/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1106 - (show annotations) (download)
Sun Mar 18 19:38:47 2007 UTC (17 years ago) by schoenebeck
File size: 146486 byte(s)
* fixed exceptions which occured when trying to save a new instrument:
    - override the gig::Regions sample reference simply by the region's
      first dimension region's sample
    - fixed software info field which was wrongly stored on instruments

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257 // *************** Sample ***************
258 // *
259
260 unsigned int Sample::Instances = 0;
261 buffer_t Sample::InternalDecompressionBuffer;
262
263 /** @brief Constructor.
264 *
265 * Load an existing sample or create a new one. A 'wave' list chunk must
266 * be given to this constructor. In case the given 'wave' list chunk
267 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
268 * format and sample data will be loaded from there, otherwise default
269 * values will be used and those chunks will be created when
270 * File::Save() will be called later on.
271 *
272 * @param pFile - pointer to gig::File where this sample is
273 * located (or will be located)
274 * @param waveList - pointer to 'wave' list chunk which is (or
275 * will be) associated with this sample
276 * @param WavePoolOffset - offset of this sample data from wave pool
277 * ('wvpl') list chunk
278 * @param fileNo - number of an extension file where this sample
279 * is located, 0 otherwise
280 */
281 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
282 pInfo->UseFixedLengthStrings = true;
283 Instances++;
284 FileNo = fileNo;
285
286 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
287 if (pCk3gix) {
288 uint16_t iSampleGroup = pCk3gix->ReadInt16();
289 pGroup = pFile->GetGroup(iSampleGroup);
290 } else { // '3gix' chunk missing
291 // by default assigned to that mandatory "Default Group"
292 pGroup = pFile->GetGroup(0);
293 }
294
295 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
296 if (pCkSmpl) {
297 Manufacturer = pCkSmpl->ReadInt32();
298 Product = pCkSmpl->ReadInt32();
299 SamplePeriod = pCkSmpl->ReadInt32();
300 MIDIUnityNote = pCkSmpl->ReadInt32();
301 FineTune = pCkSmpl->ReadInt32();
302 pCkSmpl->Read(&SMPTEFormat, 1, 4);
303 SMPTEOffset = pCkSmpl->ReadInt32();
304 Loops = pCkSmpl->ReadInt32();
305 pCkSmpl->ReadInt32(); // manufByt
306 LoopID = pCkSmpl->ReadInt32();
307 pCkSmpl->Read(&LoopType, 1, 4);
308 LoopStart = pCkSmpl->ReadInt32();
309 LoopEnd = pCkSmpl->ReadInt32();
310 LoopFraction = pCkSmpl->ReadInt32();
311 LoopPlayCount = pCkSmpl->ReadInt32();
312 } else { // 'smpl' chunk missing
313 // use default values
314 Manufacturer = 0;
315 Product = 0;
316 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
317 MIDIUnityNote = 64;
318 FineTune = 0;
319 SMPTEOffset = 0;
320 Loops = 0;
321 LoopID = 0;
322 LoopStart = 0;
323 LoopEnd = 0;
324 LoopFraction = 0;
325 LoopPlayCount = 0;
326 }
327
328 FrameTable = NULL;
329 SamplePos = 0;
330 RAMCache.Size = 0;
331 RAMCache.pStart = NULL;
332 RAMCache.NullExtensionSize = 0;
333
334 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
335
336 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
337 Compressed = ewav;
338 Dithered = false;
339 TruncatedBits = 0;
340 if (Compressed) {
341 uint32_t version = ewav->ReadInt32();
342 if (version == 3 && BitDepth == 24) {
343 Dithered = ewav->ReadInt32();
344 ewav->SetPos(Channels == 2 ? 84 : 64);
345 TruncatedBits = ewav->ReadInt32();
346 }
347 ScanCompressedSample();
348 }
349
350 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
351 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
352 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
353 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
354 }
355 FrameOffset = 0; // just for streaming compressed samples
356
357 LoopSize = LoopEnd - LoopStart + 1;
358 }
359
360 /**
361 * Apply sample and its settings to the respective RIFF chunks. You have
362 * to call File::Save() to make changes persistent.
363 *
364 * Usually there is absolutely no need to call this method explicitly.
365 * It will be called automatically when File::Save() was called.
366 *
367 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
368 * was provided yet
369 * @throws gig::Exception if there is any invalid sample setting
370 */
371 void Sample::UpdateChunks() {
372 // first update base class's chunks
373 DLS::Sample::UpdateChunks();
374
375 // make sure 'smpl' chunk exists
376 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
377 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
378 // update 'smpl' chunk
379 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
380 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
381 memcpy(&pData[0], &Manufacturer, 4);
382 memcpy(&pData[4], &Product, 4);
383 memcpy(&pData[8], &SamplePeriod, 4);
384 memcpy(&pData[12], &MIDIUnityNote, 4);
385 memcpy(&pData[16], &FineTune, 4);
386 memcpy(&pData[20], &SMPTEFormat, 4);
387 memcpy(&pData[24], &SMPTEOffset, 4);
388 memcpy(&pData[28], &Loops, 4);
389
390 // we skip 'manufByt' for now (4 bytes)
391
392 memcpy(&pData[36], &LoopID, 4);
393 memcpy(&pData[40], &LoopType, 4);
394 memcpy(&pData[44], &LoopStart, 4);
395 memcpy(&pData[48], &LoopEnd, 4);
396 memcpy(&pData[52], &LoopFraction, 4);
397 memcpy(&pData[56], &LoopPlayCount, 4);
398
399 // make sure '3gix' chunk exists
400 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
401 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
402 // determine appropriate sample group index (to be stored in chunk)
403 uint16_t iSampleGroup = 0; // 0 refers to default sample group
404 File* pFile = static_cast<File*>(pParent);
405 if (pFile->pGroups) {
406 std::list<Group*>::iterator iter = pFile->pGroups->begin();
407 std::list<Group*>::iterator end = pFile->pGroups->end();
408 for (int i = 0; iter != end; i++, iter++) {
409 if (*iter == pGroup) {
410 iSampleGroup = i;
411 break; // found
412 }
413 }
414 }
415 // update '3gix' chunk
416 pData = (uint8_t*) pCk3gix->LoadChunkData();
417 memcpy(&pData[0], &iSampleGroup, 2);
418 }
419
420 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
421 void Sample::ScanCompressedSample() {
422 //TODO: we have to add some more scans here (e.g. determine compression rate)
423 this->SamplesTotal = 0;
424 std::list<unsigned long> frameOffsets;
425
426 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
427 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
428
429 // Scanning
430 pCkData->SetPos(0);
431 if (Channels == 2) { // Stereo
432 for (int i = 0 ; ; i++) {
433 // for 24 bit samples every 8:th frame offset is
434 // stored, to save some memory
435 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
436
437 const int mode_l = pCkData->ReadUint8();
438 const int mode_r = pCkData->ReadUint8();
439 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
440 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
441
442 if (pCkData->RemainingBytes() <= frameSize) {
443 SamplesInLastFrame =
444 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
445 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
446 SamplesTotal += SamplesInLastFrame;
447 break;
448 }
449 SamplesTotal += SamplesPerFrame;
450 pCkData->SetPos(frameSize, RIFF::stream_curpos);
451 }
452 }
453 else { // Mono
454 for (int i = 0 ; ; i++) {
455 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
456
457 const int mode = pCkData->ReadUint8();
458 if (mode > 5) throw gig::Exception("Unknown compression mode");
459 const unsigned long frameSize = bytesPerFrame[mode];
460
461 if (pCkData->RemainingBytes() <= frameSize) {
462 SamplesInLastFrame =
463 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
464 SamplesTotal += SamplesInLastFrame;
465 break;
466 }
467 SamplesTotal += SamplesPerFrame;
468 pCkData->SetPos(frameSize, RIFF::stream_curpos);
469 }
470 }
471 pCkData->SetPos(0);
472
473 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
474 if (FrameTable) delete[] FrameTable;
475 FrameTable = new unsigned long[frameOffsets.size()];
476 std::list<unsigned long>::iterator end = frameOffsets.end();
477 std::list<unsigned long>::iterator iter = frameOffsets.begin();
478 for (int i = 0; iter != end; i++, iter++) {
479 FrameTable[i] = *iter;
480 }
481 }
482
483 /**
484 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
485 * ReleaseSampleData() to free the memory if you don't need the cached
486 * sample data anymore.
487 *
488 * @returns buffer_t structure with start address and size of the buffer
489 * in bytes
490 * @see ReleaseSampleData(), Read(), SetPos()
491 */
492 buffer_t Sample::LoadSampleData() {
493 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
494 }
495
496 /**
497 * Reads (uncompresses if needed) and caches the first \a SampleCount
498 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
499 * memory space if you don't need the cached samples anymore. There is no
500 * guarantee that exactly \a SampleCount samples will be cached; this is
501 * not an error. The size will be eventually truncated e.g. to the
502 * beginning of a frame of a compressed sample. This is done for
503 * efficiency reasons while streaming the wave by your sampler engine
504 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
505 * that will be returned to determine the actual cached samples, but note
506 * that the size is given in bytes! You get the number of actually cached
507 * samples by dividing it by the frame size of the sample:
508 * @code
509 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
510 * long cachedsamples = buf.Size / pSample->FrameSize;
511 * @endcode
512 *
513 * @param SampleCount - number of sample points to load into RAM
514 * @returns buffer_t structure with start address and size of
515 * the cached sample data in bytes
516 * @see ReleaseSampleData(), Read(), SetPos()
517 */
518 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
519 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
520 }
521
522 /**
523 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
524 * ReleaseSampleData() to free the memory if you don't need the cached
525 * sample data anymore.
526 * The method will add \a NullSamplesCount silence samples past the
527 * official buffer end (this won't affect the 'Size' member of the
528 * buffer_t structure, that means 'Size' always reflects the size of the
529 * actual sample data, the buffer might be bigger though). Silence
530 * samples past the official buffer are needed for differential
531 * algorithms that always have to take subsequent samples into account
532 * (resampling/interpolation would be an important example) and avoids
533 * memory access faults in such cases.
534 *
535 * @param NullSamplesCount - number of silence samples the buffer should
536 * be extended past it's data end
537 * @returns buffer_t structure with start address and
538 * size of the buffer in bytes
539 * @see ReleaseSampleData(), Read(), SetPos()
540 */
541 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
542 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
543 }
544
545 /**
546 * Reads (uncompresses if needed) and caches the first \a SampleCount
547 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
548 * memory space if you don't need the cached samples anymore. There is no
549 * guarantee that exactly \a SampleCount samples will be cached; this is
550 * not an error. The size will be eventually truncated e.g. to the
551 * beginning of a frame of a compressed sample. This is done for
552 * efficiency reasons while streaming the wave by your sampler engine
553 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
554 * that will be returned to determine the actual cached samples, but note
555 * that the size is given in bytes! You get the number of actually cached
556 * samples by dividing it by the frame size of the sample:
557 * @code
558 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
559 * long cachedsamples = buf.Size / pSample->FrameSize;
560 * @endcode
561 * The method will add \a NullSamplesCount silence samples past the
562 * official buffer end (this won't affect the 'Size' member of the
563 * buffer_t structure, that means 'Size' always reflects the size of the
564 * actual sample data, the buffer might be bigger though). Silence
565 * samples past the official buffer are needed for differential
566 * algorithms that always have to take subsequent samples into account
567 * (resampling/interpolation would be an important example) and avoids
568 * memory access faults in such cases.
569 *
570 * @param SampleCount - number of sample points to load into RAM
571 * @param NullSamplesCount - number of silence samples the buffer should
572 * be extended past it's data end
573 * @returns buffer_t structure with start address and
574 * size of the cached sample data in bytes
575 * @see ReleaseSampleData(), Read(), SetPos()
576 */
577 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
578 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
579 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
580 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
581 RAMCache.pStart = new int8_t[allocationsize];
582 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
583 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
584 // fill the remaining buffer space with silence samples
585 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
586 return GetCache();
587 }
588
589 /**
590 * Returns current cached sample points. A buffer_t structure will be
591 * returned which contains address pointer to the begin of the cache and
592 * the size of the cached sample data in bytes. Use
593 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
594 * RAM.
595 *
596 * @returns buffer_t structure with current cached sample points
597 * @see LoadSampleData();
598 */
599 buffer_t Sample::GetCache() {
600 // return a copy of the buffer_t structure
601 buffer_t result;
602 result.Size = this->RAMCache.Size;
603 result.pStart = this->RAMCache.pStart;
604 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
605 return result;
606 }
607
608 /**
609 * Frees the cached sample from RAM if loaded with
610 * <i>LoadSampleData()</i> previously.
611 *
612 * @see LoadSampleData();
613 */
614 void Sample::ReleaseSampleData() {
615 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
616 RAMCache.pStart = NULL;
617 RAMCache.Size = 0;
618 }
619
620 /** @brief Resize sample.
621 *
622 * Resizes the sample's wave form data, that is the actual size of
623 * sample wave data possible to be written for this sample. This call
624 * will return immediately and just schedule the resize operation. You
625 * should call File::Save() to actually perform the resize operation(s)
626 * "physically" to the file. As this can take a while on large files, it
627 * is recommended to call Resize() first on all samples which have to be
628 * resized and finally to call File::Save() to perform all those resize
629 * operations in one rush.
630 *
631 * The actual size (in bytes) is dependant to the current FrameSize
632 * value. You may want to set FrameSize before calling Resize().
633 *
634 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
635 * enlarged samples before calling File::Save() as this might exceed the
636 * current sample's boundary!
637 *
638 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
639 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
640 * other formats will fail!
641 *
642 * @param iNewSize - new sample wave data size in sample points (must be
643 * greater than zero)
644 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
645 * or if \a iNewSize is less than 1
646 * @throws gig::Exception if existing sample is compressed
647 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
648 * DLS::Sample::FormatTag, File::Save()
649 */
650 void Sample::Resize(int iNewSize) {
651 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
652 DLS::Sample::Resize(iNewSize);
653 }
654
655 /**
656 * Sets the position within the sample (in sample points, not in
657 * bytes). Use this method and <i>Read()</i> if you don't want to load
658 * the sample into RAM, thus for disk streaming.
659 *
660 * Although the original Gigasampler engine doesn't allow positioning
661 * within compressed samples, I decided to implement it. Even though
662 * the Gigasampler format doesn't allow to define loops for compressed
663 * samples at the moment, positioning within compressed samples might be
664 * interesting for some sampler engines though. The only drawback about
665 * my decision is that it takes longer to load compressed gig Files on
666 * startup, because it's neccessary to scan the samples for some
667 * mandatory informations. But I think as it doesn't affect the runtime
668 * efficiency, nobody will have a problem with that.
669 *
670 * @param SampleCount number of sample points to jump
671 * @param Whence optional: to which relation \a SampleCount refers
672 * to, if omited <i>RIFF::stream_start</i> is assumed
673 * @returns the new sample position
674 * @see Read()
675 */
676 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
677 if (Compressed) {
678 switch (Whence) {
679 case RIFF::stream_curpos:
680 this->SamplePos += SampleCount;
681 break;
682 case RIFF::stream_end:
683 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
684 break;
685 case RIFF::stream_backward:
686 this->SamplePos -= SampleCount;
687 break;
688 case RIFF::stream_start: default:
689 this->SamplePos = SampleCount;
690 break;
691 }
692 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
693
694 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
695 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
696 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
697 return this->SamplePos;
698 }
699 else { // not compressed
700 unsigned long orderedBytes = SampleCount * this->FrameSize;
701 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
702 return (result == orderedBytes) ? SampleCount
703 : result / this->FrameSize;
704 }
705 }
706
707 /**
708 * Returns the current position in the sample (in sample points).
709 */
710 unsigned long Sample::GetPos() {
711 if (Compressed) return SamplePos;
712 else return pCkData->GetPos() / FrameSize;
713 }
714
715 /**
716 * Reads \a SampleCount number of sample points from the position stored
717 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
718 * the position within the sample respectively, this method honors the
719 * looping informations of the sample (if any). The sample wave stream
720 * will be decompressed on the fly if using a compressed sample. Use this
721 * method if you don't want to load the sample into RAM, thus for disk
722 * streaming. All this methods needs to know to proceed with streaming
723 * for the next time you call this method is stored in \a pPlaybackState.
724 * You have to allocate and initialize the playback_state_t structure by
725 * yourself before you use it to stream a sample:
726 * @code
727 * gig::playback_state_t playbackstate;
728 * playbackstate.position = 0;
729 * playbackstate.reverse = false;
730 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
731 * @endcode
732 * You don't have to take care of things like if there is actually a loop
733 * defined or if the current read position is located within a loop area.
734 * The method already handles such cases by itself.
735 *
736 * <b>Caution:</b> If you are using more than one streaming thread, you
737 * have to use an external decompression buffer for <b>EACH</b>
738 * streaming thread to avoid race conditions and crashes!
739 *
740 * @param pBuffer destination buffer
741 * @param SampleCount number of sample points to read
742 * @param pPlaybackState will be used to store and reload the playback
743 * state for the next ReadAndLoop() call
744 * @param pDimRgn dimension region with looping information
745 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
746 * @returns number of successfully read sample points
747 * @see CreateDecompressionBuffer()
748 */
749 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
750 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
751 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
752 uint8_t* pDst = (uint8_t*) pBuffer;
753
754 SetPos(pPlaybackState->position); // recover position from the last time
755
756 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
757
758 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
759 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
760
761 if (GetPos() <= loopEnd) {
762 switch (loop.LoopType) {
763
764 case loop_type_bidirectional: { //TODO: not tested yet!
765 do {
766 // if not endless loop check if max. number of loop cycles have been passed
767 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
768
769 if (!pPlaybackState->reverse) { // forward playback
770 do {
771 samplestoloopend = loopEnd - GetPos();
772 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
773 samplestoread -= readsamples;
774 totalreadsamples += readsamples;
775 if (readsamples == samplestoloopend) {
776 pPlaybackState->reverse = true;
777 break;
778 }
779 } while (samplestoread && readsamples);
780 }
781 else { // backward playback
782
783 // as we can only read forward from disk, we have to
784 // determine the end position within the loop first,
785 // read forward from that 'end' and finally after
786 // reading, swap all sample frames so it reflects
787 // backward playback
788
789 unsigned long swapareastart = totalreadsamples;
790 unsigned long loopoffset = GetPos() - loop.LoopStart;
791 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
792 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
793
794 SetPos(reverseplaybackend);
795
796 // read samples for backward playback
797 do {
798 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
799 samplestoreadinloop -= readsamples;
800 samplestoread -= readsamples;
801 totalreadsamples += readsamples;
802 } while (samplestoreadinloop && readsamples);
803
804 SetPos(reverseplaybackend); // pretend we really read backwards
805
806 if (reverseplaybackend == loop.LoopStart) {
807 pPlaybackState->loop_cycles_left--;
808 pPlaybackState->reverse = false;
809 }
810
811 // reverse the sample frames for backward playback
812 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
813 }
814 } while (samplestoread && readsamples);
815 break;
816 }
817
818 case loop_type_backward: { // TODO: not tested yet!
819 // forward playback (not entered the loop yet)
820 if (!pPlaybackState->reverse) do {
821 samplestoloopend = loopEnd - GetPos();
822 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
823 samplestoread -= readsamples;
824 totalreadsamples += readsamples;
825 if (readsamples == samplestoloopend) {
826 pPlaybackState->reverse = true;
827 break;
828 }
829 } while (samplestoread && readsamples);
830
831 if (!samplestoread) break;
832
833 // as we can only read forward from disk, we have to
834 // determine the end position within the loop first,
835 // read forward from that 'end' and finally after
836 // reading, swap all sample frames so it reflects
837 // backward playback
838
839 unsigned long swapareastart = totalreadsamples;
840 unsigned long loopoffset = GetPos() - loop.LoopStart;
841 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
842 : samplestoread;
843 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
844
845 SetPos(reverseplaybackend);
846
847 // read samples for backward playback
848 do {
849 // if not endless loop check if max. number of loop cycles have been passed
850 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
851 samplestoloopend = loopEnd - GetPos();
852 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
853 samplestoreadinloop -= readsamples;
854 samplestoread -= readsamples;
855 totalreadsamples += readsamples;
856 if (readsamples == samplestoloopend) {
857 pPlaybackState->loop_cycles_left--;
858 SetPos(loop.LoopStart);
859 }
860 } while (samplestoreadinloop && readsamples);
861
862 SetPos(reverseplaybackend); // pretend we really read backwards
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 break;
867 }
868
869 default: case loop_type_normal: {
870 do {
871 // if not endless loop check if max. number of loop cycles have been passed
872 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
873 samplestoloopend = loopEnd - GetPos();
874 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
875 samplestoread -= readsamples;
876 totalreadsamples += readsamples;
877 if (readsamples == samplestoloopend) {
878 pPlaybackState->loop_cycles_left--;
879 SetPos(loop.LoopStart);
880 }
881 } while (samplestoread && readsamples);
882 break;
883 }
884 }
885 }
886 }
887
888 // read on without looping
889 if (samplestoread) do {
890 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
891 samplestoread -= readsamples;
892 totalreadsamples += readsamples;
893 } while (readsamples && samplestoread);
894
895 // store current position
896 pPlaybackState->position = GetPos();
897
898 return totalreadsamples;
899 }
900
901 /**
902 * Reads \a SampleCount number of sample points from the current
903 * position into the buffer pointed by \a pBuffer and increments the
904 * position within the sample. The sample wave stream will be
905 * decompressed on the fly if using a compressed sample. Use this method
906 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
907 * thus for disk streaming.
908 *
909 * <b>Caution:</b> If you are using more than one streaming thread, you
910 * have to use an external decompression buffer for <b>EACH</b>
911 * streaming thread to avoid race conditions and crashes!
912 *
913 * For 16 bit samples, the data in the buffer will be int16_t
914 * (using native endianness). For 24 bit, the buffer will
915 * contain three bytes per sample, little-endian.
916 *
917 * @param pBuffer destination buffer
918 * @param SampleCount number of sample points to read
919 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
920 * @returns number of successfully read sample points
921 * @see SetPos(), CreateDecompressionBuffer()
922 */
923 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
924 if (SampleCount == 0) return 0;
925 if (!Compressed) {
926 if (BitDepth == 24) {
927 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
928 }
929 else { // 16 bit
930 // (pCkData->Read does endian correction)
931 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
932 : pCkData->Read(pBuffer, SampleCount, 2);
933 }
934 }
935 else {
936 if (this->SamplePos >= this->SamplesTotal) return 0;
937 //TODO: efficiency: maybe we should test for an average compression rate
938 unsigned long assumedsize = GuessSize(SampleCount),
939 remainingbytes = 0, // remaining bytes in the local buffer
940 remainingsamples = SampleCount,
941 copysamples, skipsamples,
942 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
943 this->FrameOffset = 0;
944
945 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
946
947 // if decompression buffer too small, then reduce amount of samples to read
948 if (pDecompressionBuffer->Size < assumedsize) {
949 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
950 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
951 remainingsamples = SampleCount;
952 assumedsize = GuessSize(SampleCount);
953 }
954
955 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
956 int16_t* pDst = static_cast<int16_t*>(pBuffer);
957 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
958 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
959
960 while (remainingsamples && remainingbytes) {
961 unsigned long framesamples = SamplesPerFrame;
962 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
963
964 int mode_l = *pSrc++, mode_r = 0;
965
966 if (Channels == 2) {
967 mode_r = *pSrc++;
968 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
969 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
970 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
971 if (remainingbytes < framebytes) { // last frame in sample
972 framesamples = SamplesInLastFrame;
973 if (mode_l == 4 && (framesamples & 1)) {
974 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
975 }
976 else {
977 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
978 }
979 }
980 }
981 else {
982 framebytes = bytesPerFrame[mode_l] + 1;
983 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
984 if (remainingbytes < framebytes) {
985 framesamples = SamplesInLastFrame;
986 }
987 }
988
989 // determine how many samples in this frame to skip and read
990 if (currentframeoffset + remainingsamples >= framesamples) {
991 if (currentframeoffset <= framesamples) {
992 copysamples = framesamples - currentframeoffset;
993 skipsamples = currentframeoffset;
994 }
995 else {
996 copysamples = 0;
997 skipsamples = framesamples;
998 }
999 }
1000 else {
1001 // This frame has enough data for pBuffer, but not
1002 // all of the frame is needed. Set file position
1003 // to start of this frame for next call to Read.
1004 copysamples = remainingsamples;
1005 skipsamples = currentframeoffset;
1006 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1007 this->FrameOffset = currentframeoffset + copysamples;
1008 }
1009 remainingsamples -= copysamples;
1010
1011 if (remainingbytes > framebytes) {
1012 remainingbytes -= framebytes;
1013 if (remainingsamples == 0 &&
1014 currentframeoffset + copysamples == framesamples) {
1015 // This frame has enough data for pBuffer, and
1016 // all of the frame is needed. Set file
1017 // position to start of next frame for next
1018 // call to Read. FrameOffset is 0.
1019 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1020 }
1021 }
1022 else remainingbytes = 0;
1023
1024 currentframeoffset -= skipsamples;
1025
1026 if (copysamples == 0) {
1027 // skip this frame
1028 pSrc += framebytes - Channels;
1029 }
1030 else {
1031 const unsigned char* const param_l = pSrc;
1032 if (BitDepth == 24) {
1033 if (mode_l != 2) pSrc += 12;
1034
1035 if (Channels == 2) { // Stereo
1036 const unsigned char* const param_r = pSrc;
1037 if (mode_r != 2) pSrc += 12;
1038
1039 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1040 skipsamples, copysamples, TruncatedBits);
1041 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1042 skipsamples, copysamples, TruncatedBits);
1043 pDst24 += copysamples * 6;
1044 }
1045 else { // Mono
1046 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1047 skipsamples, copysamples, TruncatedBits);
1048 pDst24 += copysamples * 3;
1049 }
1050 }
1051 else { // 16 bit
1052 if (mode_l) pSrc += 4;
1053
1054 int step;
1055 if (Channels == 2) { // Stereo
1056 const unsigned char* const param_r = pSrc;
1057 if (mode_r) pSrc += 4;
1058
1059 step = (2 - mode_l) + (2 - mode_r);
1060 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1061 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1062 skipsamples, copysamples);
1063 pDst += copysamples << 1;
1064 }
1065 else { // Mono
1066 step = 2 - mode_l;
1067 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1068 pDst += copysamples;
1069 }
1070 }
1071 pSrc += nextFrameOffset;
1072 }
1073
1074 // reload from disk to local buffer if needed
1075 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1076 assumedsize = GuessSize(remainingsamples);
1077 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1078 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1079 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1080 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1081 }
1082 } // while
1083
1084 this->SamplePos += (SampleCount - remainingsamples);
1085 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1086 return (SampleCount - remainingsamples);
1087 }
1088 }
1089
1090 /** @brief Write sample wave data.
1091 *
1092 * Writes \a SampleCount number of sample points from the buffer pointed
1093 * by \a pBuffer and increments the position within the sample. Use this
1094 * method to directly write the sample data to disk, i.e. if you don't
1095 * want or cannot load the whole sample data into RAM.
1096 *
1097 * You have to Resize() the sample to the desired size and call
1098 * File::Save() <b>before</b> using Write().
1099 *
1100 * Note: there is currently no support for writing compressed samples.
1101 *
1102 * @param pBuffer - source buffer
1103 * @param SampleCount - number of sample points to write
1104 * @throws DLS::Exception if current sample size is too small
1105 * @throws gig::Exception if sample is compressed
1106 * @see DLS::LoadSampleData()
1107 */
1108 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1109 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1110 return DLS::Sample::Write(pBuffer, SampleCount);
1111 }
1112
1113 /**
1114 * Allocates a decompression buffer for streaming (compressed) samples
1115 * with Sample::Read(). If you are using more than one streaming thread
1116 * in your application you <b>HAVE</b> to create a decompression buffer
1117 * for <b>EACH</b> of your streaming threads and provide it with the
1118 * Sample::Read() call in order to avoid race conditions and crashes.
1119 *
1120 * You should free the memory occupied by the allocated buffer(s) once
1121 * you don't need one of your streaming threads anymore by calling
1122 * DestroyDecompressionBuffer().
1123 *
1124 * @param MaxReadSize - the maximum size (in sample points) you ever
1125 * expect to read with one Read() call
1126 * @returns allocated decompression buffer
1127 * @see DestroyDecompressionBuffer()
1128 */
1129 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1130 buffer_t result;
1131 const double worstCaseHeaderOverhead =
1132 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1133 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1134 result.pStart = new int8_t[result.Size];
1135 result.NullExtensionSize = 0;
1136 return result;
1137 }
1138
1139 /**
1140 * Free decompression buffer, previously created with
1141 * CreateDecompressionBuffer().
1142 *
1143 * @param DecompressionBuffer - previously allocated decompression
1144 * buffer to free
1145 */
1146 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1147 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1148 delete[] (int8_t*) DecompressionBuffer.pStart;
1149 DecompressionBuffer.pStart = NULL;
1150 DecompressionBuffer.Size = 0;
1151 DecompressionBuffer.NullExtensionSize = 0;
1152 }
1153 }
1154
1155 /**
1156 * Returns pointer to the Group this Sample belongs to. In the .gig
1157 * format a sample always belongs to one group. If it wasn't explicitly
1158 * assigned to a certain group, it will be automatically assigned to a
1159 * default group.
1160 *
1161 * @returns Sample's Group (never NULL)
1162 */
1163 Group* Sample::GetGroup() const {
1164 return pGroup;
1165 }
1166
1167 Sample::~Sample() {
1168 Instances--;
1169 if (!Instances && InternalDecompressionBuffer.Size) {
1170 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1171 InternalDecompressionBuffer.pStart = NULL;
1172 InternalDecompressionBuffer.Size = 0;
1173 }
1174 if (FrameTable) delete[] FrameTable;
1175 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1176 }
1177
1178
1179
1180 // *************** DimensionRegion ***************
1181 // *
1182
1183 uint DimensionRegion::Instances = 0;
1184 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1185
1186 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1187 Instances++;
1188
1189 pSample = NULL;
1190
1191 memcpy(&Crossfade, &SamplerOptions, 4);
1192 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1193
1194 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1195 if (_3ewa) { // if '3ewa' chunk exists
1196 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1197 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1198 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1199 _3ewa->ReadInt16(); // unknown
1200 LFO1InternalDepth = _3ewa->ReadUint16();
1201 _3ewa->ReadInt16(); // unknown
1202 LFO3InternalDepth = _3ewa->ReadInt16();
1203 _3ewa->ReadInt16(); // unknown
1204 LFO1ControlDepth = _3ewa->ReadUint16();
1205 _3ewa->ReadInt16(); // unknown
1206 LFO3ControlDepth = _3ewa->ReadInt16();
1207 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1208 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1209 _3ewa->ReadInt16(); // unknown
1210 EG1Sustain = _3ewa->ReadUint16();
1211 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1212 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1213 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1214 EG1ControllerInvert = eg1ctrloptions & 0x01;
1215 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1216 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1217 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1218 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1219 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1220 EG2ControllerInvert = eg2ctrloptions & 0x01;
1221 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1222 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1223 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1224 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1225 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1226 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1227 _3ewa->ReadInt16(); // unknown
1228 EG2Sustain = _3ewa->ReadUint16();
1229 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1230 _3ewa->ReadInt16(); // unknown
1231 LFO2ControlDepth = _3ewa->ReadUint16();
1232 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1233 _3ewa->ReadInt16(); // unknown
1234 LFO2InternalDepth = _3ewa->ReadUint16();
1235 int32_t eg1decay2 = _3ewa->ReadInt32();
1236 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1237 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1238 _3ewa->ReadInt16(); // unknown
1239 EG1PreAttack = _3ewa->ReadUint16();
1240 int32_t eg2decay2 = _3ewa->ReadInt32();
1241 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1242 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1243 _3ewa->ReadInt16(); // unknown
1244 EG2PreAttack = _3ewa->ReadUint16();
1245 uint8_t velocityresponse = _3ewa->ReadUint8();
1246 if (velocityresponse < 5) {
1247 VelocityResponseCurve = curve_type_nonlinear;
1248 VelocityResponseDepth = velocityresponse;
1249 } else if (velocityresponse < 10) {
1250 VelocityResponseCurve = curve_type_linear;
1251 VelocityResponseDepth = velocityresponse - 5;
1252 } else if (velocityresponse < 15) {
1253 VelocityResponseCurve = curve_type_special;
1254 VelocityResponseDepth = velocityresponse - 10;
1255 } else {
1256 VelocityResponseCurve = curve_type_unknown;
1257 VelocityResponseDepth = 0;
1258 }
1259 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1260 if (releasevelocityresponse < 5) {
1261 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1262 ReleaseVelocityResponseDepth = releasevelocityresponse;
1263 } else if (releasevelocityresponse < 10) {
1264 ReleaseVelocityResponseCurve = curve_type_linear;
1265 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1266 } else if (releasevelocityresponse < 15) {
1267 ReleaseVelocityResponseCurve = curve_type_special;
1268 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1269 } else {
1270 ReleaseVelocityResponseCurve = curve_type_unknown;
1271 ReleaseVelocityResponseDepth = 0;
1272 }
1273 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1274 AttenuationControllerThreshold = _3ewa->ReadInt8();
1275 _3ewa->ReadInt32(); // unknown
1276 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1277 _3ewa->ReadInt16(); // unknown
1278 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1279 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1280 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1281 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1282 else DimensionBypass = dim_bypass_ctrl_none;
1283 uint8_t pan = _3ewa->ReadUint8();
1284 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1285 SelfMask = _3ewa->ReadInt8() & 0x01;
1286 _3ewa->ReadInt8(); // unknown
1287 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1288 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1289 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1290 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1291 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1292 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1293 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1294 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1295 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1296 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1297 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1298 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1299 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1300 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1301 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1302 : vcf_res_ctrl_none;
1303 uint16_t eg3depth = _3ewa->ReadUint16();
1304 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1305 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1306 _3ewa->ReadInt16(); // unknown
1307 ChannelOffset = _3ewa->ReadUint8() / 4;
1308 uint8_t regoptions = _3ewa->ReadUint8();
1309 MSDecode = regoptions & 0x01; // bit 0
1310 SustainDefeat = regoptions & 0x02; // bit 1
1311 _3ewa->ReadInt16(); // unknown
1312 VelocityUpperLimit = _3ewa->ReadInt8();
1313 _3ewa->ReadInt8(); // unknown
1314 _3ewa->ReadInt16(); // unknown
1315 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1316 _3ewa->ReadInt8(); // unknown
1317 _3ewa->ReadInt8(); // unknown
1318 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1319 uint8_t vcfcutoff = _3ewa->ReadUint8();
1320 VCFEnabled = vcfcutoff & 0x80; // bit 7
1321 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1322 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1323 uint8_t vcfvelscale = _3ewa->ReadUint8();
1324 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1325 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1326 _3ewa->ReadInt8(); // unknown
1327 uint8_t vcfresonance = _3ewa->ReadUint8();
1328 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1329 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1330 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1331 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1332 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1333 uint8_t vcfvelocity = _3ewa->ReadUint8();
1334 VCFVelocityDynamicRange = vcfvelocity % 5;
1335 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1336 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1337 if (VCFType == vcf_type_lowpass) {
1338 if (lfo3ctrl & 0x40) // bit 6
1339 VCFType = vcf_type_lowpassturbo;
1340 }
1341 if (_3ewa->RemainingBytes() >= 8) {
1342 _3ewa->Read(DimensionUpperLimits, 1, 8);
1343 } else {
1344 memset(DimensionUpperLimits, 0, 8);
1345 }
1346 } else { // '3ewa' chunk does not exist yet
1347 // use default values
1348 LFO3Frequency = 1.0;
1349 EG3Attack = 0.0;
1350 LFO1InternalDepth = 0;
1351 LFO3InternalDepth = 0;
1352 LFO1ControlDepth = 0;
1353 LFO3ControlDepth = 0;
1354 EG1Attack = 0.0;
1355 EG1Decay1 = 0.0;
1356 EG1Sustain = 0;
1357 EG1Release = 0.0;
1358 EG1Controller.type = eg1_ctrl_t::type_none;
1359 EG1Controller.controller_number = 0;
1360 EG1ControllerInvert = false;
1361 EG1ControllerAttackInfluence = 0;
1362 EG1ControllerDecayInfluence = 0;
1363 EG1ControllerReleaseInfluence = 0;
1364 EG2Controller.type = eg2_ctrl_t::type_none;
1365 EG2Controller.controller_number = 0;
1366 EG2ControllerInvert = false;
1367 EG2ControllerAttackInfluence = 0;
1368 EG2ControllerDecayInfluence = 0;
1369 EG2ControllerReleaseInfluence = 0;
1370 LFO1Frequency = 1.0;
1371 EG2Attack = 0.0;
1372 EG2Decay1 = 0.0;
1373 EG2Sustain = 0;
1374 EG2Release = 0.0;
1375 LFO2ControlDepth = 0;
1376 LFO2Frequency = 1.0;
1377 LFO2InternalDepth = 0;
1378 EG1Decay2 = 0.0;
1379 EG1InfiniteSustain = false;
1380 EG1PreAttack = 1000;
1381 EG2Decay2 = 0.0;
1382 EG2InfiniteSustain = false;
1383 EG2PreAttack = 1000;
1384 VelocityResponseCurve = curve_type_nonlinear;
1385 VelocityResponseDepth = 3;
1386 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1387 ReleaseVelocityResponseDepth = 3;
1388 VelocityResponseCurveScaling = 32;
1389 AttenuationControllerThreshold = 0;
1390 SampleStartOffset = 0;
1391 PitchTrack = true;
1392 DimensionBypass = dim_bypass_ctrl_none;
1393 Pan = 0;
1394 SelfMask = true;
1395 LFO3Controller = lfo3_ctrl_modwheel;
1396 LFO3Sync = false;
1397 InvertAttenuationController = false;
1398 AttenuationController.type = attenuation_ctrl_t::type_none;
1399 AttenuationController.controller_number = 0;
1400 LFO2Controller = lfo2_ctrl_internal;
1401 LFO2FlipPhase = false;
1402 LFO2Sync = false;
1403 LFO1Controller = lfo1_ctrl_internal;
1404 LFO1FlipPhase = false;
1405 LFO1Sync = false;
1406 VCFResonanceController = vcf_res_ctrl_none;
1407 EG3Depth = 0;
1408 ChannelOffset = 0;
1409 MSDecode = false;
1410 SustainDefeat = false;
1411 VelocityUpperLimit = 0;
1412 ReleaseTriggerDecay = 0;
1413 EG1Hold = false;
1414 VCFEnabled = false;
1415 VCFCutoff = 0;
1416 VCFCutoffController = vcf_cutoff_ctrl_none;
1417 VCFCutoffControllerInvert = false;
1418 VCFVelocityScale = 0;
1419 VCFResonance = 0;
1420 VCFResonanceDynamic = false;
1421 VCFKeyboardTracking = false;
1422 VCFKeyboardTrackingBreakpoint = 0;
1423 VCFVelocityDynamicRange = 0x04;
1424 VCFVelocityCurve = curve_type_linear;
1425 VCFType = vcf_type_lowpass;
1426 memset(DimensionUpperLimits, 0, 8);
1427 }
1428
1429 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1430 VelocityResponseDepth,
1431 VelocityResponseCurveScaling);
1432
1433 curve_type_t curveType = ReleaseVelocityResponseCurve;
1434 uint8_t depth = ReleaseVelocityResponseDepth;
1435
1436 // this models a strange behaviour or bug in GSt: two of the
1437 // velocity response curves for release time are not used even
1438 // if specified, instead another curve is chosen.
1439 if ((curveType == curve_type_nonlinear && depth == 0) ||
1440 (curveType == curve_type_special && depth == 4)) {
1441 curveType = curve_type_nonlinear;
1442 depth = 3;
1443 }
1444 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1445
1446 curveType = VCFVelocityCurve;
1447 depth = VCFVelocityDynamicRange;
1448
1449 // even stranger GSt: two of the velocity response curves for
1450 // filter cutoff are not used, instead another special curve
1451 // is chosen. This curve is not used anywhere else.
1452 if ((curveType == curve_type_nonlinear && depth == 0) ||
1453 (curveType == curve_type_special && depth == 4)) {
1454 curveType = curve_type_special;
1455 depth = 5;
1456 }
1457 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1458 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1459
1460 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1461 VelocityTable = 0;
1462 }
1463
1464 /**
1465 * Apply dimension region settings to the respective RIFF chunks. You
1466 * have to call File::Save() to make changes persistent.
1467 *
1468 * Usually there is absolutely no need to call this method explicitly.
1469 * It will be called automatically when File::Save() was called.
1470 */
1471 void DimensionRegion::UpdateChunks() {
1472 // first update base class's chunk
1473 DLS::Sampler::UpdateChunks();
1474
1475 // make sure '3ewa' chunk exists
1476 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1477 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1478 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1479
1480 // update '3ewa' chunk with DimensionRegion's current settings
1481
1482 const uint32_t chunksize = _3ewa->GetSize();
1483 memcpy(&pData[0], &chunksize, 4); // unknown, always chunk size?
1484
1485 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1486 memcpy(&pData[4], &lfo3freq, 4);
1487
1488 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1489 memcpy(&pData[8], &eg3attack, 4);
1490
1491 // next 2 bytes unknown
1492
1493 memcpy(&pData[14], &LFO1InternalDepth, 2);
1494
1495 // next 2 bytes unknown
1496
1497 memcpy(&pData[18], &LFO3InternalDepth, 2);
1498
1499 // next 2 bytes unknown
1500
1501 memcpy(&pData[22], &LFO1ControlDepth, 2);
1502
1503 // next 2 bytes unknown
1504
1505 memcpy(&pData[26], &LFO3ControlDepth, 2);
1506
1507 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1508 memcpy(&pData[28], &eg1attack, 4);
1509
1510 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1511 memcpy(&pData[32], &eg1decay1, 4);
1512
1513 // next 2 bytes unknown
1514
1515 memcpy(&pData[38], &EG1Sustain, 2);
1516
1517 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1518 memcpy(&pData[40], &eg1release, 4);
1519
1520 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1521 memcpy(&pData[44], &eg1ctl, 1);
1522
1523 const uint8_t eg1ctrloptions =
1524 (EG1ControllerInvert) ? 0x01 : 0x00 |
1525 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1526 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1527 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1528 memcpy(&pData[45], &eg1ctrloptions, 1);
1529
1530 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1531 memcpy(&pData[46], &eg2ctl, 1);
1532
1533 const uint8_t eg2ctrloptions =
1534 (EG2ControllerInvert) ? 0x01 : 0x00 |
1535 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1536 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1537 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1538 memcpy(&pData[47], &eg2ctrloptions, 1);
1539
1540 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1541 memcpy(&pData[48], &lfo1freq, 4);
1542
1543 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1544 memcpy(&pData[52], &eg2attack, 4);
1545
1546 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1547 memcpy(&pData[56], &eg2decay1, 4);
1548
1549 // next 2 bytes unknown
1550
1551 memcpy(&pData[62], &EG2Sustain, 2);
1552
1553 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1554 memcpy(&pData[64], &eg2release, 4);
1555
1556 // next 2 bytes unknown
1557
1558 memcpy(&pData[70], &LFO2ControlDepth, 2);
1559
1560 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1561 memcpy(&pData[72], &lfo2freq, 4);
1562
1563 // next 2 bytes unknown
1564
1565 memcpy(&pData[78], &LFO2InternalDepth, 2);
1566
1567 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1568 memcpy(&pData[80], &eg1decay2, 4);
1569
1570 // next 2 bytes unknown
1571
1572 memcpy(&pData[86], &EG1PreAttack, 2);
1573
1574 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1575 memcpy(&pData[88], &eg2decay2, 4);
1576
1577 // next 2 bytes unknown
1578
1579 memcpy(&pData[94], &EG2PreAttack, 2);
1580
1581 {
1582 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1583 uint8_t velocityresponse = VelocityResponseDepth;
1584 switch (VelocityResponseCurve) {
1585 case curve_type_nonlinear:
1586 break;
1587 case curve_type_linear:
1588 velocityresponse += 5;
1589 break;
1590 case curve_type_special:
1591 velocityresponse += 10;
1592 break;
1593 case curve_type_unknown:
1594 default:
1595 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1596 }
1597 memcpy(&pData[96], &velocityresponse, 1);
1598 }
1599
1600 {
1601 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1602 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1603 switch (ReleaseVelocityResponseCurve) {
1604 case curve_type_nonlinear:
1605 break;
1606 case curve_type_linear:
1607 releasevelocityresponse += 5;
1608 break;
1609 case curve_type_special:
1610 releasevelocityresponse += 10;
1611 break;
1612 case curve_type_unknown:
1613 default:
1614 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1615 }
1616 memcpy(&pData[97], &releasevelocityresponse, 1);
1617 }
1618
1619 memcpy(&pData[98], &VelocityResponseCurveScaling, 1);
1620
1621 memcpy(&pData[99], &AttenuationControllerThreshold, 1);
1622
1623 // next 4 bytes unknown
1624
1625 memcpy(&pData[104], &SampleStartOffset, 2);
1626
1627 // next 2 bytes unknown
1628
1629 {
1630 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1631 switch (DimensionBypass) {
1632 case dim_bypass_ctrl_94:
1633 pitchTrackDimensionBypass |= 0x10;
1634 break;
1635 case dim_bypass_ctrl_95:
1636 pitchTrackDimensionBypass |= 0x20;
1637 break;
1638 case dim_bypass_ctrl_none:
1639 //FIXME: should we set anything here?
1640 break;
1641 default:
1642 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1643 }
1644 memcpy(&pData[108], &pitchTrackDimensionBypass, 1);
1645 }
1646
1647 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1648 memcpy(&pData[109], &pan, 1);
1649
1650 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1651 memcpy(&pData[110], &selfmask, 1);
1652
1653 // next byte unknown
1654
1655 {
1656 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1657 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1658 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1659 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1660 memcpy(&pData[112], &lfo3ctrl, 1);
1661 }
1662
1663 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1664 memcpy(&pData[113], &attenctl, 1);
1665
1666 {
1667 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1668 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1669 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1670 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1671 memcpy(&pData[114], &lfo2ctrl, 1);
1672 }
1673
1674 {
1675 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1676 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1677 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1678 if (VCFResonanceController != vcf_res_ctrl_none)
1679 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1680 memcpy(&pData[115], &lfo1ctrl, 1);
1681 }
1682
1683 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1684 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1685 memcpy(&pData[116], &eg3depth, 1);
1686
1687 // next 2 bytes unknown
1688
1689 const uint8_t channeloffset = ChannelOffset * 4;
1690 memcpy(&pData[120], &channeloffset, 1);
1691
1692 {
1693 uint8_t regoptions = 0;
1694 if (MSDecode) regoptions |= 0x01; // bit 0
1695 if (SustainDefeat) regoptions |= 0x02; // bit 1
1696 memcpy(&pData[121], &regoptions, 1);
1697 }
1698
1699 // next 2 bytes unknown
1700
1701 memcpy(&pData[124], &VelocityUpperLimit, 1);
1702
1703 // next 3 bytes unknown
1704
1705 memcpy(&pData[128], &ReleaseTriggerDecay, 1);
1706
1707 // next 2 bytes unknown
1708
1709 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1710 memcpy(&pData[131], &eg1hold, 1);
1711
1712 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1713 (VCFCutoff & 0x7f); /* lower 7 bits */
1714 memcpy(&pData[132], &vcfcutoff, 1);
1715
1716 memcpy(&pData[133], &VCFCutoffController, 1);
1717
1718 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1719 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1720 memcpy(&pData[134], &vcfvelscale, 1);
1721
1722 // next byte unknown
1723
1724 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1725 (VCFResonance & 0x7f); /* lower 7 bits */
1726 memcpy(&pData[136], &vcfresonance, 1);
1727
1728 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1729 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1730 memcpy(&pData[137], &vcfbreakpoint, 1);
1731
1732 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1733 VCFVelocityCurve * 5;
1734 memcpy(&pData[138], &vcfvelocity, 1);
1735
1736 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1737 memcpy(&pData[139], &vcftype, 1);
1738
1739 if (chunksize >= 148) {
1740 memcpy(&pData[140], DimensionUpperLimits, 8);
1741 }
1742 }
1743
1744 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1745 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1746 {
1747 double* table;
1748 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1749 if (pVelocityTables->count(tableKey)) { // if key exists
1750 table = (*pVelocityTables)[tableKey];
1751 }
1752 else {
1753 table = CreateVelocityTable(curveType, depth, scaling);
1754 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1755 }
1756 return table;
1757 }
1758
1759 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1760 leverage_ctrl_t decodedcontroller;
1761 switch (EncodedController) {
1762 // special controller
1763 case _lev_ctrl_none:
1764 decodedcontroller.type = leverage_ctrl_t::type_none;
1765 decodedcontroller.controller_number = 0;
1766 break;
1767 case _lev_ctrl_velocity:
1768 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1769 decodedcontroller.controller_number = 0;
1770 break;
1771 case _lev_ctrl_channelaftertouch:
1772 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1773 decodedcontroller.controller_number = 0;
1774 break;
1775
1776 // ordinary MIDI control change controller
1777 case _lev_ctrl_modwheel:
1778 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779 decodedcontroller.controller_number = 1;
1780 break;
1781 case _lev_ctrl_breath:
1782 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783 decodedcontroller.controller_number = 2;
1784 break;
1785 case _lev_ctrl_foot:
1786 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787 decodedcontroller.controller_number = 4;
1788 break;
1789 case _lev_ctrl_effect1:
1790 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791 decodedcontroller.controller_number = 12;
1792 break;
1793 case _lev_ctrl_effect2:
1794 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795 decodedcontroller.controller_number = 13;
1796 break;
1797 case _lev_ctrl_genpurpose1:
1798 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799 decodedcontroller.controller_number = 16;
1800 break;
1801 case _lev_ctrl_genpurpose2:
1802 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803 decodedcontroller.controller_number = 17;
1804 break;
1805 case _lev_ctrl_genpurpose3:
1806 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807 decodedcontroller.controller_number = 18;
1808 break;
1809 case _lev_ctrl_genpurpose4:
1810 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811 decodedcontroller.controller_number = 19;
1812 break;
1813 case _lev_ctrl_portamentotime:
1814 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815 decodedcontroller.controller_number = 5;
1816 break;
1817 case _lev_ctrl_sustainpedal:
1818 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819 decodedcontroller.controller_number = 64;
1820 break;
1821 case _lev_ctrl_portamento:
1822 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823 decodedcontroller.controller_number = 65;
1824 break;
1825 case _lev_ctrl_sostenutopedal:
1826 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827 decodedcontroller.controller_number = 66;
1828 break;
1829 case _lev_ctrl_softpedal:
1830 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831 decodedcontroller.controller_number = 67;
1832 break;
1833 case _lev_ctrl_genpurpose5:
1834 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835 decodedcontroller.controller_number = 80;
1836 break;
1837 case _lev_ctrl_genpurpose6:
1838 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839 decodedcontroller.controller_number = 81;
1840 break;
1841 case _lev_ctrl_genpurpose7:
1842 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843 decodedcontroller.controller_number = 82;
1844 break;
1845 case _lev_ctrl_genpurpose8:
1846 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847 decodedcontroller.controller_number = 83;
1848 break;
1849 case _lev_ctrl_effect1depth:
1850 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851 decodedcontroller.controller_number = 91;
1852 break;
1853 case _lev_ctrl_effect2depth:
1854 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855 decodedcontroller.controller_number = 92;
1856 break;
1857 case _lev_ctrl_effect3depth:
1858 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859 decodedcontroller.controller_number = 93;
1860 break;
1861 case _lev_ctrl_effect4depth:
1862 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863 decodedcontroller.controller_number = 94;
1864 break;
1865 case _lev_ctrl_effect5depth:
1866 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867 decodedcontroller.controller_number = 95;
1868 break;
1869
1870 // unknown controller type
1871 default:
1872 throw gig::Exception("Unknown leverage controller type.");
1873 }
1874 return decodedcontroller;
1875 }
1876
1877 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1878 _lev_ctrl_t encodedcontroller;
1879 switch (DecodedController.type) {
1880 // special controller
1881 case leverage_ctrl_t::type_none:
1882 encodedcontroller = _lev_ctrl_none;
1883 break;
1884 case leverage_ctrl_t::type_velocity:
1885 encodedcontroller = _lev_ctrl_velocity;
1886 break;
1887 case leverage_ctrl_t::type_channelaftertouch:
1888 encodedcontroller = _lev_ctrl_channelaftertouch;
1889 break;
1890
1891 // ordinary MIDI control change controller
1892 case leverage_ctrl_t::type_controlchange:
1893 switch (DecodedController.controller_number) {
1894 case 1:
1895 encodedcontroller = _lev_ctrl_modwheel;
1896 break;
1897 case 2:
1898 encodedcontroller = _lev_ctrl_breath;
1899 break;
1900 case 4:
1901 encodedcontroller = _lev_ctrl_foot;
1902 break;
1903 case 12:
1904 encodedcontroller = _lev_ctrl_effect1;
1905 break;
1906 case 13:
1907 encodedcontroller = _lev_ctrl_effect2;
1908 break;
1909 case 16:
1910 encodedcontroller = _lev_ctrl_genpurpose1;
1911 break;
1912 case 17:
1913 encodedcontroller = _lev_ctrl_genpurpose2;
1914 break;
1915 case 18:
1916 encodedcontroller = _lev_ctrl_genpurpose3;
1917 break;
1918 case 19:
1919 encodedcontroller = _lev_ctrl_genpurpose4;
1920 break;
1921 case 5:
1922 encodedcontroller = _lev_ctrl_portamentotime;
1923 break;
1924 case 64:
1925 encodedcontroller = _lev_ctrl_sustainpedal;
1926 break;
1927 case 65:
1928 encodedcontroller = _lev_ctrl_portamento;
1929 break;
1930 case 66:
1931 encodedcontroller = _lev_ctrl_sostenutopedal;
1932 break;
1933 case 67:
1934 encodedcontroller = _lev_ctrl_softpedal;
1935 break;
1936 case 80:
1937 encodedcontroller = _lev_ctrl_genpurpose5;
1938 break;
1939 case 81:
1940 encodedcontroller = _lev_ctrl_genpurpose6;
1941 break;
1942 case 82:
1943 encodedcontroller = _lev_ctrl_genpurpose7;
1944 break;
1945 case 83:
1946 encodedcontroller = _lev_ctrl_genpurpose8;
1947 break;
1948 case 91:
1949 encodedcontroller = _lev_ctrl_effect1depth;
1950 break;
1951 case 92:
1952 encodedcontroller = _lev_ctrl_effect2depth;
1953 break;
1954 case 93:
1955 encodedcontroller = _lev_ctrl_effect3depth;
1956 break;
1957 case 94:
1958 encodedcontroller = _lev_ctrl_effect4depth;
1959 break;
1960 case 95:
1961 encodedcontroller = _lev_ctrl_effect5depth;
1962 break;
1963 default:
1964 throw gig::Exception("leverage controller number is not supported by the gig format");
1965 }
1966 default:
1967 throw gig::Exception("Unknown leverage controller type.");
1968 }
1969 return encodedcontroller;
1970 }
1971
1972 DimensionRegion::~DimensionRegion() {
1973 Instances--;
1974 if (!Instances) {
1975 // delete the velocity->volume tables
1976 VelocityTableMap::iterator iter;
1977 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1978 double* pTable = iter->second;
1979 if (pTable) delete[] pTable;
1980 }
1981 pVelocityTables->clear();
1982 delete pVelocityTables;
1983 pVelocityTables = NULL;
1984 }
1985 if (VelocityTable) delete[] VelocityTable;
1986 }
1987
1988 /**
1989 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1990 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1991 * and VelocityResponseCurveScaling) involved are taken into account to
1992 * calculate the amplitude factor. Use this method when a key was
1993 * triggered to get the volume with which the sample should be played
1994 * back.
1995 *
1996 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1997 * @returns amplitude factor (between 0.0 and 1.0)
1998 */
1999 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2000 return pVelocityAttenuationTable[MIDIKeyVelocity];
2001 }
2002
2003 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2004 return pVelocityReleaseTable[MIDIKeyVelocity];
2005 }
2006
2007 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2008 return pVelocityCutoffTable[MIDIKeyVelocity];
2009 }
2010
2011 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2012
2013 // line-segment approximations of the 15 velocity curves
2014
2015 // linear
2016 const int lin0[] = { 1, 1, 127, 127 };
2017 const int lin1[] = { 1, 21, 127, 127 };
2018 const int lin2[] = { 1, 45, 127, 127 };
2019 const int lin3[] = { 1, 74, 127, 127 };
2020 const int lin4[] = { 1, 127, 127, 127 };
2021
2022 // non-linear
2023 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2024 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2025 127, 127 };
2026 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2027 127, 127 };
2028 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2029 127, 127 };
2030 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2031
2032 // special
2033 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2034 113, 127, 127, 127 };
2035 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2036 118, 127, 127, 127 };
2037 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2038 85, 90, 91, 127, 127, 127 };
2039 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2040 117, 127, 127, 127 };
2041 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2042 127, 127 };
2043
2044 // this is only used by the VCF velocity curve
2045 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2046 91, 127, 127, 127 };
2047
2048 const int* const curves[] = { non0, non1, non2, non3, non4,
2049 lin0, lin1, lin2, lin3, lin4,
2050 spe0, spe1, spe2, spe3, spe4, spe5 };
2051
2052 double* const table = new double[128];
2053
2054 const int* curve = curves[curveType * 5 + depth];
2055 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2056
2057 table[0] = 0;
2058 for (int x = 1 ; x < 128 ; x++) {
2059
2060 if (x > curve[2]) curve += 2;
2061 double y = curve[1] + (x - curve[0]) *
2062 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2063 y = y / 127;
2064
2065 // Scale up for s > 20, down for s < 20. When
2066 // down-scaling, the curve still ends at 1.0.
2067 if (s < 20 && y >= 0.5)
2068 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2069 else
2070 y = y * (s / 20.0);
2071 if (y > 1) y = 1;
2072
2073 table[x] = y;
2074 }
2075 return table;
2076 }
2077
2078
2079 // *************** Region ***************
2080 // *
2081
2082 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2083 pInfo->UseFixedLengthStrings = true;
2084
2085 // Initialization
2086 Dimensions = 0;
2087 for (int i = 0; i < 256; i++) {
2088 pDimensionRegions[i] = NULL;
2089 }
2090 Layers = 1;
2091 File* file = (File*) GetParent()->GetParent();
2092 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2093
2094 // Actual Loading
2095
2096 LoadDimensionRegions(rgnList);
2097
2098 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2099 if (_3lnk) {
2100 DimensionRegions = _3lnk->ReadUint32();
2101 for (int i = 0; i < dimensionBits; i++) {
2102 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2103 uint8_t bits = _3lnk->ReadUint8();
2104 _3lnk->ReadUint8(); // probably the position of the dimension
2105 _3lnk->ReadUint8(); // unknown
2106 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2107 if (dimension == dimension_none) { // inactive dimension
2108 pDimensionDefinitions[i].dimension = dimension_none;
2109 pDimensionDefinitions[i].bits = 0;
2110 pDimensionDefinitions[i].zones = 0;
2111 pDimensionDefinitions[i].split_type = split_type_bit;
2112 pDimensionDefinitions[i].zone_size = 0;
2113 }
2114 else { // active dimension
2115 pDimensionDefinitions[i].dimension = dimension;
2116 pDimensionDefinitions[i].bits = bits;
2117 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2118 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2119 dimension == dimension_samplechannel ||
2120 dimension == dimension_releasetrigger ||
2121 dimension == dimension_keyboard ||
2122 dimension == dimension_roundrobin ||
2123 dimension == dimension_random ||
2124 dimension == dimension_smartmidi ||
2125 dimension == dimension_roundrobinkeyboard) ? split_type_bit
2126 : split_type_normal;
2127 pDimensionDefinitions[i].zone_size =
2128 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2129 : 0;
2130 Dimensions++;
2131
2132 // if this is a layer dimension, remember the amount of layers
2133 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2134 }
2135 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2136 }
2137 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2138
2139 // if there's a velocity dimension and custom velocity zone splits are used,
2140 // update the VelocityTables in the dimension regions
2141 UpdateVelocityTable();
2142
2143 // jump to start of the wave pool indices (if not already there)
2144 if (file->pVersion && file->pVersion->major == 3)
2145 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2146 else
2147 _3lnk->SetPos(44);
2148
2149 // load sample references
2150 for (uint i = 0; i < DimensionRegions; i++) {
2151 uint32_t wavepoolindex = _3lnk->ReadUint32();
2152 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2153 }
2154 GetSample(); // load global region sample reference
2155 } else {
2156 DimensionRegions = 0;
2157 }
2158
2159 // make sure there is at least one dimension region
2160 if (!DimensionRegions) {
2161 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2162 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2163 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2164 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2165 DimensionRegions = 1;
2166 }
2167 }
2168
2169 /**
2170 * Apply Region settings and all its DimensionRegions to the respective
2171 * RIFF chunks. You have to call File::Save() to make changes persistent.
2172 *
2173 * Usually there is absolutely no need to call this method explicitly.
2174 * It will be called automatically when File::Save() was called.
2175 *
2176 * @throws gig::Exception if samples cannot be dereferenced
2177 */
2178 void Region::UpdateChunks() {
2179 // in the gig format we don't care about the Region's sample reference
2180 // but we still have to provide some existing one to not corrupt the
2181 // file, so to avoid the latter we simply always assign the sample of
2182 // the first dimension region of this region
2183 pSample = pDimensionRegions[0]->pSample;
2184
2185 // first update base class's chunks
2186 DLS::Region::UpdateChunks();
2187
2188 // update dimension region's chunks
2189 for (int i = 0; i < DimensionRegions; i++) {
2190 pDimensionRegions[i]->UpdateChunks();
2191 }
2192
2193 File* pFile = (File*) GetParent()->GetParent();
2194 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2195 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2196
2197 // make sure '3lnk' chunk exists
2198 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2199 if (!_3lnk) {
2200 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2201 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2202 }
2203
2204 // update dimension definitions in '3lnk' chunk
2205 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2206 memcpy(&pData[0], &DimensionRegions, 4);
2207 for (int i = 0; i < iMaxDimensions; i++) {
2208 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2209 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2210 // next 2 bytes unknown
2211 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2212 // next 3 bytes unknown
2213 }
2214
2215 // update wave pool table in '3lnk' chunk
2216 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2217 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2218 int iWaveIndex = -1;
2219 if (i < DimensionRegions) {
2220 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2221 File::SampleList::iterator iter = pFile->pSamples->begin();
2222 File::SampleList::iterator end = pFile->pSamples->end();
2223 for (int index = 0; iter != end; ++iter, ++index) {
2224 if (*iter == pDimensionRegions[i]->pSample) {
2225 iWaveIndex = index;
2226 break;
2227 }
2228 }
2229 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2230 }
2231 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2232 }
2233 }
2234
2235 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2236 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2237 if (_3prg) {
2238 int dimensionRegionNr = 0;
2239 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2240 while (_3ewl) {
2241 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2242 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2243 dimensionRegionNr++;
2244 }
2245 _3ewl = _3prg->GetNextSubList();
2246 }
2247 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2248 }
2249 }
2250
2251 void Region::UpdateVelocityTable() {
2252 // get velocity dimension's index
2253 int veldim = -1;
2254 for (int i = 0 ; i < Dimensions ; i++) {
2255 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2256 veldim = i;
2257 break;
2258 }
2259 }
2260 if (veldim == -1) return;
2261
2262 int step = 1;
2263 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2264 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2265 int end = step * pDimensionDefinitions[veldim].zones;
2266
2267 // loop through all dimension regions for all dimensions except the velocity dimension
2268 int dim[8] = { 0 };
2269 for (int i = 0 ; i < DimensionRegions ; i++) {
2270
2271 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2272 pDimensionRegions[i]->VelocityUpperLimit) {
2273 // create the velocity table
2274 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2275 if (!table) {
2276 table = new uint8_t[128];
2277 pDimensionRegions[i]->VelocityTable = table;
2278 }
2279 int tableidx = 0;
2280 int velocityZone = 0;
2281 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2282 for (int k = i ; k < end ; k += step) {
2283 DimensionRegion *d = pDimensionRegions[k];
2284 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2285 velocityZone++;
2286 }
2287 } else { // gig2
2288 for (int k = i ; k < end ; k += step) {
2289 DimensionRegion *d = pDimensionRegions[k];
2290 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2291 velocityZone++;
2292 }
2293 }
2294 } else {
2295 if (pDimensionRegions[i]->VelocityTable) {
2296 delete[] pDimensionRegions[i]->VelocityTable;
2297 pDimensionRegions[i]->VelocityTable = 0;
2298 }
2299 }
2300
2301 int j;
2302 int shift = 0;
2303 for (j = 0 ; j < Dimensions ; j++) {
2304 if (j == veldim) i += skipveldim; // skip velocity dimension
2305 else {
2306 dim[j]++;
2307 if (dim[j] < pDimensionDefinitions[j].zones) break;
2308 else {
2309 // skip unused dimension regions
2310 dim[j] = 0;
2311 i += ((1 << pDimensionDefinitions[j].bits) -
2312 pDimensionDefinitions[j].zones) << shift;
2313 }
2314 }
2315 shift += pDimensionDefinitions[j].bits;
2316 }
2317 if (j == Dimensions) break;
2318 }
2319 }
2320
2321 /** @brief Einstein would have dreamed of it - create a new dimension.
2322 *
2323 * Creates a new dimension with the dimension definition given by
2324 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2325 * There is a hard limit of dimensions and total amount of "bits" all
2326 * dimensions can have. This limit is dependant to what gig file format
2327 * version this file refers to. The gig v2 (and lower) format has a
2328 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2329 * format has a limit of 8.
2330 *
2331 * @param pDimDef - defintion of the new dimension
2332 * @throws gig::Exception if dimension of the same type exists already
2333 * @throws gig::Exception if amount of dimensions or total amount of
2334 * dimension bits limit is violated
2335 */
2336 void Region::AddDimension(dimension_def_t* pDimDef) {
2337 // check if max. amount of dimensions reached
2338 File* file = (File*) GetParent()->GetParent();
2339 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2340 if (Dimensions >= iMaxDimensions)
2341 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2342 // check if max. amount of dimension bits reached
2343 int iCurrentBits = 0;
2344 for (int i = 0; i < Dimensions; i++)
2345 iCurrentBits += pDimensionDefinitions[i].bits;
2346 if (iCurrentBits >= iMaxDimensions)
2347 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2348 const int iNewBits = iCurrentBits + pDimDef->bits;
2349 if (iNewBits > iMaxDimensions)
2350 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2351 // check if there's already a dimensions of the same type
2352 for (int i = 0; i < Dimensions; i++)
2353 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2354 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2355
2356 // assign definition of new dimension
2357 pDimensionDefinitions[Dimensions] = *pDimDef;
2358
2359 // create new dimension region(s) for this new dimension
2360 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2361 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2362 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2363 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2364 DimensionRegions++;
2365 }
2366
2367 Dimensions++;
2368
2369 // if this is a layer dimension, update 'Layers' attribute
2370 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2371
2372 UpdateVelocityTable();
2373 }
2374
2375 /** @brief Delete an existing dimension.
2376 *
2377 * Deletes the dimension given by \a pDimDef and deletes all respective
2378 * dimension regions, that is all dimension regions where the dimension's
2379 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2380 * for example this would delete all dimension regions for the case(s)
2381 * where the sustain pedal is pressed down.
2382 *
2383 * @param pDimDef - dimension to delete
2384 * @throws gig::Exception if given dimension cannot be found
2385 */
2386 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2387 // get dimension's index
2388 int iDimensionNr = -1;
2389 for (int i = 0; i < Dimensions; i++) {
2390 if (&pDimensionDefinitions[i] == pDimDef) {
2391 iDimensionNr = i;
2392 break;
2393 }
2394 }
2395 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2396
2397 // get amount of bits below the dimension to delete
2398 int iLowerBits = 0;
2399 for (int i = 0; i < iDimensionNr; i++)
2400 iLowerBits += pDimensionDefinitions[i].bits;
2401
2402 // get amount ot bits above the dimension to delete
2403 int iUpperBits = 0;
2404 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2405 iUpperBits += pDimensionDefinitions[i].bits;
2406
2407 // delete dimension regions which belong to the given dimension
2408 // (that is where the dimension's bit > 0)
2409 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2410 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2411 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2412 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2413 iObsoleteBit << iLowerBits |
2414 iLowerBit;
2415 delete pDimensionRegions[iToDelete];
2416 pDimensionRegions[iToDelete] = NULL;
2417 DimensionRegions--;
2418 }
2419 }
2420 }
2421
2422 // defrag pDimensionRegions array
2423 // (that is remove the NULL spaces within the pDimensionRegions array)
2424 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2425 if (!pDimensionRegions[iTo]) {
2426 if (iFrom <= iTo) iFrom = iTo + 1;
2427 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2428 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2429 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2430 pDimensionRegions[iFrom] = NULL;
2431 }
2432 }
2433 }
2434
2435 // 'remove' dimension definition
2436 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2437 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2438 }
2439 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2440 pDimensionDefinitions[Dimensions - 1].bits = 0;
2441 pDimensionDefinitions[Dimensions - 1].zones = 0;
2442
2443 Dimensions--;
2444
2445 // if this was a layer dimension, update 'Layers' attribute
2446 if (pDimDef->dimension == dimension_layer) Layers = 1;
2447 }
2448
2449 Region::~Region() {
2450 for (int i = 0; i < 256; i++) {
2451 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2452 }
2453 }
2454
2455 /**
2456 * Use this method in your audio engine to get the appropriate dimension
2457 * region with it's articulation data for the current situation. Just
2458 * call the method with the current MIDI controller values and you'll get
2459 * the DimensionRegion with the appropriate articulation data for the
2460 * current situation (for this Region of course only). To do that you'll
2461 * first have to look which dimensions with which controllers and in
2462 * which order are defined for this Region when you load the .gig file.
2463 * Special cases are e.g. layer or channel dimensions where you just put
2464 * in the index numbers instead of a MIDI controller value (means 0 for
2465 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2466 * etc.).
2467 *
2468 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2469 * @returns adress to the DimensionRegion for the given situation
2470 * @see pDimensionDefinitions
2471 * @see Dimensions
2472 */
2473 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2474 uint8_t bits;
2475 int veldim = -1;
2476 int velbitpos;
2477 int bitpos = 0;
2478 int dimregidx = 0;
2479 for (uint i = 0; i < Dimensions; i++) {
2480 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2481 // the velocity dimension must be handled after the other dimensions
2482 veldim = i;
2483 velbitpos = bitpos;
2484 } else {
2485 switch (pDimensionDefinitions[i].split_type) {
2486 case split_type_normal:
2487 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2488 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2489 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2490 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2491 }
2492 } else {
2493 // gig2: evenly sized zones
2494 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2495 }
2496 break;
2497 case split_type_bit: // the value is already the sought dimension bit number
2498 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2499 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2500 break;
2501 }
2502 dimregidx |= bits << bitpos;
2503 }
2504 bitpos += pDimensionDefinitions[i].bits;
2505 }
2506 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2507 if (veldim != -1) {
2508 // (dimreg is now the dimension region for the lowest velocity)
2509 if (dimreg->VelocityTable) // custom defined zone ranges
2510 bits = dimreg->VelocityTable[DimValues[veldim]];
2511 else // normal split type
2512 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2513
2514 dimregidx |= bits << velbitpos;
2515 dimreg = pDimensionRegions[dimregidx];
2516 }
2517 return dimreg;
2518 }
2519
2520 /**
2521 * Returns the appropriate DimensionRegion for the given dimension bit
2522 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2523 * instead of calling this method directly!
2524 *
2525 * @param DimBits Bit numbers for dimension 0 to 7
2526 * @returns adress to the DimensionRegion for the given dimension
2527 * bit numbers
2528 * @see GetDimensionRegionByValue()
2529 */
2530 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2531 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2532 << pDimensionDefinitions[5].bits | DimBits[5])
2533 << pDimensionDefinitions[4].bits | DimBits[4])
2534 << pDimensionDefinitions[3].bits | DimBits[3])
2535 << pDimensionDefinitions[2].bits | DimBits[2])
2536 << pDimensionDefinitions[1].bits | DimBits[1])
2537 << pDimensionDefinitions[0].bits | DimBits[0]];
2538 }
2539
2540 /**
2541 * Returns pointer address to the Sample referenced with this region.
2542 * This is the global Sample for the entire Region (not sure if this is
2543 * actually used by the Gigasampler engine - I would only use the Sample
2544 * referenced by the appropriate DimensionRegion instead of this sample).
2545 *
2546 * @returns address to Sample or NULL if there is no reference to a
2547 * sample saved in the .gig file
2548 */
2549 Sample* Region::GetSample() {
2550 if (pSample) return static_cast<gig::Sample*>(pSample);
2551 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2552 }
2553
2554 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2555 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2556 File* file = (File*) GetParent()->GetParent();
2557 if (!file->pWavePoolTable) return NULL;
2558 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2559 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2560 Sample* sample = file->GetFirstSample(pProgress);
2561 while (sample) {
2562 if (sample->ulWavePoolOffset == soughtoffset &&
2563 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2564 sample = file->GetNextSample();
2565 }
2566 return NULL;
2567 }
2568
2569
2570
2571 // *************** Instrument ***************
2572 // *
2573
2574 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2575 pInfo->UseFixedLengthStrings = true;
2576
2577 // Initialization
2578 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2579
2580 // Loading
2581 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2582 if (lart) {
2583 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2584 if (_3ewg) {
2585 EffectSend = _3ewg->ReadUint16();
2586 Attenuation = _3ewg->ReadInt32();
2587 FineTune = _3ewg->ReadInt16();
2588 PitchbendRange = _3ewg->ReadInt16();
2589 uint8_t dimkeystart = _3ewg->ReadUint8();
2590 PianoReleaseMode = dimkeystart & 0x01;
2591 DimensionKeyRange.low = dimkeystart >> 1;
2592 DimensionKeyRange.high = _3ewg->ReadUint8();
2593 }
2594 }
2595
2596 if (!pRegions) pRegions = new RegionList;
2597 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2598 if (lrgn) {
2599 RIFF::List* rgn = lrgn->GetFirstSubList();
2600 while (rgn) {
2601 if (rgn->GetListType() == LIST_TYPE_RGN) {
2602 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2603 pRegions->push_back(new Region(this, rgn));
2604 }
2605 rgn = lrgn->GetNextSubList();
2606 }
2607 // Creating Region Key Table for fast lookup
2608 UpdateRegionKeyTable();
2609 }
2610
2611 __notify_progress(pProgress, 1.0f); // notify done
2612 }
2613
2614 void Instrument::UpdateRegionKeyTable() {
2615 RegionList::iterator iter = pRegions->begin();
2616 RegionList::iterator end = pRegions->end();
2617 for (; iter != end; ++iter) {
2618 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2619 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2620 RegionKeyTable[iKey] = pRegion;
2621 }
2622 }
2623 }
2624
2625 Instrument::~Instrument() {
2626 }
2627
2628 /**
2629 * Apply Instrument with all its Regions to the respective RIFF chunks.
2630 * You have to call File::Save() to make changes persistent.
2631 *
2632 * Usually there is absolutely no need to call this method explicitly.
2633 * It will be called automatically when File::Save() was called.
2634 *
2635 * @throws gig::Exception if samples cannot be dereferenced
2636 */
2637 void Instrument::UpdateChunks() {
2638 // first update base classes' chunks
2639 DLS::Instrument::UpdateChunks();
2640
2641 // update Regions' chunks
2642 {
2643 RegionList::iterator iter = pRegions->begin();
2644 RegionList::iterator end = pRegions->end();
2645 for (; iter != end; ++iter)
2646 (*iter)->UpdateChunks();
2647 }
2648
2649 // make sure 'lart' RIFF list chunk exists
2650 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2651 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2652 // make sure '3ewg' RIFF chunk exists
2653 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2654 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2655 // update '3ewg' RIFF chunk
2656 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2657 memcpy(&pData[0], &EffectSend, 2);
2658 memcpy(&pData[2], &Attenuation, 4);
2659 memcpy(&pData[6], &FineTune, 2);
2660 memcpy(&pData[8], &PitchbendRange, 2);
2661 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2662 DimensionKeyRange.low << 1;
2663 memcpy(&pData[10], &dimkeystart, 1);
2664 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2665 }
2666
2667 /**
2668 * Returns the appropriate Region for a triggered note.
2669 *
2670 * @param Key MIDI Key number of triggered note / key (0 - 127)
2671 * @returns pointer adress to the appropriate Region or NULL if there
2672 * there is no Region defined for the given \a Key
2673 */
2674 Region* Instrument::GetRegion(unsigned int Key) {
2675 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2676 return RegionKeyTable[Key];
2677
2678 /*for (int i = 0; i < Regions; i++) {
2679 if (Key <= pRegions[i]->KeyRange.high &&
2680 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2681 }
2682 return NULL;*/
2683 }
2684
2685 /**
2686 * Returns the first Region of the instrument. You have to call this
2687 * method once before you use GetNextRegion().
2688 *
2689 * @returns pointer address to first region or NULL if there is none
2690 * @see GetNextRegion()
2691 */
2692 Region* Instrument::GetFirstRegion() {
2693 if (!pRegions) return NULL;
2694 RegionsIterator = pRegions->begin();
2695 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2696 }
2697
2698 /**
2699 * Returns the next Region of the instrument. You have to call
2700 * GetFirstRegion() once before you can use this method. By calling this
2701 * method multiple times it iterates through the available Regions.
2702 *
2703 * @returns pointer address to the next region or NULL if end reached
2704 * @see GetFirstRegion()
2705 */
2706 Region* Instrument::GetNextRegion() {
2707 if (!pRegions) return NULL;
2708 RegionsIterator++;
2709 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2710 }
2711
2712 Region* Instrument::AddRegion() {
2713 // create new Region object (and its RIFF chunks)
2714 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2715 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2716 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2717 Region* pNewRegion = new Region(this, rgn);
2718 pRegions->push_back(pNewRegion);
2719 Regions = pRegions->size();
2720 // update Region key table for fast lookup
2721 UpdateRegionKeyTable();
2722 // done
2723 return pNewRegion;
2724 }
2725
2726 void Instrument::DeleteRegion(Region* pRegion) {
2727 if (!pRegions) return;
2728 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2729 // update Region key table for fast lookup
2730 UpdateRegionKeyTable();
2731 }
2732
2733
2734
2735 // *************** Group ***************
2736 // *
2737
2738 /** @brief Constructor.
2739 *
2740 * @param file - pointer to the gig::File object
2741 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2742 * NULL if this is a new Group
2743 */
2744 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2745 pFile = file;
2746 pNameChunk = ck3gnm;
2747 ::LoadString(pNameChunk, Name);
2748 }
2749
2750 Group::~Group() {
2751 // remove the chunk associated with this group (if any)
2752 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2753 }
2754
2755 /** @brief Update chunks with current group settings.
2756 *
2757 * Apply current Group field values to the respective chunks. You have
2758 * to call File::Save() to make changes persistent.
2759 *
2760 * Usually there is absolutely no need to call this method explicitly.
2761 * It will be called automatically when File::Save() was called.
2762 */
2763 void Group::UpdateChunks() {
2764 // make sure <3gri> and <3gnl> list chunks exist
2765 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2766 if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2767 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2768 if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);
2769 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2770 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2771 }
2772
2773 /**
2774 * Returns the first Sample of this Group. You have to call this method
2775 * once before you use GetNextSample().
2776 *
2777 * <b>Notice:</b> this method might block for a long time, in case the
2778 * samples of this .gig file were not scanned yet
2779 *
2780 * @returns pointer address to first Sample or NULL if there is none
2781 * applied to this Group
2782 * @see GetNextSample()
2783 */
2784 Sample* Group::GetFirstSample() {
2785 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2786 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2787 if (pSample->GetGroup() == this) return pSample;
2788 }
2789 return NULL;
2790 }
2791
2792 /**
2793 * Returns the next Sample of the Group. You have to call
2794 * GetFirstSample() once before you can use this method. By calling this
2795 * method multiple times it iterates through the Samples assigned to
2796 * this Group.
2797 *
2798 * @returns pointer address to the next Sample of this Group or NULL if
2799 * end reached
2800 * @see GetFirstSample()
2801 */
2802 Sample* Group::GetNextSample() {
2803 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2804 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2805 if (pSample->GetGroup() == this) return pSample;
2806 }
2807 return NULL;
2808 }
2809
2810 /**
2811 * Move Sample given by \a pSample from another Group to this Group.
2812 */
2813 void Group::AddSample(Sample* pSample) {
2814 pSample->pGroup = this;
2815 }
2816
2817 /**
2818 * Move all members of this group to another group (preferably the 1st
2819 * one except this). This method is called explicitly by
2820 * File::DeleteGroup() thus when a Group was deleted. This code was
2821 * intentionally not placed in the destructor!
2822 */
2823 void Group::MoveAll() {
2824 // get "that" other group first
2825 Group* pOtherGroup = NULL;
2826 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2827 if (pOtherGroup != this) break;
2828 }
2829 if (!pOtherGroup) throw Exception(
2830 "Could not move samples to another group, since there is no "
2831 "other Group. This is a bug, report it!"
2832 );
2833 // now move all samples of this group to the other group
2834 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2835 pOtherGroup->AddSample(pSample);
2836 }
2837 }
2838
2839
2840
2841 // *************** File ***************
2842 // *
2843
2844 File::File() : DLS::File() {
2845 pGroups = NULL;
2846 pInfo->UseFixedLengthStrings = true;
2847 }
2848
2849 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2850 pGroups = NULL;
2851 pInfo->UseFixedLengthStrings = true;
2852 }
2853
2854 File::~File() {
2855 if (pGroups) {
2856 std::list<Group*>::iterator iter = pGroups->begin();
2857 std::list<Group*>::iterator end = pGroups->end();
2858 while (iter != end) {
2859 delete *iter;
2860 ++iter;
2861 }
2862 delete pGroups;
2863 }
2864 }
2865
2866 Sample* File::GetFirstSample(progress_t* pProgress) {
2867 if (!pSamples) LoadSamples(pProgress);
2868 if (!pSamples) return NULL;
2869 SamplesIterator = pSamples->begin();
2870 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2871 }
2872
2873 Sample* File::GetNextSample() {
2874 if (!pSamples) return NULL;
2875 SamplesIterator++;
2876 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2877 }
2878
2879 /** @brief Add a new sample.
2880 *
2881 * This will create a new Sample object for the gig file. You have to
2882 * call Save() to make this persistent to the file.
2883 *
2884 * @returns pointer to new Sample object
2885 */
2886 Sample* File::AddSample() {
2887 if (!pSamples) LoadSamples();
2888 __ensureMandatoryChunksExist();
2889 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2890 // create new Sample object and its respective 'wave' list chunk
2891 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2892 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2893 pSamples->push_back(pSample);
2894 return pSample;
2895 }
2896
2897 /** @brief Delete a sample.
2898 *
2899 * This will delete the given Sample object from the gig file. You have
2900 * to call Save() to make this persistent to the file.
2901 *
2902 * @param pSample - sample to delete
2903 * @throws gig::Exception if given sample could not be found
2904 */
2905 void File::DeleteSample(Sample* pSample) {
2906 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2907 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2908 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2909 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
2910 pSamples->erase(iter);
2911 delete pSample;
2912 }
2913
2914 void File::LoadSamples() {
2915 LoadSamples(NULL);
2916 }
2917
2918 void File::LoadSamples(progress_t* pProgress) {
2919 // Groups must be loaded before samples, because samples will try
2920 // to resolve the group they belong to
2921 LoadGroups();
2922
2923 if (!pSamples) pSamples = new SampleList;
2924
2925 RIFF::File* file = pRIFF;
2926
2927 // just for progress calculation
2928 int iSampleIndex = 0;
2929 int iTotalSamples = WavePoolCount;
2930
2931 // check if samples should be loaded from extension files
2932 int lastFileNo = 0;
2933 for (int i = 0 ; i < WavePoolCount ; i++) {
2934 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2935 }
2936 String name(pRIFF->GetFileName());
2937 int nameLen = name.length();
2938 char suffix[6];
2939 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2940
2941 for (int fileNo = 0 ; ; ) {
2942 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2943 if (wvpl) {
2944 unsigned long wvplFileOffset = wvpl->GetFilePos();
2945 RIFF::List* wave = wvpl->GetFirstSubList();
2946 while (wave) {
2947 if (wave->GetListType() == LIST_TYPE_WAVE) {
2948 // notify current progress
2949 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2950 __notify_progress(pProgress, subprogress);
2951
2952 unsigned long waveFileOffset = wave->GetFilePos();
2953 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2954
2955 iSampleIndex++;
2956 }
2957 wave = wvpl->GetNextSubList();
2958 }
2959
2960 if (fileNo == lastFileNo) break;
2961
2962 // open extension file (*.gx01, *.gx02, ...)
2963 fileNo++;
2964 sprintf(suffix, ".gx%02d", fileNo);
2965 name.replace(nameLen, 5, suffix);
2966 file = new RIFF::File(name);
2967 ExtensionFiles.push_back(file);
2968 } else break;
2969 }
2970
2971 __notify_progress(pProgress, 1.0); // notify done
2972 }
2973
2974 Instrument* File::GetFirstInstrument() {
2975 if (!pInstruments) LoadInstruments();
2976 if (!pInstruments) return NULL;
2977 InstrumentsIterator = pInstruments->begin();
2978 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2979 }
2980
2981 Instrument* File::GetNextInstrument() {
2982 if (!pInstruments) return NULL;
2983 InstrumentsIterator++;
2984 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2985 }
2986
2987 /**
2988 * Returns the instrument with the given index.
2989 *
2990 * @param index - number of the sought instrument (0..n)
2991 * @param pProgress - optional: callback function for progress notification
2992 * @returns sought instrument or NULL if there's no such instrument
2993 */
2994 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2995 if (!pInstruments) {
2996 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2997
2998 // sample loading subtask
2999 progress_t subprogress;
3000 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3001 __notify_progress(&subprogress, 0.0f);
3002 GetFirstSample(&subprogress); // now force all samples to be loaded
3003 __notify_progress(&subprogress, 1.0f);
3004
3005 // instrument loading subtask
3006 if (pProgress && pProgress->callback) {
3007 subprogress.__range_min = subprogress.__range_max;
3008 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3009 }
3010 __notify_progress(&subprogress, 0.0f);
3011 LoadInstruments(&subprogress);
3012 __notify_progress(&subprogress, 1.0f);
3013 }
3014 if (!pInstruments) return NULL;
3015 InstrumentsIterator = pInstruments->begin();
3016 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3017 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3018 InstrumentsIterator++;
3019 }
3020 return NULL;
3021 }
3022
3023 /** @brief Add a new instrument definition.
3024 *
3025 * This will create a new Instrument object for the gig file. You have
3026 * to call Save() to make this persistent to the file.
3027 *
3028 * @returns pointer to new Instrument object
3029 */
3030 Instrument* File::AddInstrument() {
3031 if (!pInstruments) LoadInstruments();
3032 __ensureMandatoryChunksExist();
3033 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3034 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3035 Instrument* pInstrument = new Instrument(this, lstInstr);
3036 pInstruments->push_back(pInstrument);
3037 return pInstrument;
3038 }
3039
3040 /** @brief Delete an instrument.
3041 *
3042 * This will delete the given Instrument object from the gig file. You
3043 * have to call Save() to make this persistent to the file.
3044 *
3045 * @param pInstrument - instrument to delete
3046 * @throws gig::Exception if given instrument could not be found
3047 */
3048 void File::DeleteInstrument(Instrument* pInstrument) {
3049 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3050 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3051 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3052 pInstruments->erase(iter);
3053 delete pInstrument;
3054 }
3055
3056 void File::LoadInstruments() {
3057 LoadInstruments(NULL);
3058 }
3059
3060 void File::LoadInstruments(progress_t* pProgress) {
3061 if (!pInstruments) pInstruments = new InstrumentList;
3062 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3063 if (lstInstruments) {
3064 int iInstrumentIndex = 0;
3065 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3066 while (lstInstr) {
3067 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3068 // notify current progress
3069 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3070 __notify_progress(pProgress, localProgress);
3071
3072 // divide local progress into subprogress for loading current Instrument
3073 progress_t subprogress;
3074 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3075
3076 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3077
3078 iInstrumentIndex++;
3079 }
3080 lstInstr = lstInstruments->GetNextSubList();
3081 }
3082 __notify_progress(pProgress, 1.0); // notify done
3083 }
3084 }
3085
3086 Group* File::GetFirstGroup() {
3087 if (!pGroups) LoadGroups();
3088 // there must always be at least one group
3089 GroupsIterator = pGroups->begin();
3090 return *GroupsIterator;
3091 }
3092
3093 Group* File::GetNextGroup() {
3094 if (!pGroups) return NULL;
3095 ++GroupsIterator;
3096 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3097 }
3098
3099 /**
3100 * Returns the group with the given index.
3101 *
3102 * @param index - number of the sought group (0..n)
3103 * @returns sought group or NULL if there's no such group
3104 */
3105 Group* File::GetGroup(uint index) {
3106 if (!pGroups) LoadGroups();
3107 GroupsIterator = pGroups->begin();
3108 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3109 if (i == index) return *GroupsIterator;
3110 ++GroupsIterator;
3111 }
3112 return NULL;
3113 }
3114
3115 Group* File::AddGroup() {
3116 if (!pGroups) LoadGroups();
3117 // there must always be at least one group
3118 __ensureMandatoryChunksExist();
3119 Group* pGroup = new Group(this, NULL);
3120 pGroups->push_back(pGroup);
3121 return pGroup;
3122 }
3123
3124 /** @brief Delete a group and its samples.
3125 *
3126 * This will delete the given Group object and all the samples that
3127 * belong to this group from the gig file. You have to call Save() to
3128 * make this persistent to the file.
3129 *
3130 * @param pGroup - group to delete
3131 * @throws gig::Exception if given group could not be found
3132 */
3133 void File::DeleteGroup(Group* pGroup) {
3134 if (!pGroups) LoadGroups();
3135 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3136 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3137 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3138 // delete all members of this group
3139 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3140 DeleteSample(pSample);
3141 }
3142 // now delete this group object
3143 pGroups->erase(iter);
3144 delete pGroup;
3145 }
3146
3147 /** @brief Delete a group.
3148 *
3149 * This will delete the given Group object from the gig file. All the
3150 * samples that belong to this group will not be deleted, but instead
3151 * be moved to another group. You have to call Save() to make this
3152 * persistent to the file.
3153 *
3154 * @param pGroup - group to delete
3155 * @throws gig::Exception if given group could not be found
3156 */
3157 void File::DeleteGroupOnly(Group* pGroup) {
3158 if (!pGroups) LoadGroups();
3159 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3160 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3161 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3162 // move all members of this group to another group
3163 pGroup->MoveAll();
3164 pGroups->erase(iter);
3165 delete pGroup;
3166 }
3167
3168 void File::LoadGroups() {
3169 if (!pGroups) pGroups = new std::list<Group*>;
3170 // try to read defined groups from file
3171 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3172 if (lst3gri) {
3173 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3174 if (lst3gnl) {
3175 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3176 while (ck) {
3177 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3178 pGroups->push_back(new Group(this, ck));
3179 }
3180 ck = lst3gnl->GetNextSubChunk();
3181 }
3182 }
3183 }
3184 // if there were no group(s), create at least the mandatory default group
3185 if (!pGroups->size()) {
3186 Group* pGroup = new Group(this, NULL);
3187 pGroup->Name = "Default Group";
3188 pGroups->push_back(pGroup);
3189 }
3190 }
3191
3192 /**
3193 * Apply all the gig file's current instruments, samples, groups and settings
3194 * to the respective RIFF chunks. You have to call Save() to make changes
3195 * persistent.
3196 *
3197 * Usually there is absolutely no need to call this method explicitly.
3198 * It will be called automatically when File::Save() was called.
3199 *
3200 * @throws Exception - on errors
3201 */
3202 void File::UpdateChunks() {
3203 // first update base class's chunks
3204 DLS::File::UpdateChunks();
3205
3206 // update group's chunks
3207 if (pGroups) {
3208 std::list<Group*>::iterator iter = pGroups->begin();
3209 std::list<Group*>::iterator end = pGroups->end();
3210 for (; iter != end; ++iter) {
3211 (*iter)->UpdateChunks();
3212 }
3213 }
3214 }
3215
3216
3217
3218 // *************** Exception ***************
3219 // *
3220
3221 Exception::Exception(String Message) : DLS::Exception(Message) {
3222 }
3223
3224 void Exception::PrintMessage() {
3225 std::cout << "gig::Exception: " << Message << std::endl;
3226 }
3227
3228
3229 // *************** functions ***************
3230 // *
3231
3232 /**
3233 * Returns the name of this C++ library. This is usually "libgig" of
3234 * course. This call is equivalent to RIFF::libraryName() and
3235 * DLS::libraryName().
3236 */
3237 String libraryName() {
3238 return PACKAGE;
3239 }
3240
3241 /**
3242 * Returns version of this C++ library. This call is equivalent to
3243 * RIFF::libraryVersion() and DLS::libraryVersion().
3244 */
3245 String libraryVersion() {
3246 return VERSION;
3247 }
3248
3249 } // namespace gig

  ViewVC Help
Powered by ViewVC