695 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
696 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
697 return this->SamplePos;
698 }
699 else { // not compressed
700 unsigned long orderedBytes = SampleCount * this->FrameSize;
701 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
702 return (result == orderedBytes) ? SampleCount
703 : result / this->FrameSize;
704 }
705 }
706
707 /**
708 * Returns the current position in the sample (in sample points).
709 */
710 unsigned long Sample::GetPos() {
711 if (Compressed) return SamplePos;
712 else return pCkData->GetPos() / FrameSize;
713 }
714
715 /**
716 * Reads \a SampleCount number of sample points from the position stored
717 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
718 * the position within the sample respectively, this method honors the
719 * looping informations of the sample (if any). The sample wave stream
720 * will be decompressed on the fly if using a compressed sample. Use this
721 * method if you don't want to load the sample into RAM, thus for disk
722 * streaming. All this methods needs to know to proceed with streaming
723 * for the next time you call this method is stored in \a pPlaybackState.
724 * You have to allocate and initialize the playback_state_t structure by
725 * yourself before you use it to stream a sample:
726 * @code
727 * gig::playback_state_t playbackstate;
728 * playbackstate.position = 0;
729 * playbackstate.reverse = false;
730 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
731 * @endcode
732 * You don't have to take care of things like if there is actually a loop
733 * defined or if the current read position is located within a loop area.
734 * The method already handles such cases by itself.
735 *
736 * <b>Caution:</b> If you are using more than one streaming thread, you
737 * have to use an external decompression buffer for <b>EACH</b>
738 * streaming thread to avoid race conditions and crashes!
739 *
740 * @param pBuffer destination buffer
741 * @param SampleCount number of sample points to read
742 * @param pPlaybackState will be used to store and reload the playback
743 * state for the next ReadAndLoop() call
744 * @param pDimRgn dimension region with looping information
745 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
746 * @returns number of successfully read sample points
747 * @see CreateDecompressionBuffer()
748 */
749 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
750 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
751 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
752 uint8_t* pDst = (uint8_t*) pBuffer;
753
754 SetPos(pPlaybackState->position); // recover position from the last time
755
756 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
757
758 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
759 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
760
761 if (GetPos() <= loopEnd) {
762 switch (loop.LoopType) {
763
764 case loop_type_bidirectional: { //TODO: not tested yet!
765 do {
766 // if not endless loop check if max. number of loop cycles have been passed
767 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
768
769 if (!pPlaybackState->reverse) { // forward playback
770 do {
771 samplestoloopend = loopEnd - GetPos();
772 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
773 samplestoread -= readsamples;
774 totalreadsamples += readsamples;
775 if (readsamples == samplestoloopend) {
776 pPlaybackState->reverse = true;
777 break;
778 }
779 } while (samplestoread && readsamples);
780 }
781 else { // backward playback
782
783 // as we can only read forward from disk, we have to
784 // determine the end position within the loop first,
785 // read forward from that 'end' and finally after
786 // reading, swap all sample frames so it reflects
787 // backward playback
788
789 unsigned long swapareastart = totalreadsamples;
790 unsigned long loopoffset = GetPos() - loop.LoopStart;
791 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
792 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
793
794 SetPos(reverseplaybackend);
795
796 // read samples for backward playback
797 do {
798 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
799 samplestoreadinloop -= readsamples;
800 samplestoread -= readsamples;
801 totalreadsamples += readsamples;
802 } while (samplestoreadinloop && readsamples);
803
804 SetPos(reverseplaybackend); // pretend we really read backwards
805
806 if (reverseplaybackend == loop.LoopStart) {
807 pPlaybackState->loop_cycles_left--;
808 pPlaybackState->reverse = false;
809 }
810
811 // reverse the sample frames for backward playback
812 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
813 }
814 } while (samplestoread && readsamples);
815 break;
816 }
817
818 case loop_type_backward: { // TODO: not tested yet!
819 // forward playback (not entered the loop yet)
820 if (!pPlaybackState->reverse) do {
821 samplestoloopend = loopEnd - GetPos();
822 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
823 samplestoread -= readsamples;
824 totalreadsamples += readsamples;
825 if (readsamples == samplestoloopend) {
826 pPlaybackState->reverse = true;
827 break;
828 }
829 } while (samplestoread && readsamples);
830
831 if (!samplestoread) break;
832
833 // as we can only read forward from disk, we have to
834 // determine the end position within the loop first,
835 // read forward from that 'end' and finally after
836 // reading, swap all sample frames so it reflects
837 // backward playback
838
839 unsigned long swapareastart = totalreadsamples;
840 unsigned long loopoffset = GetPos() - loop.LoopStart;
841 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
842 : samplestoread;
843 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
844
845 SetPos(reverseplaybackend);
846
847 // read samples for backward playback
848 do {
849 // if not endless loop check if max. number of loop cycles have been passed
850 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
851 samplestoloopend = loopEnd - GetPos();
852 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
853 samplestoreadinloop -= readsamples;
854 samplestoread -= readsamples;
855 totalreadsamples += readsamples;
856 if (readsamples == samplestoloopend) {
857 pPlaybackState->loop_cycles_left--;
858 SetPos(loop.LoopStart);
859 }
860 } while (samplestoreadinloop && readsamples);
861
862 SetPos(reverseplaybackend); // pretend we really read backwards
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 break;
867 }
868
869 default: case loop_type_normal: {
870 do {
871 // if not endless loop check if max. number of loop cycles have been passed
872 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
873 samplestoloopend = loopEnd - GetPos();
874 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
875 samplestoread -= readsamples;
876 totalreadsamples += readsamples;
877 if (readsamples == samplestoloopend) {
878 pPlaybackState->loop_cycles_left--;
879 SetPos(loop.LoopStart);
880 }
881 } while (samplestoread && readsamples);
882 break;
883 }
884 }
885 }
886 }
887
888 // read on without looping
889 if (samplestoread) do {
890 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
891 samplestoread -= readsamples;
892 totalreadsamples += readsamples;
893 } while (readsamples && samplestoread);
894
895 // store current position
896 pPlaybackState->position = GetPos();
897
898 return totalreadsamples;
899 }
900
901 /**
902 * Reads \a SampleCount number of sample points from the current
903 * position into the buffer pointed by \a pBuffer and increments the
904 * position within the sample. The sample wave stream will be
905 * decompressed on the fly if using a compressed sample. Use this method
906 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
907 * thus for disk streaming.
908 *
909 * <b>Caution:</b> If you are using more than one streaming thread, you
910 * have to use an external decompression buffer for <b>EACH</b>
911 * streaming thread to avoid race conditions and crashes!
912 *
913 * For 16 bit samples, the data in the buffer will be int16_t
914 * (using native endianness). For 24 bit, the buffer will
915 * contain three bytes per sample, little-endian.
916 *
917 * @param pBuffer destination buffer
918 * @param SampleCount number of sample points to read
919 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
920 * @returns number of successfully read sample points
921 * @see SetPos(), CreateDecompressionBuffer()
922 */
923 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
924 if (SampleCount == 0) return 0;
925 if (!Compressed) {
926 if (BitDepth == 24) {
927 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
928 }
929 else { // 16 bit
930 // (pCkData->Read does endian correction)
931 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
932 : pCkData->Read(pBuffer, SampleCount, 2);
933 }
934 }
935 else {
936 if (this->SamplePos >= this->SamplesTotal) return 0;
937 //TODO: efficiency: maybe we should test for an average compression rate
938 unsigned long assumedsize = GuessSize(SampleCount),
939 remainingbytes = 0, // remaining bytes in the local buffer
940 remainingsamples = SampleCount,
941 copysamples, skipsamples,
942 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
943 this->FrameOffset = 0;
944
945 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
946
947 // if decompression buffer too small, then reduce amount of samples to read
948 if (pDecompressionBuffer->Size < assumedsize) {
949 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
950 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
951 remainingsamples = SampleCount;
952 assumedsize = GuessSize(SampleCount);
953 }
954
955 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
956 int16_t* pDst = static_cast<int16_t*>(pBuffer);
957 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
958 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
959
960 while (remainingsamples && remainingbytes) {
961 unsigned long framesamples = SamplesPerFrame;
962 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
963
964 int mode_l = *pSrc++, mode_r = 0;
965
966 if (Channels == 2) {
967 mode_r = *pSrc++;
968 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
969 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
970 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
971 if (remainingbytes < framebytes) { // last frame in sample
972 framesamples = SamplesInLastFrame;
973 if (mode_l == 4 && (framesamples & 1)) {
974 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
975 }
976 else {
977 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
978 }
979 }
980 }
981 else {
982 framebytes = bytesPerFrame[mode_l] + 1;
983 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
984 if (remainingbytes < framebytes) {
985 framesamples = SamplesInLastFrame;
986 }
987 }
988
989 // determine how many samples in this frame to skip and read
990 if (currentframeoffset + remainingsamples >= framesamples) {
991 if (currentframeoffset <= framesamples) {
992 copysamples = framesamples - currentframeoffset;
993 skipsamples = currentframeoffset;
994 }
995 else {
996 copysamples = 0;
997 skipsamples = framesamples;
998 }
999 }
1000 else {
1001 // This frame has enough data for pBuffer, but not
1002 // all of the frame is needed. Set file position
1003 // to start of this frame for next call to Read.
1004 copysamples = remainingsamples;
1005 skipsamples = currentframeoffset;
1006 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1007 this->FrameOffset = currentframeoffset + copysamples;
1008 }
1009 remainingsamples -= copysamples;
1010
1011 if (remainingbytes > framebytes) {
1012 remainingbytes -= framebytes;
1013 if (remainingsamples == 0 &&
1014 currentframeoffset + copysamples == framesamples) {
1015 // This frame has enough data for pBuffer, and
1016 // all of the frame is needed. Set file
1017 // position to start of next frame for next
1018 // call to Read. FrameOffset is 0.
1019 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1020 }
1021 }
1022 else remainingbytes = 0;
1023
1024 currentframeoffset -= skipsamples;
1025
1026 if (copysamples == 0) {
1027 // skip this frame
1028 pSrc += framebytes - Channels;
1029 }
1030 else {
1031 const unsigned char* const param_l = pSrc;
1032 if (BitDepth == 24) {
1033 if (mode_l != 2) pSrc += 12;
1034
1035 if (Channels == 2) { // Stereo
1036 const unsigned char* const param_r = pSrc;
1037 if (mode_r != 2) pSrc += 12;
1038
1039 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1040 skipsamples, copysamples, TruncatedBits);
1041 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1042 skipsamples, copysamples, TruncatedBits);
1043 pDst24 += copysamples * 6;
1044 }
1045 else { // Mono
1046 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1047 skipsamples, copysamples, TruncatedBits);
1048 pDst24 += copysamples * 3;
1049 }
1050 }
1051 else { // 16 bit
1052 if (mode_l) pSrc += 4;
1053
1054 int step;
1055 if (Channels == 2) { // Stereo
1056 const unsigned char* const param_r = pSrc;
1057 if (mode_r) pSrc += 4;
1058
1059 step = (2 - mode_l) + (2 - mode_r);
1060 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1061 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1062 skipsamples, copysamples);
1063 pDst += copysamples << 1;
1064 }
1065 else { // Mono
1066 step = 2 - mode_l;
1067 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1068 pDst += copysamples;
1069 }
1070 }
1071 pSrc += nextFrameOffset;
1072 }
1073
1074 // reload from disk to local buffer if needed
1075 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1076 assumedsize = GuessSize(remainingsamples);
1077 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1078 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1079 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1080 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1081 }
1082 } // while
1083
1084 this->SamplePos += (SampleCount - remainingsamples);
1085 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1086 return (SampleCount - remainingsamples);
1087 }
1088 }
1089
1090 /** @brief Write sample wave data.
1091 *
1092 * Writes \a SampleCount number of sample points from the buffer pointed
1093 * by \a pBuffer and increments the position within the sample. Use this
1094 * method to directly write the sample data to disk, i.e. if you don't
1095 * want or cannot load the whole sample data into RAM.
1096 *
1097 * You have to Resize() the sample to the desired size and call
1098 * File::Save() <b>before</b> using Write().
1099 *
1100 * Note: there is currently no support for writing compressed samples.
1101 *
1102 * @param pBuffer - source buffer
1103 * @param SampleCount - number of sample points to write
1104 * @throws DLS::Exception if current sample size is too small
1105 * @throws gig::Exception if sample is compressed
1106 * @see DLS::LoadSampleData()
1107 */
1108 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1109 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1110 return DLS::Sample::Write(pBuffer, SampleCount);
1111 }
1112
1113 /**
1114 * Allocates a decompression buffer for streaming (compressed) samples
1115 * with Sample::Read(). If you are using more than one streaming thread
1116 * in your application you <b>HAVE</b> to create a decompression buffer
1117 * for <b>EACH</b> of your streaming threads and provide it with the
1118 * Sample::Read() call in order to avoid race conditions and crashes.
1119 *
1120 * You should free the memory occupied by the allocated buffer(s) once
1121 * you don't need one of your streaming threads anymore by calling
1122 * DestroyDecompressionBuffer().
1123 *
1124 * @param MaxReadSize - the maximum size (in sample points) you ever
1125 * expect to read with one Read() call
1126 * @returns allocated decompression buffer
1127 * @see DestroyDecompressionBuffer()
1128 */
1129 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1130 buffer_t result;
1131 const double worstCaseHeaderOverhead =
1132 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1133 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1134 result.pStart = new int8_t[result.Size];
1135 result.NullExtensionSize = 0;
1136 return result;
1137 }
1138
1139 /**
1140 * Free decompression buffer, previously created with
1141 * CreateDecompressionBuffer().
1142 *
1143 * @param DecompressionBuffer - previously allocated decompression
1144 * buffer to free
1145 */
1146 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1147 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1148 delete[] (int8_t*) DecompressionBuffer.pStart;
1149 DecompressionBuffer.pStart = NULL;
1150 DecompressionBuffer.Size = 0;
1151 DecompressionBuffer.NullExtensionSize = 0;
1152 }
1153 }
1154
1155 /**
1156 * Returns pointer to the Group this Sample belongs to. In the .gig
1157 * format a sample always belongs to one group. If it wasn't explicitly
1158 * assigned to a certain group, it will be automatically assigned to a
1159 * default group.
1160 *
1161 * @returns Sample's Group (never NULL)
1162 */
1163 Group* Sample::GetGroup() const {
1164 return pGroup;
1165 }
1166
1167 Sample::~Sample() {
1168 Instances--;
1169 if (!Instances && InternalDecompressionBuffer.Size) {
1170 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1171 InternalDecompressionBuffer.pStart = NULL;
1172 InternalDecompressionBuffer.Size = 0;
1173 }
1174 if (FrameTable) delete[] FrameTable;
1175 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1176 }
1177
1178
1179
1180 // *************** DimensionRegion ***************
1181 // *
1182
1183 uint DimensionRegion::Instances = 0;
1184 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1185
1186 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1187 Instances++;
1188
1189 pSample = NULL;
1190
1191 memcpy(&Crossfade, &SamplerOptions, 4);
1192 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1193
1194 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1195 if (_3ewa) { // if '3ewa' chunk exists
1196 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1197 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199 _3ewa->ReadInt16(); // unknown
1200 LFO1InternalDepth = _3ewa->ReadUint16();
1201 _3ewa->ReadInt16(); // unknown
1202 LFO3InternalDepth = _3ewa->ReadInt16();
1203 _3ewa->ReadInt16(); // unknown
1204 LFO1ControlDepth = _3ewa->ReadUint16();
1205 _3ewa->ReadInt16(); // unknown
1206 LFO3ControlDepth = _3ewa->ReadInt16();
1207 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1208 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1209 _3ewa->ReadInt16(); // unknown
1210 EG1Sustain = _3ewa->ReadUint16();
1211 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1212 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1213 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1214 EG1ControllerInvert = eg1ctrloptions & 0x01;
1215 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1216 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1217 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1218 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1219 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1220 EG2ControllerInvert = eg2ctrloptions & 0x01;
1221 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1222 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1223 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1224 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1225 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1226 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1227 _3ewa->ReadInt16(); // unknown
1228 EG2Sustain = _3ewa->ReadUint16();
1229 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1230 _3ewa->ReadInt16(); // unknown
1231 LFO2ControlDepth = _3ewa->ReadUint16();
1232 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1233 _3ewa->ReadInt16(); // unknown
1234 LFO2InternalDepth = _3ewa->ReadUint16();
1235 int32_t eg1decay2 = _3ewa->ReadInt32();
1236 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1237 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1238 _3ewa->ReadInt16(); // unknown
1239 EG1PreAttack = _3ewa->ReadUint16();
1240 int32_t eg2decay2 = _3ewa->ReadInt32();
1241 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1242 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1243 _3ewa->ReadInt16(); // unknown
1244 EG2PreAttack = _3ewa->ReadUint16();
1245 uint8_t velocityresponse = _3ewa->ReadUint8();
1246 if (velocityresponse < 5) {
1247 VelocityResponseCurve = curve_type_nonlinear;
1248 VelocityResponseDepth = velocityresponse;
1249 } else if (velocityresponse < 10) {
1250 VelocityResponseCurve = curve_type_linear;
1251 VelocityResponseDepth = velocityresponse - 5;
1252 } else if (velocityresponse < 15) {
1253 VelocityResponseCurve = curve_type_special;
1254 VelocityResponseDepth = velocityresponse - 10;
1255 } else {
1256 VelocityResponseCurve = curve_type_unknown;
1257 VelocityResponseDepth = 0;
1258 }
1259 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1260 if (releasevelocityresponse < 5) {
1261 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1262 ReleaseVelocityResponseDepth = releasevelocityresponse;
1263 } else if (releasevelocityresponse < 10) {
1264 ReleaseVelocityResponseCurve = curve_type_linear;
1265 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1266 } else if (releasevelocityresponse < 15) {
1267 ReleaseVelocityResponseCurve = curve_type_special;
1268 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1269 } else {
1270 ReleaseVelocityResponseCurve = curve_type_unknown;
1271 ReleaseVelocityResponseDepth = 0;
1272 }
1273 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1274 AttenuationControllerThreshold = _3ewa->ReadInt8();
1275 _3ewa->ReadInt32(); // unknown
1276 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1277 _3ewa->ReadInt16(); // unknown
1278 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1279 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1280 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1281 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1282 else DimensionBypass = dim_bypass_ctrl_none;
1283 uint8_t pan = _3ewa->ReadUint8();
1284 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1285 SelfMask = _3ewa->ReadInt8() & 0x01;
1286 _3ewa->ReadInt8(); // unknown
1287 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1288 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1289 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1290 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1291 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1292 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1293 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1294 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1295 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1296 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1297 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1298 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1299 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1300 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1301 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1302 : vcf_res_ctrl_none;
1303 uint16_t eg3depth = _3ewa->ReadUint16();
1304 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1305 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1306 _3ewa->ReadInt16(); // unknown
1307 ChannelOffset = _3ewa->ReadUint8() / 4;
1308 uint8_t regoptions = _3ewa->ReadUint8();
1309 MSDecode = regoptions & 0x01; // bit 0
1310 SustainDefeat = regoptions & 0x02; // bit 1
1311 _3ewa->ReadInt16(); // unknown
1312 VelocityUpperLimit = _3ewa->ReadInt8();
1313 _3ewa->ReadInt8(); // unknown
1314 _3ewa->ReadInt16(); // unknown
1315 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1316 _3ewa->ReadInt8(); // unknown
1317 _3ewa->ReadInt8(); // unknown
1318 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1319 uint8_t vcfcutoff = _3ewa->ReadUint8();
1320 VCFEnabled = vcfcutoff & 0x80; // bit 7
1321 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1322 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1323 uint8_t vcfvelscale = _3ewa->ReadUint8();
1324 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1325 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1326 _3ewa->ReadInt8(); // unknown
1327 uint8_t vcfresonance = _3ewa->ReadUint8();
1328 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1329 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1330 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1331 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1332 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1333 uint8_t vcfvelocity = _3ewa->ReadUint8();
1334 VCFVelocityDynamicRange = vcfvelocity % 5;
1335 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1336 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1337 if (VCFType == vcf_type_lowpass) {
1338 if (lfo3ctrl & 0x40) // bit 6
1339 VCFType = vcf_type_lowpassturbo;
1340 }
1341 } else { // '3ewa' chunk does not exist yet
1342 // use default values
1343 LFO3Frequency = 1.0;
1344 EG3Attack = 0.0;
1345 LFO1InternalDepth = 0;
1346 LFO3InternalDepth = 0;
1347 LFO1ControlDepth = 0;
1348 LFO3ControlDepth = 0;
1349 EG1Attack = 0.0;
1350 EG1Decay1 = 0.0;
1351 EG1Sustain = 0;
1352 EG1Release = 0.0;
1353 EG1Controller.type = eg1_ctrl_t::type_none;
1354 EG1Controller.controller_number = 0;
1355 EG1ControllerInvert = false;
1356 EG1ControllerAttackInfluence = 0;
1357 EG1ControllerDecayInfluence = 0;
1358 EG1ControllerReleaseInfluence = 0;
1359 EG2Controller.type = eg2_ctrl_t::type_none;
1360 EG2Controller.controller_number = 0;
1361 EG2ControllerInvert = false;
1362 EG2ControllerAttackInfluence = 0;
1363 EG2ControllerDecayInfluence = 0;
1364 EG2ControllerReleaseInfluence = 0;
1365 LFO1Frequency = 1.0;
1366 EG2Attack = 0.0;
1367 EG2Decay1 = 0.0;
1368 EG2Sustain = 0;
1369 EG2Release = 0.0;
1370 LFO2ControlDepth = 0;
1371 LFO2Frequency = 1.0;
1372 LFO2InternalDepth = 0;
1373 EG1Decay2 = 0.0;
1374 EG1InfiniteSustain = false;
1375 EG1PreAttack = 1000;
1376 EG2Decay2 = 0.0;
1377 EG2InfiniteSustain = false;
1378 EG2PreAttack = 1000;
1379 VelocityResponseCurve = curve_type_nonlinear;
1380 VelocityResponseDepth = 3;
1381 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1382 ReleaseVelocityResponseDepth = 3;
1383 VelocityResponseCurveScaling = 32;
1384 AttenuationControllerThreshold = 0;
1385 SampleStartOffset = 0;
1386 PitchTrack = true;
1387 DimensionBypass = dim_bypass_ctrl_none;
1388 Pan = 0;
1389 SelfMask = true;
1390 LFO3Controller = lfo3_ctrl_modwheel;
1391 LFO3Sync = false;
1392 InvertAttenuationController = false;
1393 AttenuationController.type = attenuation_ctrl_t::type_none;
1394 AttenuationController.controller_number = 0;
1395 LFO2Controller = lfo2_ctrl_internal;
1396 LFO2FlipPhase = false;
1397 LFO2Sync = false;
1398 LFO1Controller = lfo1_ctrl_internal;
1399 LFO1FlipPhase = false;
1400 LFO1Sync = false;
1401 VCFResonanceController = vcf_res_ctrl_none;
1402 EG3Depth = 0;
1403 ChannelOffset = 0;
1404 MSDecode = false;
1405 SustainDefeat = false;
1406 VelocityUpperLimit = 0;
1407 ReleaseTriggerDecay = 0;
1408 EG1Hold = false;
1409 VCFEnabled = false;
1410 VCFCutoff = 0;
1411 VCFCutoffController = vcf_cutoff_ctrl_none;
1412 VCFCutoffControllerInvert = false;
1413 VCFVelocityScale = 0;
1414 VCFResonance = 0;
1415 VCFResonanceDynamic = false;
1416 VCFKeyboardTracking = false;
1417 VCFKeyboardTrackingBreakpoint = 0;
1418 VCFVelocityDynamicRange = 0x04;
1419 VCFVelocityCurve = curve_type_linear;
1420 VCFType = vcf_type_lowpass;
1421 }
1422
1423 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1424 VelocityResponseDepth,
1425 VelocityResponseCurveScaling);
1426
1427 curve_type_t curveType = ReleaseVelocityResponseCurve;
1428 uint8_t depth = ReleaseVelocityResponseDepth;
1429
1430 // this models a strange behaviour or bug in GSt: two of the
1431 // velocity response curves for release time are not used even
1432 // if specified, instead another curve is chosen.
1433 if ((curveType == curve_type_nonlinear && depth == 0) ||
1434 (curveType == curve_type_special && depth == 4)) {
1435 curveType = curve_type_nonlinear;
1436 depth = 3;
1437 }
1438 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1439
1440 curveType = VCFVelocityCurve;
1441 depth = VCFVelocityDynamicRange;
1442
1443 // even stranger GSt: two of the velocity response curves for
1444 // filter cutoff are not used, instead another special curve
1445 // is chosen. This curve is not used anywhere else.
1446 if ((curveType == curve_type_nonlinear && depth == 0) ||
1447 (curveType == curve_type_special && depth == 4)) {
1448 curveType = curve_type_special;
1449 depth = 5;
1450 }
1451 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1452 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1453
1454 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1455 VelocityTable = 0;
1456 }
1457
1458 /**
1459 * Apply dimension region settings to the respective RIFF chunks. You
1460 * have to call File::Save() to make changes persistent.
1461 *
1462 * Usually there is absolutely no need to call this method explicitly.
1463 * It will be called automatically when File::Save() was called.
1464 */
1465 void DimensionRegion::UpdateChunks() {
1466 // first update base class's chunk
1467 DLS::Sampler::UpdateChunks();
1468
1469 // make sure '3ewa' chunk exists
1470 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1471 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1472 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1473
1474 // update '3ewa' chunk with DimensionRegion's current settings
1475
1476 const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?
1477 memcpy(&pData[0], &unknown, 4);
1478
1479 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1480 memcpy(&pData[4], &lfo3freq, 4);
1481
1482 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1483 memcpy(&pData[8], &eg3attack, 4);
1484
1485 // next 2 bytes unknown
1486
1487 memcpy(&pData[14], &LFO1InternalDepth, 2);
1488
1489 // next 2 bytes unknown
1490
1491 memcpy(&pData[18], &LFO3InternalDepth, 2);
1492
1493 // next 2 bytes unknown
1494
1495 memcpy(&pData[22], &LFO1ControlDepth, 2);
1496
1497 // next 2 bytes unknown
1498
1499 memcpy(&pData[26], &LFO3ControlDepth, 2);
1500
1501 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1502 memcpy(&pData[28], &eg1attack, 4);
1503
1504 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1505 memcpy(&pData[32], &eg1decay1, 4);
1506
1507 // next 2 bytes unknown
1508
1509 memcpy(&pData[38], &EG1Sustain, 2);
1510
1511 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1512 memcpy(&pData[40], &eg1release, 4);
1513
1514 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1515 memcpy(&pData[44], &eg1ctl, 1);
1516
1517 const uint8_t eg1ctrloptions =
1518 (EG1ControllerInvert) ? 0x01 : 0x00 |
1519 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1520 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1521 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1522 memcpy(&pData[45], &eg1ctrloptions, 1);
1523
1524 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1525 memcpy(&pData[46], &eg2ctl, 1);
1526
1527 const uint8_t eg2ctrloptions =
1528 (EG2ControllerInvert) ? 0x01 : 0x00 |
1529 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1530 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1531 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1532 memcpy(&pData[47], &eg2ctrloptions, 1);
1533
1534 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1535 memcpy(&pData[48], &lfo1freq, 4);
1536
1537 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1538 memcpy(&pData[52], &eg2attack, 4);
1539
1540 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1541 memcpy(&pData[56], &eg2decay1, 4);
1542
1543 // next 2 bytes unknown
1544
1545 memcpy(&pData[62], &EG2Sustain, 2);
1546
1547 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1548 memcpy(&pData[64], &eg2release, 4);
1549
1550 // next 2 bytes unknown
1551
1552 memcpy(&pData[70], &LFO2ControlDepth, 2);
1553
1554 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1555 memcpy(&pData[72], &lfo2freq, 4);
1556
1557 // next 2 bytes unknown
1558
1559 memcpy(&pData[78], &LFO2InternalDepth, 2);
1560
1561 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1562 memcpy(&pData[80], &eg1decay2, 4);
1563
1564 // next 2 bytes unknown
1565
1566 memcpy(&pData[86], &EG1PreAttack, 2);
1567
1568 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1569 memcpy(&pData[88], &eg2decay2, 4);
1570
1571 // next 2 bytes unknown
1572
1573 memcpy(&pData[94], &EG2PreAttack, 2);
1574
1575 {
1576 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1577 uint8_t velocityresponse = VelocityResponseDepth;
1578 switch (VelocityResponseCurve) {
1579 case curve_type_nonlinear:
1580 break;
1581 case curve_type_linear:
1582 velocityresponse += 5;
1583 break;
1584 case curve_type_special:
1585 velocityresponse += 10;
1586 break;
1587 case curve_type_unknown:
1588 default:
1589 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1590 }
1591 memcpy(&pData[96], &velocityresponse, 1);
1592 }
1593
1594 {
1595 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1596 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1597 switch (ReleaseVelocityResponseCurve) {
1598 case curve_type_nonlinear:
1599 break;
1600 case curve_type_linear:
1601 releasevelocityresponse += 5;
1602 break;
1603 case curve_type_special:
1604 releasevelocityresponse += 10;
1605 break;
1606 case curve_type_unknown:
1607 default:
1608 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1609 }
1610 memcpy(&pData[97], &releasevelocityresponse, 1);
1611 }
1612
1613 memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1614
1615 memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1616
1617 // next 4 bytes unknown
1618
1619 memcpy(&pData[104], &SampleStartOffset, 2);
1620
1621 // next 2 bytes unknown
1622
1623 {
1624 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1625 switch (DimensionBypass) {
1626 case dim_bypass_ctrl_94:
1627 pitchTrackDimensionBypass |= 0x10;
1628 break;
1629 case dim_bypass_ctrl_95:
1630 pitchTrackDimensionBypass |= 0x20;
1631 break;
1632 case dim_bypass_ctrl_none:
1633 //FIXME: should we set anything here?
1634 break;
1635 default:
1636 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1637 }
1638 memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1639 }
1640
1641 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1642 memcpy(&pData[109], &pan, 1);
1643
1644 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1645 memcpy(&pData[110], &selfmask, 1);
1646
1647 // next byte unknown
1648
1649 {
1650 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1651 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1652 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1653 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1654 memcpy(&pData[112], &lfo3ctrl, 1);
1655 }
1656
1657 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1658 memcpy(&pData[113], &attenctl, 1);
1659
1660 {
1661 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1662 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1663 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1664 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1665 memcpy(&pData[114], &lfo2ctrl, 1);
1666 }
1667
1668 {
1669 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1670 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1671 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1672 if (VCFResonanceController != vcf_res_ctrl_none)
1673 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1674 memcpy(&pData[115], &lfo1ctrl, 1);
1675 }
1676
1677 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1678 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1679 memcpy(&pData[116], &eg3depth, 1);
1680
1681 // next 2 bytes unknown
1682
1683 const uint8_t channeloffset = ChannelOffset * 4;
1684 memcpy(&pData[120], &channeloffset, 1);
1685
1686 {
1687 uint8_t regoptions = 0;
1688 if (MSDecode) regoptions |= 0x01; // bit 0
1689 if (SustainDefeat) regoptions |= 0x02; // bit 1
1690 memcpy(&pData[121], &regoptions, 1);
1691 }
1692
1693 // next 2 bytes unknown
1694
1695 memcpy(&pData[124], &VelocityUpperLimit, 1);
1696
1697 // next 3 bytes unknown
1698
1699 memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1700
1701 // next 2 bytes unknown
1702
1703 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1704 memcpy(&pData[131], &eg1hold, 1);
1705
1706 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1707 (VCFCutoff & 0x7f); /* lower 7 bits */
1708 memcpy(&pData[132], &vcfcutoff, 1);
1709
1710 memcpy(&pData[133], &VCFCutoffController, 1);
1711
1712 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1713 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1714 memcpy(&pData[134], &vcfvelscale, 1);
1715
1716 // next byte unknown
1717
1718 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1719 (VCFResonance & 0x7f); /* lower 7 bits */
1720 memcpy(&pData[136], &vcfresonance, 1);
1721
1722 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1723 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1724 memcpy(&pData[137], &vcfbreakpoint, 1);
1725
1726 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1727 VCFVelocityCurve * 5;
1728 memcpy(&pData[138], &vcfvelocity, 1);
1729
1730 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1731 memcpy(&pData[139], &vcftype, 1);
1732 }
1733
1734 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1735 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1736 {
1737 double* table;
1738 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1739 if (pVelocityTables->count(tableKey)) { // if key exists
1740 table = (*pVelocityTables)[tableKey];
1741 }
1742 else {
1743 table = CreateVelocityTable(curveType, depth, scaling);
1744 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1745 }
1746 return table;
1747 }
1748
1749 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1750 leverage_ctrl_t decodedcontroller;
1751 switch (EncodedController) {
1752 // special controller
1753 case _lev_ctrl_none:
1754 decodedcontroller.type = leverage_ctrl_t::type_none;
1755 decodedcontroller.controller_number = 0;
1756 break;
1757 case _lev_ctrl_velocity:
1758 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1759 decodedcontroller.controller_number = 0;
1760 break;
1761 case _lev_ctrl_channelaftertouch:
1762 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1763 decodedcontroller.controller_number = 0;
1764 break;
1765
1766 // ordinary MIDI control change controller
1767 case _lev_ctrl_modwheel:
1768 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1769 decodedcontroller.controller_number = 1;
1770 break;
1771 case _lev_ctrl_breath:
1772 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1773 decodedcontroller.controller_number = 2;
1774 break;
1775 case _lev_ctrl_foot:
1776 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1777 decodedcontroller.controller_number = 4;
1778 break;
1779 case _lev_ctrl_effect1:
1780 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1781 decodedcontroller.controller_number = 12;
1782 break;
1783 case _lev_ctrl_effect2:
1784 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1785 decodedcontroller.controller_number = 13;
1786 break;
1787 case _lev_ctrl_genpurpose1:
1788 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1789 decodedcontroller.controller_number = 16;
1790 break;
1791 case _lev_ctrl_genpurpose2:
1792 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1793 decodedcontroller.controller_number = 17;
1794 break;
1795 case _lev_ctrl_genpurpose3:
1796 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1797 decodedcontroller.controller_number = 18;
1798 break;
1799 case _lev_ctrl_genpurpose4:
1800 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1801 decodedcontroller.controller_number = 19;
1802 break;
1803 case _lev_ctrl_portamentotime:
1804 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1805 decodedcontroller.controller_number = 5;
1806 break;
1807 case _lev_ctrl_sustainpedal:
1808 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1809 decodedcontroller.controller_number = 64;
1810 break;
1811 case _lev_ctrl_portamento:
1812 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1813 decodedcontroller.controller_number = 65;
1814 break;
1815 case _lev_ctrl_sostenutopedal:
1816 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1817 decodedcontroller.controller_number = 66;
1818 break;
1819 case _lev_ctrl_softpedal:
1820 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1821 decodedcontroller.controller_number = 67;
1822 break;
1823 case _lev_ctrl_genpurpose5:
1824 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1825 decodedcontroller.controller_number = 80;
1826 break;
1827 case _lev_ctrl_genpurpose6:
1828 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1829 decodedcontroller.controller_number = 81;
1830 break;
1831 case _lev_ctrl_genpurpose7:
1832 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1833 decodedcontroller.controller_number = 82;
1834 break;
1835 case _lev_ctrl_genpurpose8:
1836 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1837 decodedcontroller.controller_number = 83;
1838 break;
1839 case _lev_ctrl_effect1depth:
1840 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1841 decodedcontroller.controller_number = 91;
1842 break;
1843 case _lev_ctrl_effect2depth:
1844 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1845 decodedcontroller.controller_number = 92;
1846 break;
1847 case _lev_ctrl_effect3depth:
1848 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1849 decodedcontroller.controller_number = 93;
1850 break;
1851 case _lev_ctrl_effect4depth:
1852 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1853 decodedcontroller.controller_number = 94;
1854 break;
1855 case _lev_ctrl_effect5depth:
1856 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1857 decodedcontroller.controller_number = 95;
1858 break;
1859
1860 // unknown controller type
1861 default:
1862 throw gig::Exception("Unknown leverage controller type.");
1863 }
1864 return decodedcontroller;
1865 }
1866
1867 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1868 _lev_ctrl_t encodedcontroller;
1869 switch (DecodedController.type) {
1870 // special controller
1871 case leverage_ctrl_t::type_none:
1872 encodedcontroller = _lev_ctrl_none;
1873 break;
1874 case leverage_ctrl_t::type_velocity:
1875 encodedcontroller = _lev_ctrl_velocity;
1876 break;
1877 case leverage_ctrl_t::type_channelaftertouch:
1878 encodedcontroller = _lev_ctrl_channelaftertouch;
1879 break;
1880
1881 // ordinary MIDI control change controller
1882 case leverage_ctrl_t::type_controlchange:
1883 switch (DecodedController.controller_number) {
1884 case 1:
1885 encodedcontroller = _lev_ctrl_modwheel;
1886 break;
1887 case 2:
1888 encodedcontroller = _lev_ctrl_breath;
1889 break;
1890 case 4:
1891 encodedcontroller = _lev_ctrl_foot;
1892 break;
1893 case 12:
1894 encodedcontroller = _lev_ctrl_effect1;
1895 break;
1896 case 13:
1897 encodedcontroller = _lev_ctrl_effect2;
1898 break;
1899 case 16:
1900 encodedcontroller = _lev_ctrl_genpurpose1;
1901 break;
1902 case 17:
1903 encodedcontroller = _lev_ctrl_genpurpose2;
1904 break;
1905 case 18:
1906 encodedcontroller = _lev_ctrl_genpurpose3;
1907 break;
1908 case 19:
1909 encodedcontroller = _lev_ctrl_genpurpose4;
1910 break;
1911 case 5:
1912 encodedcontroller = _lev_ctrl_portamentotime;
1913 break;
1914 case 64:
1915 encodedcontroller = _lev_ctrl_sustainpedal;
1916 break;
1917 case 65:
1918 encodedcontroller = _lev_ctrl_portamento;
1919 break;
1920 case 66:
1921 encodedcontroller = _lev_ctrl_sostenutopedal;
1922 break;
1923 case 67:
1924 encodedcontroller = _lev_ctrl_softpedal;
1925 break;
1926 case 80:
1927 encodedcontroller = _lev_ctrl_genpurpose5;
1928 break;
1929 case 81:
1930 encodedcontroller = _lev_ctrl_genpurpose6;
1931 break;
1932 case 82:
1933 encodedcontroller = _lev_ctrl_genpurpose7;
1934 break;
1935 case 83:
1936 encodedcontroller = _lev_ctrl_genpurpose8;
1937 break;
1938 case 91:
1939 encodedcontroller = _lev_ctrl_effect1depth;
1940 break;
1941 case 92:
1942 encodedcontroller = _lev_ctrl_effect2depth;
1943 break;
1944 case 93:
1945 encodedcontroller = _lev_ctrl_effect3depth;
1946 break;
1947 case 94:
1948 encodedcontroller = _lev_ctrl_effect4depth;
1949 break;
1950 case 95:
1951 encodedcontroller = _lev_ctrl_effect5depth;
1952 break;
1953 default:
1954 throw gig::Exception("leverage controller number is not supported by the gig format");
1955 }
1956 default:
1957 throw gig::Exception("Unknown leverage controller type.");
1958 }
1959 return encodedcontroller;
1960 }
1961
1962 DimensionRegion::~DimensionRegion() {
1963 Instances--;
1964 if (!Instances) {
1965 // delete the velocity->volume tables
1966 VelocityTableMap::iterator iter;
1967 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1968 double* pTable = iter->second;
1969 if (pTable) delete[] pTable;
1970 }
1971 pVelocityTables->clear();
1972 delete pVelocityTables;
1973 pVelocityTables = NULL;
1974 }
1975 if (VelocityTable) delete[] VelocityTable;
1976 }
1977
1978 /**
1979 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1980 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1981 * and VelocityResponseCurveScaling) involved are taken into account to
1982 * calculate the amplitude factor. Use this method when a key was
1983 * triggered to get the volume with which the sample should be played
1984 * back.
1985 *
1986 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1987 * @returns amplitude factor (between 0.0 and 1.0)
1988 */
1989 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1990 return pVelocityAttenuationTable[MIDIKeyVelocity];
1991 }
1992
1993 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1994 return pVelocityReleaseTable[MIDIKeyVelocity];
1995 }
1996
1997 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1998 return pVelocityCutoffTable[MIDIKeyVelocity];
1999 }
2000
2001 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2002
2003 // line-segment approximations of the 15 velocity curves
2004
2005 // linear
2006 const int lin0[] = { 1, 1, 127, 127 };
2007 const int lin1[] = { 1, 21, 127, 127 };
2008 const int lin2[] = { 1, 45, 127, 127 };
2009 const int lin3[] = { 1, 74, 127, 127 };
2010 const int lin4[] = { 1, 127, 127, 127 };
2011
2012 // non-linear
2013 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2014 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2015 127, 127 };
2016 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2017 127, 127 };
2018 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2019 127, 127 };
2020 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2021
2022 // special
2023 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2024 113, 127, 127, 127 };
2025 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2026 118, 127, 127, 127 };
2027 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2028 85, 90, 91, 127, 127, 127 };
2029 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2030 117, 127, 127, 127 };
2031 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2032 127, 127 };
2033
2034 // this is only used by the VCF velocity curve
2035 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2036 91, 127, 127, 127 };
2037
2038 const int* const curves[] = { non0, non1, non2, non3, non4,
2039 lin0, lin1, lin2, lin3, lin4,
2040 spe0, spe1, spe2, spe3, spe4, spe5 };
2041
2042 double* const table = new double[128];
2043
2044 const int* curve = curves[curveType * 5 + depth];
2045 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2046
2047 table[0] = 0;
2048 for (int x = 1 ; x < 128 ; x++) {
2049
2050 if (x > curve[2]) curve += 2;
2051 double y = curve[1] + (x - curve[0]) *
2052 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2053 y = y / 127;
2054
2055 // Scale up for s > 20, down for s < 20. When
2056 // down-scaling, the curve still ends at 1.0.
2057 if (s < 20 && y >= 0.5)
2058 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2059 else
2060 y = y * (s / 20.0);
2061 if (y > 1) y = 1;
2062
2063 table[x] = y;
2064 }
2065 return table;
2066 }
2067
2068
2069 // *************** Region ***************
2070 // *
2071
2072 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2073 pInfo->UseFixedLengthStrings = true;
2074
2075 // Initialization
2076 Dimensions = 0;
2077 for (int i = 0; i < 256; i++) {
2078 pDimensionRegions[i] = NULL;
2079 }
2080 Layers = 1;
2081 File* file = (File*) GetParent()->GetParent();
2082 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2083
2084 // Actual Loading
2085
2086 LoadDimensionRegions(rgnList);
2087
2088 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2089 if (_3lnk) {
2090 DimensionRegions = _3lnk->ReadUint32();
2091 for (int i = 0; i < dimensionBits; i++) {
2092 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2093 uint8_t bits = _3lnk->ReadUint8();
2094 _3lnk->ReadUint8(); // probably the position of the dimension
2095 _3lnk->ReadUint8(); // unknown
2096 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2097 if (dimension == dimension_none) { // inactive dimension
2098 pDimensionDefinitions[i].dimension = dimension_none;
2099 pDimensionDefinitions[i].bits = 0;
2100 pDimensionDefinitions[i].zones = 0;
2101 pDimensionDefinitions[i].split_type = split_type_bit;
2102 pDimensionDefinitions[i].zone_size = 0;
2103 }
2104 else { // active dimension
2105 pDimensionDefinitions[i].dimension = dimension;
2106 pDimensionDefinitions[i].bits = bits;
2107 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2108 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2109 dimension == dimension_samplechannel ||
2110 dimension == dimension_releasetrigger ||
2111 dimension == dimension_keyboard ||
2112 dimension == dimension_roundrobin ||
2113 dimension == dimension_random) ? split_type_bit
2114 : split_type_normal;
2115 pDimensionDefinitions[i].zone_size =
2116 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2117 : 0;
2118 Dimensions++;
2119
2120 // if this is a layer dimension, remember the amount of layers
2121 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2122 }
2123 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2124 }
2125 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2126
2127 // if there's a velocity dimension and custom velocity zone splits are used,
2128 // update the VelocityTables in the dimension regions
2129 UpdateVelocityTable();
2130
2131 // jump to start of the wave pool indices (if not already there)
2132 if (file->pVersion && file->pVersion->major == 3)
2133 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2134 else
2135 _3lnk->SetPos(44);
2136
2137 // load sample references
2138 for (uint i = 0; i < DimensionRegions; i++) {
2139 uint32_t wavepoolindex = _3lnk->ReadUint32();
2140 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2141 }
2142 GetSample(); // load global region sample reference
2143 }
2144
2145 // make sure there is at least one dimension region
2146 if (!DimensionRegions) {
2147 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2148 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2149 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2150 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2151 DimensionRegions = 1;
2152 }
2153 }
2154
2155 /**
2156 * Apply Region settings and all its DimensionRegions to the respective
2157 * RIFF chunks. You have to call File::Save() to make changes persistent.
2158 *
2159 * Usually there is absolutely no need to call this method explicitly.
2160 * It will be called automatically when File::Save() was called.
2161 *
2162 * @throws gig::Exception if samples cannot be dereferenced
2163 */
2164 void Region::UpdateChunks() {
2165 // first update base class's chunks
2166 DLS::Region::UpdateChunks();
2167
2168 // update dimension region's chunks
2169 for (int i = 0; i < DimensionRegions; i++) {
2170 pDimensionRegions[i]->UpdateChunks();
2171 }
2172
2173 File* pFile = (File*) GetParent()->GetParent();
2174 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2175 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2176
2177 // make sure '3lnk' chunk exists
2178 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2179 if (!_3lnk) {
2180 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2181 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2182 }
2183
2184 // update dimension definitions in '3lnk' chunk
2185 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2186 memcpy(&pData[0], &DimensionRegions, 4);
2187 for (int i = 0; i < iMaxDimensions; i++) {
2188 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2189 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2190 // next 2 bytes unknown
2191 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2192 // next 3 bytes unknown
2193 }
2194
2195 // update wave pool table in '3lnk' chunk
2196 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2197 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2198 int iWaveIndex = -1;
2199 if (i < DimensionRegions) {
2200 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2201 File::SampleList::iterator iter = pFile->pSamples->begin();
2202 File::SampleList::iterator end = pFile->pSamples->end();
2203 for (int index = 0; iter != end; ++iter, ++index) {
2204 if (*iter == pDimensionRegions[i]->pSample) {
2205 iWaveIndex = index;
2206 break;
2207 }
2208 }
2209 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2210 }
2211 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2212 }
2213 }
2214
2215 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2216 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2217 if (_3prg) {
2218 int dimensionRegionNr = 0;
2219 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2220 while (_3ewl) {
2221 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2222 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2223 dimensionRegionNr++;
2224 }
2225 _3ewl = _3prg->GetNextSubList();
2226 }
2227 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2228 }
2229 }
2230
2231 void Region::UpdateVelocityTable() {
2232 // get velocity dimension's index
2233 int veldim = -1;
2234 for (int i = 0 ; i < Dimensions ; i++) {
2235 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2236 veldim = i;
2237 break;
2238 }
2239 }
2240 if (veldim == -1) return;
2241
2242 int step = 1;
2243 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2244 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2245 int end = step * pDimensionDefinitions[veldim].zones;
2246
2247 // loop through all dimension regions for all dimensions except the velocity dimension
2248 int dim[8] = { 0 };
2249 for (int i = 0 ; i < DimensionRegions ; i++) {
2250
2251 if (pDimensionRegions[i]->VelocityUpperLimit) {
2252 // create the velocity table
2253 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2254 if (!table) {
2255 table = new uint8_t[128];
2256 pDimensionRegions[i]->VelocityTable = table;
2257 }
2258 int tableidx = 0;
2259 int velocityZone = 0;
2260 for (int k = i ; k < end ; k += step) {
2261 DimensionRegion *d = pDimensionRegions[k];
2262 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2263 velocityZone++;
2264 }
2265 } else {
2266 if (pDimensionRegions[i]->VelocityTable) {
2267 delete[] pDimensionRegions[i]->VelocityTable;
2268 pDimensionRegions[i]->VelocityTable = 0;
2269 }
2270 }
2271
2272 int j;
2273 int shift = 0;
2274 for (j = 0 ; j < Dimensions ; j++) {
2275 if (j == veldim) i += skipveldim; // skip velocity dimension
2276 else {
2277 dim[j]++;
2278 if (dim[j] < pDimensionDefinitions[j].zones) break;
2279 else {
2280 // skip unused dimension regions
2281 dim[j] = 0;
2282 i += ((1 << pDimensionDefinitions[j].bits) -
2283 pDimensionDefinitions[j].zones) << shift;
2284 }
2285 }
2286 shift += pDimensionDefinitions[j].bits;
2287 }
2288 if (j == Dimensions) break;
2289 }
2290 }
2291
2292 /** @brief Einstein would have dreamed of it - create a new dimension.
2293 *
2294 * Creates a new dimension with the dimension definition given by
2295 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2296 * There is a hard limit of dimensions and total amount of "bits" all
2297 * dimensions can have. This limit is dependant to what gig file format
2298 * version this file refers to. The gig v2 (and lower) format has a
2299 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2300 * format has a limit of 8.
2301 *
2302 * @param pDimDef - defintion of the new dimension
2303 * @throws gig::Exception if dimension of the same type exists already
2304 * @throws gig::Exception if amount of dimensions or total amount of
2305 * dimension bits limit is violated
2306 */
2307 void Region::AddDimension(dimension_def_t* pDimDef) {
2308 // check if max. amount of dimensions reached
2309 File* file = (File*) GetParent()->GetParent();
2310 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2311 if (Dimensions >= iMaxDimensions)
2312 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2313 // check if max. amount of dimension bits reached
2314 int iCurrentBits = 0;
2315 for (int i = 0; i < Dimensions; i++)
2316 iCurrentBits += pDimensionDefinitions[i].bits;
2317 if (iCurrentBits >= iMaxDimensions)
2318 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2319 const int iNewBits = iCurrentBits + pDimDef->bits;
2320 if (iNewBits > iMaxDimensions)
2321 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2322 // check if there's already a dimensions of the same type
2323 for (int i = 0; i < Dimensions; i++)
2324 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2325 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2326
2327 // assign definition of new dimension
2328 pDimensionDefinitions[Dimensions] = *pDimDef;
2329
2330 // create new dimension region(s) for this new dimension
2331 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2332 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2333 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2334 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2335 DimensionRegions++;
2336 }
2337
2338 Dimensions++;
2339
2340 // if this is a layer dimension, update 'Layers' attribute
2341 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2342
2343 UpdateVelocityTable();
2344 }
2345
2346 /** @brief Delete an existing dimension.
2347 *
2348 * Deletes the dimension given by \a pDimDef and deletes all respective
2349 * dimension regions, that is all dimension regions where the dimension's
2350 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2351 * for example this would delete all dimension regions for the case(s)
2352 * where the sustain pedal is pressed down.
2353 *
2354 * @param pDimDef - dimension to delete
2355 * @throws gig::Exception if given dimension cannot be found
2356 */
2357 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2358 // get dimension's index
2359 int iDimensionNr = -1;
2360 for (int i = 0; i < Dimensions; i++) {
2361 if (&pDimensionDefinitions[i] == pDimDef) {
2362 iDimensionNr = i;
2363 break;
2364 }
2365 }
2366 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2367
2368 // get amount of bits below the dimension to delete
2369 int iLowerBits = 0;
2370 for (int i = 0; i < iDimensionNr; i++)
2371 iLowerBits += pDimensionDefinitions[i].bits;
2372
2373 // get amount ot bits above the dimension to delete
2374 int iUpperBits = 0;
2375 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2376 iUpperBits += pDimensionDefinitions[i].bits;
2377
2378 // delete dimension regions which belong to the given dimension
2379 // (that is where the dimension's bit > 0)
2380 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2381 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2382 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2383 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2384 iObsoleteBit << iLowerBits |
2385 iLowerBit;
2386 delete pDimensionRegions[iToDelete];
2387 pDimensionRegions[iToDelete] = NULL;
2388 DimensionRegions--;
2389 }
2390 }
2391 }
2392
2393 // defrag pDimensionRegions array
2394 // (that is remove the NULL spaces within the pDimensionRegions array)
2395 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2396 if (!pDimensionRegions[iTo]) {
2397 if (iFrom <= iTo) iFrom = iTo + 1;
2398 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2399 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2400 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2401 pDimensionRegions[iFrom] = NULL;
2402 }
2403 }
2404 }
2405
2406 // 'remove' dimension definition
2407 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2408 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2409 }
2410 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2411 pDimensionDefinitions[Dimensions - 1].bits = 0;
2412 pDimensionDefinitions[Dimensions - 1].zones = 0;
2413
2414 Dimensions--;
2415
2416 // if this was a layer dimension, update 'Layers' attribute
2417 if (pDimDef->dimension == dimension_layer) Layers = 1;
2418 }
2419
2420 Region::~Region() {
2421 for (int i = 0; i < 256; i++) {
2422 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2423 }
2424 }
2425
2426 /**
2427 * Use this method in your audio engine to get the appropriate dimension
2428 * region with it's articulation data for the current situation. Just
2429 * call the method with the current MIDI controller values and you'll get
2430 * the DimensionRegion with the appropriate articulation data for the
2431 * current situation (for this Region of course only). To do that you'll
2432 * first have to look which dimensions with which controllers and in
2433 * which order are defined for this Region when you load the .gig file.
2434 * Special cases are e.g. layer or channel dimensions where you just put
2435 * in the index numbers instead of a MIDI controller value (means 0 for
2436 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2437 * etc.).
2438 *
2439 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2440 * @returns adress to the DimensionRegion for the given situation
2441 * @see pDimensionDefinitions
2442 * @see Dimensions
2443 */
2444 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2445 uint8_t bits;
2446 int veldim = -1;
2447 int velbitpos;
2448 int bitpos = 0;
2449 int dimregidx = 0;
2450 for (uint i = 0; i < Dimensions; i++) {
2451 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2452 // the velocity dimension must be handled after the other dimensions
2453 veldim = i;
2454 velbitpos = bitpos;
2455 } else {
2456 switch (pDimensionDefinitions[i].split_type) {
2457 case split_type_normal:
2458 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2459 break;
2460 case split_type_bit: // the value is already the sought dimension bit number
2461 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2462 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2463 break;
2464 }
2465 dimregidx |= bits << bitpos;
2466 }
2467 bitpos += pDimensionDefinitions[i].bits;
2468 }
2469 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2470 if (veldim != -1) {
2471 // (dimreg is now the dimension region for the lowest velocity)
2472 if (dimreg->VelocityUpperLimit) // custom defined zone ranges
2473 bits = dimreg->VelocityTable[DimValues[veldim]];
2474 else // normal split type
2475 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2476
2477 dimregidx |= bits << velbitpos;
2478 dimreg = pDimensionRegions[dimregidx];
2479 }
2480 return dimreg;
2481 }
2482
2483 /**
2484 * Returns the appropriate DimensionRegion for the given dimension bit
2485 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2486 * instead of calling this method directly!
2487 *
2488 * @param DimBits Bit numbers for dimension 0 to 7
2489 * @returns adress to the DimensionRegion for the given dimension
2490 * bit numbers
2491 * @see GetDimensionRegionByValue()
2492 */
2493 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2494 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2495 << pDimensionDefinitions[5].bits | DimBits[5])
2496 << pDimensionDefinitions[4].bits | DimBits[4])
2497 << pDimensionDefinitions[3].bits | DimBits[3])
2498 << pDimensionDefinitions[2].bits | DimBits[2])
2499 << pDimensionDefinitions[1].bits | DimBits[1])
2500 << pDimensionDefinitions[0].bits | DimBits[0]];
2501 }
2502
2503 /**
2504 * Returns pointer address to the Sample referenced with this region.
2505 * This is the global Sample for the entire Region (not sure if this is
2506 * actually used by the Gigasampler engine - I would only use the Sample
2507 * referenced by the appropriate DimensionRegion instead of this sample).
2508 *
2509 * @returns address to Sample or NULL if there is no reference to a
2510 * sample saved in the .gig file
2511 */
2512 Sample* Region::GetSample() {
2513 if (pSample) return static_cast<gig::Sample*>(pSample);
2514 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2515 }
2516
2517 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2518 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2519 File* file = (File*) GetParent()->GetParent();
2520 if (!file->pWavePoolTable) return NULL;
2521 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2522 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2523 Sample* sample = file->GetFirstSample(pProgress);
2524 while (sample) {
2525 if (sample->ulWavePoolOffset == soughtoffset &&
2526 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2527 sample = file->GetNextSample();
2528 }
2529 return NULL;
2530 }
2531
2532
2533
2534 // *************** Instrument ***************
2535 // *
2536
2537 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2538 pInfo->UseFixedLengthStrings = true;
2539
2540 // Initialization
2541 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2542
2543 // Loading
2544 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2545 if (lart) {
2546 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2547 if (_3ewg) {
2548 EffectSend = _3ewg->ReadUint16();
2549 Attenuation = _3ewg->ReadInt32();
2550 FineTune = _3ewg->ReadInt16();
2551 PitchbendRange = _3ewg->ReadInt16();
2552 uint8_t dimkeystart = _3ewg->ReadUint8();
2553 PianoReleaseMode = dimkeystart & 0x01;
2554 DimensionKeyRange.low = dimkeystart >> 1;
2555 DimensionKeyRange.high = _3ewg->ReadUint8();
2556 }
2557 }
2558
2559 if (!pRegions) pRegions = new RegionList;
2560 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2561 if (lrgn) {
2562 RIFF::List* rgn = lrgn->GetFirstSubList();
2563 while (rgn) {
2564 if (rgn->GetListType() == LIST_TYPE_RGN) {
2565 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2566 pRegions->push_back(new Region(this, rgn));
2567 }
2568 rgn = lrgn->GetNextSubList();
2569 }
2570 // Creating Region Key Table for fast lookup
2571 UpdateRegionKeyTable();
2572 }
2573
2574 __notify_progress(pProgress, 1.0f); // notify done
2575 }
2576
2577 void Instrument::UpdateRegionKeyTable() {
2578 RegionList::iterator iter = pRegions->begin();
2579 RegionList::iterator end = pRegions->end();
2580 for (; iter != end; ++iter) {
2581 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2582 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2583 RegionKeyTable[iKey] = pRegion;
2584 }
2585 }
2586 }
2587
2588 Instrument::~Instrument() {
2589 }
2590
2591 /**
2592 * Apply Instrument with all its Regions to the respective RIFF chunks.
2593 * You have to call File::Save() to make changes persistent.
2594 *
2595 * Usually there is absolutely no need to call this method explicitly.
2596 * It will be called automatically when File::Save() was called.
2597 *
2598 * @throws gig::Exception if samples cannot be dereferenced
2599 */
2600 void Instrument::UpdateChunks() {
2601 // first update base classes' chunks
2602 DLS::Instrument::UpdateChunks();
2603
2604 // update Regions' chunks
2605 {
2606 RegionList::iterator iter = pRegions->begin();
2607 RegionList::iterator end = pRegions->end();
2608 for (; iter != end; ++iter)
2609 (*iter)->UpdateChunks();
2610 }
2611
2612 // make sure 'lart' RIFF list chunk exists
2613 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2614 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2615 // make sure '3ewg' RIFF chunk exists
2616 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2617 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2618 // update '3ewg' RIFF chunk
2619 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2620 memcpy(&pData[0], &EffectSend, 2);
2621 memcpy(&pData[2], &Attenuation, 4);
2622 memcpy(&pData[6], &FineTune, 2);
2623 memcpy(&pData[8], &PitchbendRange, 2);
2624 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2625 DimensionKeyRange.low << 1;
2626 memcpy(&pData[10], &dimkeystart, 1);
2627 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2628 }
2629
2630 /**
2631 * Returns the appropriate Region for a triggered note.
2632 *
2633 * @param Key MIDI Key number of triggered note / key (0 - 127)
2634 * @returns pointer adress to the appropriate Region or NULL if there
2635 * there is no Region defined for the given \a Key
2636 */
2637 Region* Instrument::GetRegion(unsigned int Key) {
2638 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2639 return RegionKeyTable[Key];
2640
2641 /*for (int i = 0; i < Regions; i++) {
2642 if (Key <= pRegions[i]->KeyRange.high &&
2643 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2644 }
2645 return NULL;*/
2646 }
2647
2648 /**
2649 * Returns the first Region of the instrument. You have to call this
2650 * method once before you use GetNextRegion().
2651 *
2652 * @returns pointer address to first region or NULL if there is none
2653 * @see GetNextRegion()
2654 */
2655 Region* Instrument::GetFirstRegion() {
2656 if (!pRegions) return NULL;
2657 RegionsIterator = pRegions->begin();
2658 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2659 }
2660
2661 /**
2662 * Returns the next Region of the instrument. You have to call
2663 * GetFirstRegion() once before you can use this method. By calling this
2664 * method multiple times it iterates through the available Regions.
2665 *
2666 * @returns pointer address to the next region or NULL if end reached
2667 * @see GetFirstRegion()
2668 */
2669 Region* Instrument::GetNextRegion() {
2670 if (!pRegions) return NULL;
2671 RegionsIterator++;
2672 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2673 }
2674
2675 Region* Instrument::AddRegion() {
2676 // create new Region object (and its RIFF chunks)
2677 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2678 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2679 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2680 Region* pNewRegion = new Region(this, rgn);
2681 pRegions->push_back(pNewRegion);
2682 Regions = pRegions->size();
2683 // update Region key table for fast lookup
2684 UpdateRegionKeyTable();
2685 // done
2686 return pNewRegion;
2687 }
2688
2689 void Instrument::DeleteRegion(Region* pRegion) {
2690 if (!pRegions) return;
2691 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2692 // update Region key table for fast lookup
2693 UpdateRegionKeyTable();
2694 }
2695
2696
2697
2698 // *************** Group ***************
2699 // *
2700
2701 /** @brief Constructor.
2702 *
2703 * @param file - pointer to the gig::File object
2704 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2705 * NULL if this is a new Group
2706 */
2707 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2708 pFile = file;
2709 pNameChunk = ck3gnm;
2710 ::LoadString(pNameChunk, Name);
2711 }
2712
2713 Group::~Group() {
2714 }
2715
2716 /** @brief Update chunks with current group settings.
2717 *
2718 * Apply current Group field values to the respective. You have to call
2719 * File::Save() to make changes persistent.
2720 */
2721 void Group::UpdateChunks() {
2722 // make sure <3gri> and <3gnl> list chunks exist
2723 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2724 if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2725 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2726 if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);
2727 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2728 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2729 }
2730
2731 /**
2732 * Returns the first Sample of this Group. You have to call this method
2733 * once before you use GetNextSample().
2734 *
2735 * <b>Notice:</b> this method might block for a long time, in case the
2736 * samples of this .gig file were not scanned yet
2737 *
2738 * @returns pointer address to first Sample or NULL if there is none
2739 * applied to this Group
2740 * @see GetNextSample()
2741 */
2742 Sample* Group::GetFirstSample() {
2743 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2744 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2745 if (pSample->GetGroup() == this) return pSample;
2746 }
2747 return NULL;
2748 }
2749
2750 /**
2751 * Returns the next Sample of the Group. You have to call
2752 * GetFirstSample() once before you can use this method. By calling this
2753 * method multiple times it iterates through the Samples assigned to
2754 * this Group.
2755 *
2756 * @returns pointer address to the next Sample of this Group or NULL if
2757 * end reached
2758 * @see GetFirstSample()
2759 */
2760 Sample* Group::GetNextSample() {
2761 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2762 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2763 if (pSample->GetGroup() == this) return pSample;
2764 }
2765 return NULL;
2766 }
2767
2768 /**
2769 * Move Sample given by \a pSample from another Group to this Group.
2770 */
2771 void Group::AddSample(Sample* pSample) {
2772 pSample->pGroup = this;
2773 }
2774
2775 /**
2776 * Move all members of this group to another group (preferably the 1st
2777 * one except this). This method is called explicitly by
2778 * File::DeleteGroup() thus when a Group was deleted. This code was
2779 * intentionally not placed in the destructor!
2780 */
2781 void Group::MoveAll() {
2782 // get "that" other group first
2783 Group* pOtherGroup = NULL;
2784 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2785 if (pOtherGroup != this) break;
2786 }
2787 if (!pOtherGroup) throw Exception(
2788 "Could not move samples to another group, since there is no "
2789 "other Group. This is a bug, report it!"
2790 );
2791 // now move all samples of this group to the other group
2792 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2793 pOtherGroup->AddSample(pSample);
2794 }
2795 }
2796
2797
2798
2799 // *************** File ***************
2800 // *
2801
2802 File::File() : DLS::File() {
2803 pGroups = NULL;
2804 pInfo->UseFixedLengthStrings = true;
2805 }
2806
2807 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2808 pGroups = NULL;
2809 pInfo->UseFixedLengthStrings = true;
2810 }
2811
2812 File::~File() {
2813 if (pGroups) {
2814 std::list<Group*>::iterator iter = pGroups->begin();
2815 std::list<Group*>::iterator end = pGroups->end();
2816 while (iter != end) {
2817 delete *iter;
2818 ++iter;
2819 }
2820 delete pGroups;
2821 }
2822 }
2823
2824 Sample* File::GetFirstSample(progress_t* pProgress) {
2825 if (!pSamples) LoadSamples(pProgress);
2826 if (!pSamples) return NULL;
2827 SamplesIterator = pSamples->begin();
2828 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2829 }
2830
2831 Sample* File::GetNextSample() {
2832 if (!pSamples) return NULL;
2833 SamplesIterator++;
2834 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2835 }
2836
2837 /** @brief Add a new sample.
2838 *
2839 * This will create a new Sample object for the gig file. You have to
2840 * call Save() to make this persistent to the file.
2841 *
2842 * @returns pointer to new Sample object
2843 */
2844 Sample* File::AddSample() {
2845 if (!pSamples) LoadSamples();
2846 __ensureMandatoryChunksExist();
2847 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2848 // create new Sample object and its respective 'wave' list chunk
2849 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2850 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2851 pSamples->push_back(pSample);
2852 return pSample;
2853 }
2854
2855 /** @brief Delete a sample.
2856 *
2857 * This will delete the given Sample object from the gig file. You have
2858 * to call Save() to make this persistent to the file.
2859 *
2860 * @param pSample - sample to delete
2861 * @throws gig::Exception if given sample could not be found
2862 */
2863 void File::DeleteSample(Sample* pSample) {
2864 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2865 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2866 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2867 pSamples->erase(iter);
2868 delete pSample;
2869 }
2870
2871 void File::LoadSamples() {
2872 LoadSamples(NULL);
2873 }
2874
2875 void File::LoadSamples(progress_t* pProgress) {
2876 // Groups must be loaded before samples, because samples will try
2877 // to resolve the group they belong to
2878 LoadGroups();
2879
2880 if (!pSamples) pSamples = new SampleList;
2881
2882 RIFF::File* file = pRIFF;
2883
2884 // just for progress calculation
2885 int iSampleIndex = 0;
2886 int iTotalSamples = WavePoolCount;
2887
2888 // check if samples should be loaded from extension files
2889 int lastFileNo = 0;
2890 for (int i = 0 ; i < WavePoolCount ; i++) {
2891 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2892 }
2893 String name(pRIFF->GetFileName());
2894 int nameLen = name.length();
2895 char suffix[6];
2896 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2897
2898 for (int fileNo = 0 ; ; ) {
2899 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2900 if (wvpl) {
2901 unsigned long wvplFileOffset = wvpl->GetFilePos();
2902 RIFF::List* wave = wvpl->GetFirstSubList();
2903 while (wave) {
2904 if (wave->GetListType() == LIST_TYPE_WAVE) {
2905 // notify current progress
2906 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2907 __notify_progress(pProgress, subprogress);
2908
2909 unsigned long waveFileOffset = wave->GetFilePos();
2910 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2911
2912 iSampleIndex++;
2913 }
2914 wave = wvpl->GetNextSubList();
2915 }
2916
2917 if (fileNo == lastFileNo) break;
2918
2919 // open extension file (*.gx01, *.gx02, ...)
2920 fileNo++;
2921 sprintf(suffix, ".gx%02d", fileNo);
2922 name.replace(nameLen, 5, suffix);
2923 file = new RIFF::File(name);
2924 ExtensionFiles.push_back(file);
2925 } else break;
2926 }
2927
2928 __notify_progress(pProgress, 1.0); // notify done
2929 }
2930
2931 Instrument* File::GetFirstInstrument() {
2932 if (!pInstruments) LoadInstruments();
2933 if (!pInstruments) return NULL;
2934 InstrumentsIterator = pInstruments->begin();
2935 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2936 }
2937
2938 Instrument* File::GetNextInstrument() {
2939 if (!pInstruments) return NULL;
2940 InstrumentsIterator++;
2941 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2942 }
2943
2944 /**
2945 * Returns the instrument with the given index.
2946 *
2947 * @param index - number of the sought instrument (0..n)
2948 * @param pProgress - optional: callback function for progress notification
2949 * @returns sought instrument or NULL if there's no such instrument
2950 */
2951 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2952 if (!pInstruments) {
2953 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2954
2955 // sample loading subtask
2956 progress_t subprogress;
2957 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2958 __notify_progress(&subprogress, 0.0f);
2959 GetFirstSample(&subprogress); // now force all samples to be loaded
2960 __notify_progress(&subprogress, 1.0f);
2961
2962 // instrument loading subtask
2963 if (pProgress && pProgress->callback) {
2964 subprogress.__range_min = subprogress.__range_max;
2965 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2966 }
2967 __notify_progress(&subprogress, 0.0f);
2968 LoadInstruments(&subprogress);
2969 __notify_progress(&subprogress, 1.0f);
2970 }
2971 if (!pInstruments) return NULL;
2972 InstrumentsIterator = pInstruments->begin();
2973 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2974 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2975 InstrumentsIterator++;
2976 }
2977 return NULL;
2978 }
2979
2980 /** @brief Add a new instrument definition.
2981 *
2982 * This will create a new Instrument object for the gig file. You have
2983 * to call Save() to make this persistent to the file.
2984 *
2985 * @returns pointer to new Instrument object
2986 */
2987 Instrument* File::AddInstrument() {
2988 if (!pInstruments) LoadInstruments();
2989 __ensureMandatoryChunksExist();
2990 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2991 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2992 Instrument* pInstrument = new Instrument(this, lstInstr);
2993 pInstruments->push_back(pInstrument);
2994 return pInstrument;
2995 }
2996
2997 /** @brief Delete an instrument.
2998 *
2999 * This will delete the given Instrument object from the gig file. You
3000 * have to call Save() to make this persistent to the file.
3001 *
3002 * @param pInstrument - instrument to delete
3003 * @throws gig::Excption if given instrument could not be found
3004 */
3005 void File::DeleteInstrument(Instrument* pInstrument) {
3006 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3007 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3008 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3009 pInstruments->erase(iter);
3010 delete pInstrument;
3011 }
3012
3013 void File::LoadInstruments() {
3014 LoadInstruments(NULL);
3015 }
3016
3017 void File::LoadInstruments(progress_t* pProgress) {
3018 if (!pInstruments) pInstruments = new InstrumentList;
3019 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3020 if (lstInstruments) {
3021 int iInstrumentIndex = 0;
3022 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3023 while (lstInstr) {
3024 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3025 // notify current progress
3026 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3027 __notify_progress(pProgress, localProgress);
3028
3029 // divide local progress into subprogress for loading current Instrument
3030 progress_t subprogress;
3031 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3032
3033 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3034
3035 iInstrumentIndex++;
3036