/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1218 - (show annotations) (download)
Fri Jun 1 19:19:28 2007 UTC (11 years, 3 months ago) by persson
File size: 157226 byte(s)
* improved the default values for dimension region parameters

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** CRC ***************
282 // *
283
284 const uint32_t* CRC::table(initTable());
285
286 uint32_t* CRC::initTable() {
287 uint32_t* res = new uint32_t[256];
288
289 for (int i = 0 ; i < 256 ; i++) {
290 uint32_t c = i;
291 for (int j = 0 ; j < 8 ; j++) {
292 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293 }
294 res[i] = c;
295 }
296 return res;
297 }
298
299
300
301 // *************** Sample ***************
302 // *
303
304 unsigned int Sample::Instances = 0;
305 buffer_t Sample::InternalDecompressionBuffer;
306
307 /** @brief Constructor.
308 *
309 * Load an existing sample or create a new one. A 'wave' list chunk must
310 * be given to this constructor. In case the given 'wave' list chunk
311 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312 * format and sample data will be loaded from there, otherwise default
313 * values will be used and those chunks will be created when
314 * File::Save() will be called later on.
315 *
316 * @param pFile - pointer to gig::File where this sample is
317 * located (or will be located)
318 * @param waveList - pointer to 'wave' list chunk which is (or
319 * will be) associated with this sample
320 * @param WavePoolOffset - offset of this sample data from wave pool
321 * ('wvpl') list chunk
322 * @param fileNo - number of an extension file where this sample
323 * is located, 0 otherwise
324 */
325 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327 { CHUNK_ID_INAM, 64 },
328 { 0, 0 }
329 };
330 pInfo->FixedStringLengths = fixedStringLengths;
331 Instances++;
332 FileNo = fileNo;
333
334 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335 if (pCk3gix) {
336 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 pGroup = pFile->GetGroup(iSampleGroup);
338 } else { // '3gix' chunk missing
339 // by default assigned to that mandatory "Default Group"
340 pGroup = pFile->GetGroup(0);
341 }
342
343 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344 if (pCkSmpl) {
345 Manufacturer = pCkSmpl->ReadInt32();
346 Product = pCkSmpl->ReadInt32();
347 SamplePeriod = pCkSmpl->ReadInt32();
348 MIDIUnityNote = pCkSmpl->ReadInt32();
349 FineTune = pCkSmpl->ReadInt32();
350 pCkSmpl->Read(&SMPTEFormat, 1, 4);
351 SMPTEOffset = pCkSmpl->ReadInt32();
352 Loops = pCkSmpl->ReadInt32();
353 pCkSmpl->ReadInt32(); // manufByt
354 LoopID = pCkSmpl->ReadInt32();
355 pCkSmpl->Read(&LoopType, 1, 4);
356 LoopStart = pCkSmpl->ReadInt32();
357 LoopEnd = pCkSmpl->ReadInt32();
358 LoopFraction = pCkSmpl->ReadInt32();
359 LoopPlayCount = pCkSmpl->ReadInt32();
360 } else { // 'smpl' chunk missing
361 // use default values
362 Manufacturer = 0;
363 Product = 0;
364 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 MIDIUnityNote = 60;
366 FineTune = 0;
367 SMPTEFormat = smpte_format_no_offset;
368 SMPTEOffset = 0;
369 Loops = 0;
370 LoopID = 0;
371 LoopType = loop_type_normal;
372 LoopStart = 0;
373 LoopEnd = 0;
374 LoopFraction = 0;
375 LoopPlayCount = 0;
376 }
377
378 FrameTable = NULL;
379 SamplePos = 0;
380 RAMCache.Size = 0;
381 RAMCache.pStart = NULL;
382 RAMCache.NullExtensionSize = 0;
383
384 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385
386 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387 Compressed = ewav;
388 Dithered = false;
389 TruncatedBits = 0;
390 if (Compressed) {
391 uint32_t version = ewav->ReadInt32();
392 if (version == 3 && BitDepth == 24) {
393 Dithered = ewav->ReadInt32();
394 ewav->SetPos(Channels == 2 ? 84 : 64);
395 TruncatedBits = ewav->ReadInt32();
396 }
397 ScanCompressedSample();
398 }
399
400 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 }
405 FrameOffset = 0; // just for streaming compressed samples
406
407 LoopSize = LoopEnd - LoopStart + 1;
408 }
409
410 /**
411 * Apply sample and its settings to the respective RIFF chunks. You have
412 * to call File::Save() to make changes persistent.
413 *
414 * Usually there is absolutely no need to call this method explicitly.
415 * It will be called automatically when File::Save() was called.
416 *
417 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 * was provided yet
419 * @throws gig::Exception if there is any invalid sample setting
420 */
421 void Sample::UpdateChunks() {
422 // first update base class's chunks
423 DLS::Sample::UpdateChunks();
424
425 // make sure 'smpl' chunk exists
426 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 if (!pCkSmpl) {
428 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429 memset(pCkSmpl->LoadChunkData(), 0, 60);
430 }
431 // update 'smpl' chunk
432 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 store32(&pData[0], Manufacturer);
435 store32(&pData[4], Product);
436 store32(&pData[8], SamplePeriod);
437 store32(&pData[12], MIDIUnityNote);
438 store32(&pData[16], FineTune);
439 store32(&pData[20], SMPTEFormat);
440 store32(&pData[24], SMPTEOffset);
441 store32(&pData[28], Loops);
442
443 // we skip 'manufByt' for now (4 bytes)
444
445 store32(&pData[36], LoopID);
446 store32(&pData[40], LoopType);
447 store32(&pData[44], LoopStart);
448 store32(&pData[48], LoopEnd);
449 store32(&pData[52], LoopFraction);
450 store32(&pData[56], LoopPlayCount);
451
452 // make sure '3gix' chunk exists
453 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 // determine appropriate sample group index (to be stored in chunk)
456 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 File* pFile = static_cast<File*>(pParent);
458 if (pFile->pGroups) {
459 std::list<Group*>::iterator iter = pFile->pGroups->begin();
460 std::list<Group*>::iterator end = pFile->pGroups->end();
461 for (int i = 0; iter != end; i++, iter++) {
462 if (*iter == pGroup) {
463 iSampleGroup = i;
464 break; // found
465 }
466 }
467 }
468 // update '3gix' chunk
469 pData = (uint8_t*) pCk3gix->LoadChunkData();
470 store16(&pData[0], iSampleGroup);
471 }
472
473 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474 void Sample::ScanCompressedSample() {
475 //TODO: we have to add some more scans here (e.g. determine compression rate)
476 this->SamplesTotal = 0;
477 std::list<unsigned long> frameOffsets;
478
479 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481
482 // Scanning
483 pCkData->SetPos(0);
484 if (Channels == 2) { // Stereo
485 for (int i = 0 ; ; i++) {
486 // for 24 bit samples every 8:th frame offset is
487 // stored, to save some memory
488 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489
490 const int mode_l = pCkData->ReadUint8();
491 const int mode_r = pCkData->ReadUint8();
492 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494
495 if (pCkData->RemainingBytes() <= frameSize) {
496 SamplesInLastFrame =
497 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499 SamplesTotal += SamplesInLastFrame;
500 break;
501 }
502 SamplesTotal += SamplesPerFrame;
503 pCkData->SetPos(frameSize, RIFF::stream_curpos);
504 }
505 }
506 else { // Mono
507 for (int i = 0 ; ; i++) {
508 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509
510 const int mode = pCkData->ReadUint8();
511 if (mode > 5) throw gig::Exception("Unknown compression mode");
512 const unsigned long frameSize = bytesPerFrame[mode];
513
514 if (pCkData->RemainingBytes() <= frameSize) {
515 SamplesInLastFrame =
516 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517 SamplesTotal += SamplesInLastFrame;
518 break;
519 }
520 SamplesTotal += SamplesPerFrame;
521 pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 }
523 }
524 pCkData->SetPos(0);
525
526 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527 if (FrameTable) delete[] FrameTable;
528 FrameTable = new unsigned long[frameOffsets.size()];
529 std::list<unsigned long>::iterator end = frameOffsets.end();
530 std::list<unsigned long>::iterator iter = frameOffsets.begin();
531 for (int i = 0; iter != end; i++, iter++) {
532 FrameTable[i] = *iter;
533 }
534 }
535
536 /**
537 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538 * ReleaseSampleData() to free the memory if you don't need the cached
539 * sample data anymore.
540 *
541 * @returns buffer_t structure with start address and size of the buffer
542 * in bytes
543 * @see ReleaseSampleData(), Read(), SetPos()
544 */
545 buffer_t Sample::LoadSampleData() {
546 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547 }
548
549 /**
550 * Reads (uncompresses if needed) and caches the first \a SampleCount
551 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552 * memory space if you don't need the cached samples anymore. There is no
553 * guarantee that exactly \a SampleCount samples will be cached; this is
554 * not an error. The size will be eventually truncated e.g. to the
555 * beginning of a frame of a compressed sample. This is done for
556 * efficiency reasons while streaming the wave by your sampler engine
557 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558 * that will be returned to determine the actual cached samples, but note
559 * that the size is given in bytes! You get the number of actually cached
560 * samples by dividing it by the frame size of the sample:
561 * @code
562 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563 * long cachedsamples = buf.Size / pSample->FrameSize;
564 * @endcode
565 *
566 * @param SampleCount - number of sample points to load into RAM
567 * @returns buffer_t structure with start address and size of
568 * the cached sample data in bytes
569 * @see ReleaseSampleData(), Read(), SetPos()
570 */
571 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573 }
574
575 /**
576 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577 * ReleaseSampleData() to free the memory if you don't need the cached
578 * sample data anymore.
579 * The method will add \a NullSamplesCount silence samples past the
580 * official buffer end (this won't affect the 'Size' member of the
581 * buffer_t structure, that means 'Size' always reflects the size of the
582 * actual sample data, the buffer might be bigger though). Silence
583 * samples past the official buffer are needed for differential
584 * algorithms that always have to take subsequent samples into account
585 * (resampling/interpolation would be an important example) and avoids
586 * memory access faults in such cases.
587 *
588 * @param NullSamplesCount - number of silence samples the buffer should
589 * be extended past it's data end
590 * @returns buffer_t structure with start address and
591 * size of the buffer in bytes
592 * @see ReleaseSampleData(), Read(), SetPos()
593 */
594 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596 }
597
598 /**
599 * Reads (uncompresses if needed) and caches the first \a SampleCount
600 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601 * memory space if you don't need the cached samples anymore. There is no
602 * guarantee that exactly \a SampleCount samples will be cached; this is
603 * not an error. The size will be eventually truncated e.g. to the
604 * beginning of a frame of a compressed sample. This is done for
605 * efficiency reasons while streaming the wave by your sampler engine
606 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607 * that will be returned to determine the actual cached samples, but note
608 * that the size is given in bytes! You get the number of actually cached
609 * samples by dividing it by the frame size of the sample:
610 * @code
611 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612 * long cachedsamples = buf.Size / pSample->FrameSize;
613 * @endcode
614 * The method will add \a NullSamplesCount silence samples past the
615 * official buffer end (this won't affect the 'Size' member of the
616 * buffer_t structure, that means 'Size' always reflects the size of the
617 * actual sample data, the buffer might be bigger though). Silence
618 * samples past the official buffer are needed for differential
619 * algorithms that always have to take subsequent samples into account
620 * (resampling/interpolation would be an important example) and avoids
621 * memory access faults in such cases.
622 *
623 * @param SampleCount - number of sample points to load into RAM
624 * @param NullSamplesCount - number of silence samples the buffer should
625 * be extended past it's data end
626 * @returns buffer_t structure with start address and
627 * size of the cached sample data in bytes
628 * @see ReleaseSampleData(), Read(), SetPos()
629 */
630 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634 RAMCache.pStart = new int8_t[allocationsize];
635 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637 // fill the remaining buffer space with silence samples
638 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639 return GetCache();
640 }
641
642 /**
643 * Returns current cached sample points. A buffer_t structure will be
644 * returned which contains address pointer to the begin of the cache and
645 * the size of the cached sample data in bytes. Use
646 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647 * RAM.
648 *
649 * @returns buffer_t structure with current cached sample points
650 * @see LoadSampleData();
651 */
652 buffer_t Sample::GetCache() {
653 // return a copy of the buffer_t structure
654 buffer_t result;
655 result.Size = this->RAMCache.Size;
656 result.pStart = this->RAMCache.pStart;
657 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658 return result;
659 }
660
661 /**
662 * Frees the cached sample from RAM if loaded with
663 * <i>LoadSampleData()</i> previously.
664 *
665 * @see LoadSampleData();
666 */
667 void Sample::ReleaseSampleData() {
668 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669 RAMCache.pStart = NULL;
670 RAMCache.Size = 0;
671 }
672
673 /** @brief Resize sample.
674 *
675 * Resizes the sample's wave form data, that is the actual size of
676 * sample wave data possible to be written for this sample. This call
677 * will return immediately and just schedule the resize operation. You
678 * should call File::Save() to actually perform the resize operation(s)
679 * "physically" to the file. As this can take a while on large files, it
680 * is recommended to call Resize() first on all samples which have to be
681 * resized and finally to call File::Save() to perform all those resize
682 * operations in one rush.
683 *
684 * The actual size (in bytes) is dependant to the current FrameSize
685 * value. You may want to set FrameSize before calling Resize().
686 *
687 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688 * enlarged samples before calling File::Save() as this might exceed the
689 * current sample's boundary!
690 *
691 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 * other formats will fail!
694 *
695 * @param iNewSize - new sample wave data size in sample points (must be
696 * greater than zero)
697 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 * or if \a iNewSize is less than 1
699 * @throws gig::Exception if existing sample is compressed
700 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701 * DLS::Sample::FormatTag, File::Save()
702 */
703 void Sample::Resize(int iNewSize) {
704 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705 DLS::Sample::Resize(iNewSize);
706 }
707
708 /**
709 * Sets the position within the sample (in sample points, not in
710 * bytes). Use this method and <i>Read()</i> if you don't want to load
711 * the sample into RAM, thus for disk streaming.
712 *
713 * Although the original Gigasampler engine doesn't allow positioning
714 * within compressed samples, I decided to implement it. Even though
715 * the Gigasampler format doesn't allow to define loops for compressed
716 * samples at the moment, positioning within compressed samples might be
717 * interesting for some sampler engines though. The only drawback about
718 * my decision is that it takes longer to load compressed gig Files on
719 * startup, because it's neccessary to scan the samples for some
720 * mandatory informations. But I think as it doesn't affect the runtime
721 * efficiency, nobody will have a problem with that.
722 *
723 * @param SampleCount number of sample points to jump
724 * @param Whence optional: to which relation \a SampleCount refers
725 * to, if omited <i>RIFF::stream_start</i> is assumed
726 * @returns the new sample position
727 * @see Read()
728 */
729 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730 if (Compressed) {
731 switch (Whence) {
732 case RIFF::stream_curpos:
733 this->SamplePos += SampleCount;
734 break;
735 case RIFF::stream_end:
736 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737 break;
738 case RIFF::stream_backward:
739 this->SamplePos -= SampleCount;
740 break;
741 case RIFF::stream_start: default:
742 this->SamplePos = SampleCount;
743 break;
744 }
745 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746
747 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750 return this->SamplePos;
751 }
752 else { // not compressed
753 unsigned long orderedBytes = SampleCount * this->FrameSize;
754 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755 return (result == orderedBytes) ? SampleCount
756 : result / this->FrameSize;
757 }
758 }
759
760 /**
761 * Returns the current position in the sample (in sample points).
762 */
763 unsigned long Sample::GetPos() {
764 if (Compressed) return SamplePos;
765 else return pCkData->GetPos() / FrameSize;
766 }
767
768 /**
769 * Reads \a SampleCount number of sample points from the position stored
770 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771 * the position within the sample respectively, this method honors the
772 * looping informations of the sample (if any). The sample wave stream
773 * will be decompressed on the fly if using a compressed sample. Use this
774 * method if you don't want to load the sample into RAM, thus for disk
775 * streaming. All this methods needs to know to proceed with streaming
776 * for the next time you call this method is stored in \a pPlaybackState.
777 * You have to allocate and initialize the playback_state_t structure by
778 * yourself before you use it to stream a sample:
779 * @code
780 * gig::playback_state_t playbackstate;
781 * playbackstate.position = 0;
782 * playbackstate.reverse = false;
783 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784 * @endcode
785 * You don't have to take care of things like if there is actually a loop
786 * defined or if the current read position is located within a loop area.
787 * The method already handles such cases by itself.
788 *
789 * <b>Caution:</b> If you are using more than one streaming thread, you
790 * have to use an external decompression buffer for <b>EACH</b>
791 * streaming thread to avoid race conditions and crashes!
792 *
793 * @param pBuffer destination buffer
794 * @param SampleCount number of sample points to read
795 * @param pPlaybackState will be used to store and reload the playback
796 * state for the next ReadAndLoop() call
797 * @param pDimRgn dimension region with looping information
798 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 * @returns number of successfully read sample points
800 * @see CreateDecompressionBuffer()
801 */
802 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805 uint8_t* pDst = (uint8_t*) pBuffer;
806
807 SetPos(pPlaybackState->position); // recover position from the last time
808
809 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810
811 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813
814 if (GetPos() <= loopEnd) {
815 switch (loop.LoopType) {
816
817 case loop_type_bidirectional: { //TODO: not tested yet!
818 do {
819 // if not endless loop check if max. number of loop cycles have been passed
820 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821
822 if (!pPlaybackState->reverse) { // forward playback
823 do {
824 samplestoloopend = loopEnd - GetPos();
825 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826 samplestoread -= readsamples;
827 totalreadsamples += readsamples;
828 if (readsamples == samplestoloopend) {
829 pPlaybackState->reverse = true;
830 break;
831 }
832 } while (samplestoread && readsamples);
833 }
834 else { // backward playback
835
836 // as we can only read forward from disk, we have to
837 // determine the end position within the loop first,
838 // read forward from that 'end' and finally after
839 // reading, swap all sample frames so it reflects
840 // backward playback
841
842 unsigned long swapareastart = totalreadsamples;
843 unsigned long loopoffset = GetPos() - loop.LoopStart;
844 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846
847 SetPos(reverseplaybackend);
848
849 // read samples for backward playback
850 do {
851 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852 samplestoreadinloop -= readsamples;
853 samplestoread -= readsamples;
854 totalreadsamples += readsamples;
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 if (reverseplaybackend == loop.LoopStart) {
860 pPlaybackState->loop_cycles_left--;
861 pPlaybackState->reverse = false;
862 }
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 }
867 } while (samplestoread && readsamples);
868 break;
869 }
870
871 case loop_type_backward: { // TODO: not tested yet!
872 // forward playback (not entered the loop yet)
873 if (!pPlaybackState->reverse) do {
874 samplestoloopend = loopEnd - GetPos();
875 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876 samplestoread -= readsamples;
877 totalreadsamples += readsamples;
878 if (readsamples == samplestoloopend) {
879 pPlaybackState->reverse = true;
880 break;
881 }
882 } while (samplestoread && readsamples);
883
884 if (!samplestoread) break;
885
886 // as we can only read forward from disk, we have to
887 // determine the end position within the loop first,
888 // read forward from that 'end' and finally after
889 // reading, swap all sample frames so it reflects
890 // backward playback
891
892 unsigned long swapareastart = totalreadsamples;
893 unsigned long loopoffset = GetPos() - loop.LoopStart;
894 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895 : samplestoread;
896 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897
898 SetPos(reverseplaybackend);
899
900 // read samples for backward playback
901 do {
902 // if not endless loop check if max. number of loop cycles have been passed
903 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904 samplestoloopend = loopEnd - GetPos();
905 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906 samplestoreadinloop -= readsamples;
907 samplestoread -= readsamples;
908 totalreadsamples += readsamples;
909 if (readsamples == samplestoloopend) {
910 pPlaybackState->loop_cycles_left--;
911 SetPos(loop.LoopStart);
912 }
913 } while (samplestoreadinloop && readsamples);
914
915 SetPos(reverseplaybackend); // pretend we really read backwards
916
917 // reverse the sample frames for backward playback
918 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919 break;
920 }
921
922 default: case loop_type_normal: {
923 do {
924 // if not endless loop check if max. number of loop cycles have been passed
925 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926 samplestoloopend = loopEnd - GetPos();
927 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928 samplestoread -= readsamples;
929 totalreadsamples += readsamples;
930 if (readsamples == samplestoloopend) {
931 pPlaybackState->loop_cycles_left--;
932 SetPos(loop.LoopStart);
933 }
934 } while (samplestoread && readsamples);
935 break;
936 }
937 }
938 }
939 }
940
941 // read on without looping
942 if (samplestoread) do {
943 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 samplestoread -= readsamples;
945 totalreadsamples += readsamples;
946 } while (readsamples && samplestoread);
947
948 // store current position
949 pPlaybackState->position = GetPos();
950
951 return totalreadsamples;
952 }
953
954 /**
955 * Reads \a SampleCount number of sample points from the current
956 * position into the buffer pointed by \a pBuffer and increments the
957 * position within the sample. The sample wave stream will be
958 * decompressed on the fly if using a compressed sample. Use this method
959 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960 * thus for disk streaming.
961 *
962 * <b>Caution:</b> If you are using more than one streaming thread, you
963 * have to use an external decompression buffer for <b>EACH</b>
964 * streaming thread to avoid race conditions and crashes!
965 *
966 * For 16 bit samples, the data in the buffer will be int16_t
967 * (using native endianness). For 24 bit, the buffer will
968 * contain three bytes per sample, little-endian.
969 *
970 * @param pBuffer destination buffer
971 * @param SampleCount number of sample points to read
972 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 * @returns number of successfully read sample points
974 * @see SetPos(), CreateDecompressionBuffer()
975 */
976 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 if (SampleCount == 0) return 0;
978 if (!Compressed) {
979 if (BitDepth == 24) {
980 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 }
982 else { // 16 bit
983 // (pCkData->Read does endian correction)
984 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985 : pCkData->Read(pBuffer, SampleCount, 2);
986 }
987 }
988 else {
989 if (this->SamplePos >= this->SamplesTotal) return 0;
990 //TODO: efficiency: maybe we should test for an average compression rate
991 unsigned long assumedsize = GuessSize(SampleCount),
992 remainingbytes = 0, // remaining bytes in the local buffer
993 remainingsamples = SampleCount,
994 copysamples, skipsamples,
995 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 this->FrameOffset = 0;
997
998 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999
1000 // if decompression buffer too small, then reduce amount of samples to read
1001 if (pDecompressionBuffer->Size < assumedsize) {
1002 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004 remainingsamples = SampleCount;
1005 assumedsize = GuessSize(SampleCount);
1006 }
1007
1008 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012
1013 while (remainingsamples && remainingbytes) {
1014 unsigned long framesamples = SamplesPerFrame;
1015 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016
1017 int mode_l = *pSrc++, mode_r = 0;
1018
1019 if (Channels == 2) {
1020 mode_r = *pSrc++;
1021 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024 if (remainingbytes < framebytes) { // last frame in sample
1025 framesamples = SamplesInLastFrame;
1026 if (mode_l == 4 && (framesamples & 1)) {
1027 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028 }
1029 else {
1030 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031 }
1032 }
1033 }
1034 else {
1035 framebytes = bytesPerFrame[mode_l] + 1;
1036 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037 if (remainingbytes < framebytes) {
1038 framesamples = SamplesInLastFrame;
1039 }
1040 }
1041
1042 // determine how many samples in this frame to skip and read
1043 if (currentframeoffset + remainingsamples >= framesamples) {
1044 if (currentframeoffset <= framesamples) {
1045 copysamples = framesamples - currentframeoffset;
1046 skipsamples = currentframeoffset;
1047 }
1048 else {
1049 copysamples = 0;
1050 skipsamples = framesamples;
1051 }
1052 }
1053 else {
1054 // This frame has enough data for pBuffer, but not
1055 // all of the frame is needed. Set file position
1056 // to start of this frame for next call to Read.
1057 copysamples = remainingsamples;
1058 skipsamples = currentframeoffset;
1059 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060 this->FrameOffset = currentframeoffset + copysamples;
1061 }
1062 remainingsamples -= copysamples;
1063
1064 if (remainingbytes > framebytes) {
1065 remainingbytes -= framebytes;
1066 if (remainingsamples == 0 &&
1067 currentframeoffset + copysamples == framesamples) {
1068 // This frame has enough data for pBuffer, and
1069 // all of the frame is needed. Set file
1070 // position to start of next frame for next
1071 // call to Read. FrameOffset is 0.
1072 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073 }
1074 }
1075 else remainingbytes = 0;
1076
1077 currentframeoffset -= skipsamples;
1078
1079 if (copysamples == 0) {
1080 // skip this frame
1081 pSrc += framebytes - Channels;
1082 }
1083 else {
1084 const unsigned char* const param_l = pSrc;
1085 if (BitDepth == 24) {
1086 if (mode_l != 2) pSrc += 12;
1087
1088 if (Channels == 2) { // Stereo
1089 const unsigned char* const param_r = pSrc;
1090 if (mode_r != 2) pSrc += 12;
1091
1092 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 skipsamples, copysamples, TruncatedBits);
1094 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 skipsamples, copysamples, TruncatedBits);
1096 pDst24 += copysamples * 6;
1097 }
1098 else { // Mono
1099 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 skipsamples, copysamples, TruncatedBits);
1101 pDst24 += copysamples * 3;
1102 }
1103 }
1104 else { // 16 bit
1105 if (mode_l) pSrc += 4;
1106
1107 int step;
1108 if (Channels == 2) { // Stereo
1109 const unsigned char* const param_r = pSrc;
1110 if (mode_r) pSrc += 4;
1111
1112 step = (2 - mode_l) + (2 - mode_r);
1113 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 skipsamples, copysamples);
1116 pDst += copysamples << 1;
1117 }
1118 else { // Mono
1119 step = 2 - mode_l;
1120 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 pDst += copysamples;
1122 }
1123 }
1124 pSrc += nextFrameOffset;
1125 }
1126
1127 // reload from disk to local buffer if needed
1128 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129 assumedsize = GuessSize(remainingsamples);
1130 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 }
1135 } // while
1136
1137 this->SamplePos += (SampleCount - remainingsamples);
1138 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 return (SampleCount - remainingsamples);
1140 }
1141 }
1142
1143 /** @brief Write sample wave data.
1144 *
1145 * Writes \a SampleCount number of sample points from the buffer pointed
1146 * by \a pBuffer and increments the position within the sample. Use this
1147 * method to directly write the sample data to disk, i.e. if you don't
1148 * want or cannot load the whole sample data into RAM.
1149 *
1150 * You have to Resize() the sample to the desired size and call
1151 * File::Save() <b>before</b> using Write().
1152 *
1153 * Note: there is currently no support for writing compressed samples.
1154 *
1155 * @param pBuffer - source buffer
1156 * @param SampleCount - number of sample points to write
1157 * @throws DLS::Exception if current sample size is too small
1158 * @throws gig::Exception if sample is compressed
1159 * @see DLS::LoadSampleData()
1160 */
1161 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1162 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1163
1164 // if this is the first write in this sample, reset the
1165 // checksum calculator
1166 if (pCkData->GetPos() == 0) {
1167 crc.reset();
1168 }
1169 unsigned long res = DLS::Sample::Write(pBuffer, SampleCount);
1170 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1171
1172 // if this is the last write, update the checksum chunk in the
1173 // file
1174 if (pCkData->GetPos() == pCkData->GetSize()) {
1175 File* pFile = static_cast<File*>(GetParent());
1176 pFile->SetSampleChecksum(this, crc.getValue());
1177 }
1178 return res;
1179 }
1180
1181 /**
1182 * Allocates a decompression buffer for streaming (compressed) samples
1183 * with Sample::Read(). If you are using more than one streaming thread
1184 * in your application you <b>HAVE</b> to create a decompression buffer
1185 * for <b>EACH</b> of your streaming threads and provide it with the
1186 * Sample::Read() call in order to avoid race conditions and crashes.
1187 *
1188 * You should free the memory occupied by the allocated buffer(s) once
1189 * you don't need one of your streaming threads anymore by calling
1190 * DestroyDecompressionBuffer().
1191 *
1192 * @param MaxReadSize - the maximum size (in sample points) you ever
1193 * expect to read with one Read() call
1194 * @returns allocated decompression buffer
1195 * @see DestroyDecompressionBuffer()
1196 */
1197 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1198 buffer_t result;
1199 const double worstCaseHeaderOverhead =
1200 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1201 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1202 result.pStart = new int8_t[result.Size];
1203 result.NullExtensionSize = 0;
1204 return result;
1205 }
1206
1207 /**
1208 * Free decompression buffer, previously created with
1209 * CreateDecompressionBuffer().
1210 *
1211 * @param DecompressionBuffer - previously allocated decompression
1212 * buffer to free
1213 */
1214 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1215 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1216 delete[] (int8_t*) DecompressionBuffer.pStart;
1217 DecompressionBuffer.pStart = NULL;
1218 DecompressionBuffer.Size = 0;
1219 DecompressionBuffer.NullExtensionSize = 0;
1220 }
1221 }
1222
1223 /**
1224 * Returns pointer to the Group this Sample belongs to. In the .gig
1225 * format a sample always belongs to one group. If it wasn't explicitly
1226 * assigned to a certain group, it will be automatically assigned to a
1227 * default group.
1228 *
1229 * @returns Sample's Group (never NULL)
1230 */
1231 Group* Sample::GetGroup() const {
1232 return pGroup;
1233 }
1234
1235 Sample::~Sample() {
1236 Instances--;
1237 if (!Instances && InternalDecompressionBuffer.Size) {
1238 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1239 InternalDecompressionBuffer.pStart = NULL;
1240 InternalDecompressionBuffer.Size = 0;
1241 }
1242 if (FrameTable) delete[] FrameTable;
1243 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1244 }
1245
1246
1247
1248 // *************** DimensionRegion ***************
1249 // *
1250
1251 uint DimensionRegion::Instances = 0;
1252 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1253
1254 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1255 Instances++;
1256
1257 pSample = NULL;
1258
1259 memcpy(&Crossfade, &SamplerOptions, 4);
1260 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1261
1262 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1263 if (_3ewa) { // if '3ewa' chunk exists
1264 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1265 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1266 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1267 _3ewa->ReadInt16(); // unknown
1268 LFO1InternalDepth = _3ewa->ReadUint16();
1269 _3ewa->ReadInt16(); // unknown
1270 LFO3InternalDepth = _3ewa->ReadInt16();
1271 _3ewa->ReadInt16(); // unknown
1272 LFO1ControlDepth = _3ewa->ReadUint16();
1273 _3ewa->ReadInt16(); // unknown
1274 LFO3ControlDepth = _3ewa->ReadInt16();
1275 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1276 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1277 _3ewa->ReadInt16(); // unknown
1278 EG1Sustain = _3ewa->ReadUint16();
1279 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1281 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1282 EG1ControllerInvert = eg1ctrloptions & 0x01;
1283 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1284 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1285 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1286 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1287 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1288 EG2ControllerInvert = eg2ctrloptions & 0x01;
1289 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1290 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1291 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1292 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1293 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1295 _3ewa->ReadInt16(); // unknown
1296 EG2Sustain = _3ewa->ReadUint16();
1297 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1298 _3ewa->ReadInt16(); // unknown
1299 LFO2ControlDepth = _3ewa->ReadUint16();
1300 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1301 _3ewa->ReadInt16(); // unknown
1302 LFO2InternalDepth = _3ewa->ReadUint16();
1303 int32_t eg1decay2 = _3ewa->ReadInt32();
1304 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1305 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1306 _3ewa->ReadInt16(); // unknown
1307 EG1PreAttack = _3ewa->ReadUint16();
1308 int32_t eg2decay2 = _3ewa->ReadInt32();
1309 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1310 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1311 _3ewa->ReadInt16(); // unknown
1312 EG2PreAttack = _3ewa->ReadUint16();
1313 uint8_t velocityresponse = _3ewa->ReadUint8();
1314 if (velocityresponse < 5) {
1315 VelocityResponseCurve = curve_type_nonlinear;
1316 VelocityResponseDepth = velocityresponse;
1317 } else if (velocityresponse < 10) {
1318 VelocityResponseCurve = curve_type_linear;
1319 VelocityResponseDepth = velocityresponse - 5;
1320 } else if (velocityresponse < 15) {
1321 VelocityResponseCurve = curve_type_special;
1322 VelocityResponseDepth = velocityresponse - 10;
1323 } else {
1324 VelocityResponseCurve = curve_type_unknown;
1325 VelocityResponseDepth = 0;
1326 }
1327 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1328 if (releasevelocityresponse < 5) {
1329 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1330 ReleaseVelocityResponseDepth = releasevelocityresponse;
1331 } else if (releasevelocityresponse < 10) {
1332 ReleaseVelocityResponseCurve = curve_type_linear;
1333 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1334 } else if (releasevelocityresponse < 15) {
1335 ReleaseVelocityResponseCurve = curve_type_special;
1336 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1337 } else {
1338 ReleaseVelocityResponseCurve = curve_type_unknown;
1339 ReleaseVelocityResponseDepth = 0;
1340 }
1341 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1342 AttenuationControllerThreshold = _3ewa->ReadInt8();
1343 _3ewa->ReadInt32(); // unknown
1344 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1345 _3ewa->ReadInt16(); // unknown
1346 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1347 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1348 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1349 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1350 else DimensionBypass = dim_bypass_ctrl_none;
1351 uint8_t pan = _3ewa->ReadUint8();
1352 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1353 SelfMask = _3ewa->ReadInt8() & 0x01;
1354 _3ewa->ReadInt8(); // unknown
1355 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1356 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1357 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1358 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1359 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1360 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1361 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1362 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1363 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1364 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1365 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1366 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1367 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1368 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1369 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1370 : vcf_res_ctrl_none;
1371 uint16_t eg3depth = _3ewa->ReadUint16();
1372 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1373 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1374 _3ewa->ReadInt16(); // unknown
1375 ChannelOffset = _3ewa->ReadUint8() / 4;
1376 uint8_t regoptions = _3ewa->ReadUint8();
1377 MSDecode = regoptions & 0x01; // bit 0
1378 SustainDefeat = regoptions & 0x02; // bit 1
1379 _3ewa->ReadInt16(); // unknown
1380 VelocityUpperLimit = _3ewa->ReadInt8();
1381 _3ewa->ReadInt8(); // unknown
1382 _3ewa->ReadInt16(); // unknown
1383 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1384 _3ewa->ReadInt8(); // unknown
1385 _3ewa->ReadInt8(); // unknown
1386 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1387 uint8_t vcfcutoff = _3ewa->ReadUint8();
1388 VCFEnabled = vcfcutoff & 0x80; // bit 7
1389 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1390 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1391 uint8_t vcfvelscale = _3ewa->ReadUint8();
1392 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1393 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1394 _3ewa->ReadInt8(); // unknown
1395 uint8_t vcfresonance = _3ewa->ReadUint8();
1396 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1397 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1398 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1399 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1400 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1401 uint8_t vcfvelocity = _3ewa->ReadUint8();
1402 VCFVelocityDynamicRange = vcfvelocity % 5;
1403 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1404 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1405 if (VCFType == vcf_type_lowpass) {
1406 if (lfo3ctrl & 0x40) // bit 6
1407 VCFType = vcf_type_lowpassturbo;
1408 }
1409 if (_3ewa->RemainingBytes() >= 8) {
1410 _3ewa->Read(DimensionUpperLimits, 1, 8);
1411 } else {
1412 memset(DimensionUpperLimits, 0, 8);
1413 }
1414 } else { // '3ewa' chunk does not exist yet
1415 // use default values
1416 LFO3Frequency = 1.0;
1417 EG3Attack = 0.0;
1418 LFO1InternalDepth = 0;
1419 LFO3InternalDepth = 0;
1420 LFO1ControlDepth = 0;
1421 LFO3ControlDepth = 0;
1422 EG1Attack = 0.0;
1423 EG1Decay1 = 0.005;
1424 EG1Sustain = 1000;
1425 EG1Release = 0.3;
1426 EG1Controller.type = eg1_ctrl_t::type_none;
1427 EG1Controller.controller_number = 0;
1428 EG1ControllerInvert = false;
1429 EG1ControllerAttackInfluence = 0;
1430 EG1ControllerDecayInfluence = 0;
1431 EG1ControllerReleaseInfluence = 0;
1432 EG2Controller.type = eg2_ctrl_t::type_none;
1433 EG2Controller.controller_number = 0;
1434 EG2ControllerInvert = false;
1435 EG2ControllerAttackInfluence = 0;
1436 EG2ControllerDecayInfluence = 0;
1437 EG2ControllerReleaseInfluence = 0;
1438 LFO1Frequency = 1.0;
1439 EG2Attack = 0.0;
1440 EG2Decay1 = 0.005;
1441 EG2Sustain = 1000;
1442 EG2Release = 0.3;
1443 LFO2ControlDepth = 0;
1444 LFO2Frequency = 1.0;
1445 LFO2InternalDepth = 0;
1446 EG1Decay2 = 0.0;
1447 EG1InfiniteSustain = true;
1448 EG1PreAttack = 0;
1449 EG2Decay2 = 0.0;
1450 EG2InfiniteSustain = true;
1451 EG2PreAttack = 0;
1452 VelocityResponseCurve = curve_type_nonlinear;
1453 VelocityResponseDepth = 3;
1454 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1455 ReleaseVelocityResponseDepth = 3;
1456 VelocityResponseCurveScaling = 32;
1457 AttenuationControllerThreshold = 0;
1458 SampleStartOffset = 0;
1459 PitchTrack = true;
1460 DimensionBypass = dim_bypass_ctrl_none;
1461 Pan = 0;
1462 SelfMask = true;
1463 LFO3Controller = lfo3_ctrl_modwheel;
1464 LFO3Sync = false;
1465 InvertAttenuationController = false;
1466 AttenuationController.type = attenuation_ctrl_t::type_none;
1467 AttenuationController.controller_number = 0;
1468 LFO2Controller = lfo2_ctrl_internal;
1469 LFO2FlipPhase = false;
1470 LFO2Sync = false;
1471 LFO1Controller = lfo1_ctrl_internal;
1472 LFO1FlipPhase = false;
1473 LFO1Sync = false;
1474 VCFResonanceController = vcf_res_ctrl_none;
1475 EG3Depth = 0;
1476 ChannelOffset = 0;
1477 MSDecode = false;
1478 SustainDefeat = false;
1479 VelocityUpperLimit = 0;
1480 ReleaseTriggerDecay = 0;
1481 EG1Hold = false;
1482 VCFEnabled = false;
1483 VCFCutoff = 0;
1484 VCFCutoffController = vcf_cutoff_ctrl_none;
1485 VCFCutoffControllerInvert = false;
1486 VCFVelocityScale = 0;
1487 VCFResonance = 0;
1488 VCFResonanceDynamic = false;
1489 VCFKeyboardTracking = false;
1490 VCFKeyboardTrackingBreakpoint = 0;
1491 VCFVelocityDynamicRange = 0x04;
1492 VCFVelocityCurve = curve_type_linear;
1493 VCFType = vcf_type_lowpass;
1494 memset(DimensionUpperLimits, 0, 8);
1495 }
1496
1497 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1498 VelocityResponseDepth,
1499 VelocityResponseCurveScaling);
1500
1501 curve_type_t curveType = ReleaseVelocityResponseCurve;
1502 uint8_t depth = ReleaseVelocityResponseDepth;
1503
1504 // this models a strange behaviour or bug in GSt: two of the
1505 // velocity response curves for release time are not used even
1506 // if specified, instead another curve is chosen.
1507 if ((curveType == curve_type_nonlinear && depth == 0) ||
1508 (curveType == curve_type_special && depth == 4)) {
1509 curveType = curve_type_nonlinear;
1510 depth = 3;
1511 }
1512 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1513
1514 curveType = VCFVelocityCurve;
1515 depth = VCFVelocityDynamicRange;
1516
1517 // even stranger GSt: two of the velocity response curves for
1518 // filter cutoff are not used, instead another special curve
1519 // is chosen. This curve is not used anywhere else.
1520 if ((curveType == curve_type_nonlinear && depth == 0) ||
1521 (curveType == curve_type_special && depth == 4)) {
1522 curveType = curve_type_special;
1523 depth = 5;
1524 }
1525 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1526 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1527
1528 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1529 VelocityTable = 0;
1530 }
1531
1532 /**
1533 * Apply dimension region settings to the respective RIFF chunks. You
1534 * have to call File::Save() to make changes persistent.
1535 *
1536 * Usually there is absolutely no need to call this method explicitly.
1537 * It will be called automatically when File::Save() was called.
1538 */
1539 void DimensionRegion::UpdateChunks() {
1540 // first update base class's chunk
1541 DLS::Sampler::UpdateChunks();
1542
1543 // make sure '3ewa' chunk exists
1544 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1545 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1546 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1547
1548 // update '3ewa' chunk with DimensionRegion's current settings
1549
1550 const uint32_t chunksize = _3ewa->GetNewSize();
1551 store32(&pData[0], chunksize); // unknown, always chunk size?
1552
1553 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1554 store32(&pData[4], lfo3freq);
1555
1556 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1557 store32(&pData[8], eg3attack);
1558
1559 // next 2 bytes unknown
1560
1561 store16(&pData[14], LFO1InternalDepth);
1562
1563 // next 2 bytes unknown
1564
1565 store16(&pData[18], LFO3InternalDepth);
1566
1567 // next 2 bytes unknown
1568
1569 store16(&pData[22], LFO1ControlDepth);
1570
1571 // next 2 bytes unknown
1572
1573 store16(&pData[26], LFO3ControlDepth);
1574
1575 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1576 store32(&pData[28], eg1attack);
1577
1578 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1579 store32(&pData[32], eg1decay1);
1580
1581 // next 2 bytes unknown
1582
1583 store16(&pData[38], EG1Sustain);
1584
1585 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1586 store32(&pData[40], eg1release);
1587
1588 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1589 pData[44] = eg1ctl;
1590
1591 const uint8_t eg1ctrloptions =
1592 (EG1ControllerInvert) ? 0x01 : 0x00 |
1593 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1594 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1595 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1596 pData[45] = eg1ctrloptions;
1597
1598 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1599 pData[46] = eg2ctl;
1600
1601 const uint8_t eg2ctrloptions =
1602 (EG2ControllerInvert) ? 0x01 : 0x00 |
1603 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1604 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1605 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1606 pData[47] = eg2ctrloptions;
1607
1608 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1609 store32(&pData[48], lfo1freq);
1610
1611 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1612 store32(&pData[52], eg2attack);
1613
1614 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1615 store32(&pData[56], eg2decay1);
1616
1617 // next 2 bytes unknown
1618
1619 store16(&pData[62], EG2Sustain);
1620
1621 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1622 store32(&pData[64], eg2release);
1623
1624 // next 2 bytes unknown
1625
1626 store16(&pData[70], LFO2ControlDepth);
1627
1628 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1629 store32(&pData[72], lfo2freq);
1630
1631 // next 2 bytes unknown
1632
1633 store16(&pData[78], LFO2InternalDepth);
1634
1635 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1636 store32(&pData[80], eg1decay2);
1637
1638 // next 2 bytes unknown
1639
1640 store16(&pData[86], EG1PreAttack);
1641
1642 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1643 store32(&pData[88], eg2decay2);
1644
1645 // next 2 bytes unknown
1646
1647 store16(&pData[94], EG2PreAttack);
1648
1649 {
1650 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1651 uint8_t velocityresponse = VelocityResponseDepth;
1652 switch (VelocityResponseCurve) {
1653 case curve_type_nonlinear:
1654 break;
1655 case curve_type_linear:
1656 velocityresponse += 5;
1657 break;
1658 case curve_type_special:
1659 velocityresponse += 10;
1660 break;
1661 case curve_type_unknown:
1662 default:
1663 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1664 }
1665 pData[96] = velocityresponse;
1666 }
1667
1668 {
1669 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1670 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1671 switch (ReleaseVelocityResponseCurve) {
1672 case curve_type_nonlinear:
1673 break;
1674 case curve_type_linear:
1675 releasevelocityresponse += 5;
1676 break;
1677 case curve_type_special:
1678 releasevelocityresponse += 10;
1679 break;
1680 case curve_type_unknown:
1681 default:
1682 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1683 }
1684 pData[97] = releasevelocityresponse;
1685 }
1686
1687 pData[98] = VelocityResponseCurveScaling;
1688
1689 pData[99] = AttenuationControllerThreshold;
1690
1691 // next 4 bytes unknown
1692
1693 store16(&pData[104], SampleStartOffset);
1694
1695 // next 2 bytes unknown
1696
1697 {
1698 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1699 switch (DimensionBypass) {
1700 case dim_bypass_ctrl_94:
1701 pitchTrackDimensionBypass |= 0x10;
1702 break;
1703 case dim_bypass_ctrl_95:
1704 pitchTrackDimensionBypass |= 0x20;
1705 break;
1706 case dim_bypass_ctrl_none:
1707 //FIXME: should we set anything here?
1708 break;
1709 default:
1710 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1711 }
1712 pData[108] = pitchTrackDimensionBypass;
1713 }
1714
1715 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1716 pData[109] = pan;
1717
1718 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1719 pData[110] = selfmask;
1720
1721 // next byte unknown
1722
1723 {
1724 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1725 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1726 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1727 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1728 pData[112] = lfo3ctrl;
1729 }
1730
1731 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1732 pData[113] = attenctl;
1733
1734 {
1735 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1736 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1737 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1738 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1739 pData[114] = lfo2ctrl;
1740 }
1741
1742 {
1743 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1744 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1745 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1746 if (VCFResonanceController != vcf_res_ctrl_none)
1747 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1748 pData[115] = lfo1ctrl;
1749 }
1750
1751 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1752 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1753 pData[116] = eg3depth;
1754
1755 // next 2 bytes unknown
1756
1757 const uint8_t channeloffset = ChannelOffset * 4;
1758 pData[120] = channeloffset;
1759
1760 {
1761 uint8_t regoptions = 0;
1762 if (MSDecode) regoptions |= 0x01; // bit 0
1763 if (SustainDefeat) regoptions |= 0x02; // bit 1
1764 pData[121] = regoptions;
1765 }
1766
1767 // next 2 bytes unknown
1768
1769 pData[124] = VelocityUpperLimit;
1770
1771 // next 3 bytes unknown
1772
1773 pData[128] = ReleaseTriggerDecay;
1774
1775 // next 2 bytes unknown
1776
1777 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1778 pData[131] = eg1hold;
1779
1780 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1781 (VCFCutoff & 0x7f); /* lower 7 bits */
1782 pData[132] = vcfcutoff;
1783
1784 pData[133] = VCFCutoffController;
1785
1786 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1787 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1788 pData[134] = vcfvelscale;
1789
1790 // next byte unknown
1791
1792 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1793 (VCFResonance & 0x7f); /* lower 7 bits */
1794 pData[136] = vcfresonance;
1795
1796 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1797 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1798 pData[137] = vcfbreakpoint;
1799
1800 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1801 VCFVelocityCurve * 5;
1802 pData[138] = vcfvelocity;
1803
1804 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1805 pData[139] = vcftype;
1806
1807 if (chunksize >= 148) {
1808 memcpy(&pData[140], DimensionUpperLimits, 8);
1809 }
1810 }
1811
1812 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1813 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1814 {
1815 double* table;
1816 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1817 if (pVelocityTables->count(tableKey)) { // if key exists
1818 table = (*pVelocityTables)[tableKey];
1819 }
1820 else {
1821 table = CreateVelocityTable(curveType, depth, scaling);
1822 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1823 }
1824 return table;
1825 }
1826
1827 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1828 leverage_ctrl_t decodedcontroller;
1829 switch (EncodedController) {
1830 // special controller
1831 case _lev_ctrl_none:
1832 decodedcontroller.type = leverage_ctrl_t::type_none;
1833 decodedcontroller.controller_number = 0;
1834 break;
1835 case _lev_ctrl_velocity:
1836 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1837 decodedcontroller.controller_number = 0;
1838 break;
1839 case _lev_ctrl_channelaftertouch:
1840 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1841 decodedcontroller.controller_number = 0;
1842 break;
1843
1844 // ordinary MIDI control change controller
1845 case _lev_ctrl_modwheel:
1846 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847 decodedcontroller.controller_number = 1;
1848 break;
1849 case _lev_ctrl_breath:
1850 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851 decodedcontroller.controller_number = 2;
1852 break;
1853 case _lev_ctrl_foot:
1854 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1855 decodedcontroller.controller_number = 4;
1856 break;
1857 case _lev_ctrl_effect1:
1858 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1859 decodedcontroller.controller_number = 12;
1860 break;
1861 case _lev_ctrl_effect2:
1862 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1863 decodedcontroller.controller_number = 13;
1864 break;
1865 case _lev_ctrl_genpurpose1:
1866 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1867 decodedcontroller.controller_number = 16;
1868 break;
1869 case _lev_ctrl_genpurpose2:
1870 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1871 decodedcontroller.controller_number = 17;
1872 break;
1873 case _lev_ctrl_genpurpose3:
1874 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1875 decodedcontroller.controller_number = 18;
1876 break;
1877 case _lev_ctrl_genpurpose4:
1878 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1879 decodedcontroller.controller_number = 19;
1880 break;
1881 case _lev_ctrl_portamentotime:
1882 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1883 decodedcontroller.controller_number = 5;
1884 break;
1885 case _lev_ctrl_sustainpedal:
1886 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1887 decodedcontroller.controller_number = 64;
1888 break;
1889 case _lev_ctrl_portamento:
1890 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1891 decodedcontroller.controller_number = 65;
1892 break;
1893 case _lev_ctrl_sostenutopedal:
1894 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1895 decodedcontroller.controller_number = 66;
1896 break;
1897 case _lev_ctrl_softpedal:
1898 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1899 decodedcontroller.controller_number = 67;
1900 break;
1901 case _lev_ctrl_genpurpose5:
1902 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1903 decodedcontroller.controller_number = 80;
1904 break;
1905 case _lev_ctrl_genpurpose6:
1906 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1907 decodedcontroller.controller_number = 81;
1908 break;
1909 case _lev_ctrl_genpurpose7:
1910 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1911 decodedcontroller.controller_number = 82;
1912 break;
1913 case _lev_ctrl_genpurpose8:
1914 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1915 decodedcontroller.controller_number = 83;
1916 break;
1917 case _lev_ctrl_effect1depth:
1918 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1919 decodedcontroller.controller_number = 91;
1920 break;
1921 case _lev_ctrl_effect2depth:
1922 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1923 decodedcontroller.controller_number = 92;
1924 break;
1925 case _lev_ctrl_effect3depth:
1926 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1927 decodedcontroller.controller_number = 93;
1928 break;
1929 case _lev_ctrl_effect4depth:
1930 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1931 decodedcontroller.controller_number = 94;
1932 break;
1933 case _lev_ctrl_effect5depth:
1934 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1935 decodedcontroller.controller_number = 95;
1936 break;
1937
1938 // unknown controller type
1939 default:
1940 throw gig::Exception("Unknown leverage controller type.");
1941 }
1942 return decodedcontroller;
1943 }
1944
1945 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1946 _lev_ctrl_t encodedcontroller;
1947 switch (DecodedController.type) {
1948 // special controller
1949 case leverage_ctrl_t::type_none:
1950 encodedcontroller = _lev_ctrl_none;
1951 break;
1952 case leverage_ctrl_t::type_velocity:
1953 encodedcontroller = _lev_ctrl_velocity;
1954 break;
1955 case leverage_ctrl_t::type_channelaftertouch:
1956 encodedcontroller = _lev_ctrl_channelaftertouch;
1957 break;
1958
1959 // ordinary MIDI control change controller
1960 case leverage_ctrl_t::type_controlchange:
1961 switch (DecodedController.controller_number) {
1962 case 1:
1963 encodedcontroller = _lev_ctrl_modwheel;
1964 break;
1965 case 2:
1966 encodedcontroller = _lev_ctrl_breath;
1967 break;
1968 case 4:
1969 encodedcontroller = _lev_ctrl_foot;
1970 break;
1971 case 12:
1972 encodedcontroller = _lev_ctrl_effect1;
1973 break;
1974 case 13:
1975 encodedcontroller = _lev_ctrl_effect2;
1976 break;
1977 case 16:
1978 encodedcontroller = _lev_ctrl_genpurpose1;
1979 break;
1980 case 17:
1981 encodedcontroller = _lev_ctrl_genpurpose2;
1982 break;
1983 case 18:
1984 encodedcontroller = _lev_ctrl_genpurpose3;
1985 break;
1986 case 19:
1987 encodedcontroller = _lev_ctrl_genpurpose4;
1988 break;
1989 case 5:
1990 encodedcontroller = _lev_ctrl_portamentotime;
1991 break;
1992 case 64:
1993 encodedcontroller = _lev_ctrl_sustainpedal;
1994 break;
1995 case 65:
1996 encodedcontroller = _lev_ctrl_portamento;
1997 break;
1998 case 66:
1999 encodedcontroller = _lev_ctrl_sostenutopedal;
2000 break;
2001 case 67:
2002 encodedcontroller = _lev_ctrl_softpedal;
2003 break;
2004 case 80:
2005 encodedcontroller = _lev_ctrl_genpurpose5;
2006 break;
2007 case 81:
2008 encodedcontroller = _lev_ctrl_genpurpose6;
2009 break;
2010 case 82:
2011 encodedcontroller = _lev_ctrl_genpurpose7;
2012 break;
2013 case 83:
2014 encodedcontroller = _lev_ctrl_genpurpose8;
2015 break;
2016 case 91:
2017 encodedcontroller = _lev_ctrl_effect1depth;
2018 break;
2019 case 92:
2020 encodedcontroller = _lev_ctrl_effect2depth;
2021 break;
2022 case 93:
2023 encodedcontroller = _lev_ctrl_effect3depth;
2024 break;
2025 case 94:
2026 encodedcontroller = _lev_ctrl_effect4depth;
2027 break;
2028 case 95:
2029 encodedcontroller = _lev_ctrl_effect5depth;
2030 break;
2031 default:
2032 throw gig::Exception("leverage controller number is not supported by the gig format");
2033 }
2034 break;
2035 default:
2036 throw gig::Exception("Unknown leverage controller type.");
2037 }
2038 return encodedcontroller;
2039 }
2040
2041 DimensionRegion::~DimensionRegion() {
2042 Instances--;
2043 if (!Instances) {
2044 // delete the velocity->volume tables
2045 VelocityTableMap::iterator iter;
2046 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2047 double* pTable = iter->second;
2048 if (pTable) delete[] pTable;
2049 }
2050 pVelocityTables->clear();
2051 delete pVelocityTables;
2052 pVelocityTables = NULL;
2053 }
2054 if (VelocityTable) delete[] VelocityTable;
2055 }
2056
2057 /**
2058 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2059 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2060 * and VelocityResponseCurveScaling) involved are taken into account to
2061 * calculate the amplitude factor. Use this method when a key was
2062 * triggered to get the volume with which the sample should be played
2063 * back.
2064 *
2065 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2066 * @returns amplitude factor (between 0.0 and 1.0)
2067 */
2068 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2069 return pVelocityAttenuationTable[MIDIKeyVelocity];
2070 }
2071
2072 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2073 return pVelocityReleaseTable[MIDIKeyVelocity];
2074 }
2075
2076 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2077 return pVelocityCutoffTable[MIDIKeyVelocity];
2078 }
2079
2080 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2081
2082 // line-segment approximations of the 15 velocity curves
2083
2084 // linear
2085 const int lin0[] = { 1, 1, 127, 127 };
2086 const int lin1[] = { 1, 21, 127, 127 };
2087 const int lin2[] = { 1, 45, 127, 127 };
2088 const int lin3[] = { 1, 74, 127, 127 };
2089 const int lin4[] = { 1, 127, 127, 127 };
2090
2091 // non-linear
2092 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2093 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2094 127, 127 };
2095 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2096 127, 127 };
2097 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2098 127, 127 };
2099 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2100
2101 // special
2102 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2103 113, 127, 127, 127 };
2104 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2105 118, 127, 127, 127 };
2106 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2107 85, 90, 91, 127, 127, 127 };
2108 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2109 117, 127, 127, 127 };
2110 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2111 127, 127 };
2112
2113 // this is only used by the VCF velocity curve
2114 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2115 91, 127, 127, 127 };
2116
2117 const int* const curves[] = { non0, non1, non2, non3, non4,
2118 lin0, lin1, lin2, lin3, lin4,
2119 spe0, spe1, spe2, spe3, spe4, spe5 };
2120
2121 double* const table = new double[128];
2122
2123 const int* curve = curves[curveType * 5 + depth];
2124 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2125
2126 table[0] = 0;
2127 for (int x = 1 ; x < 128 ; x++) {
2128
2129 if (x > curve[2]) curve += 2;
2130 double y = curve[1] + (x - curve[0]) *
2131 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2132 y = y / 127;
2133
2134 // Scale up for s > 20, down for s < 20. When
2135 // down-scaling, the curve still ends at 1.0.
2136 if (s < 20 && y >= 0.5)
2137 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2138 else
2139 y = y * (s / 20.0);
2140 if (y > 1) y = 1;
2141
2142 table[x] = y;
2143 }
2144 return table;
2145 }
2146
2147
2148 // *************** Region ***************
2149 // *
2150
2151 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2152 // Initialization
2153 Dimensions = 0;
2154 for (int i = 0; i < 256; i++) {
2155 pDimensionRegions[i] = NULL;
2156 }
2157 Layers = 1;
2158 File* file = (File*) GetParent()->GetParent();
2159 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2160
2161 // Actual Loading
2162
2163 LoadDimensionRegions(rgnList);
2164
2165 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2166 if (_3lnk) {
2167 DimensionRegions = _3lnk->ReadUint32();
2168 for (int i = 0; i < dimensionBits; i++) {
2169 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2170 uint8_t bits = _3lnk->ReadUint8();
2171 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2172 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2173 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2174 if (dimension == dimension_none) { // inactive dimension
2175 pDimensionDefinitions[i].dimension = dimension_none;
2176 pDimensionDefinitions[i].bits = 0;
2177 pDimensionDefinitions[i].zones = 0;
2178 pDimensionDefinitions[i].split_type = split_type_bit;
2179 pDimensionDefinitions[i].zone_size = 0;
2180 }
2181 else { // active dimension
2182 pDimensionDefinitions[i].dimension = dimension;
2183 pDimensionDefinitions[i].bits = bits;
2184 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2185 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2186 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2187 Dimensions++;
2188
2189 // if this is a layer dimension, remember the amount of layers
2190 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2191 }
2192 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2193 }
2194 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2195
2196 // if there's a velocity dimension and custom velocity zone splits are used,
2197 // update the VelocityTables in the dimension regions
2198 UpdateVelocityTable();
2199
2200 // jump to start of the wave pool indices (if not already there)
2201 if (file->pVersion && file->pVersion->major == 3)
2202 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2203 else
2204 _3lnk->SetPos(44);
2205
2206 // load sample references
2207 for (uint i = 0; i < DimensionRegions; i++) {
2208 uint32_t wavepoolindex = _3lnk->ReadUint32();
2209 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2210 }
2211 GetSample(); // load global region sample reference
2212 } else {
2213 DimensionRegions = 0;
2214 for (int i = 0 ; i < 8 ; i++) {
2215 pDimensionDefinitions[i].dimension = dimension_none;
2216 pDimensionDefinitions[i].bits = 0;
2217 pDimensionDefinitions[i].zones = 0;
2218 }
2219 }
2220
2221 // make sure there is at least one dimension region
2222 if (!DimensionRegions) {
2223 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2224 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2225 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2226 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2227 DimensionRegions = 1;
2228 }
2229 }
2230
2231 /**
2232 * Apply Region settings and all its DimensionRegions to the respective
2233 * RIFF chunks. You have to call File::Save() to make changes persistent.
2234 *
2235 * Usually there is absolutely no need to call this method explicitly.
2236 * It will be called automatically when File::Save() was called.
2237 *
2238 * @throws gig::Exception if samples cannot be dereferenced
2239 */
2240 void Region::UpdateChunks() {
2241 // in the gig format we don't care about the Region's sample reference
2242 // but we still have to provide some existing one to not corrupt the
2243 // file, so to avoid the latter we simply always assign the sample of
2244 // the first dimension region of this region
2245 pSample = pDimensionRegions[0]->pSample;
2246
2247 // first update base class's chunks
2248 DLS::Region::UpdateChunks();
2249
2250 // update dimension region's chunks
2251 for (int i = 0; i < DimensionRegions; i++) {
2252 pDimensionRegions[i]->UpdateChunks();
2253 }
2254
2255 File* pFile = (File*) GetParent()->GetParent();
2256 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2257 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2258
2259 // make sure '3lnk' chunk exists
2260 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2261 if (!_3lnk) {
2262 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2263 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2264 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2265
2266 // move 3prg to last position
2267 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2268 }
2269
2270 // update dimension definitions in '3lnk' chunk
2271 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2272 store32(&pData[0], DimensionRegions);
2273 int shift = 0;
2274 for (int i = 0; i < iMaxDimensions; i++) {
2275 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2276 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2277 pData[6 + i * 8] = shift;
2278 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2279 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2280 // next 3 bytes unknown, always zero?
2281
2282 shift += pDimensionDefinitions[i].bits;
2283 }
2284
2285 // update wave pool table in '3lnk' chunk
2286 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2287 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2288 int iWaveIndex = -1;
2289 if (i < DimensionRegions) {
2290 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2291 File::SampleList::iterator iter = pFile->pSamples->begin();
2292 File::SampleList::iterator end = pFile->pSamples->end();
2293 for (int index = 0; iter != end; ++iter, ++index) {
2294 if (*iter == pDimensionRegions[i]->pSample) {
2295 iWaveIndex = index;
2296 break;
2297 }
2298 }
2299 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2300 }
2301 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2302 }
2303 }
2304
2305 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2306 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2307 if (_3prg) {
2308 int dimensionRegionNr = 0;
2309 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2310 while (_3ewl) {
2311 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2312 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2313 dimensionRegionNr++;
2314 }
2315 _3ewl = _3prg->GetNextSubList();
2316 }
2317 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2318 }
2319 }
2320
2321 void Region::UpdateVelocityTable() {
2322 // get velocity dimension's index
2323 int veldim = -1;
2324 for (int i = 0 ; i < Dimensions ; i++) {
2325 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2326 veldim = i;
2327 break;
2328 }
2329 }
2330 if (veldim == -1) return;
2331
2332 int step = 1;
2333 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2334 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2335 int end = step * pDimensionDefinitions[veldim].zones;
2336
2337 // loop through all dimension regions for all dimensions except the velocity dimension
2338 int dim[8] = { 0 };
2339 for (int i = 0 ; i < DimensionRegions ; i++) {
2340
2341 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2342 pDimensionRegions[i]->VelocityUpperLimit) {
2343 // create the velocity table
2344 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2345 if (!table) {
2346 table = new uint8_t[128];
2347 pDimensionRegions[i]->VelocityTable = table;
2348 }
2349 int tableidx = 0;
2350 int velocityZone = 0;
2351 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2352 for (int k = i ; k < end ; k += step) {
2353 DimensionRegion *d = pDimensionRegions[k];
2354 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2355 velocityZone++;
2356 }
2357 } else { // gig2
2358 for (int k = i ; k < end ; k += step) {
2359 DimensionRegion *d = pDimensionRegions[k];
2360 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2361 velocityZone++;
2362 }
2363 }
2364 } else {
2365 if (pDimensionRegions[i]->VelocityTable) {
2366 delete[] pDimensionRegions[i]->VelocityTable;
2367 pDimensionRegions[i]->VelocityTable = 0;
2368 }
2369 }
2370
2371 int j;
2372 int shift = 0;
2373 for (j = 0 ; j < Dimensions ; j++) {
2374 if (j == veldim) i += skipveldim; // skip velocity dimension
2375 else {
2376 dim[j]++;
2377 if (dim[j] < pDimensionDefinitions[j].zones) break;
2378 else {
2379 // skip unused dimension regions
2380 dim[j] = 0;
2381 i += ((1 << pDimensionDefinitions[j].bits) -
2382 pDimensionDefinitions[j].zones) << shift;
2383 }
2384 }
2385 shift += pDimensionDefinitions[j].bits;
2386 }
2387 if (j == Dimensions) break;
2388 }
2389 }
2390
2391 /** @brief Einstein would have dreamed of it - create a new dimension.
2392 *
2393 * Creates a new dimension with the dimension definition given by
2394 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2395 * There is a hard limit of dimensions and total amount of "bits" all
2396 * dimensions can have. This limit is dependant to what gig file format
2397 * version this file refers to. The gig v2 (and lower) format has a
2398 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2399 * format has a limit of 8.
2400 *
2401 * @param pDimDef - defintion of the new dimension
2402 * @throws gig::Exception if dimension of the same type exists already
2403 * @throws gig::Exception if amount of dimensions or total amount of
2404 * dimension bits limit is violated
2405 */
2406 void Region::AddDimension(dimension_def_t* pDimDef) {
2407 // check if max. amount of dimensions reached
2408 File* file = (File*) GetParent()->GetParent();
2409 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2410 if (Dimensions >= iMaxDimensions)
2411 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2412 // check if max. amount of dimension bits reached
2413 int iCurrentBits = 0;
2414 for (int i = 0; i < Dimensions; i++)
2415 iCurrentBits += pDimensionDefinitions[i].bits;
2416 if (iCurrentBits >= iMaxDimensions)
2417 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2418 const int iNewBits = iCurrentBits + pDimDef->bits;
2419 if (iNewBits > iMaxDimensions)
2420 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2421 // check if there's already a dimensions of the same type
2422 for (int i = 0; i < Dimensions; i++)
2423 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2424 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2425
2426 // assign definition of new dimension
2427 pDimensionDefinitions[Dimensions] = *pDimDef;
2428
2429 // auto correct certain dimension definition fields (where possible)
2430 pDimensionDefinitions[Dimensions].split_type =
2431 __resolveSplitType(pDimensionDefinitions[Dimensions].dimension);
2432 pDimensionDefinitions[Dimensions].zone_size =
2433 __resolveZoneSize(pDimensionDefinitions[Dimensions]);
2434
2435 // create new dimension region(s) for this new dimension
2436 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2437 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2438 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2439 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2440 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2441 DimensionRegions++;
2442 }
2443
2444 Dimensions++;
2445
2446 // if this is a layer dimension, update 'Layers' attribute
2447 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2448
2449 UpdateVelocityTable();
2450 }
2451
2452 /** @brief Delete an existing dimension.
2453 *
2454 * Deletes the dimension given by \a pDimDef and deletes all respective
2455 * dimension regions, that is all dimension regions where the dimension's
2456 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2457 * for example this would delete all dimension regions for the case(s)
2458 * where the sustain pedal is pressed down.
2459 *
2460 * @param pDimDef - dimension to delete
2461 * @throws gig::Exception if given dimension cannot be found
2462 */
2463 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2464 // get dimension's index
2465 int iDimensionNr = -1;
2466 for (int i = 0; i < Dimensions; i++) {
2467 if (&pDimensionDefinitions[i] == pDimDef) {
2468 iDimensionNr = i;
2469 break;
2470 }
2471 }
2472 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2473
2474 // get amount of bits below the dimension to delete
2475 int iLowerBits = 0;
2476 for (int i = 0; i < iDimensionNr; i++)
2477 iLowerBits += pDimensionDefinitions[i].bits;
2478
2479 // get amount ot bits above the dimension to delete
2480 int iUpperBits = 0;
2481 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2482 iUpperBits += pDimensionDefinitions[i].bits;
2483
2484 // delete dimension regions which belong to the given dimension
2485 // (that is where the dimension's bit > 0)
2486 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2487 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2488 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2489 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2490 iObsoleteBit << iLowerBits |
2491 iLowerBit;
2492 delete pDimensionRegions[iToDelete];
2493 pDimensionRegions[iToDelete] = NULL;
2494 DimensionRegions--;
2495 }
2496 }
2497 }
2498
2499 // defrag pDimensionRegions array
2500 // (that is remove the NULL spaces within the pDimensionRegions array)
2501 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2502 if (!pDimensionRegions[iTo]) {
2503 if (iFrom <= iTo) iFrom = iTo + 1;
2504 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2505 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2506 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2507 pDimensionRegions[iFrom] = NULL;
2508 }
2509 }
2510 }
2511
2512 // 'remove' dimension definition
2513 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2514 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2515 }
2516 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2517 pDimensionDefinitions[Dimensions - 1].bits = 0;
2518 pDimensionDefinitions[Dimensions - 1].zones = 0;
2519
2520 Dimensions--;
2521
2522 // if this was a layer dimension, update 'Layers' attribute
2523 if (pDimDef->dimension == dimension_layer) Layers = 1;
2524 }
2525
2526 Region::~Region() {
2527 for (int i = 0; i < 256; i++) {
2528 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2529 }
2530 }
2531
2532 /**
2533 * Use this method in your audio engine to get the appropriate dimension
2534 * region with it's articulation data for the current situation. Just
2535 * call the method with the current MIDI controller values and you'll get
2536 * the DimensionRegion with the appropriate articulation data for the
2537 * current situation (for this Region of course only). To do that you'll
2538 * first have to look which dimensions with which controllers and in
2539 * which order are defined for this Region when you load the .gig file.
2540 * Special cases are e.g. layer or channel dimensions where you just put
2541 * in the index numbers instead of a MIDI controller value (means 0 for
2542 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2543 * etc.).
2544 *
2545 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2546 * @returns adress to the DimensionRegion for the given situation
2547 * @see pDimensionDefinitions
2548 * @see Dimensions
2549 */
2550 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2551 uint8_t bits;
2552 int veldim = -1;
2553 int velbitpos;
2554 int bitpos = 0;
2555 int dimregidx = 0;
2556 for (uint i = 0; i < Dimensions; i++) {
2557 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2558 // the velocity dimension must be handled after the other dimensions
2559 veldim = i;
2560 velbitpos = bitpos;
2561 } else {
2562 switch (pDimensionDefinitions[i].split_type) {
2563 case split_type_normal:
2564 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2565 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2566 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2567 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2568 }
2569 } else {
2570 // gig2: evenly sized zones
2571 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2572 }
2573 break;
2574 case split_type_bit: // the value is already the sought dimension bit number
2575 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2576 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2577 break;
2578 }
2579 dimregidx |= bits << bitpos;
2580 }
2581 bitpos += pDimensionDefinitions[i].bits;
2582 }
2583 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2584 if (veldim != -1) {
2585 // (dimreg is now the dimension region for the lowest velocity)
2586 if (dimreg->VelocityTable) // custom defined zone ranges
2587 bits = dimreg->VelocityTable[DimValues[veldim]];
2588 else // normal split type
2589 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2590
2591 dimregidx |= bits << velbitpos;
2592 dimreg = pDimensionRegions[dimregidx];
2593 }
2594 return dimreg;
2595 }
2596
2597 /**
2598 * Returns the appropriate DimensionRegion for the given dimension bit
2599 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2600 * instead of calling this method directly!
2601 *
2602 * @param DimBits Bit numbers for dimension 0 to 7
2603 * @returns adress to the DimensionRegion for the given dimension
2604 * bit numbers
2605 * @see GetDimensionRegionByValue()
2606 */
2607 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2608 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2609 << pDimensionDefinitions[5].bits | DimBits[5])
2610 << pDimensionDefinitions[4].bits | DimBits[4])
2611 << pDimensionDefinitions[3].bits | DimBits[3])
2612 << pDimensionDefinitions[2].bits | DimBits[2])
2613 << pDimensionDefinitions[1].bits | DimBits[1])
2614 << pDimensionDefinitions[0].bits | DimBits[0]];
2615 }
2616
2617 /**
2618 * Returns pointer address to the Sample referenced with this region.
2619 * This is the global Sample for the entire Region (not sure if this is
2620 * actually used by the Gigasampler engine - I would only use the Sample
2621 * referenced by the appropriate DimensionRegion instead of this sample).
2622 *
2623 * @returns address to Sample or NULL if there is no reference to a
2624 * sample saved in the .gig file
2625 */
2626 Sample* Region::GetSample() {
2627 if (pSample) return static_cast<gig::Sample*>(pSample);
2628 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2629 }
2630
2631 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2632 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2633 File* file = (File*) GetParent()->GetParent();
2634 if (!file->pWavePoolTable) return NULL;
2635 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2636 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2637 Sample* sample = file->GetFirstSample(pProgress);
2638 while (sample) {
2639 if (sample->ulWavePoolOffset == soughtoffset &&
2640 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2641 sample = file->GetNextSample();
2642 }
2643 return NULL;
2644 }
2645
2646
2647
2648 // *************** Instrument ***************
2649 // *
2650
2651 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2652 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2653 { CHUNK_ID_INAM, 64 },
2654 { CHUNK_ID_ISFT, 12 },
2655 { 0, 0 }
2656 };
2657 pInfo->FixedStringLengths = fixedStringLengths;
2658
2659 // Initialization
2660 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2661 EffectSend = 0;
2662 Attenuation = 0;
2663 FineTune = 0;
2664 PitchbendRange = 0;
2665 PianoReleaseMode = false;
2666 DimensionKeyRange.low = 0;
2667 DimensionKeyRange.high = 0;
2668
2669 // Loading
2670 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2671 if (lart) {
2672 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2673 if (_3ewg) {
2674 EffectSend = _3ewg->ReadUint16();
2675 Attenuation = _3ewg->ReadInt32();
2676 FineTune = _3ewg->ReadInt16();
2677 PitchbendRange = _3ewg->ReadInt16();
2678 uint8_t dimkeystart = _3ewg->ReadUint8();
2679 PianoReleaseMode = dimkeystart & 0x01;
2680 DimensionKeyRange.low = dimkeystart >> 1;
2681 DimensionKeyRange.high = _3ewg->ReadUint8();
2682 }
2683 }
2684
2685 if (!pRegions) pRegions = new RegionList;
2686 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2687 if (lrgn) {
2688 RIFF::List* rgn = lrgn->GetFirstSubList();
2689 while (rgn) {
2690 if (rgn->GetListType() == LIST_TYPE_RGN) {
2691 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2692 pRegions->push_back(new Region(this, rgn));
2693 }
2694 rgn = lrgn->GetNextSubList();
2695 }
2696 // Creating Region Key Table for fast lookup
2697 UpdateRegionKeyTable();
2698 }
2699
2700 __notify_progress(pProgress, 1.0f); // notify done
2701 }
2702
2703 void Instrument::UpdateRegionKeyTable() {
2704 RegionList::iterator iter = pRegions->begin();
2705 RegionList::iterator end = pRegions->end();
2706 for (; iter != end; ++iter) {
2707 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2708 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2709 RegionKeyTable[iKey] = pRegion;
2710 }
2711 }
2712 }
2713
2714 Instrument::~Instrument() {
2715 }
2716
2717 /**
2718 * Apply Instrument with all its Regions to the respective RIFF chunks.
2719 * You have to call File::Save() to make changes persistent.
2720 *
2721 * Usually there is absolutely no need to call this method explicitly.
2722 * It will be called automatically when File::Save() was called.
2723 *
2724 * @throws gig::Exception if samples cannot be dereferenced
2725 */
2726 void Instrument::UpdateChunks() {
2727 // first update base classes' chunks
2728 DLS::Instrument::UpdateChunks();
2729
2730 // update Regions' chunks
2731 {
2732 RegionList::iterator iter = pRegions->begin();
2733 RegionList::iterator end = pRegions->end();
2734 for (; iter != end; ++iter)
2735 (*iter)->UpdateChunks();
2736 }
2737
2738 // make sure 'lart' RIFF list chunk exists
2739 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2740 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2741 // make sure '3ewg' RIFF chunk exists
2742 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2743 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2744 // update '3ewg' RIFF chunk
2745 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2746 store16(&pData[0], EffectSend);
2747 store32(&pData[2], Attenuation);
2748 store16(&pData[6], FineTune);
2749 store16(&pData[8], PitchbendRange);
2750 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2751 DimensionKeyRange.low << 1;
2752 pData[10] = dimkeystart;
2753 pData[11] = DimensionKeyRange.high;
2754 }
2755
2756 /**
2757 * Returns the appropriate Region for a triggered note.
2758 *
2759 * @param Key MIDI Key number of triggered note / key (0 - 127)
2760 * @returns pointer adress to the appropriate Region or NULL if there
2761 * there is no Region defined for the given \a Key
2762 */
2763 Region* Instrument::GetRegion(unsigned int Key) {
2764 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2765 return RegionKeyTable[Key];
2766
2767 /*for (int i = 0; i < Regions; i++) {
2768 if (Key <= pRegions[i]->KeyRange.high &&
2769 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2770 }
2771 return NULL;*/
2772 }
2773
2774 /**
2775 * Returns the first Region of the instrument. You have to call this
2776 * method once before you use GetNextRegion().
2777 *
2778 * @returns pointer address to first region or NULL if there is none
2779 * @see GetNextRegion()
2780 */
2781 Region* Instrument::GetFirstRegion() {
2782 if (!pRegions) return NULL;
2783 RegionsIterator = pRegions->begin();
2784 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2785 }
2786
2787 /**
2788 * Returns the next Region of the instrument. You have to call
2789 * GetFirstRegion() once before you can use this method. By calling this
2790 * method multiple times it iterates through the available Regions.
2791 *
2792 * @returns pointer address to the next region or NULL if end reached
2793 * @see GetFirstRegion()
2794 */
2795 Region* Instrument::GetNextRegion() {
2796 if (!pRegions) return NULL;
2797 RegionsIterator++;
2798 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2799 }
2800
2801 Region* Instrument::AddRegion() {
2802 // create new Region object (and its RIFF chunks)
2803 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2804 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2805 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2806 Region* pNewRegion = new Region(this, rgn);
2807 pRegions->push_back(pNewRegion);
2808 Regions = pRegions->size();
2809 // update Region key table for fast lookup
2810 UpdateRegionKeyTable();
2811 // done
2812 return pNewRegion;
2813 }
2814
2815 void Instrument::DeleteRegion(Region* pRegion) {
2816 if (!pRegions) return;
2817 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2818 // update Region key table for fast lookup
2819 UpdateRegionKeyTable();
2820 }
2821
2822
2823
2824 // *************** Group ***************
2825 // *
2826
2827 /** @brief Constructor.
2828 *
2829 * @param file - pointer to the gig::File object
2830 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
2831 * NULL if this is a new Group
2832 */
2833 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
2834 pFile = file;
2835 pNameChunk = ck3gnm;
2836 ::LoadString(pNameChunk, Name);
2837 }
2838
2839 Group::~Group() {
2840 // remove the chunk associated with this group (if any)
2841 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
2842 }
2843
2844 /** @brief Update chunks with current group settings.
2845 *
2846 * Apply current Group field values to the respective chunks. You have
2847 * to call File::Save() to make changes persistent.
2848 *
2849 * Usually there is absolutely no need to call this method explicitly.
2850 * It will be called automatically when File::Save() was called.
2851 */
2852 void Group::UpdateChunks() {
2853 // make sure <3gri> and <3gnl> list chunks exist
2854 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
2855 if (!_3gri) {
2856 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
2857 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
2858 }
2859 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
2860 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
2861 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
2862 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
2863 }
2864
2865 /**
2866 * Returns the first Sample of this Group. You have to call this method
2867 * once before you use GetNextSample().
2868 *
2869 * <b>Notice:</b> this method might block for a long time, in case the
2870 * samples of this .gig file were not scanned yet
2871 *
2872 * @returns pointer address to first Sample or NULL if there is none
2873 * applied to this Group
2874 * @see GetNextSample()
2875 */
2876 Sample* Group::GetFirstSample() {
2877 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2878 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
2879 if (pSample->GetGroup() == this) return pSample;
2880 }
2881 return NULL;
2882 }
2883
2884 /**
2885 * Returns the next Sample of the Group. You have to call
2886 * GetFirstSample() once before you can use this method. By calling this
2887 * method multiple times it iterates through the Samples assigned to
2888 * this Group.
2889 *
2890 * @returns pointer address to the next Sample of this Group or NULL if
2891 * end reached
2892 * @see GetFirstSample()
2893 */
2894 Sample* Group::GetNextSample() {
2895 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
2896 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
2897 if (pSample->GetGroup() == this) return pSample;
2898 }
2899 return NULL;
2900 }
2901
2902 /**
2903 * Move Sample given by \a pSample from another Group to this Group.
2904 */
2905 void Group::AddSample(Sample* pSample) {
2906 pSample->pGroup = this;
2907 }
2908
2909 /**
2910 * Move all members of this group to another group (preferably the 1st
2911 * one except this). This method is called explicitly by
2912 * File::DeleteGroup() thus when a Group was deleted. This code was
2913 * intentionally not placed in the destructor!
2914 */
2915 void Group::MoveAll() {
2916 // get "that" other group first
2917 Group* pOtherGroup = NULL;
2918 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
2919 if (pOtherGroup != this) break;
2920 }
2921 if (!pOtherGroup) throw Exception(
2922 "Could not move samples to another group, since there is no "
2923 "other Group. This is a bug, report it!"
2924 );
2925 // now move all samples of this group to the other group
2926 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
2927 pOtherGroup->AddSample(pSample);
2928 }
2929 }
2930
2931
2932
2933 // *************** File ***************
2934 // *
2935
2936 // File version 2.0, 1998-06-28
2937 const DLS::version_t File::VERSION_2 = {
2938 0, 2, 19980628 & 0xffff, 19980628 >> 16
2939 };
2940
2941 // File version 3.0, 2003-03-31
2942 const DLS::version_t File::VERSION_3 = {
2943 0, 3, 20030331 & 0xffff, 20030331 >> 16
2944 };
2945
2946 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
2947 { CHUNK_ID_IARL, 256 },
2948 { CHUNK_ID_IART, 128 },
2949 { CHUNK_ID_ICMS, 128 },
2950 { CHUNK_ID_ICMT, 1024 },
2951 { CHUNK_ID_ICOP, 128 },
2952 { CHUNK_ID_ICRD, 128 },
2953 { CHUNK_ID_IENG, 128 },
2954 { CHUNK_ID_IGNR, 128 },
2955 { CHUNK_ID_IKEY, 128 },
2956 { CHUNK_ID_IMED, 128 },
2957 { CHUNK_ID_INAM, 128 },
2958 { CHUNK_ID_IPRD, 128 },
2959 { CHUNK_ID_ISBJ, 128 },
2960 { CHUNK_ID_ISFT, 128 },
2961 { CHUNK_ID_ISRC, 128 },
2962 { CHUNK_ID_ISRF, 128 },
2963 { CHUNK_ID_ITCH, 128 },
2964 { 0, 0 }
2965 };
2966
2967 File::File() : DLS::File() {
2968 pGroups = NULL;
2969 pInfo->FixedStringLengths = FixedStringLengths;
2970 pInfo->ArchivalLocation = String(256, ' ');
2971
2972 // add some mandatory chunks to get the file chunks in right
2973 // order (INFO chunk will be moved to first position later)
2974 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
2975 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
2976 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
2977
2978 GenerateDLSID();
2979 }
2980
2981 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2982 pGroups = NULL;
2983 pInfo->FixedStringLengths = FixedStringLengths;
2984 }
2985
2986 File::~File() {
2987 if (pGroups) {
2988 std::list<Group*>::iterator iter = pGroups->begin();
2989 std::list<Group*>::iterator end = pGroups->end();
2990 while (iter != end) {
2991 delete *iter;
2992 ++iter;
2993 }
2994 delete pGroups;
2995 }
2996 }
2997
2998 Sample* File::GetFirstSample(progress_t* pProgress) {
2999 if (!pSamples) LoadSamples(pProgress);
3000 if (!pSamples) return NULL;
3001 SamplesIterator = pSamples->begin();
3002 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3003 }
3004
3005 Sample* File::GetNextSample() {
3006 if (!pSamples) return NULL;
3007 SamplesIterator++;
3008 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3009 }
3010
3011 /** @brief Add a new sample.
3012 *
3013 * This will create a new Sample object for the gig file. You have to
3014 * call Save() to make this persistent to the file.
3015 *
3016 * @returns pointer to new Sample object
3017 */
3018 Sample* File::AddSample() {
3019 if (!pSamples) LoadSamples();
3020 __ensureMandatoryChunksExist();
3021 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3022 // create new Sample object and its respective 'wave' list chunk
3023 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3024 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3025
3026 // add mandatory chunks to get the chunks in right order
3027 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3028 wave->AddSubList(LIST_TYPE_INFO);
3029
3030 pSamples->push_back(pSample);
3031 return pSample;
3032 }
3033
3034 /** @brief Delete a sample.
3035 *
3036 * This will delete the given Sample object from the gig file. You have
3037 * to call Save() to make this persistent to the file.
3038 *
3039 * @param pSample - sample to delete
3040 * @throws gig::Exception if given sample could not be found
3041 */
3042 void File::DeleteSample(Sample* pSample) {
3043 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3044 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3045 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3046 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3047 pSamples->erase(iter);
3048 delete pSample;
3049 }
3050
3051 void File::LoadSamples() {
3052 LoadSamples(NULL);
3053 }
3054
3055 void File::LoadSamples(progress_t* pProgress) {
3056 // Groups must be loaded before samples, because samples will try
3057 // to resolve the group they belong to
3058 if (!pGroups) LoadGroups();
3059
3060 if (!pSamples) pSamples = new SampleList;
3061
3062 RIFF::File* file = pRIFF;
3063
3064 // just for progress calculation
3065 int iSampleIndex = 0;
3066 int iTotalSamples = WavePoolCount;
3067
3068 // check if samples should be loaded from extension files
3069 int lastFileNo = 0;
3070 for (int i = 0 ; i < WavePoolCount ;