/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2557 - (show annotations) (download)
Sat May 17 23:31:20 2014 UTC (9 years, 10 months ago) by schoenebeck
File size: 232252 byte(s)
* gig.cpp: update velocity table at the end of
  Region::DeleteDimensionZone() and
  Region::SplitDimensionZone()
* bumped version (3.3.0.svn12)

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// Initial size of the sample buffer which is used for decompression of
34 /// compressed sample wave streams - this value should always be bigger than
35 /// the biggest sample piece expected to be read by the sampler engine,
36 /// otherwise the buffer size will be raised at runtime and thus the buffer
37 /// reallocated which is time consuming and unefficient.
38 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
39
40 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
41 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
42 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
43 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
44 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
45 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
46 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
47 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
48 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
49 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
50 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
51 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
52 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
53
54 namespace gig {
55
56 // *************** progress_t ***************
57 // *
58
59 progress_t::progress_t() {
60 callback = NULL;
61 custom = NULL;
62 __range_min = 0.0f;
63 __range_max = 1.0f;
64 }
65
66 // private helper function to convert progress of a subprocess into the global progress
67 static void __notify_progress(progress_t* pProgress, float subprogress) {
68 if (pProgress && pProgress->callback) {
69 const float totalrange = pProgress->__range_max - pProgress->__range_min;
70 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
71 pProgress->factor = totalprogress;
72 pProgress->callback(pProgress); // now actually notify about the progress
73 }
74 }
75
76 // private helper function to divide a progress into subprogresses
77 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
78 if (pParentProgress && pParentProgress->callback) {
79 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
80 pSubProgress->callback = pParentProgress->callback;
81 pSubProgress->custom = pParentProgress->custom;
82 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
83 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
84 }
85 }
86
87
88 // *************** Internal functions for sample decompression ***************
89 // *
90
91 namespace {
92
93 inline int get12lo(const unsigned char* pSrc)
94 {
95 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
96 return x & 0x800 ? x - 0x1000 : x;
97 }
98
99 inline int get12hi(const unsigned char* pSrc)
100 {
101 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
102 return x & 0x800 ? x - 0x1000 : x;
103 }
104
105 inline int16_t get16(const unsigned char* pSrc)
106 {
107 return int16_t(pSrc[0] | pSrc[1] << 8);
108 }
109
110 inline int get24(const unsigned char* pSrc)
111 {
112 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
113 return x & 0x800000 ? x - 0x1000000 : x;
114 }
115
116 inline void store24(unsigned char* pDst, int x)
117 {
118 pDst[0] = x;
119 pDst[1] = x >> 8;
120 pDst[2] = x >> 16;
121 }
122
123 void Decompress16(int compressionmode, const unsigned char* params,
124 int srcStep, int dstStep,
125 const unsigned char* pSrc, int16_t* pDst,
126 unsigned long currentframeoffset,
127 unsigned long copysamples)
128 {
129 switch (compressionmode) {
130 case 0: // 16 bit uncompressed
131 pSrc += currentframeoffset * srcStep;
132 while (copysamples) {
133 *pDst = get16(pSrc);
134 pDst += dstStep;
135 pSrc += srcStep;
136 copysamples--;
137 }
138 break;
139
140 case 1: // 16 bit compressed to 8 bit
141 int y = get16(params);
142 int dy = get16(params + 2);
143 while (currentframeoffset) {
144 dy -= int8_t(*pSrc);
145 y -= dy;
146 pSrc += srcStep;
147 currentframeoffset--;
148 }
149 while (copysamples) {
150 dy -= int8_t(*pSrc);
151 y -= dy;
152 *pDst = y;
153 pDst += dstStep;
154 pSrc += srcStep;
155 copysamples--;
156 }
157 break;
158 }
159 }
160
161 void Decompress24(int compressionmode, const unsigned char* params,
162 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
163 unsigned long currentframeoffset,
164 unsigned long copysamples, int truncatedBits)
165 {
166 int y, dy, ddy, dddy;
167
168 #define GET_PARAMS(params) \
169 y = get24(params); \
170 dy = y - get24((params) + 3); \
171 ddy = get24((params) + 6); \
172 dddy = get24((params) + 9)
173
174 #define SKIP_ONE(x) \
175 dddy -= (x); \
176 ddy -= dddy; \
177 dy = -dy - ddy; \
178 y += dy
179
180 #define COPY_ONE(x) \
181 SKIP_ONE(x); \
182 store24(pDst, y << truncatedBits); \
183 pDst += dstStep
184
185 switch (compressionmode) {
186 case 2: // 24 bit uncompressed
187 pSrc += currentframeoffset * 3;
188 while (copysamples) {
189 store24(pDst, get24(pSrc) << truncatedBits);
190 pDst += dstStep;
191 pSrc += 3;
192 copysamples--;
193 }
194 break;
195
196 case 3: // 24 bit compressed to 16 bit
197 GET_PARAMS(params);
198 while (currentframeoffset) {
199 SKIP_ONE(get16(pSrc));
200 pSrc += 2;
201 currentframeoffset--;
202 }
203 while (copysamples) {
204 COPY_ONE(get16(pSrc));
205 pSrc += 2;
206 copysamples--;
207 }
208 break;
209
210 case 4: // 24 bit compressed to 12 bit
211 GET_PARAMS(params);
212 while (currentframeoffset > 1) {
213 SKIP_ONE(get12lo(pSrc));
214 SKIP_ONE(get12hi(pSrc));
215 pSrc += 3;
216 currentframeoffset -= 2;
217 }
218 if (currentframeoffset) {
219 SKIP_ONE(get12lo(pSrc));
220 currentframeoffset--;
221 if (copysamples) {
222 COPY_ONE(get12hi(pSrc));
223 pSrc += 3;
224 copysamples--;
225 }
226 }
227 while (copysamples > 1) {
228 COPY_ONE(get12lo(pSrc));
229 COPY_ONE(get12hi(pSrc));
230 pSrc += 3;
231 copysamples -= 2;
232 }
233 if (copysamples) {
234 COPY_ONE(get12lo(pSrc));
235 }
236 break;
237
238 case 5: // 24 bit compressed to 8 bit
239 GET_PARAMS(params);
240 while (currentframeoffset) {
241 SKIP_ONE(int8_t(*pSrc++));
242 currentframeoffset--;
243 }
244 while (copysamples) {
245 COPY_ONE(int8_t(*pSrc++));
246 copysamples--;
247 }
248 break;
249 }
250 }
251
252 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
253 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
254 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
255 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
256 }
257
258
259
260 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
261 // *
262
263 static uint32_t* __initCRCTable() {
264 static uint32_t res[256];
265
266 for (int i = 0 ; i < 256 ; i++) {
267 uint32_t c = i;
268 for (int j = 0 ; j < 8 ; j++) {
269 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
270 }
271 res[i] = c;
272 }
273 return res;
274 }
275
276 static const uint32_t* __CRCTable = __initCRCTable();
277
278 /**
279 * Initialize a CRC variable.
280 *
281 * @param crc - variable to be initialized
282 */
283 inline static void __resetCRC(uint32_t& crc) {
284 crc = 0xffffffff;
285 }
286
287 /**
288 * Used to calculate checksums of the sample data in a gig file. The
289 * checksums are stored in the 3crc chunk of the gig file and
290 * automatically updated when a sample is written with Sample::Write().
291 *
292 * One should call __resetCRC() to initialize the CRC variable to be
293 * used before calling this function the first time.
294 *
295 * After initializing the CRC variable one can call this function
296 * arbitrary times, i.e. to split the overall CRC calculation into
297 * steps.
298 *
299 * Once the whole data was processed by __calculateCRC(), one should
300 * call __encodeCRC() to get the final CRC result.
301 *
302 * @param buf - pointer to data the CRC shall be calculated of
303 * @param bufSize - size of the data to be processed
304 * @param crc - variable the CRC sum shall be stored to
305 */
306 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
307 for (int i = 0 ; i < bufSize ; i++) {
308 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
309 }
310 }
311
312 /**
313 * Returns the final CRC result.
314 *
315 * @param crc - variable previously passed to __calculateCRC()
316 */
317 inline static uint32_t __encodeCRC(const uint32_t& crc) {
318 return crc ^ 0xffffffff;
319 }
320
321
322
323 // *************** Other Internal functions ***************
324 // *
325
326 static split_type_t __resolveSplitType(dimension_t dimension) {
327 return (
328 dimension == dimension_layer ||
329 dimension == dimension_samplechannel ||
330 dimension == dimension_releasetrigger ||
331 dimension == dimension_keyboard ||
332 dimension == dimension_roundrobin ||
333 dimension == dimension_random ||
334 dimension == dimension_smartmidi ||
335 dimension == dimension_roundrobinkeyboard
336 ) ? split_type_bit : split_type_normal;
337 }
338
339 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
340 return (dimension_definition.split_type == split_type_normal)
341 ? int(128.0 / dimension_definition.zones) : 0;
342 }
343
344
345
346 // *************** Sample ***************
347 // *
348
349 unsigned int Sample::Instances = 0;
350 buffer_t Sample::InternalDecompressionBuffer;
351
352 /** @brief Constructor.
353 *
354 * Load an existing sample or create a new one. A 'wave' list chunk must
355 * be given to this constructor. In case the given 'wave' list chunk
356 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
357 * format and sample data will be loaded from there, otherwise default
358 * values will be used and those chunks will be created when
359 * File::Save() will be called later on.
360 *
361 * @param pFile - pointer to gig::File where this sample is
362 * located (or will be located)
363 * @param waveList - pointer to 'wave' list chunk which is (or
364 * will be) associated with this sample
365 * @param WavePoolOffset - offset of this sample data from wave pool
366 * ('wvpl') list chunk
367 * @param fileNo - number of an extension file where this sample
368 * is located, 0 otherwise
369 */
370 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
371 static const DLS::Info::string_length_t fixedStringLengths[] = {
372 { CHUNK_ID_INAM, 64 },
373 { 0, 0 }
374 };
375 pInfo->SetFixedStringLengths(fixedStringLengths);
376 Instances++;
377 FileNo = fileNo;
378
379 __resetCRC(crc);
380
381 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
382 if (pCk3gix) {
383 uint16_t iSampleGroup = pCk3gix->ReadInt16();
384 pGroup = pFile->GetGroup(iSampleGroup);
385 } else { // '3gix' chunk missing
386 // by default assigned to that mandatory "Default Group"
387 pGroup = pFile->GetGroup(0);
388 }
389
390 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
391 if (pCkSmpl) {
392 Manufacturer = pCkSmpl->ReadInt32();
393 Product = pCkSmpl->ReadInt32();
394 SamplePeriod = pCkSmpl->ReadInt32();
395 MIDIUnityNote = pCkSmpl->ReadInt32();
396 FineTune = pCkSmpl->ReadInt32();
397 pCkSmpl->Read(&SMPTEFormat, 1, 4);
398 SMPTEOffset = pCkSmpl->ReadInt32();
399 Loops = pCkSmpl->ReadInt32();
400 pCkSmpl->ReadInt32(); // manufByt
401 LoopID = pCkSmpl->ReadInt32();
402 pCkSmpl->Read(&LoopType, 1, 4);
403 LoopStart = pCkSmpl->ReadInt32();
404 LoopEnd = pCkSmpl->ReadInt32();
405 LoopFraction = pCkSmpl->ReadInt32();
406 LoopPlayCount = pCkSmpl->ReadInt32();
407 } else { // 'smpl' chunk missing
408 // use default values
409 Manufacturer = 0;
410 Product = 0;
411 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
412 MIDIUnityNote = 60;
413 FineTune = 0;
414 SMPTEFormat = smpte_format_no_offset;
415 SMPTEOffset = 0;
416 Loops = 0;
417 LoopID = 0;
418 LoopType = loop_type_normal;
419 LoopStart = 0;
420 LoopEnd = 0;
421 LoopFraction = 0;
422 LoopPlayCount = 0;
423 }
424
425 FrameTable = NULL;
426 SamplePos = 0;
427 RAMCache.Size = 0;
428 RAMCache.pStart = NULL;
429 RAMCache.NullExtensionSize = 0;
430
431 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
432
433 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
434 Compressed = ewav;
435 Dithered = false;
436 TruncatedBits = 0;
437 if (Compressed) {
438 uint32_t version = ewav->ReadInt32();
439 if (version == 3 && BitDepth == 24) {
440 Dithered = ewav->ReadInt32();
441 ewav->SetPos(Channels == 2 ? 84 : 64);
442 TruncatedBits = ewav->ReadInt32();
443 }
444 ScanCompressedSample();
445 }
446
447 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
448 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
449 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
450 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
451 }
452 FrameOffset = 0; // just for streaming compressed samples
453
454 LoopSize = LoopEnd - LoopStart + 1;
455 }
456
457 /**
458 * Make a (semi) deep copy of the Sample object given by @a orig (without
459 * the actual waveform data) and assign it to this object.
460 *
461 * Discussion: copying .gig samples is a bit tricky. It requires three
462 * steps:
463 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
464 * its new sample waveform data size.
465 * 2. Saving the file (done by File::Save()) so that it gains correct size
466 * and layout for writing the actual wave form data directly to disc
467 * in next step.
468 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
469 *
470 * @param orig - original Sample object to be copied from
471 */
472 void Sample::CopyAssignMeta(const Sample* orig) {
473 // handle base classes
474 DLS::Sample::CopyAssignCore(orig);
475
476 // handle actual own attributes of this class
477 Manufacturer = orig->Manufacturer;
478 Product = orig->Product;
479 SamplePeriod = orig->SamplePeriod;
480 MIDIUnityNote = orig->MIDIUnityNote;
481 FineTune = orig->FineTune;
482 SMPTEFormat = orig->SMPTEFormat;
483 SMPTEOffset = orig->SMPTEOffset;
484 Loops = orig->Loops;
485 LoopID = orig->LoopID;
486 LoopType = orig->LoopType;
487 LoopStart = orig->LoopStart;
488 LoopEnd = orig->LoopEnd;
489 LoopSize = orig->LoopSize;
490 LoopFraction = orig->LoopFraction;
491 LoopPlayCount = orig->LoopPlayCount;
492
493 // schedule resizing this sample to the given sample's size
494 Resize(orig->GetSize());
495 }
496
497 /**
498 * Should be called after CopyAssignMeta() and File::Save() sequence.
499 * Read more about it in the discussion of CopyAssignMeta(). This method
500 * copies the actual waveform data by disk streaming.
501 *
502 * @e CAUTION: this method is currently not thread safe! During this
503 * operation the sample must not be used for other purposes by other
504 * threads!
505 *
506 * @param orig - original Sample object to be copied from
507 */
508 void Sample::CopyAssignWave(const Sample* orig) {
509 const int iReadAtOnce = 32*1024;
510 char* buf = new char[iReadAtOnce * orig->FrameSize];
511 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
512 unsigned long restorePos = pOrig->GetPos();
513 pOrig->SetPos(0);
514 SetPos(0);
515 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
516 n = pOrig->Read(buf, iReadAtOnce))
517 {
518 Write(buf, n);
519 }
520 pOrig->SetPos(restorePos);
521 delete [] buf;
522 }
523
524 /**
525 * Apply sample and its settings to the respective RIFF chunks. You have
526 * to call File::Save() to make changes persistent.
527 *
528 * Usually there is absolutely no need to call this method explicitly.
529 * It will be called automatically when File::Save() was called.
530 *
531 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
532 * was provided yet
533 * @throws gig::Exception if there is any invalid sample setting
534 */
535 void Sample::UpdateChunks() {
536 // first update base class's chunks
537 DLS::Sample::UpdateChunks();
538
539 // make sure 'smpl' chunk exists
540 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
541 if (!pCkSmpl) {
542 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
543 memset(pCkSmpl->LoadChunkData(), 0, 60);
544 }
545 // update 'smpl' chunk
546 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
547 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
548 store32(&pData[0], Manufacturer);
549 store32(&pData[4], Product);
550 store32(&pData[8], SamplePeriod);
551 store32(&pData[12], MIDIUnityNote);
552 store32(&pData[16], FineTune);
553 store32(&pData[20], SMPTEFormat);
554 store32(&pData[24], SMPTEOffset);
555 store32(&pData[28], Loops);
556
557 // we skip 'manufByt' for now (4 bytes)
558
559 store32(&pData[36], LoopID);
560 store32(&pData[40], LoopType);
561 store32(&pData[44], LoopStart);
562 store32(&pData[48], LoopEnd);
563 store32(&pData[52], LoopFraction);
564 store32(&pData[56], LoopPlayCount);
565
566 // make sure '3gix' chunk exists
567 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
568 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
569 // determine appropriate sample group index (to be stored in chunk)
570 uint16_t iSampleGroup = 0; // 0 refers to default sample group
571 File* pFile = static_cast<File*>(pParent);
572 if (pFile->pGroups) {
573 std::list<Group*>::iterator iter = pFile->pGroups->begin();
574 std::list<Group*>::iterator end = pFile->pGroups->end();
575 for (int i = 0; iter != end; i++, iter++) {
576 if (*iter == pGroup) {
577 iSampleGroup = i;
578 break; // found
579 }
580 }
581 }
582 // update '3gix' chunk
583 pData = (uint8_t*) pCk3gix->LoadChunkData();
584 store16(&pData[0], iSampleGroup);
585
586 // if the library user toggled the "Compressed" attribute from true to
587 // false, then the EWAV chunk associated with compressed samples needs
588 // to be deleted
589 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
590 if (ewav && !Compressed) {
591 pWaveList->DeleteSubChunk(ewav);
592 }
593 }
594
595 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
596 void Sample::ScanCompressedSample() {
597 //TODO: we have to add some more scans here (e.g. determine compression rate)
598 this->SamplesTotal = 0;
599 std::list<unsigned long> frameOffsets;
600
601 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
602 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
603
604 // Scanning
605 pCkData->SetPos(0);
606 if (Channels == 2) { // Stereo
607 for (int i = 0 ; ; i++) {
608 // for 24 bit samples every 8:th frame offset is
609 // stored, to save some memory
610 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
611
612 const int mode_l = pCkData->ReadUint8();
613 const int mode_r = pCkData->ReadUint8();
614 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
615 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
616
617 if (pCkData->RemainingBytes() <= frameSize) {
618 SamplesInLastFrame =
619 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
620 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
621 SamplesTotal += SamplesInLastFrame;
622 break;
623 }
624 SamplesTotal += SamplesPerFrame;
625 pCkData->SetPos(frameSize, RIFF::stream_curpos);
626 }
627 }
628 else { // Mono
629 for (int i = 0 ; ; i++) {
630 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
631
632 const int mode = pCkData->ReadUint8();
633 if (mode > 5) throw gig::Exception("Unknown compression mode");
634 const unsigned long frameSize = bytesPerFrame[mode];
635
636 if (pCkData->RemainingBytes() <= frameSize) {
637 SamplesInLastFrame =
638 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
639 SamplesTotal += SamplesInLastFrame;
640 break;
641 }
642 SamplesTotal += SamplesPerFrame;
643 pCkData->SetPos(frameSize, RIFF::stream_curpos);
644 }
645 }
646 pCkData->SetPos(0);
647
648 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
649 if (FrameTable) delete[] FrameTable;
650 FrameTable = new unsigned long[frameOffsets.size()];
651 std::list<unsigned long>::iterator end = frameOffsets.end();
652 std::list<unsigned long>::iterator iter = frameOffsets.begin();
653 for (int i = 0; iter != end; i++, iter++) {
654 FrameTable[i] = *iter;
655 }
656 }
657
658 /**
659 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
660 * ReleaseSampleData() to free the memory if you don't need the cached
661 * sample data anymore.
662 *
663 * @returns buffer_t structure with start address and size of the buffer
664 * in bytes
665 * @see ReleaseSampleData(), Read(), SetPos()
666 */
667 buffer_t Sample::LoadSampleData() {
668 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
669 }
670
671 /**
672 * Reads (uncompresses if needed) and caches the first \a SampleCount
673 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
674 * memory space if you don't need the cached samples anymore. There is no
675 * guarantee that exactly \a SampleCount samples will be cached; this is
676 * not an error. The size will be eventually truncated e.g. to the
677 * beginning of a frame of a compressed sample. This is done for
678 * efficiency reasons while streaming the wave by your sampler engine
679 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
680 * that will be returned to determine the actual cached samples, but note
681 * that the size is given in bytes! You get the number of actually cached
682 * samples by dividing it by the frame size of the sample:
683 * @code
684 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
685 * long cachedsamples = buf.Size / pSample->FrameSize;
686 * @endcode
687 *
688 * @param SampleCount - number of sample points to load into RAM
689 * @returns buffer_t structure with start address and size of
690 * the cached sample data in bytes
691 * @see ReleaseSampleData(), Read(), SetPos()
692 */
693 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
694 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 * The method will add \a NullSamplesCount silence samples past the
702 * official buffer end (this won't affect the 'Size' member of the
703 * buffer_t structure, that means 'Size' always reflects the size of the
704 * actual sample data, the buffer might be bigger though). Silence
705 * samples past the official buffer are needed for differential
706 * algorithms that always have to take subsequent samples into account
707 * (resampling/interpolation would be an important example) and avoids
708 * memory access faults in such cases.
709 *
710 * @param NullSamplesCount - number of silence samples the buffer should
711 * be extended past it's data end
712 * @returns buffer_t structure with start address and
713 * size of the buffer in bytes
714 * @see ReleaseSampleData(), Read(), SetPos()
715 */
716 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
717 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
718 }
719
720 /**
721 * Reads (uncompresses if needed) and caches the first \a SampleCount
722 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
723 * memory space if you don't need the cached samples anymore. There is no
724 * guarantee that exactly \a SampleCount samples will be cached; this is
725 * not an error. The size will be eventually truncated e.g. to the
726 * beginning of a frame of a compressed sample. This is done for
727 * efficiency reasons while streaming the wave by your sampler engine
728 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
729 * that will be returned to determine the actual cached samples, but note
730 * that the size is given in bytes! You get the number of actually cached
731 * samples by dividing it by the frame size of the sample:
732 * @code
733 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
734 * long cachedsamples = buf.Size / pSample->FrameSize;
735 * @endcode
736 * The method will add \a NullSamplesCount silence samples past the
737 * official buffer end (this won't affect the 'Size' member of the
738 * buffer_t structure, that means 'Size' always reflects the size of the
739 * actual sample data, the buffer might be bigger though). Silence
740 * samples past the official buffer are needed for differential
741 * algorithms that always have to take subsequent samples into account
742 * (resampling/interpolation would be an important example) and avoids
743 * memory access faults in such cases.
744 *
745 * @param SampleCount - number of sample points to load into RAM
746 * @param NullSamplesCount - number of silence samples the buffer should
747 * be extended past it's data end
748 * @returns buffer_t structure with start address and
749 * size of the cached sample data in bytes
750 * @see ReleaseSampleData(), Read(), SetPos()
751 */
752 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
753 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
754 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
755 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
756 SetPos(0); // reset read position to begin of sample
757 RAMCache.pStart = new int8_t[allocationsize];
758 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
759 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
760 // fill the remaining buffer space with silence samples
761 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
762 return GetCache();
763 }
764
765 /**
766 * Returns current cached sample points. A buffer_t structure will be
767 * returned which contains address pointer to the begin of the cache and
768 * the size of the cached sample data in bytes. Use
769 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
770 * RAM.
771 *
772 * @returns buffer_t structure with current cached sample points
773 * @see LoadSampleData();
774 */
775 buffer_t Sample::GetCache() {
776 // return a copy of the buffer_t structure
777 buffer_t result;
778 result.Size = this->RAMCache.Size;
779 result.pStart = this->RAMCache.pStart;
780 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
781 return result;
782 }
783
784 /**
785 * Frees the cached sample from RAM if loaded with
786 * <i>LoadSampleData()</i> previously.
787 *
788 * @see LoadSampleData();
789 */
790 void Sample::ReleaseSampleData() {
791 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
792 RAMCache.pStart = NULL;
793 RAMCache.Size = 0;
794 RAMCache.NullExtensionSize = 0;
795 }
796
797 /** @brief Resize sample.
798 *
799 * Resizes the sample's wave form data, that is the actual size of
800 * sample wave data possible to be written for this sample. This call
801 * will return immediately and just schedule the resize operation. You
802 * should call File::Save() to actually perform the resize operation(s)
803 * "physically" to the file. As this can take a while on large files, it
804 * is recommended to call Resize() first on all samples which have to be
805 * resized and finally to call File::Save() to perform all those resize
806 * operations in one rush.
807 *
808 * The actual size (in bytes) is dependant to the current FrameSize
809 * value. You may want to set FrameSize before calling Resize().
810 *
811 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
812 * enlarged samples before calling File::Save() as this might exceed the
813 * current sample's boundary!
814 *
815 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
816 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
817 * other formats will fail!
818 *
819 * @param iNewSize - new sample wave data size in sample points (must be
820 * greater than zero)
821 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
822 * or if \a iNewSize is less than 1
823 * @throws gig::Exception if existing sample is compressed
824 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
825 * DLS::Sample::FormatTag, File::Save()
826 */
827 void Sample::Resize(int iNewSize) {
828 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
829 DLS::Sample::Resize(iNewSize);
830 }
831
832 /**
833 * Sets the position within the sample (in sample points, not in
834 * bytes). Use this method and <i>Read()</i> if you don't want to load
835 * the sample into RAM, thus for disk streaming.
836 *
837 * Although the original Gigasampler engine doesn't allow positioning
838 * within compressed samples, I decided to implement it. Even though
839 * the Gigasampler format doesn't allow to define loops for compressed
840 * samples at the moment, positioning within compressed samples might be
841 * interesting for some sampler engines though. The only drawback about
842 * my decision is that it takes longer to load compressed gig Files on
843 * startup, because it's neccessary to scan the samples for some
844 * mandatory informations. But I think as it doesn't affect the runtime
845 * efficiency, nobody will have a problem with that.
846 *
847 * @param SampleCount number of sample points to jump
848 * @param Whence optional: to which relation \a SampleCount refers
849 * to, if omited <i>RIFF::stream_start</i> is assumed
850 * @returns the new sample position
851 * @see Read()
852 */
853 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
854 if (Compressed) {
855 switch (Whence) {
856 case RIFF::stream_curpos:
857 this->SamplePos += SampleCount;
858 break;
859 case RIFF::stream_end:
860 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
861 break;
862 case RIFF::stream_backward:
863 this->SamplePos -= SampleCount;
864 break;
865 case RIFF::stream_start: default:
866 this->SamplePos = SampleCount;
867 break;
868 }
869 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
870
871 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
872 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
873 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
874 return this->SamplePos;
875 }
876 else { // not compressed
877 unsigned long orderedBytes = SampleCount * this->FrameSize;
878 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
879 return (result == orderedBytes) ? SampleCount
880 : result / this->FrameSize;
881 }
882 }
883
884 /**
885 * Returns the current position in the sample (in sample points).
886 */
887 unsigned long Sample::GetPos() const {
888 if (Compressed) return SamplePos;
889 else return pCkData->GetPos() / FrameSize;
890 }
891
892 /**
893 * Reads \a SampleCount number of sample points from the position stored
894 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
895 * the position within the sample respectively, this method honors the
896 * looping informations of the sample (if any). The sample wave stream
897 * will be decompressed on the fly if using a compressed sample. Use this
898 * method if you don't want to load the sample into RAM, thus for disk
899 * streaming. All this methods needs to know to proceed with streaming
900 * for the next time you call this method is stored in \a pPlaybackState.
901 * You have to allocate and initialize the playback_state_t structure by
902 * yourself before you use it to stream a sample:
903 * @code
904 * gig::playback_state_t playbackstate;
905 * playbackstate.position = 0;
906 * playbackstate.reverse = false;
907 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
908 * @endcode
909 * You don't have to take care of things like if there is actually a loop
910 * defined or if the current read position is located within a loop area.
911 * The method already handles such cases by itself.
912 *
913 * <b>Caution:</b> If you are using more than one streaming thread, you
914 * have to use an external decompression buffer for <b>EACH</b>
915 * streaming thread to avoid race conditions and crashes!
916 *
917 * @param pBuffer destination buffer
918 * @param SampleCount number of sample points to read
919 * @param pPlaybackState will be used to store and reload the playback
920 * state for the next ReadAndLoop() call
921 * @param pDimRgn dimension region with looping information
922 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
923 * @returns number of successfully read sample points
924 * @see CreateDecompressionBuffer()
925 */
926 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
927 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
928 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
929 uint8_t* pDst = (uint8_t*) pBuffer;
930
931 SetPos(pPlaybackState->position); // recover position from the last time
932
933 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
934
935 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
936 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
937
938 if (GetPos() <= loopEnd) {
939 switch (loop.LoopType) {
940
941 case loop_type_bidirectional: { //TODO: not tested yet!
942 do {
943 // if not endless loop check if max. number of loop cycles have been passed
944 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
945
946 if (!pPlaybackState->reverse) { // forward playback
947 do {
948 samplestoloopend = loopEnd - GetPos();
949 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
950 samplestoread -= readsamples;
951 totalreadsamples += readsamples;
952 if (readsamples == samplestoloopend) {
953 pPlaybackState->reverse = true;
954 break;
955 }
956 } while (samplestoread && readsamples);
957 }
958 else { // backward playback
959
960 // as we can only read forward from disk, we have to
961 // determine the end position within the loop first,
962 // read forward from that 'end' and finally after
963 // reading, swap all sample frames so it reflects
964 // backward playback
965
966 unsigned long swapareastart = totalreadsamples;
967 unsigned long loopoffset = GetPos() - loop.LoopStart;
968 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
969 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
970
971 SetPos(reverseplaybackend);
972
973 // read samples for backward playback
974 do {
975 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
976 samplestoreadinloop -= readsamples;
977 samplestoread -= readsamples;
978 totalreadsamples += readsamples;
979 } while (samplestoreadinloop && readsamples);
980
981 SetPos(reverseplaybackend); // pretend we really read backwards
982
983 if (reverseplaybackend == loop.LoopStart) {
984 pPlaybackState->loop_cycles_left--;
985 pPlaybackState->reverse = false;
986 }
987
988 // reverse the sample frames for backward playback
989 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
990 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
991 }
992 } while (samplestoread && readsamples);
993 break;
994 }
995
996 case loop_type_backward: { // TODO: not tested yet!
997 // forward playback (not entered the loop yet)
998 if (!pPlaybackState->reverse) do {
999 samplestoloopend = loopEnd - GetPos();
1000 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1001 samplestoread -= readsamples;
1002 totalreadsamples += readsamples;
1003 if (readsamples == samplestoloopend) {
1004 pPlaybackState->reverse = true;
1005 break;
1006 }
1007 } while (samplestoread && readsamples);
1008
1009 if (!samplestoread) break;
1010
1011 // as we can only read forward from disk, we have to
1012 // determine the end position within the loop first,
1013 // read forward from that 'end' and finally after
1014 // reading, swap all sample frames so it reflects
1015 // backward playback
1016
1017 unsigned long swapareastart = totalreadsamples;
1018 unsigned long loopoffset = GetPos() - loop.LoopStart;
1019 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1020 : samplestoread;
1021 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1022
1023 SetPos(reverseplaybackend);
1024
1025 // read samples for backward playback
1026 do {
1027 // if not endless loop check if max. number of loop cycles have been passed
1028 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1029 samplestoloopend = loopEnd - GetPos();
1030 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1031 samplestoreadinloop -= readsamples;
1032 samplestoread -= readsamples;
1033 totalreadsamples += readsamples;
1034 if (readsamples == samplestoloopend) {
1035 pPlaybackState->loop_cycles_left--;
1036 SetPos(loop.LoopStart);
1037 }
1038 } while (samplestoreadinloop && readsamples);
1039
1040 SetPos(reverseplaybackend); // pretend we really read backwards
1041
1042 // reverse the sample frames for backward playback
1043 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1044 break;
1045 }
1046
1047 default: case loop_type_normal: {
1048 do {
1049 // if not endless loop check if max. number of loop cycles have been passed
1050 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1051 samplestoloopend = loopEnd - GetPos();
1052 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1053 samplestoread -= readsamples;
1054 totalreadsamples += readsamples;
1055 if (readsamples == samplestoloopend) {
1056 pPlaybackState->loop_cycles_left--;
1057 SetPos(loop.LoopStart);
1058 }
1059 } while (samplestoread && readsamples);
1060 break;
1061 }
1062 }
1063 }
1064 }
1065
1066 // read on without looping
1067 if (samplestoread) do {
1068 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1069 samplestoread -= readsamples;
1070 totalreadsamples += readsamples;
1071 } while (readsamples && samplestoread);
1072
1073 // store current position
1074 pPlaybackState->position = GetPos();
1075
1076 return totalreadsamples;
1077 }
1078
1079 /**
1080 * Reads \a SampleCount number of sample points from the current
1081 * position into the buffer pointed by \a pBuffer and increments the
1082 * position within the sample. The sample wave stream will be
1083 * decompressed on the fly if using a compressed sample. Use this method
1084 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1085 * thus for disk streaming.
1086 *
1087 * <b>Caution:</b> If you are using more than one streaming thread, you
1088 * have to use an external decompression buffer for <b>EACH</b>
1089 * streaming thread to avoid race conditions and crashes!
1090 *
1091 * For 16 bit samples, the data in the buffer will be int16_t
1092 * (using native endianness). For 24 bit, the buffer will
1093 * contain three bytes per sample, little-endian.
1094 *
1095 * @param pBuffer destination buffer
1096 * @param SampleCount number of sample points to read
1097 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1098 * @returns number of successfully read sample points
1099 * @see SetPos(), CreateDecompressionBuffer()
1100 */
1101 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1102 if (SampleCount == 0) return 0;
1103 if (!Compressed) {
1104 if (BitDepth == 24) {
1105 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1106 }
1107 else { // 16 bit
1108 // (pCkData->Read does endian correction)
1109 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1110 : pCkData->Read(pBuffer, SampleCount, 2);
1111 }
1112 }
1113 else {
1114 if (this->SamplePos >= this->SamplesTotal) return 0;
1115 //TODO: efficiency: maybe we should test for an average compression rate
1116 unsigned long assumedsize = GuessSize(SampleCount),
1117 remainingbytes = 0, // remaining bytes in the local buffer
1118 remainingsamples = SampleCount,
1119 copysamples, skipsamples,
1120 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1121 this->FrameOffset = 0;
1122
1123 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1124
1125 // if decompression buffer too small, then reduce amount of samples to read
1126 if (pDecompressionBuffer->Size < assumedsize) {
1127 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1128 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1129 remainingsamples = SampleCount;
1130 assumedsize = GuessSize(SampleCount);
1131 }
1132
1133 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1135 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1136 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1137
1138 while (remainingsamples && remainingbytes) {
1139 unsigned long framesamples = SamplesPerFrame;
1140 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1141
1142 int mode_l = *pSrc++, mode_r = 0;
1143
1144 if (Channels == 2) {
1145 mode_r = *pSrc++;
1146 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1147 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1148 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1149 if (remainingbytes < framebytes) { // last frame in sample
1150 framesamples = SamplesInLastFrame;
1151 if (mode_l == 4 && (framesamples & 1)) {
1152 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1153 }
1154 else {
1155 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1156 }
1157 }
1158 }
1159 else {
1160 framebytes = bytesPerFrame[mode_l] + 1;
1161 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1162 if (remainingbytes < framebytes) {
1163 framesamples = SamplesInLastFrame;
1164 }
1165 }
1166
1167 // determine how many samples in this frame to skip and read
1168 if (currentframeoffset + remainingsamples >= framesamples) {
1169 if (currentframeoffset <= framesamples) {
1170 copysamples = framesamples - currentframeoffset;
1171 skipsamples = currentframeoffset;
1172 }
1173 else {
1174 copysamples = 0;
1175 skipsamples = framesamples;
1176 }
1177 }
1178 else {
1179 // This frame has enough data for pBuffer, but not
1180 // all of the frame is needed. Set file position
1181 // to start of this frame for next call to Read.
1182 copysamples = remainingsamples;
1183 skipsamples = currentframeoffset;
1184 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1185 this->FrameOffset = currentframeoffset + copysamples;
1186 }
1187 remainingsamples -= copysamples;
1188
1189 if (remainingbytes > framebytes) {
1190 remainingbytes -= framebytes;
1191 if (remainingsamples == 0 &&
1192 currentframeoffset + copysamples == framesamples) {
1193 // This frame has enough data for pBuffer, and
1194 // all of the frame is needed. Set file
1195 // position to start of next frame for next
1196 // call to Read. FrameOffset is 0.
1197 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1198 }
1199 }
1200 else remainingbytes = 0;
1201
1202 currentframeoffset -= skipsamples;
1203
1204 if (copysamples == 0) {
1205 // skip this frame
1206 pSrc += framebytes - Channels;
1207 }
1208 else {
1209 const unsigned char* const param_l = pSrc;
1210 if (BitDepth == 24) {
1211 if (mode_l != 2) pSrc += 12;
1212
1213 if (Channels == 2) { // Stereo
1214 const unsigned char* const param_r = pSrc;
1215 if (mode_r != 2) pSrc += 12;
1216
1217 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1218 skipsamples, copysamples, TruncatedBits);
1219 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1220 skipsamples, copysamples, TruncatedBits);
1221 pDst24 += copysamples * 6;
1222 }
1223 else { // Mono
1224 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1225 skipsamples, copysamples, TruncatedBits);
1226 pDst24 += copysamples * 3;
1227 }
1228 }
1229 else { // 16 bit
1230 if (mode_l) pSrc += 4;
1231
1232 int step;
1233 if (Channels == 2) { // Stereo
1234 const unsigned char* const param_r = pSrc;
1235 if (mode_r) pSrc += 4;
1236
1237 step = (2 - mode_l) + (2 - mode_r);
1238 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1239 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1240 skipsamples, copysamples);
1241 pDst += copysamples << 1;
1242 }
1243 else { // Mono
1244 step = 2 - mode_l;
1245 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1246 pDst += copysamples;
1247 }
1248 }
1249 pSrc += nextFrameOffset;
1250 }
1251
1252 // reload from disk to local buffer if needed
1253 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1254 assumedsize = GuessSize(remainingsamples);
1255 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1256 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1257 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1258 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1259 }
1260 } // while
1261
1262 this->SamplePos += (SampleCount - remainingsamples);
1263 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1264 return (SampleCount - remainingsamples);
1265 }
1266 }
1267
1268 /** @brief Write sample wave data.
1269 *
1270 * Writes \a SampleCount number of sample points from the buffer pointed
1271 * by \a pBuffer and increments the position within the sample. Use this
1272 * method to directly write the sample data to disk, i.e. if you don't
1273 * want or cannot load the whole sample data into RAM.
1274 *
1275 * You have to Resize() the sample to the desired size and call
1276 * File::Save() <b>before</b> using Write().
1277 *
1278 * Note: there is currently no support for writing compressed samples.
1279 *
1280 * For 16 bit samples, the data in the source buffer should be
1281 * int16_t (using native endianness). For 24 bit, the buffer
1282 * should contain three bytes per sample, little-endian.
1283 *
1284 * @param pBuffer - source buffer
1285 * @param SampleCount - number of sample points to write
1286 * @throws DLS::Exception if current sample size is too small
1287 * @throws gig::Exception if sample is compressed
1288 * @see DLS::LoadSampleData()
1289 */
1290 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1291 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1292
1293 // if this is the first write in this sample, reset the
1294 // checksum calculator
1295 if (pCkData->GetPos() == 0) {
1296 __resetCRC(crc);
1297 }
1298 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1299 unsigned long res;
1300 if (BitDepth == 24) {
1301 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1302 } else { // 16 bit
1303 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1304 : pCkData->Write(pBuffer, SampleCount, 2);
1305 }
1306 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1307
1308 // if this is the last write, update the checksum chunk in the
1309 // file
1310 if (pCkData->GetPos() == pCkData->GetSize()) {
1311 File* pFile = static_cast<File*>(GetParent());
1312 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1313 }
1314 return res;
1315 }
1316
1317 /**
1318 * Allocates a decompression buffer for streaming (compressed) samples
1319 * with Sample::Read(). If you are using more than one streaming thread
1320 * in your application you <b>HAVE</b> to create a decompression buffer
1321 * for <b>EACH</b> of your streaming threads and provide it with the
1322 * Sample::Read() call in order to avoid race conditions and crashes.
1323 *
1324 * You should free the memory occupied by the allocated buffer(s) once
1325 * you don't need one of your streaming threads anymore by calling
1326 * DestroyDecompressionBuffer().
1327 *
1328 * @param MaxReadSize - the maximum size (in sample points) you ever
1329 * expect to read with one Read() call
1330 * @returns allocated decompression buffer
1331 * @see DestroyDecompressionBuffer()
1332 */
1333 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1334 buffer_t result;
1335 const double worstCaseHeaderOverhead =
1336 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1337 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1338 result.pStart = new int8_t[result.Size];
1339 result.NullExtensionSize = 0;
1340 return result;
1341 }
1342
1343 /**
1344 * Free decompression buffer, previously created with
1345 * CreateDecompressionBuffer().
1346 *
1347 * @param DecompressionBuffer - previously allocated decompression
1348 * buffer to free
1349 */
1350 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1351 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1352 delete[] (int8_t*) DecompressionBuffer.pStart;
1353 DecompressionBuffer.pStart = NULL;
1354 DecompressionBuffer.Size = 0;
1355 DecompressionBuffer.NullExtensionSize = 0;
1356 }
1357 }
1358
1359 /**
1360 * Returns pointer to the Group this Sample belongs to. In the .gig
1361 * format a sample always belongs to one group. If it wasn't explicitly
1362 * assigned to a certain group, it will be automatically assigned to a
1363 * default group.
1364 *
1365 * @returns Sample's Group (never NULL)
1366 */
1367 Group* Sample::GetGroup() const {
1368 return pGroup;
1369 }
1370
1371 Sample::~Sample() {
1372 Instances--;
1373 if (!Instances && InternalDecompressionBuffer.Size) {
1374 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1375 InternalDecompressionBuffer.pStart = NULL;
1376 InternalDecompressionBuffer.Size = 0;
1377 }
1378 if (FrameTable) delete[] FrameTable;
1379 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1380 }
1381
1382
1383
1384 // *************** DimensionRegion ***************
1385 // *
1386
1387 uint DimensionRegion::Instances = 0;
1388 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1389
1390 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1391 Instances++;
1392
1393 pSample = NULL;
1394 pRegion = pParent;
1395
1396 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1397 else memset(&Crossfade, 0, 4);
1398
1399 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1400
1401 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1402 if (_3ewa) { // if '3ewa' chunk exists
1403 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1404 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406 _3ewa->ReadInt16(); // unknown
1407 LFO1InternalDepth = _3ewa->ReadUint16();
1408 _3ewa->ReadInt16(); // unknown
1409 LFO3InternalDepth = _3ewa->ReadInt16();
1410 _3ewa->ReadInt16(); // unknown
1411 LFO1ControlDepth = _3ewa->ReadUint16();
1412 _3ewa->ReadInt16(); // unknown
1413 LFO3ControlDepth = _3ewa->ReadInt16();
1414 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1416 _3ewa->ReadInt16(); // unknown
1417 EG1Sustain = _3ewa->ReadUint16();
1418 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1419 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1421 EG1ControllerInvert = eg1ctrloptions & 0x01;
1422 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1423 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1424 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1425 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1426 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1427 EG2ControllerInvert = eg2ctrloptions & 0x01;
1428 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1429 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1430 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1431 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434 _3ewa->ReadInt16(); // unknown
1435 EG2Sustain = _3ewa->ReadUint16();
1436 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437 _3ewa->ReadInt16(); // unknown
1438 LFO2ControlDepth = _3ewa->ReadUint16();
1439 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1440 _3ewa->ReadInt16(); // unknown
1441 LFO2InternalDepth = _3ewa->ReadUint16();
1442 int32_t eg1decay2 = _3ewa->ReadInt32();
1443 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1444 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1445 _3ewa->ReadInt16(); // unknown
1446 EG1PreAttack = _3ewa->ReadUint16();
1447 int32_t eg2decay2 = _3ewa->ReadInt32();
1448 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1449 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1450 _3ewa->ReadInt16(); // unknown
1451 EG2PreAttack = _3ewa->ReadUint16();
1452 uint8_t velocityresponse = _3ewa->ReadUint8();
1453 if (velocityresponse < 5) {
1454 VelocityResponseCurve = curve_type_nonlinear;
1455 VelocityResponseDepth = velocityresponse;
1456 } else if (velocityresponse < 10) {
1457 VelocityResponseCurve = curve_type_linear;
1458 VelocityResponseDepth = velocityresponse - 5;
1459 } else if (velocityresponse < 15) {
1460 VelocityResponseCurve = curve_type_special;
1461 VelocityResponseDepth = velocityresponse - 10;
1462 } else {
1463 VelocityResponseCurve = curve_type_unknown;
1464 VelocityResponseDepth = 0;
1465 }
1466 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1467 if (releasevelocityresponse < 5) {
1468 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469 ReleaseVelocityResponseDepth = releasevelocityresponse;
1470 } else if (releasevelocityresponse < 10) {
1471 ReleaseVelocityResponseCurve = curve_type_linear;
1472 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1473 } else if (releasevelocityresponse < 15) {
1474 ReleaseVelocityResponseCurve = curve_type_special;
1475 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1476 } else {
1477 ReleaseVelocityResponseCurve = curve_type_unknown;
1478 ReleaseVelocityResponseDepth = 0;
1479 }
1480 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1481 AttenuationControllerThreshold = _3ewa->ReadInt8();
1482 _3ewa->ReadInt32(); // unknown
1483 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1484 _3ewa->ReadInt16(); // unknown
1485 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1486 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1487 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1488 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1489 else DimensionBypass = dim_bypass_ctrl_none;
1490 uint8_t pan = _3ewa->ReadUint8();
1491 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1492 SelfMask = _3ewa->ReadInt8() & 0x01;
1493 _3ewa->ReadInt8(); // unknown
1494 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1495 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1496 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1497 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1498 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1500 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1501 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1502 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1503 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1504 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1505 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1506 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1507 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1508 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1509 : vcf_res_ctrl_none;
1510 uint16_t eg3depth = _3ewa->ReadUint16();
1511 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1512 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1513 _3ewa->ReadInt16(); // unknown
1514 ChannelOffset = _3ewa->ReadUint8() / 4;
1515 uint8_t regoptions = _3ewa->ReadUint8();
1516 MSDecode = regoptions & 0x01; // bit 0
1517 SustainDefeat = regoptions & 0x02; // bit 1
1518 _3ewa->ReadInt16(); // unknown
1519 VelocityUpperLimit = _3ewa->ReadInt8();
1520 _3ewa->ReadInt8(); // unknown
1521 _3ewa->ReadInt16(); // unknown
1522 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1523 _3ewa->ReadInt8(); // unknown
1524 _3ewa->ReadInt8(); // unknown
1525 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1526 uint8_t vcfcutoff = _3ewa->ReadUint8();
1527 VCFEnabled = vcfcutoff & 0x80; // bit 7
1528 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1529 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1530 uint8_t vcfvelscale = _3ewa->ReadUint8();
1531 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1532 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1533 _3ewa->ReadInt8(); // unknown
1534 uint8_t vcfresonance = _3ewa->ReadUint8();
1535 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1536 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1537 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1538 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1539 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1540 uint8_t vcfvelocity = _3ewa->ReadUint8();
1541 VCFVelocityDynamicRange = vcfvelocity % 5;
1542 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1543 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1544 if (VCFType == vcf_type_lowpass) {
1545 if (lfo3ctrl & 0x40) // bit 6
1546 VCFType = vcf_type_lowpassturbo;
1547 }
1548 if (_3ewa->RemainingBytes() >= 8) {
1549 _3ewa->Read(DimensionUpperLimits, 1, 8);
1550 } else {
1551 memset(DimensionUpperLimits, 0, 8);
1552 }
1553 } else { // '3ewa' chunk does not exist yet
1554 // use default values
1555 LFO3Frequency = 1.0;
1556 EG3Attack = 0.0;
1557 LFO1InternalDepth = 0;
1558 LFO3InternalDepth = 0;
1559 LFO1ControlDepth = 0;
1560 LFO3ControlDepth = 0;
1561 EG1Attack = 0.0;
1562 EG1Decay1 = 0.005;
1563 EG1Sustain = 1000;
1564 EG1Release = 0.3;
1565 EG1Controller.type = eg1_ctrl_t::type_none;
1566 EG1Controller.controller_number = 0;
1567 EG1ControllerInvert = false;
1568 EG1ControllerAttackInfluence = 0;
1569 EG1ControllerDecayInfluence = 0;
1570 EG1ControllerReleaseInfluence = 0;
1571 EG2Controller.type = eg2_ctrl_t::type_none;
1572 EG2Controller.controller_number = 0;
1573 EG2ControllerInvert = false;
1574 EG2ControllerAttackInfluence = 0;
1575 EG2ControllerDecayInfluence = 0;
1576 EG2ControllerReleaseInfluence = 0;
1577 LFO1Frequency = 1.0;
1578 EG2Attack = 0.0;
1579 EG2Decay1 = 0.005;
1580 EG2Sustain = 1000;
1581 EG2Release = 0.3;
1582 LFO2ControlDepth = 0;
1583 LFO2Frequency = 1.0;
1584 LFO2InternalDepth = 0;
1585 EG1Decay2 = 0.0;
1586 EG1InfiniteSustain = true;
1587 EG1PreAttack = 0;
1588 EG2Decay2 = 0.0;
1589 EG2InfiniteSustain = true;
1590 EG2PreAttack = 0;
1591 VelocityResponseCurve = curve_type_nonlinear;
1592 VelocityResponseDepth = 3;
1593 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1594 ReleaseVelocityResponseDepth = 3;
1595 VelocityResponseCurveScaling = 32;
1596 AttenuationControllerThreshold = 0;
1597 SampleStartOffset = 0;
1598 PitchTrack = true;
1599 DimensionBypass = dim_bypass_ctrl_none;
1600 Pan = 0;
1601 SelfMask = true;
1602 LFO3Controller = lfo3_ctrl_modwheel;
1603 LFO3Sync = false;
1604 InvertAttenuationController = false;
1605 AttenuationController.type = attenuation_ctrl_t::type_none;
1606 AttenuationController.controller_number = 0;
1607 LFO2Controller = lfo2_ctrl_internal;
1608 LFO2FlipPhase = false;
1609 LFO2Sync = false;
1610 LFO1Controller = lfo1_ctrl_internal;
1611 LFO1FlipPhase = false;
1612 LFO1Sync = false;
1613 VCFResonanceController = vcf_res_ctrl_none;
1614 EG3Depth = 0;
1615 ChannelOffset = 0;
1616 MSDecode = false;
1617 SustainDefeat = false;
1618 VelocityUpperLimit = 0;
1619 ReleaseTriggerDecay = 0;
1620 EG1Hold = false;
1621 VCFEnabled = false;
1622 VCFCutoff = 0;
1623 VCFCutoffController = vcf_cutoff_ctrl_none;
1624 VCFCutoffControllerInvert = false;
1625 VCFVelocityScale = 0;
1626 VCFResonance = 0;
1627 VCFResonanceDynamic = false;
1628 VCFKeyboardTracking = false;
1629 VCFKeyboardTrackingBreakpoint = 0;
1630 VCFVelocityDynamicRange = 0x04;
1631 VCFVelocityCurve = curve_type_linear;
1632 VCFType = vcf_type_lowpass;
1633 memset(DimensionUpperLimits, 127, 8);
1634 }
1635
1636 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1637 VelocityResponseDepth,
1638 VelocityResponseCurveScaling);
1639
1640 pVelocityReleaseTable = GetReleaseVelocityTable(
1641 ReleaseVelocityResponseCurve,
1642 ReleaseVelocityResponseDepth
1643 );
1644
1645 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1646 VCFVelocityDynamicRange,
1647 VCFVelocityScale,
1648 VCFCutoffController);
1649
1650 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1651 VelocityTable = 0;
1652 }
1653
1654 /*
1655 * Constructs a DimensionRegion by copying all parameters from
1656 * another DimensionRegion
1657 */
1658 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1659 Instances++;
1660 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1661 *this = src; // default memberwise shallow copy of all parameters
1662 pParentList = _3ewl; // restore the chunk pointer
1663
1664 // deep copy of owned structures
1665 if (src.VelocityTable) {
1666 VelocityTable = new uint8_t[128];
1667 for (int k = 0 ; k < 128 ; k++)
1668 VelocityTable[k] = src.VelocityTable[k];
1669 }
1670 if (src.pSampleLoops) {
1671 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1672 for (int k = 0 ; k < src.SampleLoops ; k++)
1673 pSampleLoops[k] = src.pSampleLoops[k];
1674 }
1675 }
1676
1677 /**
1678 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1679 * and assign it to this object.
1680 *
1681 * Note that all sample pointers referenced by @a orig are simply copied as
1682 * memory address. Thus the respective samples are shared, not duplicated!
1683 *
1684 * @param orig - original DimensionRegion object to be copied from
1685 */
1686 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1687 CopyAssign(orig, NULL);
1688 }
1689
1690 /**
1691 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1692 * and assign it to this object.
1693 *
1694 * @param orig - original DimensionRegion object to be copied from
1695 * @param mSamples - crosslink map between the foreign file's samples and
1696 * this file's samples
1697 */
1698 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1699 // delete all allocated data first
1700 if (VelocityTable) delete [] VelocityTable;
1701 if (pSampleLoops) delete [] pSampleLoops;
1702
1703 // backup parent list pointer
1704 RIFF::List* p = pParentList;
1705
1706 gig::Sample* pOriginalSample = pSample;
1707 gig::Region* pOriginalRegion = pRegion;
1708
1709 //NOTE: copy code copied from assignment constructor above, see comment there as well
1710
1711 *this = *orig; // default memberwise shallow copy of all parameters
1712
1713 // restore members that shall not be altered
1714 pParentList = p; // restore the chunk pointer
1715 pRegion = pOriginalRegion;
1716
1717 // only take the raw sample reference reference if the
1718 // two DimensionRegion objects are part of the same file
1719 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1720 pSample = pOriginalSample;
1721 }
1722
1723 if (mSamples && mSamples->count(orig->pSample)) {
1724 pSample = mSamples->find(orig->pSample)->second;
1725 }
1726
1727 // deep copy of owned structures
1728 if (orig->VelocityTable) {
1729 VelocityTable = new uint8_t[128];
1730 for (int k = 0 ; k < 128 ; k++)
1731 VelocityTable[k] = orig->VelocityTable[k];
1732 }
1733 if (orig->pSampleLoops) {
1734 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1735 for (int k = 0 ; k < orig->SampleLoops ; k++)
1736 pSampleLoops[k] = orig->pSampleLoops[k];
1737 }
1738 }
1739
1740 /**
1741 * Updates the respective member variable and updates @c SampleAttenuation
1742 * which depends on this value.
1743 */
1744 void DimensionRegion::SetGain(int32_t gain) {
1745 DLS::Sampler::SetGain(gain);
1746 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1747 }
1748
1749 /**
1750 * Apply dimension region settings to the respective RIFF chunks. You
1751 * have to call File::Save() to make changes persistent.
1752 *
1753 * Usually there is absolutely no need to call this method explicitly.
1754 * It will be called automatically when File::Save() was called.
1755 */
1756 void DimensionRegion::UpdateChunks() {
1757 // first update base class's chunk
1758 DLS::Sampler::UpdateChunks();
1759
1760 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1761 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1762 pData[12] = Crossfade.in_start;
1763 pData[13] = Crossfade.in_end;
1764 pData[14] = Crossfade.out_start;
1765 pData[15] = Crossfade.out_end;
1766
1767 // make sure '3ewa' chunk exists
1768 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1769 if (!_3ewa) {
1770 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1771 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1772 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1773 }
1774 pData = (uint8_t*) _3ewa->LoadChunkData();
1775
1776 // update '3ewa' chunk with DimensionRegion's current settings
1777
1778 const uint32_t chunksize = _3ewa->GetNewSize();
1779 store32(&pData[0], chunksize); // unknown, always chunk size?
1780
1781 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1782 store32(&pData[4], lfo3freq);
1783
1784 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1785 store32(&pData[8], eg3attack);
1786
1787 // next 2 bytes unknown
1788
1789 store16(&pData[14], LFO1InternalDepth);
1790
1791 // next 2 bytes unknown
1792
1793 store16(&pData[18], LFO3InternalDepth);
1794
1795 // next 2 bytes unknown
1796
1797 store16(&pData[22], LFO1ControlDepth);
1798
1799 // next 2 bytes unknown
1800
1801 store16(&pData[26], LFO3ControlDepth);
1802
1803 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1804 store32(&pData[28], eg1attack);
1805
1806 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1807 store32(&pData[32], eg1decay1);
1808
1809 // next 2 bytes unknown
1810
1811 store16(&pData[38], EG1Sustain);
1812
1813 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1814 store32(&pData[40], eg1release);
1815
1816 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1817 pData[44] = eg1ctl;
1818
1819 const uint8_t eg1ctrloptions =
1820 (EG1ControllerInvert ? 0x01 : 0x00) |
1821 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1822 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1823 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1824 pData[45] = eg1ctrloptions;
1825
1826 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1827 pData[46] = eg2ctl;
1828
1829 const uint8_t eg2ctrloptions =
1830 (EG2ControllerInvert ? 0x01 : 0x00) |
1831 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1832 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1833 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1834 pData[47] = eg2ctrloptions;
1835
1836 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1837 store32(&pData[48], lfo1freq);
1838
1839 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1840 store32(&pData[52], eg2attack);
1841
1842 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1843 store32(&pData[56], eg2decay1);
1844
1845 // next 2 bytes unknown
1846
1847 store16(&pData[62], EG2Sustain);
1848
1849 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1850 store32(&pData[64], eg2release);
1851
1852 // next 2 bytes unknown
1853
1854 store16(&pData[70], LFO2ControlDepth);
1855
1856 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1857 store32(&pData[72], lfo2freq);
1858
1859 // next 2 bytes unknown
1860
1861 store16(&pData[78], LFO2InternalDepth);
1862
1863 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1864 store32(&pData[80], eg1decay2);
1865
1866 // next 2 bytes unknown
1867
1868 store16(&pData[86], EG1PreAttack);
1869
1870 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1871 store32(&pData[88], eg2decay2);
1872
1873 // next 2 bytes unknown
1874
1875 store16(&pData[94], EG2PreAttack);
1876
1877 {
1878 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1879 uint8_t velocityresponse = VelocityResponseDepth;
1880 switch (VelocityResponseCurve) {
1881 case curve_type_nonlinear:
1882 break;
1883 case curve_type_linear:
1884 velocityresponse += 5;
1885 break;
1886 case curve_type_special:
1887 velocityresponse += 10;
1888 break;
1889 case curve_type_unknown:
1890 default:
1891 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1892 }
1893 pData[96] = velocityresponse;
1894 }
1895
1896 {
1897 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1898 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1899 switch (ReleaseVelocityResponseCurve) {
1900 case curve_type_nonlinear:
1901 break;
1902 case curve_type_linear:
1903 releasevelocityresponse += 5;
1904 break;
1905 case curve_type_special:
1906 releasevelocityresponse += 10;
1907 break;
1908 case curve_type_unknown:
1909 default:
1910 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1911 }
1912 pData[97] = releasevelocityresponse;
1913 }
1914
1915 pData[98] = VelocityResponseCurveScaling;
1916
1917 pData[99] = AttenuationControllerThreshold;
1918
1919 // next 4 bytes unknown
1920
1921 store16(&pData[104], SampleStartOffset);
1922
1923 // next 2 bytes unknown
1924
1925 {
1926 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1927 switch (DimensionBypass) {
1928 case dim_bypass_ctrl_94:
1929 pitchTrackDimensionBypass |= 0x10;
1930 break;
1931 case dim_bypass_ctrl_95:
1932 pitchTrackDimensionBypass |= 0x20;
1933 break;
1934 case dim_bypass_ctrl_none:
1935 //FIXME: should we set anything here?
1936 break;
1937 default:
1938 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1939 }
1940 pData[108] = pitchTrackDimensionBypass;
1941 }
1942
1943 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1944 pData[109] = pan;
1945
1946 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1947 pData[110] = selfmask;
1948
1949 // next byte unknown
1950
1951 {
1952 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1953 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1954 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1955 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1956 pData[112] = lfo3ctrl;
1957 }
1958
1959 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1960 pData[113] = attenctl;
1961
1962 {
1963 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1964 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1965 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1966 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1967 pData[114] = lfo2ctrl;
1968 }
1969
1970 {
1971 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1972 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1973 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1974 if (VCFResonanceController != vcf_res_ctrl_none)
1975 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1976 pData[115] = lfo1ctrl;
1977 }
1978
1979 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1980 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1981 store16(&pData[116], eg3depth);
1982
1983 // next 2 bytes unknown
1984
1985 const uint8_t channeloffset = ChannelOffset * 4;
1986 pData[120] = channeloffset;
1987
1988 {
1989 uint8_t regoptions = 0;
1990 if (MSDecode) regoptions |= 0x01; // bit 0
1991 if (SustainDefeat) regoptions |= 0x02; // bit 1
1992 pData[121] = regoptions;
1993 }
1994
1995 // next 2 bytes unknown
1996
1997 pData[124] = VelocityUpperLimit;
1998
1999 // next 3 bytes unknown
2000
2001 pData[128] = ReleaseTriggerDecay;
2002
2003 // next 2 bytes unknown
2004
2005 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2006 pData[131] = eg1hold;
2007
2008 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2009 (VCFCutoff & 0x7f); /* lower 7 bits */
2010 pData[132] = vcfcutoff;
2011
2012 pData[133] = VCFCutoffController;
2013
2014 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2015 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2016 pData[134] = vcfvelscale;
2017
2018 // next byte unknown
2019
2020 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2021 (VCFResonance & 0x7f); /* lower 7 bits */
2022 pData[136] = vcfresonance;
2023
2024 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2025 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2026 pData[137] = vcfbreakpoint;
2027
2028 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2029 VCFVelocityCurve * 5;
2030 pData[138] = vcfvelocity;
2031
2032 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2033 pData[139] = vcftype;
2034
2035 if (chunksize >= 148) {
2036 memcpy(&pData[140], DimensionUpperLimits, 8);
2037 }
2038 }
2039
2040 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2041 curve_type_t curveType = releaseVelocityResponseCurve;
2042 uint8_t depth = releaseVelocityResponseDepth;
2043 // this models a strange behaviour or bug in GSt: two of the
2044 // velocity response curves for release time are not used even
2045 // if specified, instead another curve is chosen.
2046 if ((curveType == curve_type_nonlinear && depth == 0) ||
2047 (curveType == curve_type_special && depth == 4)) {
2048 curveType = curve_type_nonlinear;
2049 depth = 3;
2050 }
2051 return GetVelocityTable(curveType, depth, 0);
2052 }
2053
2054 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2055 uint8_t vcfVelocityDynamicRange,
2056 uint8_t vcfVelocityScale,
2057 vcf_cutoff_ctrl_t vcfCutoffController)
2058 {
2059 curve_type_t curveType = vcfVelocityCurve;
2060 uint8_t depth = vcfVelocityDynamicRange;
2061 // even stranger GSt: two of the velocity response curves for
2062 // filter cutoff are not used, instead another special curve
2063 // is chosen. This curve is not used anywhere else.
2064 if ((curveType == curve_type_nonlinear && depth == 0) ||
2065 (curveType == curve_type_special && depth == 4)) {
2066 curveType = curve_type_special;
2067 depth = 5;
2068 }
2069 return GetVelocityTable(curveType, depth,
2070 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2071 ? vcfVelocityScale : 0);
2072 }
2073
2074 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2075 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2076 {
2077 double* table;
2078 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2079 if (pVelocityTables->count(tableKey)) { // if key exists
2080 table = (*pVelocityTables)[tableKey];
2081 }
2082 else {
2083 table = CreateVelocityTable(curveType, depth, scaling);
2084 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2085 }
2086 return table;
2087 }
2088
2089 Region* DimensionRegion::GetParent() const {
2090 return pRegion;
2091 }
2092
2093 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2094 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2095 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2096 //#pragma GCC diagnostic push
2097 //#pragma GCC diagnostic error "-Wswitch"
2098
2099 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2100 leverage_ctrl_t decodedcontroller;
2101 switch (EncodedController) {
2102 // special controller
2103 case _lev_ctrl_none:
2104 decodedcontroller.type = leverage_ctrl_t::type_none;
2105 decodedcontroller.controller_number = 0;
2106 break;
2107 case _lev_ctrl_velocity:
2108 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2109 decodedcontroller.controller_number = 0;
2110 break;
2111 case _lev_ctrl_channelaftertouch:
2112 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2113 decodedcontroller.controller_number = 0;
2114 break;
2115
2116 // ordinary MIDI control change controller
2117 case _lev_ctrl_modwheel:
2118 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2119 decodedcontroller.controller_number = 1;
2120 break;
2121 case _lev_ctrl_breath:
2122 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2123 decodedcontroller.controller_number = 2;
2124 break;
2125 case _lev_ctrl_foot:
2126 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2127 decodedcontroller.controller_number = 4;
2128 break;
2129 case _lev_ctrl_effect1:
2130 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2131 decodedcontroller.controller_number = 12;
2132 break;
2133 case _lev_ctrl_effect2:
2134 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2135 decodedcontroller.controller_number = 13;
2136 break;
2137 case _lev_ctrl_genpurpose1:
2138 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139 decodedcontroller.controller_number = 16;
2140 break;
2141 case _lev_ctrl_genpurpose2:
2142 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143 decodedcontroller.controller_number = 17;
2144 break;
2145 case _lev_ctrl_genpurpose3:
2146 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147 decodedcontroller.controller_number = 18;
2148 break;
2149 case _lev_ctrl_genpurpose4:
2150 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151 decodedcontroller.controller_number = 19;
2152 break;
2153 case _lev_ctrl_portamentotime:
2154 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155 decodedcontroller.controller_number = 5;
2156 break;
2157 case _lev_ctrl_sustainpedal:
2158 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159 decodedcontroller.controller_number = 64;
2160 break;
2161 case _lev_ctrl_portamento:
2162 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163 decodedcontroller.controller_number = 65;
2164 break;
2165 case _lev_ctrl_sostenutopedal:
2166 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167 decodedcontroller.controller_number = 66;
2168 break;
2169 case _lev_ctrl_softpedal:
2170 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171 decodedcontroller.controller_number = 67;
2172 break;
2173 case _lev_ctrl_genpurpose5:
2174 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175 decodedcontroller.controller_number = 80;
2176 break;
2177 case _lev_ctrl_genpurpose6:
2178 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179 decodedcontroller.controller_number = 81;
2180 break;
2181 case _lev_ctrl_genpurpose7:
2182 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183 decodedcontroller.controller_number = 82;
2184 break;
2185 case _lev_ctrl_genpurpose8:
2186 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187 decodedcontroller.controller_number = 83;
2188 break;
2189 case _lev_ctrl_effect1depth:
2190 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191 decodedcontroller.controller_number = 91;
2192 break;
2193 case _lev_ctrl_effect2depth:
2194 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195 decodedcontroller.controller_number = 92;
2196 break;
2197 case _lev_ctrl_effect3depth:
2198 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199 decodedcontroller.controller_number = 93;
2200 break;
2201 case _lev_ctrl_effect4depth:
2202 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203 decodedcontroller.controller_number = 94;
2204 break;
2205 case _lev_ctrl_effect5depth:
2206 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207 decodedcontroller.controller_number = 95;
2208 break;
2209
2210 // format extension (these controllers are so far only supported by
2211 // LinuxSampler & gigedit) they will *NOT* work with
2212 // Gigasampler/GigaStudio !
2213 case _lev_ctrl_CC3_EXT:
2214 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215 decodedcontroller.controller_number = 3;
2216 break;
2217 case _lev_ctrl_CC6_EXT:
2218 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219 decodedcontroller.controller_number = 6;
2220 break;
2221 case _lev_ctrl_CC7_EXT:
2222 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223 decodedcontroller.controller_number = 7;
2224 break;
2225 case _lev_ctrl_CC8_EXT:
2226 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227 decodedcontroller.controller_number = 8;
2228 break;
2229 case _lev_ctrl_CC9_EXT:
2230 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2231 decodedcontroller.controller_number = 9;
2232 break;
2233 case _lev_ctrl_CC10_EXT:
2234 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235 decodedcontroller.controller_number = 10;
2236 break;
2237 case _lev_ctrl_CC11_EXT:
2238 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239 decodedcontroller.controller_number = 11;
2240 break;
2241 case _lev_ctrl_CC14_EXT:
2242 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243 decodedcontroller.controller_number = 14;
2244 break;
2245 case _lev_ctrl_CC15_EXT:
2246 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247 decodedcontroller.controller_number = 15;
2248 break;
2249 case _lev_ctrl_CC20_EXT:
2250 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251 decodedcontroller.controller_number = 20;
2252 break;
2253 case _lev_ctrl_CC21_EXT:
2254 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255 decodedcontroller.controller_number = 21;
2256 break;
2257 case _lev_ctrl_CC22_EXT:
2258 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259 decodedcontroller.controller_number = 22;
2260 break;
2261 case _lev_ctrl_CC23_EXT:
2262 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263 decodedcontroller.controller_number = 23;
2264 break;
2265 case _lev_ctrl_CC24_EXT:
2266 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267 decodedcontroller.controller_number = 24;
2268 break;
2269 case _lev_ctrl_CC25_EXT:
2270 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271 decodedcontroller.controller_number = 25;
2272 break;
2273 case _lev_ctrl_CC26_EXT:
2274 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275 decodedcontroller.controller_number = 26;
2276 break;
2277 case _lev_ctrl_CC27_EXT:
2278 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279 decodedcontroller.controller_number = 27;
2280 break;
2281 case _lev_ctrl_CC28_EXT:
2282 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283 decodedcontroller.controller_number = 28;
2284 break;
2285 case _lev_ctrl_CC29_EXT:
2286 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287 decodedcontroller.controller_number = 29;
2288 break;
2289 case _lev_ctrl_CC30_EXT:
2290 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291 decodedcontroller.controller_number = 30;
2292 break;
2293 case _lev_ctrl_CC31_EXT:
2294 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295 decodedcontroller.controller_number = 31;
2296 break;
2297 case _lev_ctrl_CC68_EXT:
2298 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299 decodedcontroller.controller_number = 68;
2300 break;
2301 case _lev_ctrl_CC69_EXT:
2302 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303 decodedcontroller.controller_number = 69;
2304 break;
2305 case _lev_ctrl_CC70_EXT:
2306 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307 decodedcontroller.controller_number = 70;
2308 break;
2309 case _lev_ctrl_CC71_EXT:
2310 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311 decodedcontroller.controller_number = 71;
2312 break;
2313 case _lev_ctrl_CC72_EXT:
2314 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315 decodedcontroller.controller_number = 72;
2316 break;
2317 case _lev_ctrl_CC73_EXT:
2318 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319 decodedcontroller.controller_number = 73;
2320 break;
2321 case _lev_ctrl_CC74_EXT:
2322 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323 decodedcontroller.controller_number = 74;
2324 break;
2325 case _lev_ctrl_CC75_EXT:
2326 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327 decodedcontroller.controller_number = 75;
2328 break;
2329 case _lev_ctrl_CC76_EXT:
2330 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331 decodedcontroller.controller_number = 76;
2332 break;
2333 case _lev_ctrl_CC77_EXT:
2334 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335 decodedcontroller.controller_number = 77;
2336 break;
2337 case _lev_ctrl_CC78_EXT:
2338 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339 decodedcontroller.controller_number = 78;
2340 break;
2341 case _lev_ctrl_CC79_EXT:
2342 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343 decodedcontroller.controller_number = 79;
2344 break;
2345 case _lev_ctrl_CC84_EXT:
2346 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347 decodedcontroller.controller_number = 84;
2348 break;
2349 case _lev_ctrl_CC85_EXT:
2350 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351 decodedcontroller.controller_number = 85;
2352 break;
2353 case _lev_ctrl_CC86_EXT:
2354 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355 decodedcontroller.controller_number = 86;
2356 break;
2357 case _lev_ctrl_CC87_EXT:
2358 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359 decodedcontroller.controller_number = 87;
2360 break;
2361 case _lev_ctrl_CC89_EXT:
2362 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363 decodedcontroller.controller_number = 89;
2364 break;
2365 case _lev_ctrl_CC90_EXT:
2366 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367 decodedcontroller.controller_number = 90;
2368 break;
2369 case _lev_ctrl_CC96_EXT:
2370 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371 decodedcontroller.controller_number = 96;
2372 break;
2373 case _lev_ctrl_CC97_EXT:
2374 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375 decodedcontroller.controller_number = 97;
2376 break;
2377 case _lev_ctrl_CC102_EXT:
2378 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379 decodedcontroller.controller_number = 102;
2380 break;
2381 case _lev_ctrl_CC103_EXT:
2382 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383 decodedcontroller.controller_number = 103;
2384 break;
2385 case _lev_ctrl_CC104_EXT:
2386 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387 decodedcontroller.controller_number = 104;
2388 break;
2389 case _lev_ctrl_CC105_EXT:
2390 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391 decodedcontroller.controller_number = 105;
2392 break;
2393 case _lev_ctrl_CC106_EXT:
2394 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395 decodedcontroller.controller_number = 106;
2396 break;
2397 case _lev_ctrl_CC107_EXT:
2398 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399 decodedcontroller.controller_number = 107;
2400 break;
2401 case _lev_ctrl_CC108_EXT:
2402 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403 decodedcontroller.controller_number = 108;
2404 break;
2405 case _lev_ctrl_CC109_EXT:
2406 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407 decodedcontroller.controller_number = 109;
2408 break;
2409 case _lev_ctrl_CC110_EXT:
2410 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411 decodedcontroller.controller_number = 110;
2412 break;
2413 case _lev_ctrl_CC111_EXT:
2414 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415 decodedcontroller.controller_number = 111;
2416 break;
2417 case _lev_ctrl_CC112_EXT:
2418 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419 decodedcontroller.controller_number = 112;
2420 break;
2421 case _lev_ctrl_CC113_EXT:
2422 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423 decodedcontroller.controller_number = 113;
2424 break;
2425 case _lev_ctrl_CC114_EXT:
2426 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427 decodedcontroller.controller_number = 114;
2428 break;
2429 case _lev_ctrl_CC115_EXT:
2430 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431 decodedcontroller.controller_number = 115;
2432 break;
2433 case _lev_ctrl_CC116_EXT:
2434 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435 decodedcontroller.controller_number = 116;
2436 break;
2437 case _lev_ctrl_CC117_EXT:
2438 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439 decodedcontroller.controller_number = 117;
2440 break;
2441 case _lev_ctrl_CC118_EXT:
2442 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443 decodedcontroller.controller_number = 118;
2444 break;
2445 case _lev_ctrl_CC119_EXT:
2446 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447 decodedcontroller.controller_number = 119;
2448 break;
2449
2450 // unknown controller type
2451 default:
2452 throw gig::Exception("Unknown leverage controller type.");
2453 }
2454 return decodedcontroller;
2455 }
2456
2457 // see above (diagnostic push not supported prior GCC 4.6)
2458 //#pragma GCC diagnostic pop
2459
2460 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2461 _lev_ctrl_t encodedcontroller;
2462 switch (DecodedController.type) {
2463 // special controller
2464 case leverage_ctrl_t::type_none:
2465 encodedcontroller = _lev_ctrl_none;
2466 break;
2467 case leverage_ctrl_t::type_velocity:
2468 encodedcontroller = _lev_ctrl_velocity;
2469 break;
2470 case leverage_ctrl_t::type_channelaftertouch:
2471 encodedcontroller = _lev_ctrl_channelaftertouch;
2472 break;
2473
2474 // ordinary MIDI control change controller
2475 case leverage_ctrl_t::type_controlchange:
2476 switch (DecodedController.controller_number) {
2477 case 1:
2478 encodedcontroller = _lev_ctrl_modwheel;
2479 break;
2480 case 2:
2481 encodedcontroller = _lev_ctrl_breath;
2482 break;
2483 case 4:
2484 encodedcontroller = _lev_ctrl_foot;
2485 break;
2486 case 12:
2487 encodedcontroller = _lev_ctrl_effect1;
2488 break;
2489 case 13:
2490 encodedcontroller = _lev_ctrl_effect2;
2491 break;
2492 case 16:
2493 encodedcontroller = _lev_ctrl_genpurpose1;
2494 break;
2495 case 17:
2496 encodedcontroller = _lev_ctrl_genpurpose2;
2497 break;
2498 case 18:
2499 encodedcontroller = _lev_ctrl_genpurpose3;
2500 break;
2501 case 19:
2502 encodedcontroller = _lev_ctrl_genpurpose4;
2503 break;
2504 case 5:
2505 encodedcontroller = _lev_ctrl_portamentotime;
2506 break;
2507 case 64:
2508 encodedcontroller = _lev_ctrl_sustainpedal;
2509 break;
2510 case 65:
2511 encodedcontroller = _lev_ctrl_portamento;
2512 break;
2513 case 66:
2514 encodedcontroller = _lev_ctrl_sostenutopedal;
2515 break;
2516 case 67:
2517 encodedcontroller = _lev_ctrl_softpedal;
2518 break;
2519 case 80:
2520 encodedcontroller = _lev_ctrl_genpurpose5;
2521 break;
2522 case 81:
2523 encodedcontroller = _lev_ctrl_genpurpose6;
2524 break;
2525 case 82:
2526 encodedcontroller = _lev_ctrl_genpurpose7;
2527 break;
2528 case 83:
2529 encodedcontroller = _lev_ctrl_genpurpose8;
2530 break;
2531 case 91:
2532 encodedcontroller = _lev_ctrl_effect1depth;
2533 break;
2534 case 92:
2535 encodedcontroller = _lev_ctrl_effect2depth;
2536 break;
2537 case 93:
2538 encodedcontroller = _lev_ctrl_effect3depth;
2539 break;
2540 case 94:
2541 encodedcontroller = _lev_ctrl_effect4depth;
2542 break;
2543 case 95:
2544 encodedcontroller = _lev_ctrl_effect5depth;
2545 break;
2546
2547 // format extension (these controllers are so far only
2548 // supported by LinuxSampler & gigedit) they will *NOT*
2549 // work with Gigasampler/GigaStudio !
2550 case 3:
2551 encodedcontroller = _lev_ctrl_CC3_EXT;
2552 break;
2553 case 6:
2554 encodedcontroller = _lev_ctrl_CC6_EXT;
2555 break;
2556 case 7:
2557 encodedcontroller = _lev_ctrl_CC7_EXT;
2558 break;
2559 case 8:
2560 encodedcontroller = _lev_ctrl_CC8_EXT;
2561 break;
2562 case 9:
2563 encodedcontroller = _lev_ctrl_CC9_EXT;
2564 break;
2565 case 10:
2566 encodedcontroller = _lev_ctrl_CC10_EXT;
2567 break;
2568 case 11:
2569 encodedcontroller = _lev_ctrl_CC11_EXT;
2570 break;
2571 case 14:
2572 encodedcontroller = _lev_ctrl_CC14_EXT;
2573 break;
2574 case 15:
2575 encodedcontroller = _lev_ctrl_CC15_EXT;
2576 break;
2577 case 20:
2578 encodedcontroller = _lev_ctrl_CC20_EXT;
2579 break;
2580 case 21:
2581 encodedcontroller = _lev_ctrl_CC21_EXT;
2582 break;
2583 case 22:
2584 encodedcontroller = _lev_ctrl_CC22_EXT;
2585 break;
2586 case 23:
2587 encodedcontroller = _lev_ctrl_CC23_EXT;
2588 break;
2589 case 24:
2590 encodedcontroller = _lev_ctrl_CC24_EXT;
2591 break;
2592 case 25:
2593 encodedcontroller = _lev_ctrl_CC25_EXT;
2594 break;
2595 case 26:
2596 encodedcontroller = _lev_ctrl_CC26_EXT;
2597 break;
2598 case 27:
2599 encodedcontroller = _lev_ctrl_CC27_EXT;
2600 break;
2601 case 28:
2602 encodedcontroller = _lev_ctrl_CC28_EXT;
2603 break;
2604 case 29:
2605 encodedcontroller = _lev_ctrl_CC29_EXT;
2606 break;
2607 case 30:
2608 encodedcontroller = _lev_ctrl_CC30_EXT;
2609 break;
2610 case 31:
2611 encodedcontroller = _lev_ctrl_CC31_EXT;
2612 break;
2613 case 68:
2614 encodedcontroller = _lev_ctrl_CC68_EXT;
2615 break;
2616 case 69:
2617 encodedcontroller = _lev_ctrl_CC69_EXT;
2618 break;
2619 case 70:
2620 encodedcontroller = _lev_ctrl_CC70_EXT;
2621 break;
2622 case 71:
2623 encodedcontroller = _lev_ctrl_CC71_EXT;
2624 break;
2625 case 72:
2626 encodedcontroller = _lev_ctrl_CC72_EXT;
2627 break;
2628 case 73:
2629 encodedcontroller = _lev_ctrl_CC73_EXT;
2630 break;
2631 case 74:
2632 encodedcontroller = _lev_ctrl_CC74_EXT;
2633 break;
2634 case 75:
2635 encodedcontroller = _lev_ctrl_CC75_EXT;
2636 break;
2637 case 76:
2638 encodedcontroller = _lev_ctrl_CC76_EXT;
2639 break;
2640 case 77:
2641 encodedcontroller = _lev_ctrl_CC77_EXT;
2642 break;
2643 case 78:
2644 encodedcontroller = _lev_ctrl_CC78_EXT;
2645 break;
2646 case 79:
2647 encodedcontroller = _lev_ctrl_CC79_EXT;
2648 break;
2649 case 84:
2650 encodedcontroller = _lev_ctrl_CC84_EXT;
2651 break;
2652 case 85:
2653 encodedcontroller = _lev_ctrl_CC85_EXT;
2654 break;
2655 case 86:
2656 encodedcontroller = _lev_ctrl_CC86_EXT;
2657 break;
2658 case 87:
2659 encodedcontroller = _lev_ctrl_CC87_EXT;
2660 break;
2661 case 89:
2662 encodedcontroller = _lev_ctrl_CC89_EXT;
2663 break;
2664 case 90:
2665 encodedcontroller = _lev_ctrl_CC90_EXT;
2666 break;
2667 case 96:
2668 encodedcontroller = _lev_ctrl_CC96_EXT;
2669 break;
2670 case 97:
2671 encodedcontroller = _lev_ctrl_CC97_EXT;
2672 break;
2673 case 102:
2674 encodedcontroller = _lev_ctrl_CC102_EXT;
2675 break;
2676 case 103:
2677 encodedcontroller = _lev_ctrl_CC103_EXT;
2678 break;
2679 case 104:
2680 encodedcontroller = _lev_ctrl_CC104_EXT;
2681 break;
2682 case 105:
2683 encodedcontroller = _lev_ctrl_CC105_EXT;
2684 break;
2685 case 106:
2686 encodedcontroller = _lev_ctrl_CC106_EXT;
2687 break;
2688 case 107:
2689 encodedcontroller = _lev_ctrl_CC107_EXT;
2690 break;
2691 case 108:
2692 encodedcontroller = _lev_ctrl_CC108_EXT;
2693 break;
2694 case 109:
2695 encodedcontroller = _lev_ctrl_CC109_EXT;
2696 break;
2697 case 110:
2698 encodedcontroller = _lev_ctrl_CC110_EXT;
2699 break;
2700 case 111:
2701 encodedcontroller = _lev_ctrl_CC111_EXT;
2702 break;
2703 case 112:
2704 encodedcontroller = _lev_ctrl_CC112_EXT;
2705 break;
2706 case 113:
2707 encodedcontroller = _lev_ctrl_CC113_EXT;
2708 break;
2709 case 114:
2710 encodedcontroller = _lev_ctrl_CC114_EXT;
2711 break;
2712 case 115:
2713 encodedcontroller = _lev_ctrl_CC115_EXT;
2714 break;
2715 case 116:
2716 encodedcontroller = _lev_ctrl_CC116_EXT;
2717 break;
2718 case 117:
2719 encodedcontroller = _lev_ctrl_CC117_EXT;
2720 break;
2721 case 118:
2722 encodedcontroller = _lev_ctrl_CC118_EXT;
2723 break;
2724 case 119:
2725 encodedcontroller = _lev_ctrl_CC119_EXT;
2726 break;
2727
2728 default:
2729 throw gig::Exception("leverage controller number is not supported by the gig format");
2730 }
2731 break;
2732 default:
2733 throw gig::Exception("Unknown leverage controller type.");
2734 }
2735 return encodedcontroller;
2736 }
2737
2738 DimensionRegion::~DimensionRegion() {
2739 Instances--;
2740 if (!Instances) {
2741 // delete the velocity->volume tables
2742 VelocityTableMap::iterator iter;
2743 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2744 double* pTable = iter->second;
2745 if (pTable) delete[] pTable;
2746 }
2747 pVelocityTables->clear();
2748 delete pVelocityTables;
2749 pVelocityTables = NULL;
2750 }
2751 if (VelocityTable) delete[] VelocityTable;
2752 }
2753
2754 /**
2755 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2756 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2757 * and VelocityResponseCurveScaling) involved are taken into account to
2758 * calculate the amplitude factor. Use this method when a key was
2759 * triggered to get the volume with which the sample should be played
2760 * back.
2761 *
2762 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2763 * @returns amplitude factor (between 0.0 and 1.0)
2764 */
2765 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2766 return pVelocityAttenuationTable[MIDIKeyVelocity];
2767 }
2768
2769 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2770 return pVelocityReleaseTable[MIDIKeyVelocity];
2771 }
2772
2773 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2774 return pVelocityCutoffTable[MIDIKeyVelocity];
2775 }
2776
2777 /**
2778 * Updates the respective member variable and the lookup table / cache
2779 * that depends on this value.
2780 */
2781 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2782 pVelocityAttenuationTable =
2783 GetVelocityTable(
2784 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2785 );
2786 VelocityResponseCurve = curve;
2787 }
2788
2789 /**
2790 * Updates the respective member variable and the lookup table / cache
2791 * that depends on this value.
2792 */
2793 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2794 pVelocityAttenuationTable =
2795 GetVelocityTable(
2796 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2797 );
2798 VelocityResponseDepth = depth;
2799 }
2800
2801 /**
2802 * Updates the respective member variable and the lookup table / cache
2803 * that depends on this value.
2804 */
2805 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2806 pVelocityAttenuationTable =
2807 GetVelocityTable(
2808 VelocityResponseCurve, VelocityResponseDepth, scaling
2809 );
2810 VelocityResponseCurveScaling = scaling;
2811 }
2812
2813 /**
2814 * Updates the respective member variable and the lookup table / cache
2815 * that depends on this value.
2816 */
2817 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2818 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2819 ReleaseVelocityResponseCurve = curve;
2820 }
2821
2822 /**
2823 * Updates the respective member variable and the lookup table / cache
2824 * that depends on this value.
2825 */
2826 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2827 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2828 ReleaseVelocityResponseDepth = depth;
2829 }
2830
2831 /**
2832 * Updates the respective member variable and the lookup table / cache
2833 * that depends on this value.
2834 */
2835 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2836 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2837 VCFCutoffController = controller;
2838 }
2839
2840 /**
2841 * Updates the respective member variable and the lookup table / cache
2842 * that depends on this value.
2843 */
2844 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2845 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2846 VCFVelocityCurve = curve;
2847 }
2848
2849 /**
2850 * Updates the respective member variable and the lookup table / cache
2851 * that depends on this value.
2852 */
2853 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2854 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2855 VCFVelocityDynamicRange = range;
2856 }
2857
2858 /**
2859 * Updates the respective member variable and the lookup table / cache
2860 * that depends on this value.
2861 */
2862 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2863 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2864 VCFVelocityScale = scaling;
2865 }
2866
2867 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2868
2869 // line-segment approximations of the 15 velocity curves
2870
2871 // linear
2872 const int lin0[] = { 1, 1, 127, 127 };
2873 const int lin1[] = { 1, 21, 127, 127 };
2874 const int lin2[] = { 1, 45, 127, 127 };
2875 const int lin3[] = { 1, 74, 127, 127 };
2876 const int lin4[] = { 1, 127, 127, 127 };
2877
2878 // non-linear
2879 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2880 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2881 127, 127 };
2882 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2883 127, 127 };
2884 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2885 127, 127 };
2886 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2887
2888 // special
2889 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2890 113, 127, 127, 127 };
2891 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2892 118, 127, 127, 127 };
2893 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2894 85, 90, 91, 127, 127, 127 };
2895 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2896 117, 127, 127, 127 };
2897 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2898 127, 127 };
2899
2900 // this is only used by the VCF velocity curve
2901 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2902 91, 127, 127, 127 };
2903
2904 const int* const curves[] = { non0, non1, non2, non3, non4,
2905 lin0, lin1, lin2, lin3, lin4,
2906 spe0, spe1, spe2, spe3, spe4, spe5 };
2907
2908 double* const table = new double[128];
2909
2910 const int* curve = curves[curveType * 5 + depth];
2911 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2912
2913 table[0] = 0;
2914 for (int x = 1 ; x < 128 ; x++) {
2915
2916 if (x > curve[2]) curve += 2;
2917 double y = curve[1] + (x - curve[0]) *
2918 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2919 y = y / 127;
2920
2921 // Scale up for s > 20, down for s < 20. When
2922 // down-scaling, the curve still ends at 1.0.
2923 if (s < 20 && y >= 0.5)
2924 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2925 else
2926 y = y * (s / 20.0);
2927 if (y > 1) y = 1;
2928
2929 table[x] = y;
2930 }
2931 return table;
2932 }
2933
2934
2935 // *************** Region ***************
2936 // *
2937
2938 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2939 // Initialization
2940 Dimensions = 0;
2941 for (int i = 0; i < 256; i++) {
2942 pDimensionRegions[i] = NULL;
2943 }
2944 Layers = 1;
2945 File* file = (File*) GetParent()->GetParent();
2946 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2947
2948 // Actual Loading
2949
2950 if (!file->GetAutoLoad()) return;
2951
2952 LoadDimensionRegions(rgnList);
2953
2954 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2955 if (_3lnk) {
2956 DimensionRegions = _3lnk->ReadUint32();
2957 for (int i = 0; i < dimensionBits; i++) {
2958 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2959 uint8_t bits = _3lnk->ReadUint8();
2960 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2961 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2962 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2963 if (dimension == dimension_none) { // inactive dimension
2964 pDimensionDefinitions[i].dimension = dimension_none;
2965 pDimensionDefinitions[i].bits = 0;
2966 pDimensionDefinitions[i].zones = 0;
2967 pDimensionDefinitions[i].split_type = split_type_bit;
2968 pDimensionDefinitions[i].zone_size = 0;
2969 }
2970 else { // active dimension
2971 pDimensionDefinitions[i].dimension = dimension;
2972 pDimensionDefinitions[i].bits = bits;
2973 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2974 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2975 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2976 Dimensions++;
2977
2978 // if this is a layer dimension, remember the amount of layers
2979 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2980 }
2981 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2982 }
2983 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2984
2985 // if there's a velocity dimension and custom velocity zone splits are used,
2986 // update the VelocityTables in the dimension regions
2987 UpdateVelocityTable();
2988
2989 // jump to start of the wave pool indices (if not already there)
2990 if (file->pVersion && file->pVersion->major == 3)
2991 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2992 else
2993 _3lnk->SetPos(44);
2994
2995 // load sample references (if auto loading is enabled)
2996 if (file->GetAutoLoad()) {
2997 for (uint i = 0; i < DimensionRegions; i++) {
2998 uint32_t wavepoolindex = _3lnk->ReadUint32();
2999 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3000 }
3001 GetSample(); // load global region sample reference
3002 }
3003 } else {
3004 DimensionRegions = 0;
3005 for (int i = 0 ; i < 8 ; i++) {
3006 pDimensionDefinitions[i].dimension = dimension_none;
3007 pDimensionDefinitions[i].bits = 0;
3008 pDimensionDefinitions[i].zones = 0;
3009 }
3010 }
3011
3012 // make sure there is at least one dimension region
3013 if (!DimensionRegions) {
3014 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3015 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3016 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3017 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3018 DimensionRegions = 1;
3019 }
3020 }
3021
3022 /**
3023 * Apply Region settings and all its DimensionRegions to the respective
3024 * RIFF chunks. You have to call File::Save() to make changes persistent.
3025 *
3026 * Usually there is absolutely no need to call this method explicitly.
3027 * It will be called automatically when File::Save() was called.
3028 *
3029 * @throws gig::Exception if samples cannot be dereferenced
3030 */
3031 void Region::UpdateChunks() {
3032 // in the gig format we don't care about the Region's sample reference
3033 // but we still have to provide some existing one to not corrupt the
3034 // file, so to avoid the latter we simply always assign the sample of
3035 // the first dimension region of this region
3036 pSample = pDimensionRegions[0]->pSample;
3037
3038 // first update base class's chunks
3039 DLS::Region::UpdateChunks();
3040
3041 // update dimension region's chunks
3042 for (int i = 0; i < DimensionRegions; i++) {
3043 pDimensionRegions[i]->UpdateChunks();
3044 }
3045
3046 File* pFile = (File*) GetParent()->GetParent();
3047 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3048 const int iMaxDimensions = version3 ? 8 : 5;
3049 const int iMaxDimensionRegions = version3 ? 256 : 32;
3050
3051 // make sure '3lnk' chunk exists
3052 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3053 if (!_3lnk) {
3054 const int _3lnkChunkSize = version3 ? 1092 : 172;
3055 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3056 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3057
3058 // move 3prg to last position
3059 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
3060 }
3061
3062 // update dimension definitions in '3lnk' chunk
3063 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3064 store32(&pData[0], DimensionRegions);
3065 int shift = 0;
3066 for (int i = 0; i < iMaxDimensions; i++) {
3067 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3068 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3069 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3070 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3071 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3072 // next 3 bytes unknown, always zero?
3073
3074 shift += pDimensionDefinitions[i].bits;
3075 }
3076
3077 // update wave pool table in '3lnk' chunk
3078 const int iWavePoolOffset = version3 ? 68 : 44;
3079 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3080 int iWaveIndex = -1;
3081 if (i < DimensionRegions) {
3082 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3083 File::SampleList::iterator iter = pFile->pSamples->begin();
3084 File::SampleList::iterator end = pFile->pSamples->end();
3085 for (int index = 0; iter != end; ++iter, ++index) {
3086 if (*iter == pDimensionRegions[i]->pSample) {
3087 iWaveIndex = index;
3088 break;
3089 }
3090 }
3091 }
3092 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3093 }
3094 }
3095
3096 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3097 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3098 if (_3prg) {
3099 int dimensionRegionNr = 0;
3100 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3101 while (_3ewl) {
3102 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3103 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3104 dimensionRegionNr++;
3105 }
3106 _3ewl = _3prg->GetNextSubList();
3107 }
3108 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3109 }
3110 }
3111
3112 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3113 // update KeyRange struct and make sure regions are in correct order
3114 DLS::Region::SetKeyRange(Low, High);
3115 // update Region key table for fast lookup
3116 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3117 }
3118
3119 void Region::UpdateVelocityTable() {
3120 // get velocity dimension's index
3121 int veldim = -1;
3122 for (int i = 0 ; i < Dimensions ; i++) {
3123 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3124 veldim = i;
3125 break;
3126 }
3127 }
3128 if (veldim == -1) return;
3129
3130 int step = 1;
3131 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3132 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3133 int end = step * pDimensionDefinitions[veldim].zones;
3134
3135 // loop through all dimension regions for all dimensions except the velocity dimension
3136 int dim[8] = { 0 };
3137 for (int i = 0 ; i < DimensionRegions ; i++) {
3138
3139 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3140 pDimensionRegions[i]->VelocityUpperLimit) {
3141 // create the velocity table
3142 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3143 if (!table) {
3144 table = new uint8_t[128];
3145 pDimensionRegions[i]->VelocityTable = table;
3146 }
3147 int tableidx = 0;
3148 int velocityZone = 0;
3149 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3150 for (int k = i ; k < end ; k += step) {
3151 DimensionRegion *d = pDimensionRegions[k];
3152 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3153 velocityZone++;
3154 }
3155 } else { // gig2
3156 for (int k = i ; k < end ; k += step) {
3157 DimensionRegion *d = pDimensionRegions[k];
3158 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3159 velocityZone++;
3160 }
3161 }
3162 } else {
3163 if (pDimensionRegions[i]->VelocityTable) {
3164 delete[] pDimensionRegions[i]->VelocityTable;
3165 pDimensionRegions[i]->VelocityTable = 0;
3166 }
3167 }
3168
3169 int j;
3170 int shift = 0;
3171 for (j = 0 ; j < Dimensions ; j++) {
3172 if (j == veldim) i += skipveldim; // skip velocity dimension
3173 else {
3174 dim[j]++;
3175 if (dim[j] < pDimensionDefinitions[j].zones) break;
3176 else {
3177 // skip unused dimension regions
3178 dim[j] = 0;
3179 i += ((1 << pDimensionDefinitions[j].bits) -
3180 pDimensionDefinitions[j].zones) << shift;
3181 }
3182 }
3183 shift += pDimensionDefinitions[j].bits;
3184 }
3185 if (j == Dimensions) break;
3186 }
3187 }
3188
3189 /** @brief Einstein would have dreamed of it - create a new dimension.
3190 *
3191 * Creates a new dimension with the dimension definition given by
3192 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3193 * There is a hard limit of dimensions and total amount of "bits" all
3194 * dimensions can have. This limit is dependant to what gig file format
3195 * version this file refers to. The gig v2 (and lower) format has a
3196 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3197 * format has a limit of 8.
3198 *
3199 * @param pDimDef - defintion of the new dimension
3200 * @throws gig::Exception if dimension of the same type exists already
3201 * @throws gig::Exception if amount of dimensions or total amount of
3202 * dimension bits limit is violated
3203 */
3204 void Region::AddDimension(dimension_def_t* pDimDef) {
3205 // some initial sanity checks of the given dimension definition
3206 if (pDimDef->zones < 2)
3207 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3208 if (pDimDef->bits < 1)
3209 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3210 if (pDimDef->dimension == dimension_samplechannel) {
3211 if (pDimDef->zones != 2)
3212 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3213 if (pDimDef->bits != 1)
3214 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3215 }
3216
3217 // check if max. amount of dimensions reached
3218 File* file = (File*) GetParent()->GetParent();
3219 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3220 if (Dimensions >= iMaxDimensions)
3221 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3222 // check if max. amount of dimension bits reached
3223 int iCurrentBits = 0;
3224 for (int i = 0; i < Dimensions; i++)
3225 iCurrentBits += pDimensionDefinitions[i].bits;
3226 if (iCurrentBits >= iMaxDimensions)
3227 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3228 const int iNewBits = iCurrentBits + pDimDef->bits;
3229 if (iNewBits > iMaxDimensions)
3230 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3231 // check if there's already a dimensions of the same type
3232 for (int i = 0; i < Dimensions; i++)
3233 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3234 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3235
3236 // pos is where the new dimension should be placed, normally
3237 // last in list, except for the samplechannel dimension which
3238 // has to be first in list
3239 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3240 int bitpos = 0;
3241 for (int i = 0 ; i < pos ; i++)
3242 bitpos += pDimensionDefinitions[i].bits;
3243
3244 // make room for the new dimension
3245 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3246 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3247 for (int j = Dimensions ; j > pos ; j--) {
3248 pDimensionRegions[i]->DimensionUpperLimits[j] =
3249 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3250 }
3251 }
3252
3253 // assign definition of new dimension
3254 pDimensionDefinitions[pos] = *pDimDef;
3255
3256 // auto correct certain dimension definition fields (where possible)
3257 pDimensionDefinitions[pos].split_type =
3258 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3259 pDimensionDefinitions[pos].zone_size =
3260 __resolveZoneSize(pDimensionDefinitions[pos]);
3261
3262 // create new dimension region(s) for this new dimension, and make
3263 // sure that the dimension regions are placed correctly in both the
3264 // RIFF list and the pDimensionRegions array
3265 RIFF::Chunk* moveTo = NULL;
3266 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3267 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3268 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3269 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3270 }
3271 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3272 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3273 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3274 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3275 // create a new dimension region and copy all parameter values from
3276 // an existing dimension region
3277 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3278 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3279
3280 DimensionRegions++;
3281 }
3282 }
3283 moveTo = pDimensionRegions[i]->pParentList;
3284 }
3285
3286 // initialize the upper limits for this dimension
3287 int mask = (1 << bitpos) - 1;
3288 for (int z = 0 ; z < pDimDef->zones ; z++) {
3289 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3290 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3291 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3292 (z << bitpos) |
3293 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3294 }
3295 }
3296
3297 Dimensions++;
3298
3299 // if this is a layer dimension, update 'Layers' attribute
3300 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3301
3302 UpdateVelocityTable();
3303 }
3304
3305 /** @brief Delete an existing dimension.
3306 *
3307 * Deletes the dimension given by \a pDimDef and deletes all respective
3308 * dimension regions, that is all dimension regions where the dimension's
3309 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3310 * for example this would delete all dimension regions for the case(s)
3311 * where the sustain pedal is pressed down.
3312 *
3313 * @param pDimDef - dimension to delete
3314 * @throws gig::Exception if given dimension cannot be found
3315 */
3316 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3317 // get dimension's index
3318 int iDimensionNr = -1;
3319 for (int i = 0; i < Dimensions; i++) {
3320 if (&pDimensionDefinitions[i] == pDimDef) {
3321 iDimensionNr = i;
3322 break;
3323 }
3324 }
3325 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3326
3327 // get amount of bits below the dimension to delete
3328 int iLowerBits = 0;
3329 for (int i = 0; i < iDimensionNr; i++)
3330 iLowerBits += pDimensionDefinitions[i].bits;
3331
3332 // get amount ot bits above the dimension to delete
3333 int iUpperBits = 0;
3334 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3335 iUpperBits += pDimensionDefinitions[i].bits;
3336
3337 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3338
3339 // delete dimension regions which belong to the given dimension
3340 // (that is where the dimension's bit > 0)
3341 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3342 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3343 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3344 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3345 iObsoleteBit << iLowerBits |
3346 iLowerBit;
3347
3348 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3349 delete pDimensionRegions[iToDelete];
3350 pDimensionRegions[iToDelete] = NULL;
3351 DimensionRegions--;
3352 }
3353 }
3354 }
3355
3356 // defrag pDimensionRegions array
3357 // (that is remove the NULL spaces within the pDimensionRegions array)
3358 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3359 if (!pDimensionRegions[iTo]) {
3360 if (iFrom <= iTo) iFrom = iTo + 1;
3361 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3362 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3363 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3364 pDimensionRegions[iFrom] = NULL;
3365 }
3366 }
3367 }
3368
3369 // remove the this dimension from the upper limits arrays
3370 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3371 DimensionRegion* d = pDimensionRegions[j];
3372 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3373 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3374 }
3375 d->DimensionUpperLimits[Dimensions - 1] = 127;
3376 }
3377
3378 // 'remove' dimension definition
3379 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3380 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3381 }
3382 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3383 pDimensionDefinitions[Dimensions - 1].bits = 0;
3384 pDimensionDefinitions[Dimensions - 1].zones = 0;
3385
3386 Dimensions--;
3387
3388 // if this was a layer dimension, update 'Layers' attribute
3389 if (pDimDef->dimension == dimension_layer) Layers = 1;
3390 }
3391
3392 /** @brief Delete one split zone of a dimension (decrement zone amount).
3393 *
3394 * Instead of deleting an entire dimensions, this method will only delete
3395 * one particular split zone given by @a zone of the Region's dimension
3396 * given by @a type. So this method will simply decrement the amount of
3397 * zones by one of the dimension in question. To be able to do that, the
3398 * respective dimension must exist on this Region and it must have at least
3399 * 3 zones. All DimensionRegion objects associated with the zone will be
3400 * deleted.
3401 *
3402 * @param type - identifies the dimension where a zone shall be deleted
3403 * @param zone - index of the dimension split zone that shall be deleted
3404 * @throws gig::Exception if requested zone could not be deleted
3405 */
3406 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3407 dimension_def_t* oldDef = GetDimensionDefinition(type);
3408 if (!oldDef)
3409 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3410 if (oldDef->zones <= 2)
3411 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3412 if (zone < 0 || zone >= oldDef->zones)
3413 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3414
3415 const int newZoneSize = oldDef->zones - 1;
3416
3417 // create a temporary Region which just acts as a temporary copy
3418 // container and will be deleted at the end of this function and will
3419 // also not be visible through the API during this process
3420 gig::Region* tempRgn = NULL;
3421 {
3422 // adding these temporary chunks is probably not even necessary
3423 Instrument* instr = static_cast<Instrument*>(GetParent());
3424 RIFF::List* pCkInstrument = instr->pCkInstrument;
3425 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3426 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3427 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3428 tempRgn = new Region(instr, rgn);
3429 }
3430
3431 // copy this region's dimensions (with already the dimension split size
3432 // requested by the arguments of this method call) to the temporary
3433 // region, and don't use Region::CopyAssign() here for this task, since
3434 // it would also alter fast lookup helper variables here and there
3435 dimension_def_t newDef;
3436 for (int i = 0; i < Dimensions; ++i) {
3437 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3438 // is this the dimension requested by the method arguments? ...
3439 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3440 def.zones = newZoneSize;
3441 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3442 newDef = def;
3443 }
3444 tempRgn->AddDimension(&def);
3445 }
3446
3447 // find the dimension index in the tempRegion which is the dimension
3448 // type passed to this method (paranoidly expecting different order)
3449 int tempReducedDimensionIndex = -1;
3450 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3451 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3452 tempReducedDimensionIndex = d;
3453 break;
3454 }
3455 }
3456
3457 // copy dimension regions from this region to the temporary region
3458 for (int iDst = 0; iDst < 256; ++iDst) {
3459 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3460 if (!dstDimRgn) continue;
3461 std::map<dimension_t,int> dimCase;
3462 bool isValidZone = true;
3463 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3464 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3465 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3466 (iDst >> baseBits) & ((1 << dstBits) - 1);
3467 baseBits += dstBits;
3468 // there are also DimensionRegion objects of unused zones, skip them
3469 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3470 isValidZone = false;
3471 break;
3472 }
3473 }
3474 if (!isValidZone) continue;
3475 // a bit paranoid: cope with the chance that the dimensions would
3476 // have different order in source and destination regions
3477 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3478 if (dimCase[type] >= zone) dimCase[type]++;
3479 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3480 dstDimRgn->CopyAssign(srcDimRgn);
3481 // if this is the upper most zone of the dimension passed to this
3482 // method, then correct (raise) its upper limit to 127
3483 if (newDef.split_type == split_type_normal && isLastZone)
3484 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3485 }
3486
3487 // now tempRegion's dimensions and DimensionRegions basically reflect
3488 // what we wanted to get for this actual Region here, so we now just
3489 // delete and recreate the dimension in question with the new amount
3490 // zones and then copy back from tempRegion
3491 DeleteDimension(oldDef);
3492 AddDimension(&newDef);
3493 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3494 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3495 if (!srcDimRgn) continue;
3496 std::map<dimension_t,int> dimCase;
3497 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3498 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3499 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3500 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3501 baseBits += srcBits;
3502 }
3503 // a bit paranoid: cope with the chance that the dimensions would
3504 // have different order in source and destination regions
3505 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3506 if (!dstDimRgn) continue;
3507 dstDimRgn->CopyAssign(srcDimRgn);
3508 }
3509
3510 // delete temporary region
3511 delete tempRgn;
3512
3513 UpdateVelocityTable();
3514 }
3515
3516 /** @brief Divide split zone of a dimension in two (increment zone amount).
3517 *
3518 * This will increment the amount of zones for the dimension (given by
3519 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3520 * in the middle of its zone range in two. So the two zones resulting from
3521 * the zone being splitted, will be an equivalent copy regarding all their
3522 * articulation informations and sample reference. The two zones will only
3523 * differ in their zone's upper limit
3524 * (DimensionRegion::DimensionUpperLimits).
3525 *
3526 * @param type - identifies the dimension where a zone shall be splitted
3527 * @param zone - index of the dimension split zone that shall be splitted
3528 * @throws gig::Exception if requested zone could not be splitted
3529 */
3530 void Region::SplitDimensionZone(dimension_t type, int zone) {
3531 dimension_def_t* oldDef = GetDimensionDefinition(type);
3532 if (!oldDef)
3533 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3534 if (zone < 0 || zone >= oldDef->zones)
3535 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3536
3537 const int newZoneSize = oldDef->zones + 1;
3538
3539 // create a temporary Region which just acts as a temporary copy
3540 // container and will be deleted at the end of this function and will
3541 // also not be visible through the API during this process
3542 gig::Region* tempRgn = NULL;
3543 {
3544 // adding these temporary chunks is probably not even necessary
3545 Instrument* instr = static_cast<Instrument*>(GetParent());
3546 RIFF::List* pCkInstrument = instr->pCkInstrument;
3547 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3548 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3549 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3550 tempRgn = new Region(instr, rgn);
3551 }
3552
3553 // copy this region's dimensions (with already the dimension split size
3554 // requested by the arguments of this method call) to the temporary
3555 // region, and don't use Region::CopyAssign() here for this task, since
3556 // it would also alter fast lookup helper variables here and there
3557 dimension_def_t newDef;
3558 for (int i = 0; i < Dimensions; ++i) {
3559 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3560 // is this the dimension requested by the method arguments? ...
3561 if (def.dimension == type) { // ... if yes, increment zone amount by one
3562 def.zones = newZoneSize;
3563 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3564 newDef = def;
3565 }
3566 tempRgn->AddDimension(&def);
3567 }
3568
3569 // find the dimension index in the tempRegion which is the dimension
3570 // type passed to this method (paranoidly expecting different order)
3571 int tempIncreasedDimensionIndex = -1;
3572 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3573 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3574 tempIncreasedDimensionIndex = d;
3575 break;
3576 }
3577 }
3578
3579 // copy dimension regions from this region to the temporary region
3580 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3581 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3582 if (!srcDimRgn) continue;
3583 std::map<dimension_t,int> dimCase;
3584 bool isValidZone = true;
3585 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3586 const int srcBits = pDimensionDefinitions[d].bits;
3587 dimCase[pDimensionDefinitions[d].dimension] =
3588 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3589 // there are also DimensionRegion objects for unused zones, skip them
3590 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3591 isValidZone = false;
3592 break;
3593 }
3594 baseBits += srcBits;
3595 }
3596 if (!isValidZone) continue;
3597 // a bit paranoid: cope with the chance that the dimensions would
3598 // have different order in source and destination regions
3599 if (dimCase[type] > zone) dimCase[type]++;
3600 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3601 dstDimRgn->CopyAssign(srcDimRgn);
3602 // if this is the requested zone to be splitted, then also copy
3603 // the source DimensionRegion to the newly created target zone
3604 // and set the old zones upper limit lower
3605 if (dimCase[type] == zone) {
3606 // lower old zones upper limit
3607 if (newDef.split_type == split_type_normal) {
3608 const int high =
3609 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3610 int low = 0;
3611 if (zone > 0) {
3612 std::map<dimension_t,int> lowerCase = dimCase;
3613 lowerCase[type]--;
3614 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3615 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3616 }
3617 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3618 }
3619 // fill the newly created zone of the divided zone as well
3620 dimCase[type]++;
3621 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3622 dstDimRgn->CopyAssign(srcDimRgn);
3623 }
3624 }
3625
3626 // now tempRegion's dimensions and DimensionRegions basically reflect
3627 // what we wanted to get for this actual Region here, so we now just
3628 // delete and recreate the dimension in question with the new amount
3629 // zones and then copy back from tempRegion
3630 DeleteDimension(oldDef);
3631 AddDimension(&newDef);
3632 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3633 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3634 if (!srcDimRgn) continue;
3635 std::map<dimension_t,int> dimCase;
3636 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3637 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3638 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3639 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3640 baseBits += srcBits;
3641 }
3642 // a bit paranoid: cope with the chance that the dimensions would
3643 // have different order in source and destination regions
3644 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3645 if (!dstDimRgn) continue;
3646 dstDimRgn->CopyAssign(srcDimRgn);
3647 }
3648
3649 // delete temporary region
3650 delete tempRgn;
3651
3652 UpdateVelocityTable();
3653 }
3654
3655 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3656 uint8_t bits[8] = {};
3657 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3658 it != DimCase.end(); ++it)
3659 {
3660 for (int d = 0; d < Dimensions; ++d) {
3661 if (pDimensionDefinitions[d].dimension == it->first) {
3662 bits[d] = it->second;
3663 goto nextDimCaseSlice;
3664 }
3665 }
3666 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3667 nextDimCaseSlice:
3668 ; // noop
3669 }
3670 return GetDimensionRegionByBit(bits);
3671 }
3672
3673 /**
3674 * Searches in the current Region for a dimension of the given dimension
3675 * type and returns the precise configuration of that dimension in this
3676 * Region.
3677 *
3678 * @param type - dimension type of the sought dimension
3679 * @returns dimension definition or NULL if there is no dimension with
3680 * sought type in this Region.
3681 */
3682 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3683 for (int i = 0; i < Dimensions; ++i)
3684 if (pDimensionDefinitions[i].dimension == type)
3685 return &pDimensionDefinitions[i];
3686 return NULL;
3687 }
3688
3689 Region::~Region() {
3690 for (int i = 0; i < 256; i++) {
3691 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3692 }
3693 }
3694
3695 /**
3696 * Use this method in your audio engine to get the appropriate dimension
3697 * region with it's articulation data for the current situation. Just
3698 * call the method with the current MIDI controller values and you'll get
3699 * the DimensionRegion with the appropriate articulation data for the
3700 * current situation (for this Region of course only). To do that you'll
3701 * first have to look which dimensions with which controllers and in
3702 * which order are defined for this Region when you load the .gig file.
3703 * Special cases are e.g. layer or channel dimensions where you just put
3704 * in the index numbers instead of a MIDI controller value (means 0 for
3705 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3706 * etc.).
3707 *
3708 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3709 * @returns adress to the DimensionRegion for the given situation
3710 * @see pDimensionDefinitions
3711 * @see Dimensions
3712 */
3713 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3714 uint8_t bits;
3715 int veldim = -1;
3716 int velbitpos;
3717 int bitpos = 0;
3718 int dimregidx = 0;
3719 for (uint i = 0; i < Dimensions; i++) {
3720 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3721 // the velocity dimension must be handled after the other dimensions
3722 veldim = i;
3723 velbitpos = bitpos;
3724 } else {
3725 switch (pDimensionDefinitions[i].split_type) {
3726 case split_type_normal:
3727 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3728 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3729 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3730 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3731 }
3732 } else {
3733 // gig2: evenly sized zones
3734 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3735 }
3736 break;
3737 case split_type_bit: // the value is already the sought dimension bit number
3738 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3739 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3740 break;
3741 }
3742 dimregidx |= bits << bitpos;
3743 }
3744 bitpos += pDimensionDefinitions[i].bits;
3745 }
3746 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3747 if (veldim != -1) {
3748 // (dimreg is now the dimension region for the lowest velocity)
3749 if (dimreg->VelocityTable) // custom defined zone ranges
3750 bits = dimreg->VelocityTable[DimValues[veldim]];
3751 else // normal split type
3752 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3753
3754 dimregidx |= bits << velbitpos;
3755 dimreg = pDimensionRegions[dimregidx];
3756 }
3757 return dimreg;
3758 }
3759
3760 /**
3761 * Returns the appropriate DimensionRegion for the given dimension bit
3762 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3763 * instead of calling this method directly!
3764 *
3765 * @param DimBits Bit numbers for dimension 0 to 7
3766 * @returns adress to the DimensionRegion for the given dimension
3767 * bit numbers
3768 * @see GetDimensionRegionByValue()
3769 */
3770 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3771 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3772 << pDimensionDefinitions[5].bits | DimBits[5])
3773 << pDimensionDefinitions[4].bits | DimBits[4])
3774 << pDimensionDefinitions[3].bits | DimBits[3])
3775 << pDimensionDefinitions[2].bits | DimBits[2])
3776 << pDimensionDefinitions[1].bits | DimBits[1])
3777 << pDimensionDefinitions[0].bits | DimBits[0]];
3778 }
3779
3780 /**
3781 * Returns pointer address to the Sample referenced with this region.
3782 * This is the global Sample for the entire Region (not sure if this is
3783 * actually used by the Gigasampler engine - I would only use the Sample
3784 * referenced by the appropriate DimensionRegion instead of this sample).
3785 *
3786 * @returns address to Sample or NULL if there is no reference to a
3787 * sample saved in the .gig file
3788 */
3789 Sample* Region::GetSample() {
3790 if (pSample) return static_cast<gig::Sample*>(pSample);
3791 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3792 }
3793
3794 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3795 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3796 File* file = (File*) GetParent()->GetParent();
3797 if (!file->pWavePoolTable) return NULL;
3798 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3799 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3800 Sample* sample = file->GetFirstSample(pProgress);
3801 while (sample) {
3802 if (sample->ulWavePoolOffset == soughtoffset &&
3803 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3804 sample = file->GetNextSample();
3805 }
3806 return NULL;
3807 }
3808
3809 /**
3810 * Make a (semi) deep copy of the Region object given by @a orig
3811 * and assign it to this object.
3812 *
3813 * Note that all sample pointers referenced by @a orig are simply copied as
3814 * memory address. Thus the respective samples are shared, not duplicated!
3815 *
3816 * @param orig - original Region object to be copied from
3817 */
3818 void Region::CopyAssign(const Region* orig) {
3819 CopyAssign(orig, NULL);
3820 }
3821
3822 /**
3823 * Make a (semi) deep copy of the Region object given by @a orig and
3824 * assign it to this object
3825 *
3826 * @param mSamples - crosslink map between the foreign file's samples and
3827 * this file's samples
3828 */
3829 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3830 // handle base classes
3831 DLS::Region::CopyAssign(orig);
3832
3833 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3834 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3835 }
3836
3837 // handle own member variables
3838 for (int i = Dimensions - 1; i >= 0; --i) {
3839 DeleteDimension(&pDimensionDefinitions[i]);
3840 }
3841 Layers = 0; // just to be sure
3842 for (int i = 0; i < orig->Dimensions; i++) {
3843 // we need to copy the dim definition here, to avoid the compiler
3844 // complaining about const-ness issue
3845 dimension_def_t def = orig->pDimensionDefinitions[i];
3846 AddDimension(&def);
3847 }
3848 for (int i = 0; i < 256; i++) {
3849 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3850 pDimensionRegions[i]->CopyAssign(
3851 orig->pDimensionRegions[i],
3852 mSamples
3853 );
3854 }
3855 }
3856 Layers = orig->Layers;
3857 }
3858
3859
3860 // *************** MidiRule ***************
3861 // *
3862
3863 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3864 _3ewg->SetPos(36);
3865 Triggers = _3ewg->ReadUint8();
3866 _3ewg->SetPos(40);
3867 ControllerNumber = _3ewg->ReadUint8();
3868 _3ewg->SetPos(46);
3869 for (int i = 0 ; i < Triggers ; i++) {
3870 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3871 pTriggers[i].Descending = _3ewg->ReadUint8();
3872 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3873 pTriggers[i].Key = _3ewg->ReadUint8();
3874 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3875 pTriggers[i].Velocity = _3ewg->ReadUint8();
3876 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3877 _3ewg->ReadUint8();
3878 }
3879 }
3880
3881 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3882 ControllerNumber(0),
3883 Triggers(0) {
3884 }
3885
3886 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3887 pData[32] = 4;
3888 pData[33] = 16;
3889 pData[36] = Triggers;
3890 pData[40] = ControllerNumber;
3891 for (int i = 0 ; i < Triggers ; i++) {
3892 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3893 pData[47 + i * 8] = pTriggers[i].Descending;
3894 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3895 pData[49 + i * 8] = pTriggers[i].Key;
3896 pData[50 + i * 8] = pTriggers[i].NoteOff;
3897 pData[51 + i * 8] = pTriggers[i].Velocity;
3898 pData[52 + i * 8] = pTriggers[i].OverridePedal;
3899 }
3900 }
3901
3902 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3903 _3ewg->SetPos(36);
3904 LegatoSamples = _3ewg->ReadUint8(); // always 12
3905 _3ewg->SetPos(40);
3906 BypassUseController = _3ewg->ReadUint8();
3907 BypassKey = _3ewg->ReadUint8();
3908 BypassController = _3ewg->ReadUint8();
3909 ThresholdTime = _3ewg->ReadUint16();
3910 _3ewg->ReadInt16();
3911 ReleaseTime = _3ewg->ReadUint16();
3912 _3ewg->ReadInt16();
3913 KeyRange.low = _3ewg->ReadUint8();
3914 KeyRange.high = _3ewg->ReadUint8();
3915 _3ewg->SetPos(64);
3916 ReleaseTriggerKey = _3ewg->ReadUint8();
3917 AltSustain1Key = _3ewg->ReadUint8();
3918 AltSustain2Key = _3ewg->ReadUint8();
3919 }
3920
3921 MidiRuleLegato::MidiRuleLegato() :
3922 LegatoSamples(12),
3923 BypassUseController(false),
3924 BypassKey(0),
3925 BypassController(1),
3926 ThresholdTime(20),
3927 ReleaseTime(20),
3928 ReleaseTriggerKey(0),
3929 AltSustain1Key(0),
3930 AltSustain2Key(0)
3931 {
3932 KeyRange.low = KeyRange.high = 0;
3933 }
3934
3935 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3936 pData[32] = 0;
3937 pData[33] = 16;
3938 pData[36] = LegatoSamples;
3939 pData[40] = BypassUseController;
3940 pData[41] = BypassKey;
3941 pData[42] = BypassController;
3942 store16(&pData[43], ThresholdTime);
3943 store16(&pData[47], ReleaseTime);
3944 pData[51] = KeyRange.low;
3945 pData[52] = KeyRange.high;
3946 pData[64] = ReleaseTriggerKey;
3947 pData[65] = AltSustain1Key;
3948 pData[66] = AltSustain2Key;
3949 }
3950
3951 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3952 _3ewg->SetPos(36);
3953 Articulations = _3ewg->ReadUint8();
3954 int flags = _3ewg->ReadUint8();
3955 Polyphonic = flags & 8;
3956 Chained = flags & 4;
3957 Selector = (flags & 2) ? selector_controller :
3958 (flags & 1) ? selector_key_switch : selector_none;
3959 Patterns = _3ewg->ReadUint8();
3960 _3ewg->ReadUint8(); // chosen row
3961 _3ewg->ReadUint8(); // unknown
3962 _3ewg->ReadUint8(); // unknown
3963 _3ewg->ReadUint8(); // unknown
3964 KeySwitchRange.low = _3ewg->ReadUint8();
3965 KeySwitchRange.high = _3ewg->ReadUint8();
3966 Controller = _3ewg->ReadUint8();
3967 PlayRange.low = _3ewg->ReadUint8();
3968 PlayRange.high = _3ewg->ReadUint8();
3969
3970 int n = std::min(int(Articulations), 32);
3971 for (int i = 0 ; i < n ; i++) {
3972 _3ewg->ReadString(pArticulations[i], 32);
3973 }
3974 _3ewg->SetPos(1072);
3975 n = std::min(int(Patterns), 32);
3976 for (int i = 0 ; i < n ; i++) {
3977 _3ewg->ReadString(pPatterns[i].Name, 16);
3978 pPatterns[i].Size = _3ewg->ReadUint8();
3979 _3ewg->Read(&pPatterns[i][0], 1, 32);
3980 }
3981 }
3982
3983 MidiRuleAlternator::MidiRuleAlternator() :
3984 Articulations(0),
3985 Patterns(0),
3986 Selector(selector_none),
3987 Controller(0),
3988 Polyphonic(false),
3989 Chained(false)
3990 {
3991 PlayRange.low = PlayRange.high = 0;
3992 KeySwitchRange.low = KeySwitchRange.high = 0;
3993 }
3994
3995 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3996 pData[32] = 3;
3997 pData[33] = 16;
3998 pData[36] = Articulations;
3999 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4000 (Selector == selector_controller ? 2 :
4001 (Selector == selector_key_switch ? 1 : 0));
4002 pData[38] = Patterns;
4003
4004 pData[43] = KeySwitchRange.low;
4005 pData[44] = KeySwitchRange.high;
4006 pData[45] = Controller;
4007 pData[46] = PlayRange.low;
4008 pData[47] = PlayRange.high;
4009
4010 char* str = reinterpret_cast<char*>(pData);
4011 int pos = 48;
4012 int n = std::min(int(Articulations), 32);
4013 for (int i = 0 ; i < n ; i++, pos += 32) {
4014 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4015 }
4016
4017 pos = 1072;
4018 n = std::min(int(Patterns), 32);
4019 for (int i = 0 ; i < n ; i++, pos += 49) {
4020 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4021 pData[pos + 16] = pPatterns[i].Size;
4022 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4023 }
4024 }
4025
4026 // *************** Instrument ***************
4027 // *
4028
4029 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4030 static const DLS::Info::string_length_t fixedStringLengths[] = {
4031 { CHUNK_ID_INAM, 64 },
4032 { CHUNK_ID_ISFT, 12 },
4033 { 0, 0 }
4034 };
4035 pInfo->SetFixedStringLengths(fixedStringLengths);
4036
4037 // Initialization
4038 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4039 EffectSend = 0;
4040 Attenuation = 0;
4041 FineTune = 0;
4042 PitchbendRange = 0;
4043 PianoReleaseMode = false;
4044 DimensionKeyRange.low = 0;
4045 DimensionKeyRange.high = 0;
4046 pMidiRules = new MidiRule*[3];
4047 pMidiRules[0] = NULL;
4048
4049 // Loading
4050 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4051 if (lart) {
4052 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4053 if (_3ewg) {
4054 EffectSend = _3ewg->ReadUint16();
4055 Attenuation = _3ewg->ReadInt32();
4056 FineTune = _3ewg->ReadInt16();
4057 PitchbendRange = _3ewg->ReadInt16();
4058 uint8_t dimkeystart = _3ewg->ReadUint8();
4059 PianoReleaseMode = dimkeystart & 0x01;
4060 DimensionKeyRange.low = dimkeystart >> 1;
4061 DimensionKeyRange.high = _3ewg->ReadUint8();
4062
4063 if (_3ewg->GetSize() > 32) {
4064 // read MIDI rules
4065 int i = 0;
4066 _3ewg->SetPos(32);
4067 uint8_t id1 = _3ewg->ReadUint8();
4068 uint8_t id2 = _3ewg->ReadUint8();
4069
4070 if (id2 == 16) {
4071 if (id1 == 4) {
4072 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4073 } else if (id1 == 0) {
4074 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4075 } else if (id1 == 3) {
4076 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4077 } else {
4078 pMidiRules[i++] = new MidiRuleUnknown;
4079 }
4080 }
4081 else if (id1 != 0 || id2 != 0) {
4082 pMidiRules[i++] = new MidiRuleUnknown;
4083 }
4084 //TODO: all the other types of rules
4085
4086 pMidiRules[i] = NULL;
4087 }
4088 }
4089 }
4090
4091 if (pFile->GetAutoLoad()) {
4092 if (!pRegions) pRegions = new RegionList;
4093 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4094 if (lrgn) {
4095 RIFF::List* rgn = lrgn->GetFirstSubList();
4096 while (rgn) {
4097 if (rgn->GetListType() == LIST_TYPE_RGN) {
4098 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4099 pRegions->push_back(new Region(this, rgn));
4100 }
4101 rgn = lrgn->GetNextSubList();
4102 }
4103 // Creating Region Key Table for fast lookup
4104 UpdateRegionKeyTable();
4105 }
4106 }
4107
4108 __notify_progress(pProgress, 1.0f); // notify done
4109 }
4110
4111 void Instrument::UpdateRegionKeyTable() {
4112 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4113 RegionList::iterator iter = pRegions->begin();
4114 RegionList::iterator end = pRegions->end();
4115 for (; iter != end; ++iter) {
4116 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4117 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4118 RegionKeyTable[iKey] = pRegion;
4119 }
4120 }
4121 }
4122
4123 Instrument::~Instrument() {
4124 for (int i = 0 ; pMidiRules[i] ; i++) {
4125 delete pMidiRules[i];
4126 }
4127 delete[] pMidiRules;
4128 }
4129
4130 /**
4131 * Apply Instrument with all its Regions to the respective RIFF chunks.
4132 * You have to call File::Save() to make changes persistent.
4133 *
4134 * Usually there is absolutely no need to call this method explicitly.
4135 * It will be called automatically when File::Save() was called.
4136 *
4137 * @throws gig::Exception if samples cannot be dereferenced
4138 */
4139 void Instrument::UpdateChunks() {
4140 // first update base classes' chunks
4141 DLS::Instrument::UpdateChunks();
4142
4143 // update Regions' chunks
4144 {
4145 RegionList::iterator iter = pRegions->begin();
4146 RegionList::iterator end = pRegions->end();
4147 for (; iter != end; ++iter)
4148 (*iter)->UpdateChunks();
4149 }
4150
4151 // make sure 'lart' RIFF list chunk exists
4152 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4153 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4154 // make sure '3ewg' RIFF chunk exists
4155 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4156 if (!_3ewg) {
4157 File* pFile = (File*) GetParent();
4158
4159 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4160 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4161 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4162 memset(_3ewg->LoadChunkData(), 0, size);
4163 }
4164 // update '3ewg' RIFF chunk
4165 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4166 store16(&pData[0], EffectSend);
4167 store32(&pData[2], Attenuation);
4168 store16(&pData[6], FineTune);
4169 store16(&pData[8], PitchbendRange);
4170 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4171 DimensionKeyRange.low << 1;
4172 pData[10] = dimkeystart;
4173 pData[11] = DimensionKeyRange.high;
4174
4175 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4176 pData[32] = 0;
4177 pData[33] = 0;
4178 } else {
4179 for (int i = 0 ; pMidiRules[i] ; i++) {
4180 pMidiRules[i]->UpdateChunks(pData);
4181 }
4182 }
4183 }
4184
4185 /**
4186 * Returns the appropriate Region for a triggered note.
4187 *
4188 * @param Key MIDI Key number of triggered note / key (0 - 127)
4189 * @returns pointer adress to the appropriate Region or NULL if there
4190 * there is no Region defined for the given \a Key
4191 */
4192 Region* Instrument::GetRegion(unsigned int Key) {
4193 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4194 return RegionKeyTable[Key];
4195
4196 /*for (int i = 0; i < Regions; i++) {
4197 if (Key <= pRegions[i]->KeyRange.high &&
4198 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4199 }
4200 return NULL;*/
4201 }
4202
4203 /**
4204 * Returns the first Region of the instrument. You have to call this
4205 * method once before you use GetNextRegion().
4206 *
4207 * @returns pointer address to first region or NULL if there is none
4208 * @see GetNextRegion()
4209 */
4210 Region* Instrument::GetFirstRegion() {
4211 if (!pRegions) return NULL;
4212 RegionsIterator = pRegions->begin();
4213 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4214 }
4215
4216 /**
4217 * Returns the next Region of the instrument. You have to call
4218 * GetFirstRegion() once before you can use this method. By calling this
4219 * method multiple times it iterates through the available Regions.
4220 *
4221 * @returns pointer address to the next region or NULL if end reached
4222 * @see GetFirstRegion()
4223 */
4224 Region* Instrument::GetNextRegion() {
4225 if (!pRegions) return NULL;
4226 RegionsIterator++;
4227 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4228 }
4229
4230 Region* Instrument::AddRegion() {
4231 // create new Region object (and its RIFF chunks)
4232 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4233 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4234 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4235 Region* pNewRegion = new Region(this, rgn);
4236 pRegions->push_back(pNewRegion);
4237 Regions = pRegions->size();
4238 // update Region key table for fast lookup
4239 UpdateRegionKeyTable();
4240 // done
4241 return pNewRegion;
4242 }
4243
4244 void Instrument::DeleteRegion(Region* pRegion) {
4245 if (!pRegions) return;
4246 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4247 // update Region key table for fast lookup
4248 UpdateRegionKeyTable();
4249 }
4250
4251 /**
4252 * Returns a MIDI rule of the instrument.
4253 *
4254 * The list of MIDI rules, at least in gig v3, always contains at
4255 * most two rules. The second rule can only be the DEF filter
4256 * (which currently isn't supported by libgig).
4257 *
4258 * @param i - MIDI rule number
4259 * @returns pointer address to MIDI rule number i or NULL if there is none
4260 */
4261 MidiRule* Instrument::GetMidiRule(int i) {
4262 return pMidiRules[i];
4263 }
4264
4265 /**
4266 * Adds the "controller trigger" MIDI rule to the instrument.
4267 *
4268 * @returns the new MIDI rule
4269 */
4270 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4271 delete pMidiRules[0];
4272 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4273 pMidiRules[0] = r;
4274 pMidiRules[1] = 0;
4275 return r;
4276 }
4277
4278 /**
4279 * Adds the legato MIDI rule to the instrument.
4280 *
4281 * @returns the new MIDI rule
4282 */
4283 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4284 delete pMidiRules[0];
4285 MidiRuleLegato* r = new MidiRuleLegato;
4286 pMidiRules[0] = r;
4287 pMidiRules[1] = 0;
4288 return r;
4289 }
4290
4291 /**
4292 * Adds the alternator MIDI rule to the instrument.
4293 *
4294 * @returns the new MIDI rule
4295 */
4296 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4297 delete pMidiRules[0];
4298 MidiRuleAlternator* r = new MidiRuleAlternator;
4299 pMidiRules[0] = r;
4300 pMidiRules[1] = 0;
4301 return r;
4302 }
4303
4304 /**
4305 * Deletes a MIDI rule from the instrument.
4306 *
4307 * @param i - MIDI rule number
4308 */
4309 void Instrument::DeleteMidiRule(int i) {
4310 delete pMidiRules[i];
4311 pMidiRules[i] = 0;
4312 }
4313
4314 /**
4315 * Make a (semi) deep copy of the Instrument object given by @a orig
4316 * and assign it to this object.
4317 *
4318 * Note that all sample pointers referenced by @a orig are simply copied as
4319 * memory address. Thus the respective samples are shared, not duplicated!
4320 *
4321 * @param orig - original Instrument object to be copied from
4322 */
4323 void Instrument::CopyAssign(const Instrument* orig) {
4324 CopyAssign(orig, NULL);
4325 }
4326
4327 /**
4328 * Make a (semi) deep copy of the Instrument object given by @a orig
4329 * and assign it to this object.
4330 *
4331 * @param orig - original Instrument object to be copied from
4332 * @param mSamples - crosslink map between the foreign file's samples and
4333 * this file's samples
4334 */
4335 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4336 // handle base class
4337 // (without copying DLS region stuff)
4338 DLS::Instrument::CopyAssignCore(orig);
4339
4340 // handle own member variables
4341 Attenuation = orig->Attenuation;
4342 EffectSend = orig->EffectSend;
4343 FineTune = orig->FineTune;
4344 PitchbendRange = orig->PitchbendRange;
4345 PianoReleaseMode = orig->PianoReleaseMode;
4346 DimensionKeyRange = orig->DimensionKeyRange;
4347
4348 // free old midi rules
4349 for (int i = 0 ; pMidiRules[i] ; i++) {
4350 delete pMidiRules[i];
4351 }
4352 //TODO: MIDI rule copying
4353 pMidiRules[0] = NULL;
4354
4355 // delete all old regions
4356 while (Regions) DeleteRegion(GetFirstRegion());
4357 // create new regions and copy them from original
4358 {
4359 RegionList::const_iterator it = orig->pRegions->begin();
4360 for (int i = 0; i < orig->Regions; ++i, ++it) {
4361 Region* dstRgn = AddRegion();
4362 //NOTE: Region does semi-deep copy !
4363 dstRgn->CopyAssign(
4364 static_cast<gig::Region*>(*it),
4365 mSamples
4366 );
4367 }
4368 }
4369
4370 UpdateRegionKeyTable();
4371 }
4372
4373
4374 // *************** Group ***************
4375 // *
4376
4377 /** @brief Constructor.
4378 *
4379 * @param file - pointer to the gig::File object
4380 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4381 * NULL if this is a new Group
4382 */
4383 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4384 pFile = file;
4385 pNameChunk = ck3gnm;
4386 ::LoadString(pNameChunk, Name);
4387 }
4388
4389 Group::~Group() {
4390 // remove the chunk associated with this group (if any)
4391 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4392 }
4393
4394 /** @brief Update chunks with current group settings.
4395 *
4396 * Apply current Group field values to the respective chunks. You have
4397 * to call File::Save() to make changes persistent.
4398 *
4399 * Usually there is absolutely no need to call this method explicitly.
4400 * It will be called automatically when File::Save() was called.
4401 */
4402 void Group::UpdateChunks() {
4403 // make sure <3gri> and <3gnl> list chunks exist
4404 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
4405 if (!_3gri) {
4406 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
4407 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4408 }
4409 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4410 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4411
4412 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
4413 // v3 has a fixed list of 128 strings, find a free one
4414 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
4415 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
4416 pNameChunk = ck;
4417 break;
4418 }
4419 }
4420 }
4421
4422 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
4423 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
4424 }
4425
4426 /**
4427 * Returns the first Sample of this Group. You have to call this method
4428 * once before you use GetNextSample().
4429 *
4430 * <b>Notice:</b> this method might block for a long time, in case the
4431 * samples of this .gig file were not scanned yet
4432 *
4433 * @returns pointer address to first Sample or NULL if there is none
4434 * applied to this Group
4435 * @see GetNextSample()
4436 */
4437 Sample* Group::GetFirstSample() {
4438 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4439 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
4440 if (pSample->GetGroup() == this) return pSample;
4441 }
4442 return NULL;
4443 }
4444
4445 /**
4446 * Returns the next Sample of the Group. You have to call
4447 * GetFirstSample() once before you can use this method. By calling this
4448 * method multiple times it iterates through the Samples assigned to
4449 * this Group.
4450 *
4451 * @returns pointer address to the next Sample of this Group or NULL if
4452 * end reached
4453 * @see GetFirstSample()
4454 */
4455 Sample* Group::GetNextSample() {
4456 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4457 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
4458 if (pSample->GetGroup() == this) return pSample;
4459 }
4460 return NULL;
4461 }
4462
4463 /**
4464 * Move Sample given by \a pSample from another Group to this Group.
4465 */
4466 void Group::AddSample(Sample* pSample) {
4467 pSample->pGroup = this;
4468 }
4469
4470 /**
4471 * Move all members of this group to another group (preferably the 1st
4472 * one except this). This method is called explicitly by
4473 * File::DeleteGroup() thus when a Group was deleted. This code was
4474 * intentionally not placed in the destructor!
4475 */
4476 void Group::MoveAll() {
4477 // get "that" other group first
4478 Group* pOtherGroup = NULL;
4479 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
4480 if (pOtherGroup != this) break;
4481 }
4482 if (!pOtherGroup) throw Exception(
4483 "Could not move samples to another group, since there is no "
4484 "other Group. This is a bug, report it!"
4485 );
4486 // now move all samples of this group to the other group
4487 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4488 pOtherGroup->AddSample(pSample);
4489 }
4490 }
4491
4492
4493
4494 // *************** File ***************
4495 // *
4496
4497 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
4498 const DLS::version_t File::VERSION_2 = {
4499 0, 2, 19980628 & 0xffff, 19980628 >> 16
4500 };
4501
4502 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
4503 const DLS::version_t File::VERSION_3 = {
4504 0, 3, 20030331 & 0xffff, 20030331 >> 16
4505 };
4506
4507 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
4508 { CHUNK_ID_IARL, 256 },
4509 { CHUNK_ID_IART, 128 },
4510 { CHUNK_ID_ICMS, 128 },
4511 { CHUNK_ID_ICMT, 1024 },
4512 { CHUNK_ID_ICOP, 128 },
4513 { CHUNK_ID_ICRD, 128 },
4514 { CHUNK_ID_IENG, 128 },
4515 { CHUNK_ID_IGNR, 128 },
4516 { CHUNK_ID_IKEY, 128 },
4517 { CHUNK_ID_IMED, 128 },
4518 { CHUNK_ID_INAM, 128 },
4519 { CHUNK_ID_IPRD, 128 },
4520 { CHUNK_ID_ISBJ, 128 },
4521 { CHUNK_ID_ISFT, 128 },
4522 { CHUNK_ID_ISRC, 128 },
4523 { CHUNK_ID_ISRF, 128 },
4524 { CHUNK_ID_ITCH, 128 },
4525 { 0, 0 }
4526 };
4527
4528 File::File() : DLS::File() {
4529 bAutoLoad = true;
4530 *pVersion = VERSION_3;
4531 pGroups = NULL;
4532 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4533 pInfo->ArchivalLocation = String(256, ' ');
4534
4535 // add some mandatory chunks to get the file chunks in right
4536 // order (INFO chunk will be moved to first position later)
4537 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
4538 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
4539 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
4540
4541 GenerateDLSID();
4542 }
4543
4544 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
4545 bAutoLoad = true;
4546 pGroups = NULL;
4547 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4548 }
4549
4550 File::~File() {
4551 if (pGroups) {
4552 std::list<Group*>::iterator iter = pGroups->begin();
4553 std::list<Group*>::iterator end = pGroups->end();
4554 while (iter != end) {
4555 delete *iter;
4556 ++iter;
4557 }
4558 delete pGroups;
4559 }
4560 }
4561
4562 Sample* File::GetFirstSample(progress_t* pProgress) {
4563 if (!pSamples) LoadSamples(pProgress);
4564 if (!pSamples) return NULL;
4565 SamplesIterator = pSamples->begin();
4566 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4567 }
4568
4569 Sample* File::GetNextSample() {
4570 if (!pSamples) return NULL;
4571 SamplesIterator++;
4572 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4573 }
4574
4575 /**
4576 * Returns Sample object of @a index.
4577 *
4578 * @returns sample object or NULL if index is out of bounds
4579 */
4580 Sample* File::GetSample(uint index) {
4581 if (!pSamples) LoadSamples();
4582 if (!pSamples) return NULL;
4583 DLS::File::SampleList::iterator it = pSamples->begin();
4584 for (int i = 0; i < index; ++i) {
4585 ++it;
4586 if (it == pSamples->end()) return NULL;
4587 }
4588 if (it == pSamples->end()) return NULL;
4589 return static_cast<gig::Sample*>( *it );
4590 }
4591
4592 /** @brief Add a new sample.
4593 *
4594 * This will create a new Sample object for the gig file. You have to
4595 * call Save() to make this persistent to the file.
4596 *
4597 * @returns pointer to new Sample object
4598 */
4599 Sample* File::AddSample() {
4600 if (!pSamples) LoadSamples();
4601 __ensureMandatoryChunksExist();
4602 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
4603 // create new Sample object and its respective 'wave' list chunk
4604 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
4605 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
4606
4607 // add mandatory chunks to get the chunks in right order
4608 wave->AddSubChunk(CHUNK_ID_FMT, 16);
4609 wave->AddSubList(LIST_TYPE_INFO);
4610
4611 pSamples->push_back(pSample);
4612 return pSample;
4613 }
4614
4615 /** @brief Delete a sample.
4616 *
4617 * This will delete the given Sample object from the gig file. Any
4618 * references to this sample from Regions and DimensionRegions will be
4619 * removed. You have to call Save() to make this persistent to the file.
4620 *
4621 * @param pSample - sample to delete
4622 * @throws gig::Exception if given sample could not be found
4623 */
4624 void File::DeleteSample(Sample* pSample) {
4625 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
4626 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
4627 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
4628 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
4629 pSamples->erase(iter);
4630 delete pSample;
4631
4632 SampleList::iterator tmp = SamplesIterator;
4633 // remove all references to the sample
4634 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4635 instrument = GetNextInstrument()) {
4636 for (Region* region = instrument->GetFirstRegion() ; region ;
4637 region = instrument->GetNextRegion()) {
4638
4639 if (region->GetSample() == pSample) region->SetSample(NULL);
4640
4641 for (int i = 0 ; i < region->DimensionRegions ; i++) {
4642 gig::DimensionRegion *d = region->pDimensionRegions[i];
4643 if (d->pSample == pSample) d->pSample = NULL;
4644 }
4645 }
4646 }
4647 SamplesIterator = tmp; // restore iterator
4648 }
4649
4650 void File::LoadSamples() {
4651 LoadSamples(NULL);
4652 }
4653
4654 void File::LoadSamples(progress_t* pProgress) {
4655 // Groups must be loaded before samples, because samples will try
4656 // to resolve the group they belong to
4657 if (!pGroups) LoadGroups();
4658
4659 if (!pSamples) pSamples = new SampleList;
4660
4661 RIFF::File* file = pRIFF;
4662
4663 // just for progress calculation
4664 int iSampleIndex = 0;
4665 int iTotalSamples = WavePoolCount;
4666
4667 // check if samples should be loaded from extension files
4668 int lastFileNo = 0;
4669 for (int i = 0 ; i < WavePoolCount ; i++) {
4670 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
4671 }
4672 String name(pRIFF->GetFileName());
4673 int nameLen = name.length();
4674 char suffix[6];
4675 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
4676
4677 for (int fileNo = 0 ; ; ) {
4678 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
4679 if (wvpl) {
4680 unsigned long wvplFileOffset = wvpl->GetFilePos();
4681 RIFF::List* wave = wvpl->GetFirstSubList();
4682 while (wave) {
4683 if (wave->GetListType() == LIST_TYPE_WAVE) {
4684 // notify current progress
4685 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
4686 __notify_progress(pProgress, subprogress);
4687
4688 unsigned long waveFileOffset = wave->GetFilePos();
4689 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
4690
4691 iSampleIndex++;
4692 }
4693 wave = wvpl->GetNextSubList();
4694 }
4695
4696 if (fileNo == lastFileNo) break;
4697
4698 // open extension file (*.gx01, *.gx02, ...)
4699 fileNo++;
4700 sprintf(suffix, ".gx%02d", fileNo);
4701 name.replace(nameLen, 5, suffix);
4702 file = new RIFF::File(name);
4703 ExtensionFiles.push_back(file);
4704 } else break;
4705 }
4706
4707 __notify_progress(pProgress, 1.0); // notify done
4708 }
4709
4710 Instrument* File::GetFirstInstrument() {
4711 if (!pInstruments) LoadInstruments();
4712 if (!pInstruments) return NULL;
4713 InstrumentsIterator = pInstruments->begin();
4714 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4715 }
4716
4717 Instrument* File::GetNextInstrument() {
4718 if (!pInstruments) return NULL;
4719 InstrumentsIterator++;
4720 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4721 }
4722
4723 /**
4724 * Returns the instrument with the given index.
4725 *
4726 * @param index - number of the sought instrument (0..n)
4727 * @param pProgress - optional: callback function for progress notification
4728 * @returns sought instrument or NULL if there's no such instrument
4729 */
4730 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
4731 if (!pInstruments) {
4732 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
4733
4734 // sample loading subtask
4735 progress_t subprogress;
4736 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
4737 __notify_progress(&subprogress, 0.0f);
4738 if (GetAutoLoad())
4739 GetFirstSample(&subprogress); // now force all samples to be loaded
4740 __notify_progress(&subprogress, 1.0f);
4741
4742 // instrument loading subtask
4743 if (pProgress && pProgress->callback) {
4744 subprogress.__range_min = subprogress.__range_max;
4745 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4746 }
4747 __notify_progress(&subprogress, 0.0f);
4748 LoadInstruments(&subprogress);
4749 __notify_progress(&subprogress, 1.0f);
4750 }
4751 if (!pInstruments) return NULL;
4752 InstrumentsIterator = pInstruments->begin();
4753 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4754 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4755 InstrumentsIterator++;
4756 }
4757 return NULL;
4758 }
4759
4760 /** @brief Add a new instrument definition.
4761 *
4762 * This will create a new Instrument object for the gig file. You have
4763 * to call Save() to make this persistent to the file.
4764 *
4765 * @returns pointer to new Instrument object
4766 */
4767 Instrument* File::AddInstrument() {
4768 if (!pInstruments) LoadInstruments();
4769 __ensureMandatoryChunksExist();
4770 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4771 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4772
4773 // add mandatory chunks to get the chunks in right order
4774 lstInstr->AddSubList(LIST_TYPE_INFO);
4775 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4776
4777 Instrument* pInstrument = new Instrument(this, lstInstr);
4778 pInstrument->GenerateDLSID();
4779
4780 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4781
4782 // this string is needed for the gig to be loadable in GSt:
4783 pInstrument->pInfo->Software = "Endless Wave";
4784
4785 pInstruments->push_back(pInstrument);
4786 return pInstrument;
4787 }
4788
4789 /** @brief Add a duplicate of an existing instrument.
4790 *
4791 * Duplicates the instrument definition given by @a orig and adds it
4792 * to this file. This allows in an instrument editor application to
4793 * easily create variations of an instrument, which will be stored in
4794 * the same .gig file, sharing i.e. the same samples.
4795 *
4796 * Note that all sample pointers referenced by @a orig are simply copied as
4797 * memory address. Thus the respective samples are shared, not duplicated!
4798 *
4799 * You have to call Save() to make this persistent to the file.
4800 *
4801 * @param orig - original instrument to be copied
4802 * @returns duplicated copy of the given instrument
4803 */
4804 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4805 Instrument* instr = AddInstrument();
4806 instr->CopyAssign(orig);
4807 return instr;
4808 }
4809
4810 /** @brief Add content of another existing file.
4811 *
4812 * Duplicates the samples, groups and instruments of the original file
4813 * given by @a pFile and adds them to @c this File. In case @c this File is
4814 * a new one that you haven't saved before, then you have to call
4815 * SetFileName() before calling AddContentOf(), because this method will
4816 * automatically save this file during operation, which is required for
4817 * writing the sample waveform data by disk streaming.
4818 *
4819 * @param pFile - original file whose's content shall be copied from
4820 */
4821 void File::AddContentOf(File* pFile) {
4822 static int iCallCount = -1;
4823 iCallCount++;
4824 std::map<Group*,Group*> mGroups;
4825 std::map<Sample*,Sample*> mSamples;
4826
4827 // clone sample groups
4828 for (int i = 0; pFile->GetGroup(i); ++i) {
4829 Group* g = AddGroup();
4830 g->Name =
4831 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4832 mGroups[pFile->GetGroup(i)] = g;
4833 }
4834
4835 // clone samples (not waveform data here yet)
4836 for (int i = 0; pFile->GetSample(i); ++i) {
4837 Sample* s = AddSample();
4838 s->CopyAssignMeta(pFile->GetSample(i));
4839 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4840 mSamples[pFile->GetSample(i)] = s;
4841 }
4842
4843 //BUG: For some reason this method only works with this additional
4844 // Save() call in between here.
4845 //
4846 // Important: The correct one of the 2 Save() methods has to be called
4847 // here, depending on whether the file is completely new or has been
4848 // saved to disk already, otherwise it will result in data corruption.
4849 if (pRIFF->IsNew())
4850 Save(GetFileName());
4851 else
4852 Save();
4853
4854 // clone instruments
4855 // (passing the crosslink table here for the cloned samples)
4856 for (int i = 0; pFile->GetInstrument(i); ++i) {
4857 Instrument* instr = AddInstrument();
4858 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4859 }
4860
4861 // Mandatory: file needs to be saved to disk at this point, so this
4862 // file has the correct size and data layout for writing the samples'
4863 // waveform data to disk.
4864 Save();
4865
4866 // clone samples' waveform data
4867 // (using direct read & write disk streaming)
4868 for (int i = 0; pFile->GetSample(i); ++i) {
4869 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4870 }
4871 }
4872
4873 /** @brief Delete an instrument.
4874 *
4875 * This will delete the given Instrument object from the gig file. You
4876 * have to call Save() to make this persistent to the file.
4877 *
4878 * @param pInstrument - instrument to delete
4879 * @throws gig::Exception if given instrument could not be found
4880 */
4881 void File::DeleteInstrument(Instrument* pInstrument) {
4882 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4883 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4884 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4885 pInstruments->erase(iter);
4886 delete pInstrument;
4887 }
4888
4889 void File::LoadInstruments() {
4890 LoadInstruments(NULL);
4891 }
4892
4893 void File::LoadInstruments(progress_t* pProgress) {
4894 if (!pInstruments) pInstruments = new InstrumentList;
4895 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4896 if (lstInstruments) {
4897 int iInstrumentIndex = 0;
4898 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4899 while (lstInstr) {
4900 if (lstInstr->GetListType() == LIST_TYPE_INS) {
4901 // notify current progress
4902 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4903 __notify_progress(pProgress, localProgress);
4904
4905 // divide local progress into subprogress for loading current Instrument
4906 progress_t subprogress;
4907 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4908
4909 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4910
4911 iInstrumentIndex++;
4912 }
4913 lstInstr = lstInstruments->GetNextSubList();
4914 }
4915 __notify_progress(pProgress, 1.0); // notify done
4916 }
4917 }
4918
4919 /// Updates the 3crc chunk with the checksum of a sample. The
4920 /// update is done directly to disk, as this method is called
4921 /// after File::Save()
4922 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4923 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4924 if (!_3crc) return;
4925
4926 // get the index of the sample
4927 int iWaveIndex = -1;
4928 File::SampleList::iterator iter = pSamples->begin();
4929 File::SampleList::iterator end = pSamples->end();
4930 for (int index = 0; iter != end; ++iter, ++index) {
4931 if (*iter == pSample) {
4932 iWaveIndex = index;
4933 break;
4934 }
4935 }
4936 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4937
4938 // write the CRC-32 checksum to disk
4939 _3crc->SetPos(iWaveIndex * 8);
4940 uint32_t tmp = 1;
4941 _3crc->WriteUint32(&tmp); // unknown, always 1?
4942 _3crc->WriteUint32(&crc);
4943 }
4944
4945 Group* File::GetFirstGroup() {
4946 if (!pGroups) LoadGroups();
4947 // there must always be at least one group
4948 GroupsIterator = pGroups->begin();
4949 return *GroupsIterator;
4950 }
4951
4952 Group* File::GetNextGroup() {
4953 if (!pGroups) return NULL;
4954 ++GroupsIterator;
4955 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4956 }
4957
4958 /**
4959 * Returns the group with the given index.
4960 *
4961 * @param index - number of the sought group (0..n)
4962 * @returns sought group or NULL if there's no such group
4963 */
4964 Group* File::GetGroup(uint index) {
4965 if (!pGroups) LoadGroups();
4966 GroupsIterator = pGroups->begin();
4967 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4968 if (i == index) return *GroupsIterator;
4969 ++GroupsIterator;
4970 }
4971 return NULL;
4972 }
4973
4974 /**
4975 * Returns the group with the given group name.
4976 *
4977 * Note: group names don't have to be unique in the gig format! So there
4978 * can be multiple groups with the same name. This method will simply
4979 * return the first group found with the given name.
4980 *
4981 * @param name - name of the sought group
4982 * @returns sought group or NULL if there's no group with that name
4983 */
4984 Group* File::GetGroup(String name) {
4985 if (!pGroups) LoadGroups();
4986 GroupsIterator = pGroups->begin();
4987 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
4988 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
4989 return NULL;
4990 }
4991
4992 Group* File::AddGroup() {
4993 if (!pGroups) LoadGroups();
4994 // there must always be at least one group
4995 __ensureMandatoryChunksExist();
4996 Group* pGroup = new Group(this, NULL);
4997 pGroups->push_back(pGroup);
4998 return pGroup;
4999 }
5000
5001 /** @brief Delete a group and its samples.
5002 *
5003 * This will delete the given Group object and all the samples that
5004 * belong to this group from the gig file. You have to call Save() to
5005 * make this persistent to the file.
5006 *
5007 * @param pGroup - group to delete
5008 * @throws gig::Exception if given group could not be found
5009 */
5010 void File::DeleteGroup(Group* pGroup) {
5011 if (!pGroups) LoadGroups();
5012 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5013 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5014 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5015 // delete all members of this group
5016 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5017 DeleteSample(pSample);
5018 }
5019 // now delete this group object
5020 pGroups->erase(iter);
5021 delete pGroup;
5022 }
5023
5024 /** @brief Delete a group.
5025 *
5026 * This will delete the given Group object from the gig file. All the
5027 * samples that belong to this group will not be deleted, but instead
5028 * be moved to another group. You have to call Save() to make this
5029 * persistent to the file.
5030 *
5031 * @param pGroup - group to delete
5032 * @throws gig::Exception if given group could not be found
5033 */
5034 void File::DeleteGroupOnly(Group* pGroup) {
5035 if (!pGroups) LoadGroups();
5036 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5037 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5038 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5039 // move all members of this group to another group
5040 pGroup->MoveAll();
5041 pGroups->erase(iter);
5042 delete pGroup;
5043 }
5044
5045 void File::LoadGroups() {
5046 if (!pGroups) pGroups = new std::list<Group*>;
5047 // try to read defined groups from file
5048 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5049 if (lst3gri) {
5050 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5051 if (lst3gnl) {
5052 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5053 while (ck) {
5054 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5055 if (pVersion && pVersion->major == 3 &&
5056 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5057
5058 pGroups->push_back(new Group(this, ck));
5059 }
5060 ck = lst3gnl->GetNextSubChunk();
5061 }
5062 }
5063 }
5064 // if there were no group(s), create at least the mandatory default group
5065 if (!pGroups->size()) {
5066 Group* pGroup = new Group(this, NULL);
5067 pGroup->Name = "Default Group";
5068 pGroups->push_back(pGroup);
5069 }
5070 }
5071
5072 /**
5073 * Apply all the gig file's current instruments, samples, groups and settings
5074 * to the respective RIFF chunks. You have to call Save() to make changes
5075 * persistent.
5076 *
5077 * Usually there is absolutely no need to call this method explicitly.
5078 * It will be called automatically when File::Save() was called.
5079 *
5080 * @throws Exception - on errors
5081 */
5082 void File::UpdateChunks() {
5083 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5084
5085 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
5086
5087 // first update base class's chunks
5088 DLS::File::UpdateChunks();
5089
5090 if (newFile) {
5091 // INFO was added by Resource::UpdateChunks - make sure it
5092 // is placed first in file
5093 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5094 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5095 if (first != info) {
5096 pRIFF->MoveSubChunk(info, first);
5097 }
5098 }
5099
5100 // update group's chunks
5101 if (pGroups) {
5102 // make sure '3gri' and '3gnl' list chunks exist
5103 // (before updating the Group chunks)
5104 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5105 if (!_3gri) {
5106 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5107 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5108 }
5109 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5110 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5111
5112 // v3: make sure the file has 128 3gnm chunks
5113 // (before updating the Group chunks)
5114 if (pVersion && pVersion->major == 3) {
5115 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5116 for (int i = 0 ; i < 128 ; i++) {
5117 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5118 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5119 }
5120 }
5121
5122 std::list<Group*>::iterator iter = pGroups->begin();
5123 std::list<Group*>::iterator end = pGroups->end();
5124 for (; iter != end; ++iter) {
5125 (*iter)->UpdateChunks();
5126 }
5127 }
5128
5129 // update einf chunk
5130
5131 // The einf chunk contains statistics about the gig file, such
5132 // as the number of regions and samples used by each
5133 // instrument. It is divided in equally sized parts, where the
5134 // first part contains information about the whole gig file,
5135 // and the rest of the parts map to each instrument in the
5136 // file.
5137 //
5138 // At the end of each part there is a bit map of each sample
5139 // in the file, where a set bit means that the sample is used
5140 // by the file/instrument.
5141 //
5142 // Note that there are several fields with unknown use. These
5143 // are set to zero.
5144
5145 int sublen = pSamples->size() / 8 + 49;
5146 int einfSize = (Instruments + 1) * sublen;
5147
5148 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5149 if (einf) {
5150 if (einf->GetSize() != einfSize) {
5151 einf->Resize(einfSize);
5152 memset(einf->LoadChunkData(), 0, einfSize);
5153 }
5154 } else if (newFile) {
5155 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5156 }
5157 if (einf) {
5158 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5159
5160 std::map<gig::Sample*,int> sampleMap;
5161 int sampleIdx = 0;
5162 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5163 sampleMap[pSample] = sampleIdx++;
5164 }
5165
5166 int totnbusedsamples = 0;
5167 int totnbusedchannels = 0;
5168 int totnbregions = 0;
5169 int totnbdimregions = 0;
5170 int totnbloops = 0;
5171 int instrumentIdx = 0;
5172
5173 memset(&pData[48], 0, sublen - 48);
5174
5175 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5176 instrument = GetNextInstrument()) {
5177 int nbusedsamples = 0;
5178 int nbusedchannels = 0;
5179 int nbdimregions = 0;
5180 int nbloops = 0;
5181
5182 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5183
5184 for (Region* region = instrument->GetFirstRegion() ; region ;
5185 region = instrument->GetNextRegion()) {
5186 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5187 gig::DimensionRegion *d = region->pDimensionRegions[i];
5188 if (d->pSample) {
5189 int sampleIdx = sampleMap[d->pSample];
5190 int byte = 48 + sampleIdx / 8;
5191 int bit = 1 << (sampleIdx & 7);
5192 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5193 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
5194 nbusedsamples++;
5195 nbusedchannels += d->pSample->Channels;
5196
5197 if ((pData[byte] & bit) == 0) {
5198 pData[byte] |= bit;
5199 totnbusedsamples++;
5200 totnbusedchannels += d->pSample->Channels;
5201 }
5202 }
5203 }
5204 if (d->SampleLoops) nbloops++;
5205 }
5206 nbdimregions += region->DimensionRegions;
5207 }
5208 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5209 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
5210 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
5211 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
5212 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
5213 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
5214 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
5215 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
5216 // next 8 bytes unknown
5217 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
5218 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
5219 // next 4 bytes unknown
5220
5221 totnbregions += instrument->Regions;
5222 totnbdimregions += nbdimregions;
5223 totnbloops += nbloops;
5224 instrumentIdx++;
5225 }
5226 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5227 // store32(&pData[0], sublen);
5228 store32(&pData[4], totnbusedchannels);
5229 store32(&pData[8], totnbusedsamples);
5230 store32(&pData[12], Instruments);
5231 store32(&pData[16], totnbregions);
5232 store32(&pData[20], totnbdimregions);
5233 store32(&pData[24], totnbloops);
5234 // next 8 bytes unknown
5235 // next 4 bytes unknown, not always 0
5236 store32(&pData[40], pSamples->size());
5237 // next 4 bytes unknown
5238 }
5239
5240 // update 3crc chunk
5241
5242 // The 3crc chunk contains CRC-32 checksums for the
5243 // samples. The actual checksum values will be filled in
5244 // later, by Sample::Write.
5245
5246 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5247 if (_3crc) {
5248 _3crc->Resize(pSamples->size() * 8);
5249 } else if (newFile) {
5250 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5251 _3crc->LoadChunkData();
5252
5253 // the order of einf and 3crc is not the same in v2 and v3
5254 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5255 }
5256 }
5257
5258 /**
5259 * Enable / disable automatic loading. By default this properyt is
5260 * enabled and all informations are loaded automatically. However
5261 * loading all Regions, DimensionRegions and especially samples might
5262 * take a long time for large .gig files, and sometimes one might only
5263 * be interested in retrieving very superficial informations like the
5264 * amount of instruments and their names. In this case one might disable
5265 * automatic loading to avoid very slow response times.
5266 *
5267 * @e CAUTION: by disabling this property many pointers (i.e. sample
5268 * references) and informations will have invalid or even undefined
5269 * data! This feature is currently only intended for retrieving very
5270 * superficial informations in a very fast way. Don't use it to retrieve
5271 * details like synthesis informations or even to modify .gig files!
5272 */
5273 void File::SetAutoLoad(bool b) {
5274 bAutoLoad = b;
5275 }
5276
5277 /**
5278 * Returns whether automatic loading is enabled.
5279 * @see SetAutoLoad()
5280 */
5281 bool File::GetAutoLoad() {
5282 return bAutoLoad;
5283 }
5284
5285
5286
5287 // *************** Exception ***************
5288 // *
5289
5290 Exception::Exception(String Message) : DLS::Exception(Message) {
5291 }
5292
5293 void Exception::PrintMessage() {
5294 std::cout << "gig::Exception: " << Message << std::endl;
5295 }
5296
5297
5298 // *************** functions ***************
5299 // *
5300
5301 /**
5302 * Returns the name of this C++ library. This is usually "libgig" of
5303 * course. This call is equivalent to RIFF::libraryName() and
5304 * DLS::libraryName().
5305 */
5306 String libraryName() {
5307 return PACKAGE;
5308 }
5309
5310 /**
5311 * Returns version of this C++ library. This call is equivalent to
5312 * RIFF::libraryVersion() and DLS::libraryVersion().
5313 */
5314 String libraryVersion() {
5315 return VERSION;
5316 }
5317
5318 } // namespace gig

  ViewVC Help
Powered by ViewVC