/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Annotation of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3732 - (hide annotations) (download)
Sat Feb 1 15:51:54 2020 UTC (5 months, 1 week ago) by schoenebeck
File size: 323156 byte(s)
gig.cpp: Just updated API doc comments; make it more clear that
the new methods are a gig file format extension.

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3710 * Copyright (C) 2003-2020 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #include "gig.h"
25    
26 schoenebeck 809 #include "helper.h"
27 schoenebeck 3140 #include "Serialization.h"
28 schoenebeck 809
29 persson 1713 #include <algorithm>
30 schoenebeck 809 #include <math.h>
31 schoenebeck 384 #include <iostream>
32 schoenebeck 2555 #include <assert.h>
33 schoenebeck 384
34 schoenebeck 2912 /// libgig's current file format version (for extending the original Giga file
35     /// format with libgig's own custom data / custom features).
36     #define GIG_FILE_EXT_VERSION 2
37    
38 schoenebeck 809 /// Initial size of the sample buffer which is used for decompression of
39     /// compressed sample wave streams - this value should always be bigger than
40     /// the biggest sample piece expected to be read by the sampler engine,
41     /// otherwise the buffer size will be raised at runtime and thus the buffer
42     /// reallocated which is time consuming and unefficient.
43     #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44    
45     /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46     #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47     #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48     #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49     #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50     #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51     #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52     #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53     #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54     #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55     #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56     #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57     #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58    
59 schoenebeck 3138 #define SRLZ(member) \
60     archive->serializeMember(*this, member, #member);
61    
62 schoenebeck 515 namespace gig {
63 schoenebeck 2
64 schoenebeck 809 // *************** Internal functions for sample decompression ***************
65 persson 365 // *
66    
67 schoenebeck 515 namespace {
68    
69 persson 365 inline int get12lo(const unsigned char* pSrc)
70     {
71     const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72     return x & 0x800 ? x - 0x1000 : x;
73     }
74    
75     inline int get12hi(const unsigned char* pSrc)
76     {
77     const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78     return x & 0x800 ? x - 0x1000 : x;
79     }
80    
81     inline int16_t get16(const unsigned char* pSrc)
82     {
83     return int16_t(pSrc[0] | pSrc[1] << 8);
84     }
85    
86     inline int get24(const unsigned char* pSrc)
87     {
88     const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89     return x & 0x800000 ? x - 0x1000000 : x;
90     }
91    
92 persson 902 inline void store24(unsigned char* pDst, int x)
93     {
94     pDst[0] = x;
95     pDst[1] = x >> 8;
96     pDst[2] = x >> 16;
97     }
98    
99 persson 365 void Decompress16(int compressionmode, const unsigned char* params,
100 persson 372 int srcStep, int dstStep,
101     const unsigned char* pSrc, int16_t* pDst,
102 schoenebeck 2912 file_offset_t currentframeoffset,
103     file_offset_t copysamples)
104 persson 365 {
105     switch (compressionmode) {
106     case 0: // 16 bit uncompressed
107     pSrc += currentframeoffset * srcStep;
108     while (copysamples) {
109     *pDst = get16(pSrc);
110 persson 372 pDst += dstStep;
111 persson 365 pSrc += srcStep;
112     copysamples--;
113     }
114     break;
115    
116     case 1: // 16 bit compressed to 8 bit
117     int y = get16(params);
118     int dy = get16(params + 2);
119     while (currentframeoffset) {
120     dy -= int8_t(*pSrc);
121     y -= dy;
122     pSrc += srcStep;
123     currentframeoffset--;
124     }
125     while (copysamples) {
126     dy -= int8_t(*pSrc);
127     y -= dy;
128     *pDst = y;
129 persson 372 pDst += dstStep;
130 persson 365 pSrc += srcStep;
131     copysamples--;
132     }
133     break;
134     }
135     }
136    
137     void Decompress24(int compressionmode, const unsigned char* params,
138 persson 902 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 schoenebeck 2912 file_offset_t currentframeoffset,
140     file_offset_t copysamples, int truncatedBits)
141 persson 365 {
142 persson 695 int y, dy, ddy, dddy;
143 persson 437
144 persson 695 #define GET_PARAMS(params) \
145     y = get24(params); \
146     dy = y - get24((params) + 3); \
147     ddy = get24((params) + 6); \
148     dddy = get24((params) + 9)
149 persson 365
150     #define SKIP_ONE(x) \
151 persson 695 dddy -= (x); \
152     ddy -= dddy; \
153     dy = -dy - ddy; \
154     y += dy
155 persson 365
156     #define COPY_ONE(x) \
157     SKIP_ONE(x); \
158 persson 902 store24(pDst, y << truncatedBits); \
159 persson 372 pDst += dstStep
160 persson 365
161     switch (compressionmode) {
162     case 2: // 24 bit uncompressed
163     pSrc += currentframeoffset * 3;
164     while (copysamples) {
165 persson 902 store24(pDst, get24(pSrc) << truncatedBits);
166 persson 372 pDst += dstStep;
167 persson 365 pSrc += 3;
168     copysamples--;
169     }
170     break;
171    
172     case 3: // 24 bit compressed to 16 bit
173     GET_PARAMS(params);
174     while (currentframeoffset) {
175     SKIP_ONE(get16(pSrc));
176     pSrc += 2;
177     currentframeoffset--;
178     }
179     while (copysamples) {
180     COPY_ONE(get16(pSrc));
181     pSrc += 2;
182     copysamples--;
183     }
184     break;
185    
186     case 4: // 24 bit compressed to 12 bit
187     GET_PARAMS(params);
188     while (currentframeoffset > 1) {
189     SKIP_ONE(get12lo(pSrc));
190     SKIP_ONE(get12hi(pSrc));
191     pSrc += 3;
192     currentframeoffset -= 2;
193     }
194     if (currentframeoffset) {
195     SKIP_ONE(get12lo(pSrc));
196     currentframeoffset--;
197     if (copysamples) {
198     COPY_ONE(get12hi(pSrc));
199     pSrc += 3;
200     copysamples--;
201     }
202     }
203     while (copysamples > 1) {
204     COPY_ONE(get12lo(pSrc));
205     COPY_ONE(get12hi(pSrc));
206     pSrc += 3;
207     copysamples -= 2;
208     }
209     if (copysamples) {
210     COPY_ONE(get12lo(pSrc));
211     }
212     break;
213    
214     case 5: // 24 bit compressed to 8 bit
215     GET_PARAMS(params);
216     while (currentframeoffset) {
217     SKIP_ONE(int8_t(*pSrc++));
218     currentframeoffset--;
219     }
220     while (copysamples) {
221     COPY_ONE(int8_t(*pSrc++));
222     copysamples--;
223     }
224     break;
225     }
226     }
227    
228     const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229     const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230     const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231     const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232     }
233    
234    
235 schoenebeck 1113
236 schoenebeck 1381 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237     // *
238    
239     static uint32_t* __initCRCTable() {
240     static uint32_t res[256];
241    
242     for (int i = 0 ; i < 256 ; i++) {
243     uint32_t c = i;
244     for (int j = 0 ; j < 8 ; j++) {
245     c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246     }
247     res[i] = c;
248     }
249     return res;
250     }
251    
252     static const uint32_t* __CRCTable = __initCRCTable();
253    
254     /**
255     * Initialize a CRC variable.
256     *
257     * @param crc - variable to be initialized
258     */
259     inline static void __resetCRC(uint32_t& crc) {
260     crc = 0xffffffff;
261     }
262    
263     /**
264     * Used to calculate checksums of the sample data in a gig file. The
265     * checksums are stored in the 3crc chunk of the gig file and
266     * automatically updated when a sample is written with Sample::Write().
267     *
268     * One should call __resetCRC() to initialize the CRC variable to be
269     * used before calling this function the first time.
270     *
271     * After initializing the CRC variable one can call this function
272     * arbitrary times, i.e. to split the overall CRC calculation into
273     * steps.
274     *
275     * Once the whole data was processed by __calculateCRC(), one should
276 schoenebeck 3115 * call __finalizeCRC() to get the final CRC result.
277 schoenebeck 1381 *
278     * @param buf - pointer to data the CRC shall be calculated of
279     * @param bufSize - size of the data to be processed
280     * @param crc - variable the CRC sum shall be stored to
281     */
282 schoenebeck 3053 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283     for (size_t i = 0 ; i < bufSize ; i++) {
284 schoenebeck 1381 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285     }
286     }
287    
288     /**
289     * Returns the final CRC result.
290     *
291     * @param crc - variable previously passed to __calculateCRC()
292     */
293 schoenebeck 3115 inline static void __finalizeCRC(uint32_t& crc) {
294     crc ^= 0xffffffff;
295 schoenebeck 1381 }
296    
297    
298    
299 schoenebeck 1113 // *************** Other Internal functions ***************
300     // *
301    
302     static split_type_t __resolveSplitType(dimension_t dimension) {
303     return (
304     dimension == dimension_layer ||
305     dimension == dimension_samplechannel ||
306     dimension == dimension_releasetrigger ||
307     dimension == dimension_keyboard ||
308     dimension == dimension_roundrobin ||
309     dimension == dimension_random ||
310     dimension == dimension_smartmidi ||
311     dimension == dimension_roundrobinkeyboard
312     ) ? split_type_bit : split_type_normal;
313     }
314    
315     static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316     return (dimension_definition.split_type == split_type_normal)
317     ? int(128.0 / dimension_definition.zones) : 0;
318     }
319    
320    
321    
322 schoenebeck 3138 // *************** leverage_ctrl_t ***************
323     // *
324    
325     void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326     SRLZ(type);
327     SRLZ(controller_number);
328     }
329    
330    
331    
332     // *************** crossfade_t ***************
333     // *
334    
335     void crossfade_t::serialize(Serialization::Archive* archive) {
336     SRLZ(in_start);
337     SRLZ(in_end);
338     SRLZ(out_start);
339     SRLZ(out_end);
340     }
341    
342    
343    
344 schoenebeck 3323 // *************** eg_opt_t ***************
345     // *
346    
347     eg_opt_t::eg_opt_t() {
348     AttackCancel = true;
349     AttackHoldCancel = true;
350 schoenebeck 3324 Decay1Cancel = true;
351     Decay2Cancel = true;
352 schoenebeck 3323 ReleaseCancel = true;
353     }
354    
355     void eg_opt_t::serialize(Serialization::Archive* archive) {
356     SRLZ(AttackCancel);
357     SRLZ(AttackHoldCancel);
358 schoenebeck 3324 SRLZ(Decay1Cancel);
359     SRLZ(Decay2Cancel);
360 schoenebeck 3323 SRLZ(ReleaseCancel);
361     }
362    
363    
364    
365 schoenebeck 2 // *************** Sample ***************
366     // *
367    
368 schoenebeck 2922 size_t Sample::Instances = 0;
369 schoenebeck 384 buffer_t Sample::InternalDecompressionBuffer;
370 schoenebeck 2
371 schoenebeck 809 /** @brief Constructor.
372     *
373     * Load an existing sample or create a new one. A 'wave' list chunk must
374     * be given to this constructor. In case the given 'wave' list chunk
375     * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376     * format and sample data will be loaded from there, otherwise default
377     * values will be used and those chunks will be created when
378     * File::Save() will be called later on.
379     *
380     * @param pFile - pointer to gig::File where this sample is
381     * located (or will be located)
382     * @param waveList - pointer to 'wave' list chunk which is (or
383     * will be) associated with this sample
384     * @param WavePoolOffset - offset of this sample data from wave pool
385     * ('wvpl') list chunk
386     * @param fileNo - number of an extension file where this sample
387     * is located, 0 otherwise
388 schoenebeck 2989 * @param index - wave pool index of sample (may be -1 on new sample)
389 schoenebeck 809 */
390 schoenebeck 2989 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391     : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392     {
393 schoenebeck 1416 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 persson 1180 { CHUNK_ID_INAM, 64 },
395     { 0, 0 }
396     };
397 schoenebeck 1416 pInfo->SetFixedStringLengths(fixedStringLengths);
398 schoenebeck 2 Instances++;
399 persson 666 FileNo = fileNo;
400 schoenebeck 2
401 schoenebeck 1381 __resetCRC(crc);
402 schoenebeck 2989 // if this is not a new sample, try to get the sample's already existing
403     // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404     // checksum of the time when the sample was consciously modified by the
405     // user for the last time (by calling Sample::Write() that is).
406     if (index >= 0) { // not a new file ...
407     try {
408     uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409     this->crc = crc;
410     } catch (...) {}
411     }
412 schoenebeck 1381
413 schoenebeck 809 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414     if (pCk3gix) {
415 schoenebeck 3478 pCk3gix->SetPos(0);
416    
417 schoenebeck 929 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 schoenebeck 930 pGroup = pFile->GetGroup(iSampleGroup);
419 schoenebeck 809 } else { // '3gix' chunk missing
420 schoenebeck 930 // by default assigned to that mandatory "Default Group"
421     pGroup = pFile->GetGroup(0);
422 schoenebeck 809 }
423 schoenebeck 2
424 schoenebeck 809 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425     if (pCkSmpl) {
426 schoenebeck 3478 pCkSmpl->SetPos(0);
427    
428 schoenebeck 809 Manufacturer = pCkSmpl->ReadInt32();
429     Product = pCkSmpl->ReadInt32();
430     SamplePeriod = pCkSmpl->ReadInt32();
431     MIDIUnityNote = pCkSmpl->ReadInt32();
432     FineTune = pCkSmpl->ReadInt32();
433     pCkSmpl->Read(&SMPTEFormat, 1, 4);
434     SMPTEOffset = pCkSmpl->ReadInt32();
435     Loops = pCkSmpl->ReadInt32();
436     pCkSmpl->ReadInt32(); // manufByt
437     LoopID = pCkSmpl->ReadInt32();
438     pCkSmpl->Read(&LoopType, 1, 4);
439     LoopStart = pCkSmpl->ReadInt32();
440     LoopEnd = pCkSmpl->ReadInt32();
441     LoopFraction = pCkSmpl->ReadInt32();
442     LoopPlayCount = pCkSmpl->ReadInt32();
443     } else { // 'smpl' chunk missing
444     // use default values
445     Manufacturer = 0;
446     Product = 0;
447 persson 928 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 persson 1218 MIDIUnityNote = 60;
449 schoenebeck 809 FineTune = 0;
450 persson 1182 SMPTEFormat = smpte_format_no_offset;
451 schoenebeck 809 SMPTEOffset = 0;
452     Loops = 0;
453     LoopID = 0;
454 persson 1182 LoopType = loop_type_normal;
455 schoenebeck 809 LoopStart = 0;
456     LoopEnd = 0;
457     LoopFraction = 0;
458     LoopPlayCount = 0;
459     }
460 schoenebeck 2
461     FrameTable = NULL;
462     SamplePos = 0;
463     RAMCache.Size = 0;
464     RAMCache.pStart = NULL;
465     RAMCache.NullExtensionSize = 0;
466    
467 persson 365 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469 persson 437 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470     Compressed = ewav;
471     Dithered = false;
472     TruncatedBits = 0;
473 schoenebeck 2 if (Compressed) {
474 schoenebeck 3478 ewav->SetPos(0);
475    
476 persson 437 uint32_t version = ewav->ReadInt32();
477 schoenebeck 3440 if (version > 2 && BitDepth == 24) {
478 persson 437 Dithered = ewav->ReadInt32();
479     ewav->SetPos(Channels == 2 ? 84 : 64);
480     TruncatedBits = ewav->ReadInt32();
481     }
482 schoenebeck 2 ScanCompressedSample();
483     }
484 schoenebeck 317
485     // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 schoenebeck 384 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487     InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488     InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 schoenebeck 317 }
490 persson 437 FrameOffset = 0; // just for streaming compressed samples
491 schoenebeck 21
492 persson 864 LoopSize = LoopEnd - LoopStart + 1;
493 schoenebeck 2 }
494    
495 schoenebeck 809 /**
496 schoenebeck 2482 * Make a (semi) deep copy of the Sample object given by @a orig (without
497     * the actual waveform data) and assign it to this object.
498     *
499     * Discussion: copying .gig samples is a bit tricky. It requires three
500     * steps:
501     * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502     * its new sample waveform data size.
503     * 2. Saving the file (done by File::Save()) so that it gains correct size
504     * and layout for writing the actual wave form data directly to disc
505     * in next step.
506     * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507     *
508     * @param orig - original Sample object to be copied from
509     */
510     void Sample::CopyAssignMeta(const Sample* orig) {
511     // handle base classes
512     DLS::Sample::CopyAssignCore(orig);
513    
514     // handle actual own attributes of this class
515     Manufacturer = orig->Manufacturer;
516     Product = orig->Product;
517     SamplePeriod = orig->SamplePeriod;
518     MIDIUnityNote = orig->MIDIUnityNote;
519     FineTune = orig->FineTune;
520     SMPTEFormat = orig->SMPTEFormat;
521     SMPTEOffset = orig->SMPTEOffset;
522     Loops = orig->Loops;
523     LoopID = orig->LoopID;
524     LoopType = orig->LoopType;
525     LoopStart = orig->LoopStart;
526     LoopEnd = orig->LoopEnd;
527     LoopSize = orig->LoopSize;
528     LoopFraction = orig->LoopFraction;
529     LoopPlayCount = orig->LoopPlayCount;
530    
531     // schedule resizing this sample to the given sample's size
532     Resize(orig->GetSize());
533     }
534    
535     /**
536     * Should be called after CopyAssignMeta() and File::Save() sequence.
537     * Read more about it in the discussion of CopyAssignMeta(). This method
538     * copies the actual waveform data by disk streaming.
539     *
540     * @e CAUTION: this method is currently not thread safe! During this
541     * operation the sample must not be used for other purposes by other
542     * threads!
543     *
544     * @param orig - original Sample object to be copied from
545     */
546     void Sample::CopyAssignWave(const Sample* orig) {
547     const int iReadAtOnce = 32*1024;
548     char* buf = new char[iReadAtOnce * orig->FrameSize];
549     Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 schoenebeck 2912 file_offset_t restorePos = pOrig->GetPos();
551 schoenebeck 2482 pOrig->SetPos(0);
552     SetPos(0);
553 schoenebeck 2912 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 schoenebeck 2482 n = pOrig->Read(buf, iReadAtOnce))
555     {
556     Write(buf, n);
557     }
558     pOrig->SetPos(restorePos);
559     delete [] buf;
560     }
561    
562     /**
563 schoenebeck 809 * Apply sample and its settings to the respective RIFF chunks. You have
564     * to call File::Save() to make changes persistent.
565     *
566     * Usually there is absolutely no need to call this method explicitly.
567     * It will be called automatically when File::Save() was called.
568     *
569 schoenebeck 2682 * @param pProgress - callback function for progress notification
570 schoenebeck 1050 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 schoenebeck 809 * was provided yet
572     * @throws gig::Exception if there is any invalid sample setting
573     */
574 schoenebeck 2682 void Sample::UpdateChunks(progress_t* pProgress) {
575 schoenebeck 809 // first update base class's chunks
576 schoenebeck 2682 DLS::Sample::UpdateChunks(pProgress);
577 schoenebeck 809
578     // make sure 'smpl' chunk exists
579     pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 persson 1182 if (!pCkSmpl) {
581     pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582     memset(pCkSmpl->LoadChunkData(), 0, 60);
583     }
584 schoenebeck 809 // update 'smpl' chunk
585     uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 persson 918 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 persson 1179 store32(&pData[0], Manufacturer);
588     store32(&pData[4], Product);
589     store32(&pData[8], SamplePeriod);
590     store32(&pData[12], MIDIUnityNote);
591     store32(&pData[16], FineTune);
592     store32(&pData[20], SMPTEFormat);
593     store32(&pData[24], SMPTEOffset);
594     store32(&pData[28], Loops);
595 schoenebeck 809
596     // we skip 'manufByt' for now (4 bytes)
597    
598 persson 1179 store32(&pData[36], LoopID);
599     store32(&pData[40], LoopType);
600     store32(&pData[44], LoopStart);
601     store32(&pData[48], LoopEnd);
602     store32(&pData[52], LoopFraction);
603     store32(&pData[56], LoopPlayCount);
604 schoenebeck 809
605     // make sure '3gix' chunk exists
606     pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607     if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 schoenebeck 929 // determine appropriate sample group index (to be stored in chunk)
609 schoenebeck 930 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 schoenebeck 929 File* pFile = static_cast<File*>(pParent);
611     if (pFile->pGroups) {
612     std::list<Group*>::iterator iter = pFile->pGroups->begin();
613     std::list<Group*>::iterator end = pFile->pGroups->end();
614 schoenebeck 930 for (int i = 0; iter != end; i++, iter++) {
615 schoenebeck 929 if (*iter == pGroup) {
616     iSampleGroup = i;
617     break; // found
618     }
619     }
620     }
621 schoenebeck 809 // update '3gix' chunk
622     pData = (uint8_t*) pCk3gix->LoadChunkData();
623 persson 1179 store16(&pData[0], iSampleGroup);
624 schoenebeck 2484
625     // if the library user toggled the "Compressed" attribute from true to
626     // false, then the EWAV chunk associated with compressed samples needs
627     // to be deleted
628     RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629     if (ewav && !Compressed) {
630     pWaveList->DeleteSubChunk(ewav);
631     }
632 schoenebeck 809 }
633    
634 schoenebeck 2 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635     void Sample::ScanCompressedSample() {
636     //TODO: we have to add some more scans here (e.g. determine compression rate)
637     this->SamplesTotal = 0;
638 schoenebeck 2912 std::list<file_offset_t> frameOffsets;
639 schoenebeck 2
640 persson 365 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 schoenebeck 384 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642 persson 365
643 schoenebeck 2 // Scanning
644     pCkData->SetPos(0);
645 persson 365 if (Channels == 2) { // Stereo
646     for (int i = 0 ; ; i++) {
647     // for 24 bit samples every 8:th frame offset is
648     // stored, to save some memory
649     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650    
651     const int mode_l = pCkData->ReadUint8();
652     const int mode_r = pCkData->ReadUint8();
653     if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655 persson 365
656     if (pCkData->RemainingBytes() <= frameSize) {
657     SamplesInLastFrame =
658     ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659     (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660     SamplesTotal += SamplesInLastFrame;
661 schoenebeck 2 break;
662 persson 365 }
663     SamplesTotal += SamplesPerFrame;
664     pCkData->SetPos(frameSize, RIFF::stream_curpos);
665     }
666     }
667     else { // Mono
668     for (int i = 0 ; ; i++) {
669     if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671     const int mode = pCkData->ReadUint8();
672     if (mode > 5) throw gig::Exception("Unknown compression mode");
673 schoenebeck 2912 const file_offset_t frameSize = bytesPerFrame[mode];
674 persson 365
675     if (pCkData->RemainingBytes() <= frameSize) {
676     SamplesInLastFrame =
677     ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678     SamplesTotal += SamplesInLastFrame;
679 schoenebeck 2 break;
680 persson 365 }
681     SamplesTotal += SamplesPerFrame;
682     pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 schoenebeck 2 }
684     }
685     pCkData->SetPos(0);
686    
687     // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688     if (FrameTable) delete[] FrameTable;
689 schoenebeck 2912 FrameTable = new file_offset_t[frameOffsets.size()];
690     std::list<file_offset_t>::iterator end = frameOffsets.end();
691     std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 schoenebeck 2 for (int i = 0; iter != end; i++, iter++) {
693     FrameTable[i] = *iter;
694     }
695     }
696    
697     /**
698     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699     * ReleaseSampleData() to free the memory if you don't need the cached
700     * sample data anymore.
701     *
702     * @returns buffer_t structure with start address and size of the buffer
703     * in bytes
704     * @see ReleaseSampleData(), Read(), SetPos()
705     */
706     buffer_t Sample::LoadSampleData() {
707     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708     }
709    
710     /**
711     * Reads (uncompresses if needed) and caches the first \a SampleCount
712     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713     * memory space if you don't need the cached samples anymore. There is no
714     * guarantee that exactly \a SampleCount samples will be cached; this is
715     * not an error. The size will be eventually truncated e.g. to the
716     * beginning of a frame of a compressed sample. This is done for
717     * efficiency reasons while streaming the wave by your sampler engine
718     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719     * that will be returned to determine the actual cached samples, but note
720     * that the size is given in bytes! You get the number of actually cached
721     * samples by dividing it by the frame size of the sample:
722 schoenebeck 384 * @code
723 schoenebeck 2 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724     * long cachedsamples = buf.Size / pSample->FrameSize;
725 schoenebeck 384 * @endcode
726 schoenebeck 2 *
727     * @param SampleCount - number of sample points to load into RAM
728     * @returns buffer_t structure with start address and size of
729     * the cached sample data in bytes
730     * @see ReleaseSampleData(), Read(), SetPos()
731     */
732 schoenebeck 2912 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 schoenebeck 2 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734     }
735    
736     /**
737     * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738     * ReleaseSampleData() to free the memory if you don't need the cached
739     * sample data anymore.
740     * The method will add \a NullSamplesCount silence samples past the
741     * official buffer end (this won't affect the 'Size' member of the
742     * buffer_t structure, that means 'Size' always reflects the size of the
743     * actual sample data, the buffer might be bigger though). Silence
744     * samples past the official buffer are needed for differential
745     * algorithms that always have to take subsequent samples into account
746     * (resampling/interpolation would be an important example) and avoids
747     * memory access faults in such cases.
748     *
749     * @param NullSamplesCount - number of silence samples the buffer should
750     * be extended past it's data end
751     * @returns buffer_t structure with start address and
752     * size of the buffer in bytes
753     * @see ReleaseSampleData(), Read(), SetPos()
754     */
755     buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756     return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757     }
758    
759     /**
760     * Reads (uncompresses if needed) and caches the first \a SampleCount
761     * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762     * memory space if you don't need the cached samples anymore. There is no
763     * guarantee that exactly \a SampleCount samples will be cached; this is
764     * not an error. The size will be eventually truncated e.g. to the
765     * beginning of a frame of a compressed sample. This is done for
766     * efficiency reasons while streaming the wave by your sampler engine
767     * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768     * that will be returned to determine the actual cached samples, but note
769     * that the size is given in bytes! You get the number of actually cached
770     * samples by dividing it by the frame size of the sample:
771 schoenebeck 384 * @code
772 schoenebeck 2 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773     * long cachedsamples = buf.Size / pSample->FrameSize;
774 schoenebeck 384 * @endcode
775 schoenebeck 2 * The method will add \a NullSamplesCount silence samples past the
776     * official buffer end (this won't affect the 'Size' member of the
777     * buffer_t structure, that means 'Size' always reflects the size of the
778     * actual sample data, the buffer might be bigger though). Silence
779     * samples past the official buffer are needed for differential
780     * algorithms that always have to take subsequent samples into account
781     * (resampling/interpolation would be an important example) and avoids
782     * memory access faults in such cases.
783     *
784     * @param SampleCount - number of sample points to load into RAM
785     * @param NullSamplesCount - number of silence samples the buffer should
786     * be extended past it's data end
787     * @returns buffer_t structure with start address and
788     * size of the cached sample data in bytes
789     * @see ReleaseSampleData(), Read(), SetPos()
790     */
791 schoenebeck 2912 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 schoenebeck 2 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 schoenebeck 2912 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 schoenebeck 1851 SetPos(0); // reset read position to begin of sample
796 schoenebeck 2 RAMCache.pStart = new int8_t[allocationsize];
797     RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798     RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799     // fill the remaining buffer space with silence samples
800     memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801     return GetCache();
802     }
803    
804     /**
805     * Returns current cached sample points. A buffer_t structure will be
806     * returned which contains address pointer to the begin of the cache and
807     * the size of the cached sample data in bytes. Use
808     * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809     * RAM.
810     *
811     * @returns buffer_t structure with current cached sample points
812     * @see LoadSampleData();
813     */
814     buffer_t Sample::GetCache() {
815     // return a copy of the buffer_t structure
816     buffer_t result;
817     result.Size = this->RAMCache.Size;
818     result.pStart = this->RAMCache.pStart;
819     result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820     return result;
821     }
822    
823     /**
824     * Frees the cached sample from RAM if loaded with
825     * <i>LoadSampleData()</i> previously.
826     *
827     * @see LoadSampleData();
828     */
829     void Sample::ReleaseSampleData() {
830     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831     RAMCache.pStart = NULL;
832     RAMCache.Size = 0;
833 schoenebeck 1851 RAMCache.NullExtensionSize = 0;
834 schoenebeck 2 }
835    
836 schoenebeck 809 /** @brief Resize sample.
837     *
838     * Resizes the sample's wave form data, that is the actual size of
839     * sample wave data possible to be written for this sample. This call
840     * will return immediately and just schedule the resize operation. You
841     * should call File::Save() to actually perform the resize operation(s)
842     * "physically" to the file. As this can take a while on large files, it
843     * is recommended to call Resize() first on all samples which have to be
844     * resized and finally to call File::Save() to perform all those resize
845     * operations in one rush.
846     *
847     * The actual size (in bytes) is dependant to the current FrameSize
848     * value. You may want to set FrameSize before calling Resize().
849     *
850     * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851     * enlarged samples before calling File::Save() as this might exceed the
852     * current sample's boundary!
853     *
854 schoenebeck 1050 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855     * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 schoenebeck 809 * other formats will fail!
857     *
858 schoenebeck 2922 * @param NewSize - new sample wave data size in sample points (must be
859     * greater than zero)
860 schoenebeck 1050 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 schoenebeck 2922 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 schoenebeck 809 * @throws gig::Exception if existing sample is compressed
863     * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864     * DLS::Sample::FormatTag, File::Save()
865     */
866 schoenebeck 2922 void Sample::Resize(file_offset_t NewSize) {
867 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 schoenebeck 2922 DLS::Sample::Resize(NewSize);
869 schoenebeck 809 }
870    
871 schoenebeck 2 /**
872     * Sets the position within the sample (in sample points, not in
873     * bytes). Use this method and <i>Read()</i> if you don't want to load
874     * the sample into RAM, thus for disk streaming.
875     *
876     * Although the original Gigasampler engine doesn't allow positioning
877     * within compressed samples, I decided to implement it. Even though
878     * the Gigasampler format doesn't allow to define loops for compressed
879     * samples at the moment, positioning within compressed samples might be
880     * interesting for some sampler engines though. The only drawback about
881     * my decision is that it takes longer to load compressed gig Files on
882     * startup, because it's neccessary to scan the samples for some
883     * mandatory informations. But I think as it doesn't affect the runtime
884     * efficiency, nobody will have a problem with that.
885     *
886     * @param SampleCount number of sample points to jump
887     * @param Whence optional: to which relation \a SampleCount refers
888     * to, if omited <i>RIFF::stream_start</i> is assumed
889     * @returns the new sample position
890     * @see Read()
891     */
892 schoenebeck 2912 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 schoenebeck 2 if (Compressed) {
894     switch (Whence) {
895     case RIFF::stream_curpos:
896     this->SamplePos += SampleCount;
897     break;
898     case RIFF::stream_end:
899     this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900     break;
901     case RIFF::stream_backward:
902     this->SamplePos -= SampleCount;
903     break;
904     case RIFF::stream_start: default:
905     this->SamplePos = SampleCount;
906     break;
907     }
908     if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910 schoenebeck 2912 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 schoenebeck 2 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912     pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913     return this->SamplePos;
914     }
915     else { // not compressed
916 schoenebeck 2912 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917     file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 schoenebeck 2 return (result == orderedBytes) ? SampleCount
919     : result / this->FrameSize;
920     }
921     }
922    
923     /**
924     * Returns the current position in the sample (in sample points).
925     */
926 schoenebeck 2912 file_offset_t Sample::GetPos() const {
927 schoenebeck 2 if (Compressed) return SamplePos;
928     else return pCkData->GetPos() / FrameSize;
929     }
930    
931     /**
932 schoenebeck 24 * Reads \a SampleCount number of sample points from the position stored
933     * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934     * the position within the sample respectively, this method honors the
935     * looping informations of the sample (if any). The sample wave stream
936     * will be decompressed on the fly if using a compressed sample. Use this
937     * method if you don't want to load the sample into RAM, thus for disk
938     * streaming. All this methods needs to know to proceed with streaming
939     * for the next time you call this method is stored in \a pPlaybackState.
940     * You have to allocate and initialize the playback_state_t structure by
941     * yourself before you use it to stream a sample:
942 schoenebeck 384 * @code
943     * gig::playback_state_t playbackstate;
944     * playbackstate.position = 0;
945     * playbackstate.reverse = false;
946     * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947     * @endcode
948 schoenebeck 24 * You don't have to take care of things like if there is actually a loop
949     * defined or if the current read position is located within a loop area.
950     * The method already handles such cases by itself.
951     *
952 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
953     * have to use an external decompression buffer for <b>EACH</b>
954     * streaming thread to avoid race conditions and crashes!
955     *
956 schoenebeck 24 * @param pBuffer destination buffer
957     * @param SampleCount number of sample points to read
958     * @param pPlaybackState will be used to store and reload the playback
959     * state for the next ReadAndLoop() call
960 persson 864 * @param pDimRgn dimension region with looping information
961 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 schoenebeck 24 * @returns number of successfully read sample points
963 schoenebeck 384 * @see CreateDecompressionBuffer()
964 schoenebeck 24 */
965 schoenebeck 2912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 persson 864 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 schoenebeck 2912 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 schoenebeck 24 uint8_t* pDst = (uint8_t*) pBuffer;
969    
970     SetPos(pPlaybackState->position); // recover position from the last time
971    
972 persson 864 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973 schoenebeck 24
974 persson 864 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975     const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976 schoenebeck 24
977 persson 864 if (GetPos() <= loopEnd) {
978     switch (loop.LoopType) {
979 schoenebeck 24
980 persson 864 case loop_type_bidirectional: { //TODO: not tested yet!
981     do {
982     // if not endless loop check if max. number of loop cycles have been passed
983     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984 schoenebeck 24
985 persson 864 if (!pPlaybackState->reverse) { // forward playback
986     do {
987     samplestoloopend = loopEnd - GetPos();
988     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989     samplestoread -= readsamples;
990     totalreadsamples += readsamples;
991     if (readsamples == samplestoloopend) {
992     pPlaybackState->reverse = true;
993     break;
994     }
995     } while (samplestoread && readsamples);
996     }
997     else { // backward playback
998 schoenebeck 24
999 persson 864 // as we can only read forward from disk, we have to
1000     // determine the end position within the loop first,
1001     // read forward from that 'end' and finally after
1002     // reading, swap all sample frames so it reflects
1003     // backward playback
1004 schoenebeck 24
1005 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1006     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007     file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008     file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009 schoenebeck 24
1010 persson 864 SetPos(reverseplaybackend);
1011 schoenebeck 24
1012 persson 864 // read samples for backward playback
1013     do {
1014     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015     samplestoreadinloop -= readsamples;
1016     samplestoread -= readsamples;
1017     totalreadsamples += readsamples;
1018     } while (samplestoreadinloop && readsamples);
1019 schoenebeck 24
1020 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022     if (reverseplaybackend == loop.LoopStart) {
1023     pPlaybackState->loop_cycles_left--;
1024     pPlaybackState->reverse = false;
1025     }
1026    
1027     // reverse the sample frames for backward playback
1028 schoenebeck 1875 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 schoenebeck 24 }
1031 persson 864 } while (samplestoread && readsamples);
1032     break;
1033     }
1034 schoenebeck 24
1035 persson 864 case loop_type_backward: { // TODO: not tested yet!
1036     // forward playback (not entered the loop yet)
1037     if (!pPlaybackState->reverse) do {
1038     samplestoloopend = loopEnd - GetPos();
1039     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040     samplestoread -= readsamples;
1041     totalreadsamples += readsamples;
1042     if (readsamples == samplestoloopend) {
1043     pPlaybackState->reverse = true;
1044     break;
1045     }
1046     } while (samplestoread && readsamples);
1047 schoenebeck 24
1048 persson 864 if (!samplestoread) break;
1049 schoenebeck 24
1050 persson 864 // as we can only read forward from disk, we have to
1051     // determine the end position within the loop first,
1052     // read forward from that 'end' and finally after
1053     // reading, swap all sample frames so it reflects
1054     // backward playback
1055 schoenebeck 24
1056 schoenebeck 2912 file_offset_t swapareastart = totalreadsamples;
1057     file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058     file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 persson 864 : samplestoread;
1060 schoenebeck 2912 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061 schoenebeck 24
1062 persson 864 SetPos(reverseplaybackend);
1063 schoenebeck 24
1064 persson 864 // read samples for backward playback
1065     do {
1066     // if not endless loop check if max. number of loop cycles have been passed
1067     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068     samplestoloopend = loopEnd - GetPos();
1069     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070     samplestoreadinloop -= readsamples;
1071     samplestoread -= readsamples;
1072     totalreadsamples += readsamples;
1073     if (readsamples == samplestoloopend) {
1074     pPlaybackState->loop_cycles_left--;
1075     SetPos(loop.LoopStart);
1076     }
1077     } while (samplestoreadinloop && readsamples);
1078 schoenebeck 24
1079 persson 864 SetPos(reverseplaybackend); // pretend we really read backwards
1080 schoenebeck 24
1081 persson 864 // reverse the sample frames for backward playback
1082     SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083     break;
1084     }
1085 schoenebeck 24
1086 persson 864 default: case loop_type_normal: {
1087     do {
1088     // if not endless loop check if max. number of loop cycles have been passed
1089     if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090     samplestoloopend = loopEnd - GetPos();
1091     readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092     samplestoread -= readsamples;
1093     totalreadsamples += readsamples;
1094     if (readsamples == samplestoloopend) {
1095     pPlaybackState->loop_cycles_left--;
1096     SetPos(loop.LoopStart);
1097     }
1098     } while (samplestoread && readsamples);
1099     break;
1100     }
1101 schoenebeck 24 }
1102     }
1103     }
1104    
1105     // read on without looping
1106     if (samplestoread) do {
1107 schoenebeck 384 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 schoenebeck 24 samplestoread -= readsamples;
1109     totalreadsamples += readsamples;
1110     } while (readsamples && samplestoread);
1111    
1112     // store current position
1113     pPlaybackState->position = GetPos();
1114    
1115     return totalreadsamples;
1116     }
1117    
1118     /**
1119 schoenebeck 2 * Reads \a SampleCount number of sample points from the current
1120     * position into the buffer pointed by \a pBuffer and increments the
1121     * position within the sample. The sample wave stream will be
1122     * decompressed on the fly if using a compressed sample. Use this method
1123     * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124     * thus for disk streaming.
1125     *
1126 schoenebeck 384 * <b>Caution:</b> If you are using more than one streaming thread, you
1127     * have to use an external decompression buffer for <b>EACH</b>
1128     * streaming thread to avoid race conditions and crashes!
1129     *
1130 persson 902 * For 16 bit samples, the data in the buffer will be int16_t
1131     * (using native endianness). For 24 bit, the buffer will
1132     * contain three bytes per sample, little-endian.
1133     *
1134 schoenebeck 2 * @param pBuffer destination buffer
1135     * @param SampleCount number of sample points to read
1136 schoenebeck 384 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 schoenebeck 2 * @returns number of successfully read sample points
1138 schoenebeck 384 * @see SetPos(), CreateDecompressionBuffer()
1139 schoenebeck 2 */
1140 schoenebeck 2912 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 schoenebeck 21 if (SampleCount == 0) return 0;
1142 schoenebeck 317 if (!Compressed) {
1143     if (BitDepth == 24) {
1144 persson 902 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 schoenebeck 317 }
1146 persson 365 else { // 16 bit
1147     // (pCkData->Read does endian correction)
1148     return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149     : pCkData->Read(pBuffer, SampleCount, 2);
1150     }
1151 schoenebeck 317 }
1152 persson 365 else {
1153 schoenebeck 11 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 persson 365 //TODO: efficiency: maybe we should test for an average compression rate
1155 schoenebeck 2912 file_offset_t assumedsize = GuessSize(SampleCount),
1156 schoenebeck 2 remainingbytes = 0, // remaining bytes in the local buffer
1157     remainingsamples = SampleCount,
1158 persson 365 copysamples, skipsamples,
1159     currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 schoenebeck 2 this->FrameOffset = 0;
1161    
1162 schoenebeck 384 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163    
1164     // if decompression buffer too small, then reduce amount of samples to read
1165     if (pDecompressionBuffer->Size < assumedsize) {
1166     std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167     SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168     remainingsamples = SampleCount;
1169     assumedsize = GuessSize(SampleCount);
1170 schoenebeck 2 }
1171    
1172 schoenebeck 384 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 persson 365 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 persson 902 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 schoenebeck 2 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177 persson 365 while (remainingsamples && remainingbytes) {
1178 schoenebeck 2912 file_offset_t framesamples = SamplesPerFrame;
1179     file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180 schoenebeck 2
1181 persson 365 int mode_l = *pSrc++, mode_r = 0;
1182    
1183     if (Channels == 2) {
1184     mode_r = *pSrc++;
1185     framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186     rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187     nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188     if (remainingbytes < framebytes) { // last frame in sample
1189     framesamples = SamplesInLastFrame;
1190     if (mode_l == 4 && (framesamples & 1)) {
1191     rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192     }
1193     else {
1194     rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195     }
1196 schoenebeck 2 }
1197     }
1198 persson 365 else {
1199     framebytes = bytesPerFrame[mode_l] + 1;
1200     nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201     if (remainingbytes < framebytes) {
1202     framesamples = SamplesInLastFrame;
1203     }
1204     }
1205 schoenebeck 2
1206     // determine how many samples in this frame to skip and read
1207 persson 365 if (currentframeoffset + remainingsamples >= framesamples) {
1208     if (currentframeoffset <= framesamples) {
1209     copysamples = framesamples - currentframeoffset;
1210     skipsamples = currentframeoffset;
1211     }
1212     else {
1213     copysamples = 0;
1214     skipsamples = framesamples;
1215     }
1216 schoenebeck 2 }
1217     else {
1218 persson 365 // This frame has enough data for pBuffer, but not
1219     // all of the frame is needed. Set file position
1220     // to start of this frame for next call to Read.
1221 schoenebeck 2 copysamples = remainingsamples;
1222 persson 365 skipsamples = currentframeoffset;
1223     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224     this->FrameOffset = currentframeoffset + copysamples;
1225     }
1226     remainingsamples -= copysamples;
1227    
1228     if (remainingbytes > framebytes) {
1229     remainingbytes -= framebytes;
1230     if (remainingsamples == 0 &&
1231     currentframeoffset + copysamples == framesamples) {
1232     // This frame has enough data for pBuffer, and
1233     // all of the frame is needed. Set file
1234     // position to start of next frame for next
1235     // call to Read. FrameOffset is 0.
1236 schoenebeck 2 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237     }
1238     }
1239 persson 365 else remainingbytes = 0;
1240 schoenebeck 2
1241 persson 365 currentframeoffset -= skipsamples;
1242 schoenebeck 2
1243 persson 365 if (copysamples == 0) {
1244     // skip this frame
1245     pSrc += framebytes - Channels;
1246     }
1247     else {
1248     const unsigned char* const param_l = pSrc;
1249     if (BitDepth == 24) {
1250     if (mode_l != 2) pSrc += 12;
1251 schoenebeck 2
1252 persson 365 if (Channels == 2) { // Stereo
1253     const unsigned char* const param_r = pSrc;
1254     if (mode_r != 2) pSrc += 12;
1255    
1256 persson 902 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 persson 437 skipsamples, copysamples, TruncatedBits);
1258 persson 902 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 persson 437 skipsamples, copysamples, TruncatedBits);
1260 persson 902 pDst24 += copysamples * 6;
1261 schoenebeck 2 }
1262 persson 365 else { // Mono
1263 persson 902 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 persson 437 skipsamples, copysamples, TruncatedBits);
1265 persson 902 pDst24 += copysamples * 3;
1266 schoenebeck 2 }
1267 persson 365 }
1268     else { // 16 bit
1269     if (mode_l) pSrc += 4;
1270 schoenebeck 2
1271 persson 365 int step;
1272     if (Channels == 2) { // Stereo
1273     const unsigned char* const param_r = pSrc;
1274     if (mode_r) pSrc += 4;
1275    
1276     step = (2 - mode_l) + (2 - mode_r);
1277 persson 372 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278     Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 persson 365 skipsamples, copysamples);
1280     pDst += copysamples << 1;
1281 schoenebeck 2 }
1282 persson 365 else { // Mono
1283     step = 2 - mode_l;
1284 persson 372 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 persson 365 pDst += copysamples;
1286 schoenebeck 2 }
1287 persson 365 }
1288     pSrc += nextFrameOffset;
1289     }
1290 schoenebeck 2
1291 persson 365 // reload from disk to local buffer if needed
1292     if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293     assumedsize = GuessSize(remainingsamples);
1294     pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295     if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 schoenebeck 384 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297     pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 schoenebeck 2 }
1299 persson 365 } // while
1300    
1301 schoenebeck 2 this->SamplePos += (SampleCount - remainingsamples);
1302 schoenebeck 11 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 schoenebeck 2 return (SampleCount - remainingsamples);
1304     }
1305     }
1306    
1307 schoenebeck 809 /** @brief Write sample wave data.
1308     *
1309     * Writes \a SampleCount number of sample points from the buffer pointed
1310     * by \a pBuffer and increments the position within the sample. Use this
1311     * method to directly write the sample data to disk, i.e. if you don't
1312     * want or cannot load the whole sample data into RAM.
1313     *
1314     * You have to Resize() the sample to the desired size and call
1315     * File::Save() <b>before</b> using Write().
1316     *
1317     * Note: there is currently no support for writing compressed samples.
1318     *
1319 persson 1264 * For 16 bit samples, the data in the source buffer should be
1320     * int16_t (using native endianness). For 24 bit, the buffer
1321     * should contain three bytes per sample, little-endian.
1322     *
1323 schoenebeck 809 * @param pBuffer - source buffer
1324     * @param SampleCount - number of sample points to write
1325     * @throws DLS::Exception if current sample size is too small
1326     * @throws gig::Exception if sample is compressed
1327     * @see DLS::LoadSampleData()
1328     */
1329 schoenebeck 2912 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 schoenebeck 809 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331 persson 1207
1332     // if this is the first write in this sample, reset the
1333     // checksum calculator
1334 persson 1199 if (pCkData->GetPos() == 0) {
1335 schoenebeck 1381 __resetCRC(crc);
1336 persson 1199 }
1337 persson 1264 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 schoenebeck 2912 file_offset_t res;
1339 persson 1264 if (BitDepth == 24) {
1340     res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341     } else { // 16 bit
1342     res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343     : pCkData->Write(pBuffer, SampleCount, 2);
1344     }
1345 schoenebeck 1381 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346 persson 1199
1347 persson 1207 // if this is the last write, update the checksum chunk in the
1348     // file
1349 persson 1199 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 schoenebeck 3115 __finalizeCRC(crc);
1351 persson 1199 File* pFile = static_cast<File*>(GetParent());
1352 schoenebeck 3115 pFile->SetSampleChecksum(this, crc);
1353 persson 1199 }
1354     return res;
1355 schoenebeck 809 }
1356    
1357 schoenebeck 384 /**
1358     * Allocates a decompression buffer for streaming (compressed) samples
1359     * with Sample::Read(). If you are using more than one streaming thread
1360     * in your application you <b>HAVE</b> to create a decompression buffer
1361     * for <b>EACH</b> of your streaming threads and provide it with the
1362     * Sample::Read() call in order to avoid race conditions and crashes.
1363     *
1364     * You should free the memory occupied by the allocated buffer(s) once
1365     * you don't need one of your streaming threads anymore by calling
1366     * DestroyDecompressionBuffer().
1367     *
1368     * @param MaxReadSize - the maximum size (in sample points) you ever
1369     * expect to read with one Read() call
1370     * @returns allocated decompression buffer
1371     * @see DestroyDecompressionBuffer()
1372     */
1373 schoenebeck 2912 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 schoenebeck 384 buffer_t result;
1375     const double worstCaseHeaderOverhead =
1376     (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 schoenebeck 2912 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 schoenebeck 384 result.pStart = new int8_t[result.Size];
1379     result.NullExtensionSize = 0;
1380     return result;
1381     }
1382    
1383     /**
1384     * Free decompression buffer, previously created with
1385     * CreateDecompressionBuffer().
1386     *
1387     * @param DecompressionBuffer - previously allocated decompression
1388     * buffer to free
1389     */
1390     void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391     if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392     delete[] (int8_t*) DecompressionBuffer.pStart;
1393     DecompressionBuffer.pStart = NULL;
1394     DecompressionBuffer.Size = 0;
1395     DecompressionBuffer.NullExtensionSize = 0;
1396     }
1397     }
1398    
1399 schoenebeck 930 /**
1400     * Returns pointer to the Group this Sample belongs to. In the .gig
1401     * format a sample always belongs to one group. If it wasn't explicitly
1402     * assigned to a certain group, it will be automatically assigned to a
1403     * default group.
1404     *
1405     * @returns Sample's Group (never NULL)
1406     */
1407     Group* Sample::GetGroup() const {
1408     return pGroup;
1409     }
1410    
1411 schoenebeck 2985 /**
1412 schoenebeck 2989 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413     * time when this sample's wave form data was modified for the last time
1414     * by calling Write(). This checksum only covers the raw wave form data,
1415     * not any meta informations like i.e. bit depth or loop points. Since
1416     * this method just returns the checksum stored for this sample i.e. when
1417     * the gig file was loaded, this method returns immediately. So it does no
1418     * recalcuation of the checksum with the currently available sample wave
1419     * form data.
1420     *
1421     * @see VerifyWaveData()
1422     */
1423     uint32_t Sample::GetWaveDataCRC32Checksum() {
1424     return crc;
1425     }
1426    
1427     /**
1428 schoenebeck 2985 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429     * Sample's raw wave data is intentionally modified (i.e. by calling
1430     * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431     * is calculated and stored/updated for this sample, along to the sample's
1432     * meta informations.
1433     *
1434     * Now by calling this method the current raw audio wave data is checked
1435     * against the already stored CRC32 check sum in order to check whether the
1436     * sample data had been damaged unintentionally for some reason. Since by
1437     * calling this method always the entire raw audio wave data has to be
1438     * read, verifying all samples this way may take a long time accordingly.
1439     * And that's also the reason why the sample integrity is not checked by
1440     * default whenever a gig file is loaded. So this method must be called
1441     * explicitly to fulfill this task.
1442     *
1443 schoenebeck 2989 * @param pActually - (optional) if provided, will be set to the actually
1444     * calculated checksum of the current raw wave form data,
1445     * you can get the expected checksum instead by calling
1446     * GetWaveDataCRC32Checksum()
1447 schoenebeck 2985 * @returns true if sample is OK or false if the sample is damaged
1448     * @throws Exception if no checksum had been stored to disk for this
1449     * sample yet, or on I/O issues
1450 schoenebeck 2989 * @see GetWaveDataCRC32Checksum()
1451 schoenebeck 2985 */
1452 schoenebeck 2989 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 schoenebeck 3053 //File* pFile = static_cast<File*>(GetParent());
1454 schoenebeck 2985 uint32_t crc = CalculateWaveDataChecksum();
1455 schoenebeck 2989 if (pActually) *pActually = crc;
1456     return crc == this->crc;
1457 schoenebeck 2985 }
1458    
1459     uint32_t Sample::CalculateWaveDataChecksum() {
1460     const size_t sz = 20*1024; // 20kB buffer size
1461     std::vector<uint8_t> buffer(sz);
1462     buffer.resize(sz);
1463    
1464     const size_t n = sz / FrameSize;
1465     SetPos(0);
1466     uint32_t crc = 0;
1467     __resetCRC(crc);
1468     while (true) {
1469     file_offset_t nRead = Read(&buffer[0], n);
1470     if (nRead <= 0) break;
1471     __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472     }
1473 schoenebeck 3115 __finalizeCRC(crc);
1474 schoenebeck 2985 return crc;
1475     }
1476    
1477 schoenebeck 2 Sample::~Sample() {
1478     Instances--;
1479 schoenebeck 384 if (!Instances && InternalDecompressionBuffer.Size) {
1480     delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481     InternalDecompressionBuffer.pStart = NULL;
1482     InternalDecompressionBuffer.Size = 0;
1483 schoenebeck 355 }
1484 schoenebeck 2 if (FrameTable) delete[] FrameTable;
1485     if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486     }
1487    
1488    
1489    
1490     // *************** DimensionRegion ***************
1491     // *
1492    
1493 schoenebeck 2922 size_t DimensionRegion::Instances = 0;
1494 schoenebeck 16 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496 schoenebeck 1316 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 schoenebeck 16 Instances++;
1498    
1499 schoenebeck 823 pSample = NULL;
1500 schoenebeck 1316 pRegion = pParent;
1501 schoenebeck 823
1502 persson 1247 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503     else memset(&Crossfade, 0, 4);
1504    
1505 schoenebeck 16 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506 schoenebeck 2
1507     RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 schoenebeck 809 if (_3ewa) { // if '3ewa' chunk exists
1509 schoenebeck 3478 _3ewa->SetPos(0);
1510    
1511 persson 918 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 schoenebeck 809 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513     EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514     _3ewa->ReadInt16(); // unknown
1515     LFO1InternalDepth = _3ewa->ReadUint16();
1516     _3ewa->ReadInt16(); // unknown
1517     LFO3InternalDepth = _3ewa->ReadInt16();
1518     _3ewa->ReadInt16(); // unknown
1519     LFO1ControlDepth = _3ewa->ReadUint16();
1520     _3ewa->ReadInt16(); // unknown
1521     LFO3ControlDepth = _3ewa->ReadInt16();
1522     EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523     EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524     _3ewa->ReadInt16(); // unknown
1525     EG1Sustain = _3ewa->ReadUint16();
1526     EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527     EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528     uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529     EG1ControllerInvert = eg1ctrloptions & 0x01;
1530     EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531     EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532     EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533     EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534     uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535     EG2ControllerInvert = eg2ctrloptions & 0x01;
1536     EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537     EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538     EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539     LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540     EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541     EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542     _3ewa->ReadInt16(); // unknown
1543     EG2Sustain = _3ewa->ReadUint16();
1544     EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545     _3ewa->ReadInt16(); // unknown
1546     LFO2ControlDepth = _3ewa->ReadUint16();
1547     LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548     _3ewa->ReadInt16(); // unknown
1549     LFO2InternalDepth = _3ewa->ReadUint16();
1550     int32_t eg1decay2 = _3ewa->ReadInt32();
1551     EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552     EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553     _3ewa->ReadInt16(); // unknown
1554     EG1PreAttack = _3ewa->ReadUint16();
1555     int32_t eg2decay2 = _3ewa->ReadInt32();
1556     EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557     EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558     _3ewa->ReadInt16(); // unknown
1559     EG2PreAttack = _3ewa->ReadUint16();
1560     uint8_t velocityresponse = _3ewa->ReadUint8();
1561     if (velocityresponse < 5) {
1562     VelocityResponseCurve = curve_type_nonlinear;
1563     VelocityResponseDepth = velocityresponse;
1564     } else if (velocityresponse < 10) {
1565     VelocityResponseCurve = curve_type_linear;
1566     VelocityResponseDepth = velocityresponse - 5;
1567     } else if (velocityresponse < 15) {
1568     VelocityResponseCurve = curve_type_special;
1569     VelocityResponseDepth = velocityresponse - 10;
1570     } else {
1571     VelocityResponseCurve = curve_type_unknown;
1572     VelocityResponseDepth = 0;
1573     }
1574     uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575     if (releasevelocityresponse < 5) {
1576     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577     ReleaseVelocityResponseDepth = releasevelocityresponse;
1578     } else if (releasevelocityresponse < 10) {
1579     ReleaseVelocityResponseCurve = curve_type_linear;
1580     ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581     } else if (releasevelocityresponse < 15) {
1582     ReleaseVelocityResponseCurve = curve_type_special;
1583     ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584     } else {
1585     ReleaseVelocityResponseCurve = curve_type_unknown;
1586     ReleaseVelocityResponseDepth = 0;
1587     }
1588     VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589     AttenuationControllerThreshold = _3ewa->ReadInt8();
1590     _3ewa->ReadInt32(); // unknown
1591     SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592     _3ewa->ReadInt16(); // unknown
1593     uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594     PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595     if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596     else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597     else DimensionBypass = dim_bypass_ctrl_none;
1598     uint8_t pan = _3ewa->ReadUint8();
1599     Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600     SelfMask = _3ewa->ReadInt8() & 0x01;
1601     _3ewa->ReadInt8(); // unknown
1602     uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603     LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604     LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605     InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606     AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607     uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608     LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609     LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610     LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611     bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612     uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613     LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614     LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615     LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616     VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617     : vcf_res_ctrl_none;
1618     uint16_t eg3depth = _3ewa->ReadUint16();
1619     EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 persson 2402 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 schoenebeck 809 _3ewa->ReadInt16(); // unknown
1622     ChannelOffset = _3ewa->ReadUint8() / 4;
1623     uint8_t regoptions = _3ewa->ReadUint8();
1624     MSDecode = regoptions & 0x01; // bit 0
1625     SustainDefeat = regoptions & 0x02; // bit 1
1626     _3ewa->ReadInt16(); // unknown
1627     VelocityUpperLimit = _3ewa->ReadInt8();
1628     _3ewa->ReadInt8(); // unknown
1629     _3ewa->ReadInt16(); // unknown
1630     ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631     _3ewa->ReadInt8(); // unknown
1632     _3ewa->ReadInt8(); // unknown
1633     EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634     uint8_t vcfcutoff = _3ewa->ReadUint8();
1635     VCFEnabled = vcfcutoff & 0x80; // bit 7
1636     VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637     VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638     uint8_t vcfvelscale = _3ewa->ReadUint8();
1639     VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640     VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641     _3ewa->ReadInt8(); // unknown
1642     uint8_t vcfresonance = _3ewa->ReadUint8();
1643     VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644     VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645     uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646     VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647     VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648     uint8_t vcfvelocity = _3ewa->ReadUint8();
1649     VCFVelocityDynamicRange = vcfvelocity % 5;
1650     VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651     VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652     if (VCFType == vcf_type_lowpass) {
1653     if (lfo3ctrl & 0x40) // bit 6
1654     VCFType = vcf_type_lowpassturbo;
1655     }
1656 persson 1070 if (_3ewa->RemainingBytes() >= 8) {
1657     _3ewa->Read(DimensionUpperLimits, 1, 8);
1658     } else {
1659     memset(DimensionUpperLimits, 0, 8);
1660     }
1661 schoenebeck 809 } else { // '3ewa' chunk does not exist yet
1662     // use default values
1663     LFO3Frequency = 1.0;
1664     EG3Attack = 0.0;
1665     LFO1InternalDepth = 0;
1666     LFO3InternalDepth = 0;
1667     LFO1ControlDepth = 0;
1668     LFO3ControlDepth = 0;
1669     EG1Attack = 0.0;
1670 persson 1218 EG1Decay1 = 0.005;
1671     EG1Sustain = 1000;
1672     EG1Release = 0.3;
1673 schoenebeck 809 EG1Controller.type = eg1_ctrl_t::type_none;
1674     EG1Controller.controller_number = 0;
1675     EG1ControllerInvert = false;
1676     EG1ControllerAttackInfluence = 0;
1677     EG1ControllerDecayInfluence = 0;
1678     EG1ControllerReleaseInfluence = 0;
1679     EG2Controller.type = eg2_ctrl_t::type_none;
1680     EG2Controller.controller_number = 0;
1681     EG2ControllerInvert = false;
1682     EG2ControllerAttackInfluence = 0;
1683     EG2ControllerDecayInfluence = 0;
1684     EG2ControllerReleaseInfluence = 0;
1685     LFO1Frequency = 1.0;
1686     EG2Attack = 0.0;
1687 persson 1218 EG2Decay1 = 0.005;
1688     EG2Sustain = 1000;
1689 schoenebeck 2990 EG2Release = 60;
1690 schoenebeck 809 LFO2ControlDepth = 0;
1691     LFO2Frequency = 1.0;
1692     LFO2InternalDepth = 0;
1693     EG1Decay2 = 0.0;
1694 persson 1218 EG1InfiniteSustain = true;
1695     EG1PreAttack = 0;
1696 schoenebeck 809 EG2Decay2 = 0.0;
1697 persson 1218 EG2InfiniteSustain = true;
1698     EG2PreAttack = 0;
1699 schoenebeck 809 VelocityResponseCurve = curve_type_nonlinear;
1700     VelocityResponseDepth = 3;
1701     ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702     ReleaseVelocityResponseDepth = 3;
1703     VelocityResponseCurveScaling = 32;
1704     AttenuationControllerThreshold = 0;
1705     SampleStartOffset = 0;
1706     PitchTrack = true;
1707     DimensionBypass = dim_bypass_ctrl_none;
1708     Pan = 0;
1709     SelfMask = true;
1710     LFO3Controller = lfo3_ctrl_modwheel;
1711     LFO3Sync = false;
1712     InvertAttenuationController = false;
1713     AttenuationController.type = attenuation_ctrl_t::type_none;
1714     AttenuationController.controller_number = 0;
1715     LFO2Controller = lfo2_ctrl_internal;
1716     LFO2FlipPhase = false;
1717     LFO2Sync = false;
1718     LFO1Controller = lfo1_ctrl_internal;
1719     LFO1FlipPhase = false;
1720     LFO1Sync = false;
1721     VCFResonanceController = vcf_res_ctrl_none;
1722     EG3Depth = 0;
1723     ChannelOffset = 0;
1724     MSDecode = false;
1725     SustainDefeat = false;
1726     VelocityUpperLimit = 0;
1727     ReleaseTriggerDecay = 0;
1728     EG1Hold = false;
1729     VCFEnabled = false;
1730     VCFCutoff = 0;
1731     VCFCutoffController = vcf_cutoff_ctrl_none;
1732     VCFCutoffControllerInvert = false;
1733     VCFVelocityScale = 0;
1734     VCFResonance = 0;
1735     VCFResonanceDynamic = false;
1736     VCFKeyboardTracking = false;
1737     VCFKeyboardTrackingBreakpoint = 0;
1738     VCFVelocityDynamicRange = 0x04;
1739     VCFVelocityCurve = curve_type_linear;
1740     VCFType = vcf_type_lowpass;
1741 persson 1247 memset(DimensionUpperLimits, 127, 8);
1742 schoenebeck 2 }
1743 schoenebeck 3623
1744 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 schoenebeck 3323 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 schoenebeck 3442 if (lsde) { // format extension for EG behavior options
1747 schoenebeck 3478 lsde->SetPos(0);
1748    
1749 schoenebeck 3327 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 schoenebeck 3327 unsigned char byte = lsde->ReadUint8();
1752     pEGOpts[i]->AttackCancel = byte & 1;
1753     pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754     pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755     pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756     pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757     }
1758 schoenebeck 3323 }
1759 schoenebeck 3442 // format extension for sustain pedal up effect on release trigger samples
1760     if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761     lsde->SetPos(3);
1762 schoenebeck 3446 uint8_t byte = lsde->ReadUint8();
1763     SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764     NoNoteOffReleaseTrigger = byte >> 7;
1765     } else {
1766     SustainReleaseTrigger = sust_rel_trg_none;
1767     NoNoteOffReleaseTrigger = false;
1768     }
1769 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
1770     // LFO3's flip phase
1771     if (lsde && lsde->GetSize() > 4) {
1772     lsde->SetPos(4);
1773     LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774     LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775     LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776     lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777     LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778     LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779     LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780     const uint32_t flags = lsde->ReadInt32();
1781     LFO3FlipPhase = flags & 1;
1782     } else {
1783     LFO1WaveForm = lfo_wave_sine;
1784     LFO2WaveForm = lfo_wave_sine;
1785     LFO3WaveForm = lfo_wave_sine;
1786     LFO1Phase = 0.0;
1787     LFO2Phase = 0.0;
1788     LFO3Phase = 0.0;
1789     LFO3FlipPhase = false;
1790     }
1791 schoenebeck 16
1792 persson 613 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793     VelocityResponseDepth,
1794     VelocityResponseCurveScaling);
1795    
1796 schoenebeck 1358 pVelocityReleaseTable = GetReleaseVelocityTable(
1797     ReleaseVelocityResponseCurve,
1798     ReleaseVelocityResponseDepth
1799     );
1800 persson 613
1801 schoenebeck 1358 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802     VCFVelocityDynamicRange,
1803     VCFVelocityScale,
1804     VCFCutoffController);
1805 persson 613
1806     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 persson 858 VelocityTable = 0;
1808 persson 613 }
1809    
1810 persson 1301 /*
1811     * Constructs a DimensionRegion by copying all parameters from
1812     * another DimensionRegion
1813     */
1814     DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815     Instances++;
1816 schoenebeck 2394 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 persson 1301 *this = src; // default memberwise shallow copy of all parameters
1818     pParentList = _3ewl; // restore the chunk pointer
1819    
1820     // deep copy of owned structures
1821     if (src.VelocityTable) {
1822     VelocityTable = new uint8_t[128];
1823     for (int k = 0 ; k < 128 ; k++)
1824     VelocityTable[k] = src.VelocityTable[k];
1825     }
1826     if (src.pSampleLoops) {
1827     pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828     for (int k = 0 ; k < src.SampleLoops ; k++)
1829     pSampleLoops[k] = src.pSampleLoops[k];
1830     }
1831     }
1832 schoenebeck 2394
1833     /**
1834     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835     * and assign it to this object.
1836     *
1837     * Note that all sample pointers referenced by @a orig are simply copied as
1838     * memory address. Thus the respective samples are shared, not duplicated!
1839     *
1840     * @param orig - original DimensionRegion object to be copied from
1841     */
1842     void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 schoenebeck 2482 CopyAssign(orig, NULL);
1844     }
1845    
1846     /**
1847     * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848     * and assign it to this object.
1849     *
1850     * @param orig - original DimensionRegion object to be copied from
1851     * @param mSamples - crosslink map between the foreign file's samples and
1852     * this file's samples
1853     */
1854     void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 schoenebeck 2394 // delete all allocated data first
1856     if (VelocityTable) delete [] VelocityTable;
1857     if (pSampleLoops) delete [] pSampleLoops;
1858    
1859     // backup parent list pointer
1860     RIFF::List* p = pParentList;
1861    
1862 schoenebeck 2482 gig::Sample* pOriginalSample = pSample;
1863     gig::Region* pOriginalRegion = pRegion;
1864    
1865 schoenebeck 2394 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866    
1867     *this = *orig; // default memberwise shallow copy of all parameters
1868 schoenebeck 2547
1869     // restore members that shall not be altered
1870 schoenebeck 2394 pParentList = p; // restore the chunk pointer
1871 schoenebeck 2547 pRegion = pOriginalRegion;
1872 schoenebeck 2482
1873 schoenebeck 2547 // only take the raw sample reference reference if the
1874 schoenebeck 2482 // two DimensionRegion objects are part of the same file
1875     if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876     pSample = pOriginalSample;
1877     }
1878    
1879     if (mSamples && mSamples->count(orig->pSample)) {
1880     pSample = mSamples->find(orig->pSample)->second;
1881     }
1882 persson 1301
1883 schoenebeck 2394 // deep copy of owned structures
1884     if (orig->VelocityTable) {
1885     VelocityTable = new uint8_t[128];
1886     for (int k = 0 ; k < 128 ; k++)
1887     VelocityTable[k] = orig->VelocityTable[k];
1888     }
1889     if (orig->pSampleLoops) {
1890     pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891     for (int k = 0 ; k < orig->SampleLoops ; k++)
1892     pSampleLoops[k] = orig->pSampleLoops[k];
1893     }
1894     }
1895    
1896 schoenebeck 3138 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 schoenebeck 3182 // in case this class will become backward incompatible one day,
1898     // then set a version and minimum version for this class like:
1899     //archive->setVersion(*this, 2);
1900     //archive->setMinVersion(*this, 1);
1901    
1902 schoenebeck 3138 SRLZ(VelocityUpperLimit);
1903     SRLZ(EG1PreAttack);
1904     SRLZ(EG1Attack);
1905     SRLZ(EG1Decay1);
1906     SRLZ(EG1Decay2);
1907     SRLZ(EG1InfiniteSustain);
1908     SRLZ(EG1Sustain);
1909     SRLZ(EG1Release);
1910     SRLZ(EG1Hold);
1911     SRLZ(EG1Controller);
1912     SRLZ(EG1ControllerInvert);
1913     SRLZ(EG1ControllerAttackInfluence);
1914     SRLZ(EG1ControllerDecayInfluence);
1915     SRLZ(EG1ControllerReleaseInfluence);
1916 schoenebeck 3623 SRLZ(LFO1WaveForm);
1917 schoenebeck 3138 SRLZ(LFO1Frequency);
1918 schoenebeck 3623 SRLZ(LFO1Phase);
1919 schoenebeck 3138 SRLZ(LFO1InternalDepth);
1920     SRLZ(LFO1ControlDepth);
1921     SRLZ(LFO1Controller);
1922     SRLZ(LFO1FlipPhase);
1923     SRLZ(LFO1Sync);
1924     SRLZ(EG2PreAttack);
1925     SRLZ(EG2Attack);
1926     SRLZ(EG2Decay1);
1927     SRLZ(EG2Decay2);
1928     SRLZ(EG2InfiniteSustain);
1929     SRLZ(EG2Sustain);
1930     SRLZ(EG2Release);
1931     SRLZ(EG2Controller);
1932     SRLZ(EG2ControllerInvert);
1933     SRLZ(EG2ControllerAttackInfluence);
1934     SRLZ(EG2ControllerDecayInfluence);
1935     SRLZ(EG2ControllerReleaseInfluence);
1936 schoenebeck 3623 SRLZ(LFO2WaveForm);
1937 schoenebeck 3138 SRLZ(LFO2Frequency);
1938 schoenebeck 3623 SRLZ(LFO2Phase);
1939 schoenebeck 3138 SRLZ(LFO2InternalDepth);
1940     SRLZ(LFO2ControlDepth);
1941     SRLZ(LFO2Controller);
1942     SRLZ(LFO2FlipPhase);
1943     SRLZ(LFO2Sync);
1944     SRLZ(EG3Attack);
1945     SRLZ(EG3Depth);
1946 schoenebeck 3623 SRLZ(LFO3WaveForm);
1947 schoenebeck 3138 SRLZ(LFO3Frequency);
1948 schoenebeck 3623 SRLZ(LFO3Phase);
1949 schoenebeck 3138 SRLZ(LFO3InternalDepth);
1950     SRLZ(LFO3ControlDepth);
1951     SRLZ(LFO3Controller);
1952 schoenebeck 3623 SRLZ(LFO3FlipPhase);
1953 schoenebeck 3138 SRLZ(LFO3Sync);
1954     SRLZ(VCFEnabled);
1955     SRLZ(VCFType);
1956     SRLZ(VCFCutoffController);
1957     SRLZ(VCFCutoffControllerInvert);
1958     SRLZ(VCFCutoff);
1959     SRLZ(VCFVelocityCurve);
1960     SRLZ(VCFVelocityScale);
1961     SRLZ(VCFVelocityDynamicRange);
1962     SRLZ(VCFResonance);
1963     SRLZ(VCFResonanceDynamic);
1964     SRLZ(VCFResonanceController);
1965     SRLZ(VCFKeyboardTracking);
1966     SRLZ(VCFKeyboardTrackingBreakpoint);
1967     SRLZ(VelocityResponseCurve);
1968     SRLZ(VelocityResponseDepth);
1969     SRLZ(VelocityResponseCurveScaling);
1970     SRLZ(ReleaseVelocityResponseCurve);
1971     SRLZ(ReleaseVelocityResponseDepth);
1972     SRLZ(ReleaseTriggerDecay);
1973     SRLZ(Crossfade);
1974     SRLZ(PitchTrack);
1975     SRLZ(DimensionBypass);
1976     SRLZ(Pan);
1977     SRLZ(SelfMask);
1978     SRLZ(AttenuationController);
1979     SRLZ(InvertAttenuationController);
1980     SRLZ(AttenuationControllerThreshold);
1981     SRLZ(ChannelOffset);
1982     SRLZ(SustainDefeat);
1983     SRLZ(MSDecode);
1984     //SRLZ(SampleStartOffset);
1985     SRLZ(SampleAttenuation);
1986 schoenebeck 3327 SRLZ(EG1Options);
1987     SRLZ(EG2Options);
1988 schoenebeck 3442 SRLZ(SustainReleaseTrigger);
1989 schoenebeck 3446 SRLZ(NoNoteOffReleaseTrigger);
1990 schoenebeck 3138
1991     // derived attributes from DLS::Sampler
1992     SRLZ(FineTune);
1993     SRLZ(Gain);
1994     }
1995    
1996 schoenebeck 809 /**
1997 schoenebeck 1358 * Updates the respective member variable and updates @c SampleAttenuation
1998     * which depends on this value.
1999     */
2000     void DimensionRegion::SetGain(int32_t gain) {
2001     DLS::Sampler::SetGain(gain);
2002     SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003     }
2004    
2005     /**
2006 schoenebeck 809 * Apply dimension region settings to the respective RIFF chunks. You
2007     * have to call File::Save() to make changes persistent.
2008     *
2009     * Usually there is absolutely no need to call this method explicitly.
2010     * It will be called automatically when File::Save() was called.
2011 schoenebeck 2682 *
2012     * @param pProgress - callback function for progress notification
2013 schoenebeck 809 */
2014 schoenebeck 2682 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 schoenebeck 809 // first update base class's chunk
2016 schoenebeck 2682 DLS::Sampler::UpdateChunks(pProgress);
2017 schoenebeck 809
2018 persson 1247 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019     uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020     pData[12] = Crossfade.in_start;
2021     pData[13] = Crossfade.in_end;
2022     pData[14] = Crossfade.out_start;
2023     pData[15] = Crossfade.out_end;
2024    
2025 schoenebeck 809 // make sure '3ewa' chunk exists
2026     RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 persson 1317 if (!_3ewa) {
2028     File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 schoenebeck 3440 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030     _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 persson 1264 }
2032 persson 1247 pData = (uint8_t*) _3ewa->LoadChunkData();
2033 schoenebeck 809
2034     // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036 schoenebeck 3053 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 persson 1179 store32(&pData[0], chunksize); // unknown, always chunk size?
2038 schoenebeck 809
2039     const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 persson 1179 store32(&pData[4], lfo3freq);
2041 schoenebeck 809
2042     const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 persson 1179 store32(&pData[8], eg3attack);
2044 schoenebeck 809
2045     // next 2 bytes unknown
2046    
2047 persson 1179 store16(&pData[14], LFO1InternalDepth);
2048 schoenebeck 809
2049     // next 2 bytes unknown
2050    
2051 persson 1179 store16(&pData[18], LFO3InternalDepth);
2052 schoenebeck 809
2053     // next 2 bytes unknown
2054    
2055 persson 1179 store16(&pData[22], LFO1ControlDepth);
2056 schoenebeck 809
2057     // next 2 bytes unknown
2058    
2059 persson 1179 store16(&pData[26], LFO3ControlDepth);
2060 schoenebeck 809
2061     const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 persson 1179 store32(&pData[28], eg1attack);
2063 schoenebeck 809
2064     const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 persson 1179 store32(&pData[32], eg1decay1);
2066 schoenebeck 809
2067     // next 2 bytes unknown
2068    
2069 persson 1179 store16(&pData[38], EG1Sustain);
2070 schoenebeck 809
2071     const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 persson 1179 store32(&pData[40], eg1release);
2073 schoenebeck 809
2074     const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 persson 1179 pData[44] = eg1ctl;
2076 schoenebeck 809
2077     const uint8_t eg1ctrloptions =
2078 persson 1266 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 persson 1179 pData[45] = eg1ctrloptions;
2083 schoenebeck 809
2084     const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 persson 1179 pData[46] = eg2ctl;
2086 schoenebeck 809
2087     const uint8_t eg2ctrloptions =
2088 persson 1266 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 schoenebeck 809 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090     GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091     GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 persson 1179 pData[47] = eg2ctrloptions;
2093 schoenebeck 809
2094     const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 persson 1179 store32(&pData[48], lfo1freq);
2096 schoenebeck 809
2097     const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 persson 1179 store32(&pData[52], eg2attack);
2099 schoenebeck 809
2100     const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 persson 1179 store32(&pData[56], eg2decay1);
2102 schoenebeck 809
2103     // next 2 bytes unknown
2104    
2105 persson 1179 store16(&pData[62], EG2Sustain);
2106 schoenebeck 809
2107     const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 persson 1179 store32(&pData[64], eg2release);
2109 schoenebeck 809
2110     // next 2 bytes unknown
2111    
2112 persson 1179 store16(&pData[70], LFO2ControlDepth);
2113 schoenebeck 809
2114     const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 persson 1179 store32(&pData[72], lfo2freq);
2116 schoenebeck 809
2117     // next 2 bytes unknown
2118    
2119 persson 1179 store16(&pData[78], LFO2InternalDepth);
2120 schoenebeck 809
2121     const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 persson 1179 store32(&pData[80], eg1decay2);
2123 schoenebeck 809
2124     // next 2 bytes unknown
2125    
2126 persson 1179 store16(&pData[86], EG1PreAttack);
2127 schoenebeck 809
2128     const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 persson 1179 store32(&pData[88], eg2decay2);
2130 schoenebeck 809
2131     // next 2 bytes unknown
2132    
2133 persson 1179 store16(&pData[94], EG2PreAttack);
2134 schoenebeck 809
2135     {
2136     if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137     uint8_t velocityresponse = VelocityResponseDepth;
2138     switch (VelocityResponseCurve) {
2139     case curve_type_nonlinear:
2140     break;
2141     case curve_type_linear:
2142     velocityresponse += 5;
2143     break;
2144     case curve_type_special:
2145     velocityresponse += 10;
2146     break;
2147     case curve_type_unknown:
2148     default:
2149     throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150     }
2151 persson 1179 pData[96] = velocityresponse;
2152 schoenebeck 809 }
2153    
2154     {
2155     if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156     uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157     switch (ReleaseVelocityResponseCurve) {
2158     case curve_type_nonlinear:
2159     break;
2160     case curve_type_linear:
2161     releasevelocityresponse += 5;
2162     break;
2163     case curve_type_special:
2164     releasevelocityresponse += 10;
2165     break;
2166     case curve_type_unknown:
2167     default:
2168     throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169     }
2170 persson 1179 pData[97] = releasevelocityresponse;
2171 schoenebeck 809 }
2172    
2173 persson 1179 pData[98] = VelocityResponseCurveScaling;
2174 schoenebeck 809
2175 persson 1179 pData[99] = AttenuationControllerThreshold;
2176 schoenebeck 809
2177     // next 4 bytes unknown
2178    
2179 persson 1179 store16(&pData[104], SampleStartOffset);
2180 schoenebeck 809
2181     // next 2 bytes unknown
2182    
2183     {
2184     uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185     switch (DimensionBypass) {
2186     case dim_bypass_ctrl_94:
2187     pitchTrackDimensionBypass |= 0x10;
2188     break;
2189     case dim_bypass_ctrl_95:
2190     pitchTrackDimensionBypass |= 0x20;
2191     break;
2192     case dim_bypass_ctrl_none:
2193     //FIXME: should we set anything here?
2194     break;
2195     default:
2196     throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197     }
2198 persson 1179 pData[108] = pitchTrackDimensionBypass;
2199 schoenebeck 809 }
2200    
2201     const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 persson 1179 pData[109] = pan;
2203 schoenebeck 809
2204     const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 persson 1179 pData[110] = selfmask;
2206 schoenebeck 809
2207     // next byte unknown
2208    
2209     {
2210     uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211     if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212     if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213     if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 persson 1179 pData[112] = lfo3ctrl;
2215 schoenebeck 809 }
2216    
2217     const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 persson 1179 pData[113] = attenctl;
2219 schoenebeck 809
2220     {
2221     uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222     if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223     if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224     if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 persson 1179 pData[114] = lfo2ctrl;
2226 schoenebeck 809 }
2227    
2228     {
2229     uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230     if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231     if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232     if (VCFResonanceController != vcf_res_ctrl_none)
2233     lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 persson 1179 pData[115] = lfo1ctrl;
2235 schoenebeck 809 }
2236    
2237     const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 persson 2402 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 persson 1869 store16(&pData[116], eg3depth);
2240 schoenebeck 809
2241     // next 2 bytes unknown
2242    
2243     const uint8_t channeloffset = ChannelOffset * 4;
2244 persson 1179 pData[120] = channeloffset;
2245 schoenebeck 809
2246     {
2247     uint8_t regoptions = 0;
2248     if (MSDecode) regoptions |= 0x01; // bit 0
2249     if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 persson 1179 pData[121] = regoptions;
2251 schoenebeck 809 }
2252    
2253     // next 2 bytes unknown
2254    
2255 persson 1179 pData[124] = VelocityUpperLimit;
2256 schoenebeck 809
2257     // next 3 bytes unknown
2258    
2259 persson 1179 pData[128] = ReleaseTriggerDecay;
2260 schoenebeck 809
2261     // next 2 bytes unknown
2262    
2263     const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 persson 1179 pData[131] = eg1hold;
2265 schoenebeck 809
2266 persson 1266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 persson 918 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 persson 1179 pData[132] = vcfcutoff;
2269 schoenebeck 809
2270 persson 1179 pData[133] = VCFCutoffController;
2271 schoenebeck 809
2272 persson 1266 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 persson 918 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 persson 1179 pData[134] = vcfvelscale;
2275 schoenebeck 809
2276     // next byte unknown
2277    
2278 persson 1266 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 persson 918 (VCFResonance & 0x7f); /* lower 7 bits */
2280 persson 1179 pData[136] = vcfresonance;
2281 schoenebeck 809
2282 persson 1266 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 persson 918 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 persson 1179 pData[137] = vcfbreakpoint;
2285 schoenebeck 809
2286 persson 2152 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 schoenebeck 809 VCFVelocityCurve * 5;
2288 persson 1179 pData[138] = vcfvelocity;
2289 schoenebeck 809
2290     const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 persson 1179 pData[139] = vcftype;
2292 persson 1070
2293     if (chunksize >= 148) {
2294     memcpy(&pData[140], DimensionUpperLimits, 8);
2295     }
2296 schoenebeck 3323
2297 schoenebeck 3442 // chunk for own format extensions, these will *NOT* work with
2298 schoenebeck 3323 // Gigasampler/GigaStudio !
2299     RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 schoenebeck 3623 const int lsdeSize =
2301     3 /* EG cancel options */ +
2302     1 /* sustain pedal up on release trigger option */ +
2303     8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304     if (!lsde && UsesAnyGigFormatExtension()) {
2305     // only add this "LSDE" chunk if there is some (format extension)
2306     // setting effective that would require our "LSDE" format extension
2307     // chunk to be stored
2308     lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309     // move LSDE chunk to the end of parent list
2310     pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 schoenebeck 3323 }
2312     if (lsde) {
2313 schoenebeck 3442 if (lsde->GetNewSize() < lsdeSize)
2314     lsde->Resize(lsdeSize);
2315     // format extension for EG behavior options
2316 schoenebeck 3327 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317     eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 schoenebeck 3442 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 schoenebeck 3327 pData[i] =
2320     (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321     (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322     (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323     (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324     (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325     }
2326 schoenebeck 3446 // format extension for release trigger options
2327     pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 schoenebeck 3623 // format extension for LFOs' wave form, phase displacement and for
2329     // LFO3's flip phase
2330     store16(&pData[4], LFO1WaveForm);
2331     store16(&pData[6], LFO2WaveForm);
2332     store16(&pData[8], LFO3WaveForm);
2333     //NOTE: 16 bits reserved here for potential future use !
2334     const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335     const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336     const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337     store32(&pData[12], lfo1Phase);
2338     store32(&pData[16], lfo2Phase);
2339     store32(&pData[20], lfo3Phase);
2340     const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341     store32(&pData[24], flags);
2342    
2343     // compile time sanity check: is our last store access here
2344     // consistent with the initial lsdeSize value assignment?
2345     static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 schoenebeck 3323 }
2347 schoenebeck 809 }
2348    
2349 schoenebeck 3623 /**
2350     * Returns @c true in case this DimensionRegion object uses any gig format
2351     * extension, that is whether this DimensionRegion object currently has any
2352     * setting effective that would require our "LSDE" RIFF chunk to be stored
2353     * to the gig file.
2354     *
2355     * Right now this is a private method. It is considerable though this method
2356     * to become (in slightly modified form) a public API method in future, i.e.
2357     * to allow instrument editors to visualize and/or warn the user of any
2358     * format extension being used. Right now this method really just serves to
2359     * answer the question whether an LSDE chunk is required, for the public API
2360     * purpose this method would also need to check whether any other setting
2361     * stored to the regular value '3ewa' chunk, is actually a format extension
2362     * as well.
2363     */
2364     bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365     eg_opt_t defaultOpt;
2366     return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367     memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368     SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369     LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370     LFO1Phase || LFO2Phase || LFO3Phase ||
2371     LFO3FlipPhase;
2372     }
2373    
2374 schoenebeck 1358 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375     curve_type_t curveType = releaseVelocityResponseCurve;
2376     uint8_t depth = releaseVelocityResponseDepth;
2377     // this models a strange behaviour or bug in GSt: two of the
2378     // velocity response curves for release time are not used even
2379     // if specified, instead another curve is chosen.
2380     if ((curveType == curve_type_nonlinear && depth == 0) ||
2381     (curveType == curve_type_special && depth == 4)) {
2382     curveType = curve_type_nonlinear;
2383     depth = 3;
2384     }
2385     return GetVelocityTable(curveType, depth, 0);
2386