/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2609 - (show annotations) (download)
Sun Jun 8 19:00:30 2014 UTC (6 years, 4 months ago) by schoenebeck
File size: 260435 byte(s)
* gig: Fixed instrument script slot saving/loading.
* gigdump tool: Show scripts and script slots.
* Bumped version (3.3.0.svn17).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// Initial size of the sample buffer which is used for decompression of
34 /// compressed sample wave streams - this value should always be bigger than
35 /// the biggest sample piece expected to be read by the sampler engine,
36 /// otherwise the buffer size will be raised at runtime and thus the buffer
37 /// reallocated which is time consuming and unefficient.
38 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
39
40 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
41 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
42 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
43 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
44 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
45 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
46 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
47 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
48 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
49 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
50 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
51 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
52 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
53
54 namespace gig {
55
56 // *************** progress_t ***************
57 // *
58
59 progress_t::progress_t() {
60 callback = NULL;
61 custom = NULL;
62 __range_min = 0.0f;
63 __range_max = 1.0f;
64 }
65
66 // private helper function to convert progress of a subprocess into the global progress
67 static void __notify_progress(progress_t* pProgress, float subprogress) {
68 if (pProgress && pProgress->callback) {
69 const float totalrange = pProgress->__range_max - pProgress->__range_min;
70 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
71 pProgress->factor = totalprogress;
72 pProgress->callback(pProgress); // now actually notify about the progress
73 }
74 }
75
76 // private helper function to divide a progress into subprogresses
77 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
78 if (pParentProgress && pParentProgress->callback) {
79 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
80 pSubProgress->callback = pParentProgress->callback;
81 pSubProgress->custom = pParentProgress->custom;
82 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
83 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
84 }
85 }
86
87
88 // *************** Internal functions for sample decompression ***************
89 // *
90
91 namespace {
92
93 inline int get12lo(const unsigned char* pSrc)
94 {
95 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
96 return x & 0x800 ? x - 0x1000 : x;
97 }
98
99 inline int get12hi(const unsigned char* pSrc)
100 {
101 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
102 return x & 0x800 ? x - 0x1000 : x;
103 }
104
105 inline int16_t get16(const unsigned char* pSrc)
106 {
107 return int16_t(pSrc[0] | pSrc[1] << 8);
108 }
109
110 inline int get24(const unsigned char* pSrc)
111 {
112 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
113 return x & 0x800000 ? x - 0x1000000 : x;
114 }
115
116 inline void store24(unsigned char* pDst, int x)
117 {
118 pDst[0] = x;
119 pDst[1] = x >> 8;
120 pDst[2] = x >> 16;
121 }
122
123 void Decompress16(int compressionmode, const unsigned char* params,
124 int srcStep, int dstStep,
125 const unsigned char* pSrc, int16_t* pDst,
126 unsigned long currentframeoffset,
127 unsigned long copysamples)
128 {
129 switch (compressionmode) {
130 case 0: // 16 bit uncompressed
131 pSrc += currentframeoffset * srcStep;
132 while (copysamples) {
133 *pDst = get16(pSrc);
134 pDst += dstStep;
135 pSrc += srcStep;
136 copysamples--;
137 }
138 break;
139
140 case 1: // 16 bit compressed to 8 bit
141 int y = get16(params);
142 int dy = get16(params + 2);
143 while (currentframeoffset) {
144 dy -= int8_t(*pSrc);
145 y -= dy;
146 pSrc += srcStep;
147 currentframeoffset--;
148 }
149 while (copysamples) {
150 dy -= int8_t(*pSrc);
151 y -= dy;
152 *pDst = y;
153 pDst += dstStep;
154 pSrc += srcStep;
155 copysamples--;
156 }
157 break;
158 }
159 }
160
161 void Decompress24(int compressionmode, const unsigned char* params,
162 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
163 unsigned long currentframeoffset,
164 unsigned long copysamples, int truncatedBits)
165 {
166 int y, dy, ddy, dddy;
167
168 #define GET_PARAMS(params) \
169 y = get24(params); \
170 dy = y - get24((params) + 3); \
171 ddy = get24((params) + 6); \
172 dddy = get24((params) + 9)
173
174 #define SKIP_ONE(x) \
175 dddy -= (x); \
176 ddy -= dddy; \
177 dy = -dy - ddy; \
178 y += dy
179
180 #define COPY_ONE(x) \
181 SKIP_ONE(x); \
182 store24(pDst, y << truncatedBits); \
183 pDst += dstStep
184
185 switch (compressionmode) {
186 case 2: // 24 bit uncompressed
187 pSrc += currentframeoffset * 3;
188 while (copysamples) {
189 store24(pDst, get24(pSrc) << truncatedBits);
190 pDst += dstStep;
191 pSrc += 3;
192 copysamples--;
193 }
194 break;
195
196 case 3: // 24 bit compressed to 16 bit
197 GET_PARAMS(params);
198 while (currentframeoffset) {
199 SKIP_ONE(get16(pSrc));
200 pSrc += 2;
201 currentframeoffset--;
202 }
203 while (copysamples) {
204 COPY_ONE(get16(pSrc));
205 pSrc += 2;
206 copysamples--;
207 }
208 break;
209
210 case 4: // 24 bit compressed to 12 bit
211 GET_PARAMS(params);
212 while (currentframeoffset > 1) {
213 SKIP_ONE(get12lo(pSrc));
214 SKIP_ONE(get12hi(pSrc));
215 pSrc += 3;
216 currentframeoffset -= 2;
217 }
218 if (currentframeoffset) {
219 SKIP_ONE(get12lo(pSrc));
220 currentframeoffset--;
221 if (copysamples) {
222 COPY_ONE(get12hi(pSrc));
223 pSrc += 3;
224 copysamples--;
225 }
226 }
227 while (copysamples > 1) {
228 COPY_ONE(get12lo(pSrc));
229 COPY_ONE(get12hi(pSrc));
230 pSrc += 3;
231 copysamples -= 2;
232 }
233 if (copysamples) {
234 COPY_ONE(get12lo(pSrc));
235 }
236 break;
237
238 case 5: // 24 bit compressed to 8 bit
239 GET_PARAMS(params);
240 while (currentframeoffset) {
241 SKIP_ONE(int8_t(*pSrc++));
242 currentframeoffset--;
243 }
244 while (copysamples) {
245 COPY_ONE(int8_t(*pSrc++));
246 copysamples--;
247 }
248 break;
249 }
250 }
251
252 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
253 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
254 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
255 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
256 }
257
258
259
260 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
261 // *
262
263 static uint32_t* __initCRCTable() {
264 static uint32_t res[256];
265
266 for (int i = 0 ; i < 256 ; i++) {
267 uint32_t c = i;
268 for (int j = 0 ; j < 8 ; j++) {
269 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
270 }
271 res[i] = c;
272 }
273 return res;
274 }
275
276 static const uint32_t* __CRCTable = __initCRCTable();
277
278 /**
279 * Initialize a CRC variable.
280 *
281 * @param crc - variable to be initialized
282 */
283 inline static void __resetCRC(uint32_t& crc) {
284 crc = 0xffffffff;
285 }
286
287 /**
288 * Used to calculate checksums of the sample data in a gig file. The
289 * checksums are stored in the 3crc chunk of the gig file and
290 * automatically updated when a sample is written with Sample::Write().
291 *
292 * One should call __resetCRC() to initialize the CRC variable to be
293 * used before calling this function the first time.
294 *
295 * After initializing the CRC variable one can call this function
296 * arbitrary times, i.e. to split the overall CRC calculation into
297 * steps.
298 *
299 * Once the whole data was processed by __calculateCRC(), one should
300 * call __encodeCRC() to get the final CRC result.
301 *
302 * @param buf - pointer to data the CRC shall be calculated of
303 * @param bufSize - size of the data to be processed
304 * @param crc - variable the CRC sum shall be stored to
305 */
306 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
307 for (int i = 0 ; i < bufSize ; i++) {
308 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
309 }
310 }
311
312 /**
313 * Returns the final CRC result.
314 *
315 * @param crc - variable previously passed to __calculateCRC()
316 */
317 inline static uint32_t __encodeCRC(const uint32_t& crc) {
318 return crc ^ 0xffffffff;
319 }
320
321
322
323 // *************** Other Internal functions ***************
324 // *
325
326 static split_type_t __resolveSplitType(dimension_t dimension) {
327 return (
328 dimension == dimension_layer ||
329 dimension == dimension_samplechannel ||
330 dimension == dimension_releasetrigger ||
331 dimension == dimension_keyboard ||
332 dimension == dimension_roundrobin ||
333 dimension == dimension_random ||
334 dimension == dimension_smartmidi ||
335 dimension == dimension_roundrobinkeyboard
336 ) ? split_type_bit : split_type_normal;
337 }
338
339 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
340 return (dimension_definition.split_type == split_type_normal)
341 ? int(128.0 / dimension_definition.zones) : 0;
342 }
343
344
345
346 // *************** Sample ***************
347 // *
348
349 unsigned int Sample::Instances = 0;
350 buffer_t Sample::InternalDecompressionBuffer;
351
352 /** @brief Constructor.
353 *
354 * Load an existing sample or create a new one. A 'wave' list chunk must
355 * be given to this constructor. In case the given 'wave' list chunk
356 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
357 * format and sample data will be loaded from there, otherwise default
358 * values will be used and those chunks will be created when
359 * File::Save() will be called later on.
360 *
361 * @param pFile - pointer to gig::File where this sample is
362 * located (or will be located)
363 * @param waveList - pointer to 'wave' list chunk which is (or
364 * will be) associated with this sample
365 * @param WavePoolOffset - offset of this sample data from wave pool
366 * ('wvpl') list chunk
367 * @param fileNo - number of an extension file where this sample
368 * is located, 0 otherwise
369 */
370 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
371 static const DLS::Info::string_length_t fixedStringLengths[] = {
372 { CHUNK_ID_INAM, 64 },
373 { 0, 0 }
374 };
375 pInfo->SetFixedStringLengths(fixedStringLengths);
376 Instances++;
377 FileNo = fileNo;
378
379 __resetCRC(crc);
380
381 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
382 if (pCk3gix) {
383 uint16_t iSampleGroup = pCk3gix->ReadInt16();
384 pGroup = pFile->GetGroup(iSampleGroup);
385 } else { // '3gix' chunk missing
386 // by default assigned to that mandatory "Default Group"
387 pGroup = pFile->GetGroup(0);
388 }
389
390 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
391 if (pCkSmpl) {
392 Manufacturer = pCkSmpl->ReadInt32();
393 Product = pCkSmpl->ReadInt32();
394 SamplePeriod = pCkSmpl->ReadInt32();
395 MIDIUnityNote = pCkSmpl->ReadInt32();
396 FineTune = pCkSmpl->ReadInt32();
397 pCkSmpl->Read(&SMPTEFormat, 1, 4);
398 SMPTEOffset = pCkSmpl->ReadInt32();
399 Loops = pCkSmpl->ReadInt32();
400 pCkSmpl->ReadInt32(); // manufByt
401 LoopID = pCkSmpl->ReadInt32();
402 pCkSmpl->Read(&LoopType, 1, 4);
403 LoopStart = pCkSmpl->ReadInt32();
404 LoopEnd = pCkSmpl->ReadInt32();
405 LoopFraction = pCkSmpl->ReadInt32();
406 LoopPlayCount = pCkSmpl->ReadInt32();
407 } else { // 'smpl' chunk missing
408 // use default values
409 Manufacturer = 0;
410 Product = 0;
411 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
412 MIDIUnityNote = 60;
413 FineTune = 0;
414 SMPTEFormat = smpte_format_no_offset;
415 SMPTEOffset = 0;
416 Loops = 0;
417 LoopID = 0;
418 LoopType = loop_type_normal;
419 LoopStart = 0;
420 LoopEnd = 0;
421 LoopFraction = 0;
422 LoopPlayCount = 0;
423 }
424
425 FrameTable = NULL;
426 SamplePos = 0;
427 RAMCache.Size = 0;
428 RAMCache.pStart = NULL;
429 RAMCache.NullExtensionSize = 0;
430
431 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
432
433 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
434 Compressed = ewav;
435 Dithered = false;
436 TruncatedBits = 0;
437 if (Compressed) {
438 uint32_t version = ewav->ReadInt32();
439 if (version == 3 && BitDepth == 24) {
440 Dithered = ewav->ReadInt32();
441 ewav->SetPos(Channels == 2 ? 84 : 64);
442 TruncatedBits = ewav->ReadInt32();
443 }
444 ScanCompressedSample();
445 }
446
447 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
448 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
449 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
450 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
451 }
452 FrameOffset = 0; // just for streaming compressed samples
453
454 LoopSize = LoopEnd - LoopStart + 1;
455 }
456
457 /**
458 * Make a (semi) deep copy of the Sample object given by @a orig (without
459 * the actual waveform data) and assign it to this object.
460 *
461 * Discussion: copying .gig samples is a bit tricky. It requires three
462 * steps:
463 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
464 * its new sample waveform data size.
465 * 2. Saving the file (done by File::Save()) so that it gains correct size
466 * and layout for writing the actual wave form data directly to disc
467 * in next step.
468 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
469 *
470 * @param orig - original Sample object to be copied from
471 */
472 void Sample::CopyAssignMeta(const Sample* orig) {
473 // handle base classes
474 DLS::Sample::CopyAssignCore(orig);
475
476 // handle actual own attributes of this class
477 Manufacturer = orig->Manufacturer;
478 Product = orig->Product;
479 SamplePeriod = orig->SamplePeriod;
480 MIDIUnityNote = orig->MIDIUnityNote;
481 FineTune = orig->FineTune;
482 SMPTEFormat = orig->SMPTEFormat;
483 SMPTEOffset = orig->SMPTEOffset;
484 Loops = orig->Loops;
485 LoopID = orig->LoopID;
486 LoopType = orig->LoopType;
487 LoopStart = orig->LoopStart;
488 LoopEnd = orig->LoopEnd;
489 LoopSize = orig->LoopSize;
490 LoopFraction = orig->LoopFraction;
491 LoopPlayCount = orig->LoopPlayCount;
492
493 // schedule resizing this sample to the given sample's size
494 Resize(orig->GetSize());
495 }
496
497 /**
498 * Should be called after CopyAssignMeta() and File::Save() sequence.
499 * Read more about it in the discussion of CopyAssignMeta(). This method
500 * copies the actual waveform data by disk streaming.
501 *
502 * @e CAUTION: this method is currently not thread safe! During this
503 * operation the sample must not be used for other purposes by other
504 * threads!
505 *
506 * @param orig - original Sample object to be copied from
507 */
508 void Sample::CopyAssignWave(const Sample* orig) {
509 const int iReadAtOnce = 32*1024;
510 char* buf = new char[iReadAtOnce * orig->FrameSize];
511 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
512 unsigned long restorePos = pOrig->GetPos();
513 pOrig->SetPos(0);
514 SetPos(0);
515 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
516 n = pOrig->Read(buf, iReadAtOnce))
517 {
518 Write(buf, n);
519 }
520 pOrig->SetPos(restorePos);
521 delete [] buf;
522 }
523
524 /**
525 * Apply sample and its settings to the respective RIFF chunks. You have
526 * to call File::Save() to make changes persistent.
527 *
528 * Usually there is absolutely no need to call this method explicitly.
529 * It will be called automatically when File::Save() was called.
530 *
531 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
532 * was provided yet
533 * @throws gig::Exception if there is any invalid sample setting
534 */
535 void Sample::UpdateChunks() {
536 // first update base class's chunks
537 DLS::Sample::UpdateChunks();
538
539 // make sure 'smpl' chunk exists
540 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
541 if (!pCkSmpl) {
542 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
543 memset(pCkSmpl->LoadChunkData(), 0, 60);
544 }
545 // update 'smpl' chunk
546 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
547 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
548 store32(&pData[0], Manufacturer);
549 store32(&pData[4], Product);
550 store32(&pData[8], SamplePeriod);
551 store32(&pData[12], MIDIUnityNote);
552 store32(&pData[16], FineTune);
553 store32(&pData[20], SMPTEFormat);
554 store32(&pData[24], SMPTEOffset);
555 store32(&pData[28], Loops);
556
557 // we skip 'manufByt' for now (4 bytes)
558
559 store32(&pData[36], LoopID);
560 store32(&pData[40], LoopType);
561 store32(&pData[44], LoopStart);
562 store32(&pData[48], LoopEnd);
563 store32(&pData[52], LoopFraction);
564 store32(&pData[56], LoopPlayCount);
565
566 // make sure '3gix' chunk exists
567 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
568 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
569 // determine appropriate sample group index (to be stored in chunk)
570 uint16_t iSampleGroup = 0; // 0 refers to default sample group
571 File* pFile = static_cast<File*>(pParent);
572 if (pFile->pGroups) {
573 std::list<Group*>::iterator iter = pFile->pGroups->begin();
574 std::list<Group*>::iterator end = pFile->pGroups->end();
575 for (int i = 0; iter != end; i++, iter++) {
576 if (*iter == pGroup) {
577 iSampleGroup = i;
578 break; // found
579 }
580 }
581 }
582 // update '3gix' chunk
583 pData = (uint8_t*) pCk3gix->LoadChunkData();
584 store16(&pData[0], iSampleGroup);
585
586 // if the library user toggled the "Compressed" attribute from true to
587 // false, then the EWAV chunk associated with compressed samples needs
588 // to be deleted
589 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
590 if (ewav && !Compressed) {
591 pWaveList->DeleteSubChunk(ewav);
592 }
593 }
594
595 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
596 void Sample::ScanCompressedSample() {
597 //TODO: we have to add some more scans here (e.g. determine compression rate)
598 this->SamplesTotal = 0;
599 std::list<unsigned long> frameOffsets;
600
601 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
602 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
603
604 // Scanning
605 pCkData->SetPos(0);
606 if (Channels == 2) { // Stereo
607 for (int i = 0 ; ; i++) {
608 // for 24 bit samples every 8:th frame offset is
609 // stored, to save some memory
610 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
611
612 const int mode_l = pCkData->ReadUint8();
613 const int mode_r = pCkData->ReadUint8();
614 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
615 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
616
617 if (pCkData->RemainingBytes() <= frameSize) {
618 SamplesInLastFrame =
619 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
620 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
621 SamplesTotal += SamplesInLastFrame;
622 break;
623 }
624 SamplesTotal += SamplesPerFrame;
625 pCkData->SetPos(frameSize, RIFF::stream_curpos);
626 }
627 }
628 else { // Mono
629 for (int i = 0 ; ; i++) {
630 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
631
632 const int mode = pCkData->ReadUint8();
633 if (mode > 5) throw gig::Exception("Unknown compression mode");
634 const unsigned long frameSize = bytesPerFrame[mode];
635
636 if (pCkData->RemainingBytes() <= frameSize) {
637 SamplesInLastFrame =
638 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
639 SamplesTotal += SamplesInLastFrame;
640 break;
641 }
642 SamplesTotal += SamplesPerFrame;
643 pCkData->SetPos(frameSize, RIFF::stream_curpos);
644 }
645 }
646 pCkData->SetPos(0);
647
648 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
649 if (FrameTable) delete[] FrameTable;
650 FrameTable = new unsigned long[frameOffsets.size()];
651 std::list<unsigned long>::iterator end = frameOffsets.end();
652 std::list<unsigned long>::iterator iter = frameOffsets.begin();
653 for (int i = 0; iter != end; i++, iter++) {
654 FrameTable[i] = *iter;
655 }
656 }
657
658 /**
659 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
660 * ReleaseSampleData() to free the memory if you don't need the cached
661 * sample data anymore.
662 *
663 * @returns buffer_t structure with start address and size of the buffer
664 * in bytes
665 * @see ReleaseSampleData(), Read(), SetPos()
666 */
667 buffer_t Sample::LoadSampleData() {
668 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
669 }
670
671 /**
672 * Reads (uncompresses if needed) and caches the first \a SampleCount
673 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
674 * memory space if you don't need the cached samples anymore. There is no
675 * guarantee that exactly \a SampleCount samples will be cached; this is
676 * not an error. The size will be eventually truncated e.g. to the
677 * beginning of a frame of a compressed sample. This is done for
678 * efficiency reasons while streaming the wave by your sampler engine
679 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
680 * that will be returned to determine the actual cached samples, but note
681 * that the size is given in bytes! You get the number of actually cached
682 * samples by dividing it by the frame size of the sample:
683 * @code
684 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
685 * long cachedsamples = buf.Size / pSample->FrameSize;
686 * @endcode
687 *
688 * @param SampleCount - number of sample points to load into RAM
689 * @returns buffer_t structure with start address and size of
690 * the cached sample data in bytes
691 * @see ReleaseSampleData(), Read(), SetPos()
692 */
693 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
694 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 * The method will add \a NullSamplesCount silence samples past the
702 * official buffer end (this won't affect the 'Size' member of the
703 * buffer_t structure, that means 'Size' always reflects the size of the
704 * actual sample data, the buffer might be bigger though). Silence
705 * samples past the official buffer are needed for differential
706 * algorithms that always have to take subsequent samples into account
707 * (resampling/interpolation would be an important example) and avoids
708 * memory access faults in such cases.
709 *
710 * @param NullSamplesCount - number of silence samples the buffer should
711 * be extended past it's data end
712 * @returns buffer_t structure with start address and
713 * size of the buffer in bytes
714 * @see ReleaseSampleData(), Read(), SetPos()
715 */
716 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
717 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
718 }
719
720 /**
721 * Reads (uncompresses if needed) and caches the first \a SampleCount
722 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
723 * memory space if you don't need the cached samples anymore. There is no
724 * guarantee that exactly \a SampleCount samples will be cached; this is
725 * not an error. The size will be eventually truncated e.g. to the
726 * beginning of a frame of a compressed sample. This is done for
727 * efficiency reasons while streaming the wave by your sampler engine
728 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
729 * that will be returned to determine the actual cached samples, but note
730 * that the size is given in bytes! You get the number of actually cached
731 * samples by dividing it by the frame size of the sample:
732 * @code
733 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
734 * long cachedsamples = buf.Size / pSample->FrameSize;
735 * @endcode
736 * The method will add \a NullSamplesCount silence samples past the
737 * official buffer end (this won't affect the 'Size' member of the
738 * buffer_t structure, that means 'Size' always reflects the size of the
739 * actual sample data, the buffer might be bigger though). Silence
740 * samples past the official buffer are needed for differential
741 * algorithms that always have to take subsequent samples into account
742 * (resampling/interpolation would be an important example) and avoids
743 * memory access faults in such cases.
744 *
745 * @param SampleCount - number of sample points to load into RAM
746 * @param NullSamplesCount - number of silence samples the buffer should
747 * be extended past it's data end
748 * @returns buffer_t structure with start address and
749 * size of the cached sample data in bytes
750 * @see ReleaseSampleData(), Read(), SetPos()
751 */
752 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
753 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
754 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
755 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
756 SetPos(0); // reset read position to begin of sample
757 RAMCache.pStart = new int8_t[allocationsize];
758 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
759 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
760 // fill the remaining buffer space with silence samples
761 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
762 return GetCache();
763 }
764
765 /**
766 * Returns current cached sample points. A buffer_t structure will be
767 * returned which contains address pointer to the begin of the cache and
768 * the size of the cached sample data in bytes. Use
769 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
770 * RAM.
771 *
772 * @returns buffer_t structure with current cached sample points
773 * @see LoadSampleData();
774 */
775 buffer_t Sample::GetCache() {
776 // return a copy of the buffer_t structure
777 buffer_t result;
778 result.Size = this->RAMCache.Size;
779 result.pStart = this->RAMCache.pStart;
780 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
781 return result;
782 }
783
784 /**
785 * Frees the cached sample from RAM if loaded with
786 * <i>LoadSampleData()</i> previously.
787 *
788 * @see LoadSampleData();
789 */
790 void Sample::ReleaseSampleData() {
791 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
792 RAMCache.pStart = NULL;
793 RAMCache.Size = 0;
794 RAMCache.NullExtensionSize = 0;
795 }
796
797 /** @brief Resize sample.
798 *
799 * Resizes the sample's wave form data, that is the actual size of
800 * sample wave data possible to be written for this sample. This call
801 * will return immediately and just schedule the resize operation. You
802 * should call File::Save() to actually perform the resize operation(s)
803 * "physically" to the file. As this can take a while on large files, it
804 * is recommended to call Resize() first on all samples which have to be
805 * resized and finally to call File::Save() to perform all those resize
806 * operations in one rush.
807 *
808 * The actual size (in bytes) is dependant to the current FrameSize
809 * value. You may want to set FrameSize before calling Resize().
810 *
811 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
812 * enlarged samples before calling File::Save() as this might exceed the
813 * current sample's boundary!
814 *
815 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
816 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
817 * other formats will fail!
818 *
819 * @param iNewSize - new sample wave data size in sample points (must be
820 * greater than zero)
821 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
822 * or if \a iNewSize is less than 1
823 * @throws gig::Exception if existing sample is compressed
824 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
825 * DLS::Sample::FormatTag, File::Save()
826 */
827 void Sample::Resize(int iNewSize) {
828 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
829 DLS::Sample::Resize(iNewSize);
830 }
831
832 /**
833 * Sets the position within the sample (in sample points, not in
834 * bytes). Use this method and <i>Read()</i> if you don't want to load
835 * the sample into RAM, thus for disk streaming.
836 *
837 * Although the original Gigasampler engine doesn't allow positioning
838 * within compressed samples, I decided to implement it. Even though
839 * the Gigasampler format doesn't allow to define loops for compressed
840 * samples at the moment, positioning within compressed samples might be
841 * interesting for some sampler engines though. The only drawback about
842 * my decision is that it takes longer to load compressed gig Files on
843 * startup, because it's neccessary to scan the samples for some
844 * mandatory informations. But I think as it doesn't affect the runtime
845 * efficiency, nobody will have a problem with that.
846 *
847 * @param SampleCount number of sample points to jump
848 * @param Whence optional: to which relation \a SampleCount refers
849 * to, if omited <i>RIFF::stream_start</i> is assumed
850 * @returns the new sample position
851 * @see Read()
852 */
853 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
854 if (Compressed) {
855 switch (Whence) {
856 case RIFF::stream_curpos:
857 this->SamplePos += SampleCount;
858 break;
859 case RIFF::stream_end:
860 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
861 break;
862 case RIFF::stream_backward:
863 this->SamplePos -= SampleCount;
864 break;
865 case RIFF::stream_start: default:
866 this->SamplePos = SampleCount;
867 break;
868 }
869 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
870
871 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
872 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
873 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
874 return this->SamplePos;
875 }
876 else { // not compressed
877 unsigned long orderedBytes = SampleCount * this->FrameSize;
878 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
879 return (result == orderedBytes) ? SampleCount
880 : result / this->FrameSize;
881 }
882 }
883
884 /**
885 * Returns the current position in the sample (in sample points).
886 */
887 unsigned long Sample::GetPos() const {
888 if (Compressed) return SamplePos;
889 else return pCkData->GetPos() / FrameSize;
890 }
891
892 /**
893 * Reads \a SampleCount number of sample points from the position stored
894 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
895 * the position within the sample respectively, this method honors the
896 * looping informations of the sample (if any). The sample wave stream
897 * will be decompressed on the fly if using a compressed sample. Use this
898 * method if you don't want to load the sample into RAM, thus for disk
899 * streaming. All this methods needs to know to proceed with streaming
900 * for the next time you call this method is stored in \a pPlaybackState.
901 * You have to allocate and initialize the playback_state_t structure by
902 * yourself before you use it to stream a sample:
903 * @code
904 * gig::playback_state_t playbackstate;
905 * playbackstate.position = 0;
906 * playbackstate.reverse = false;
907 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
908 * @endcode
909 * You don't have to take care of things like if there is actually a loop
910 * defined or if the current read position is located within a loop area.
911 * The method already handles such cases by itself.
912 *
913 * <b>Caution:</b> If you are using more than one streaming thread, you
914 * have to use an external decompression buffer for <b>EACH</b>
915 * streaming thread to avoid race conditions and crashes!
916 *
917 * @param pBuffer destination buffer
918 * @param SampleCount number of sample points to read
919 * @param pPlaybackState will be used to store and reload the playback
920 * state for the next ReadAndLoop() call
921 * @param pDimRgn dimension region with looping information
922 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
923 * @returns number of successfully read sample points
924 * @see CreateDecompressionBuffer()
925 */
926 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
927 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
928 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
929 uint8_t* pDst = (uint8_t*) pBuffer;
930
931 SetPos(pPlaybackState->position); // recover position from the last time
932
933 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
934
935 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
936 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
937
938 if (GetPos() <= loopEnd) {
939 switch (loop.LoopType) {
940
941 case loop_type_bidirectional: { //TODO: not tested yet!
942 do {
943 // if not endless loop check if max. number of loop cycles have been passed
944 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
945
946 if (!pPlaybackState->reverse) { // forward playback
947 do {
948 samplestoloopend = loopEnd - GetPos();
949 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
950 samplestoread -= readsamples;
951 totalreadsamples += readsamples;
952 if (readsamples == samplestoloopend) {
953 pPlaybackState->reverse = true;
954 break;
955 }
956 } while (samplestoread && readsamples);
957 }
958 else { // backward playback
959
960 // as we can only read forward from disk, we have to
961 // determine the end position within the loop first,
962 // read forward from that 'end' and finally after
963 // reading, swap all sample frames so it reflects
964 // backward playback
965
966 unsigned long swapareastart = totalreadsamples;
967 unsigned long loopoffset = GetPos() - loop.LoopStart;
968 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
969 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
970
971 SetPos(reverseplaybackend);
972
973 // read samples for backward playback
974 do {
975 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
976 samplestoreadinloop -= readsamples;
977 samplestoread -= readsamples;
978 totalreadsamples += readsamples;
979 } while (samplestoreadinloop && readsamples);
980
981 SetPos(reverseplaybackend); // pretend we really read backwards
982
983 if (reverseplaybackend == loop.LoopStart) {
984 pPlaybackState->loop_cycles_left--;
985 pPlaybackState->reverse = false;
986 }
987
988 // reverse the sample frames for backward playback
989 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
990 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
991 }
992 } while (samplestoread && readsamples);
993 break;
994 }
995
996 case loop_type_backward: { // TODO: not tested yet!
997 // forward playback (not entered the loop yet)
998 if (!pPlaybackState->reverse) do {
999 samplestoloopend = loopEnd - GetPos();
1000 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1001 samplestoread -= readsamples;
1002 totalreadsamples += readsamples;
1003 if (readsamples == samplestoloopend) {
1004 pPlaybackState->reverse = true;
1005 break;
1006 }
1007 } while (samplestoread && readsamples);
1008
1009 if (!samplestoread) break;
1010
1011 // as we can only read forward from disk, we have to
1012 // determine the end position within the loop first,
1013 // read forward from that 'end' and finally after
1014 // reading, swap all sample frames so it reflects
1015 // backward playback
1016
1017 unsigned long swapareastart = totalreadsamples;
1018 unsigned long loopoffset = GetPos() - loop.LoopStart;
1019 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1020 : samplestoread;
1021 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1022
1023 SetPos(reverseplaybackend);
1024
1025 // read samples for backward playback
1026 do {
1027 // if not endless loop check if max. number of loop cycles have been passed
1028 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1029 samplestoloopend = loopEnd - GetPos();
1030 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1031 samplestoreadinloop -= readsamples;
1032 samplestoread -= readsamples;
1033 totalreadsamples += readsamples;
1034 if (readsamples == samplestoloopend) {
1035 pPlaybackState->loop_cycles_left--;
1036 SetPos(loop.LoopStart);
1037 }
1038 } while (samplestoreadinloop && readsamples);
1039
1040 SetPos(reverseplaybackend); // pretend we really read backwards
1041
1042 // reverse the sample frames for backward playback
1043 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1044 break;
1045 }
1046
1047 default: case loop_type_normal: {
1048 do {
1049 // if not endless loop check if max. number of loop cycles have been passed
1050 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1051 samplestoloopend = loopEnd - GetPos();
1052 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1053 samplestoread -= readsamples;
1054 totalreadsamples += readsamples;
1055 if (readsamples == samplestoloopend) {
1056 pPlaybackState->loop_cycles_left--;
1057 SetPos(loop.LoopStart);
1058 }
1059 } while (samplestoread && readsamples);
1060 break;
1061 }
1062 }
1063 }
1064 }
1065
1066 // read on without looping
1067 if (samplestoread) do {
1068 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1069 samplestoread -= readsamples;
1070 totalreadsamples += readsamples;
1071 } while (readsamples && samplestoread);
1072
1073 // store current position
1074 pPlaybackState->position = GetPos();
1075
1076 return totalreadsamples;
1077 }
1078
1079 /**
1080 * Reads \a SampleCount number of sample points from the current
1081 * position into the buffer pointed by \a pBuffer and increments the
1082 * position within the sample. The sample wave stream will be
1083 * decompressed on the fly if using a compressed sample. Use this method
1084 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1085 * thus for disk streaming.
1086 *
1087 * <b>Caution:</b> If you are using more than one streaming thread, you
1088 * have to use an external decompression buffer for <b>EACH</b>
1089 * streaming thread to avoid race conditions and crashes!
1090 *
1091 * For 16 bit samples, the data in the buffer will be int16_t
1092 * (using native endianness). For 24 bit, the buffer will
1093 * contain three bytes per sample, little-endian.
1094 *
1095 * @param pBuffer destination buffer
1096 * @param SampleCount number of sample points to read
1097 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1098 * @returns number of successfully read sample points
1099 * @see SetPos(), CreateDecompressionBuffer()
1100 */
1101 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1102 if (SampleCount == 0) return 0;
1103 if (!Compressed) {
1104 if (BitDepth == 24) {
1105 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1106 }
1107 else { // 16 bit
1108 // (pCkData->Read does endian correction)
1109 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1110 : pCkData->Read(pBuffer, SampleCount, 2);
1111 }
1112 }
1113 else {
1114 if (this->SamplePos >= this->SamplesTotal) return 0;
1115 //TODO: efficiency: maybe we should test for an average compression rate
1116 unsigned long assumedsize = GuessSize(SampleCount),
1117 remainingbytes = 0, // remaining bytes in the local buffer
1118 remainingsamples = SampleCount,
1119 copysamples, skipsamples,
1120 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1121 this->FrameOffset = 0;
1122
1123 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1124
1125 // if decompression buffer too small, then reduce amount of samples to read
1126 if (pDecompressionBuffer->Size < assumedsize) {
1127 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1128 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1129 remainingsamples = SampleCount;
1130 assumedsize = GuessSize(SampleCount);
1131 }
1132
1133 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1135 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1136 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1137
1138 while (remainingsamples && remainingbytes) {
1139 unsigned long framesamples = SamplesPerFrame;
1140 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1141
1142 int mode_l = *pSrc++, mode_r = 0;
1143
1144 if (Channels == 2) {
1145 mode_r = *pSrc++;
1146 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1147 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1148 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1149 if (remainingbytes < framebytes) { // last frame in sample
1150 framesamples = SamplesInLastFrame;
1151 if (mode_l == 4 && (framesamples & 1)) {
1152 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1153 }
1154 else {
1155 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1156 }
1157 }
1158 }
1159 else {
1160 framebytes = bytesPerFrame[mode_l] + 1;
1161 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1162 if (remainingbytes < framebytes) {
1163 framesamples = SamplesInLastFrame;
1164 }
1165 }
1166
1167 // determine how many samples in this frame to skip and read
1168 if (currentframeoffset + remainingsamples >= framesamples) {
1169 if (currentframeoffset <= framesamples) {
1170 copysamples = framesamples - currentframeoffset;
1171 skipsamples = currentframeoffset;
1172 }
1173 else {
1174 copysamples = 0;
1175 skipsamples = framesamples;
1176 }
1177 }
1178 else {
1179 // This frame has enough data for pBuffer, but not
1180 // all of the frame is needed. Set file position
1181 // to start of this frame for next call to Read.
1182 copysamples = remainingsamples;
1183 skipsamples = currentframeoffset;
1184 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1185 this->FrameOffset = currentframeoffset + copysamples;
1186 }
1187 remainingsamples -= copysamples;
1188
1189 if (remainingbytes > framebytes) {
1190 remainingbytes -= framebytes;
1191 if (remainingsamples == 0 &&
1192 currentframeoffset + copysamples == framesamples) {
1193 // This frame has enough data for pBuffer, and
1194 // all of the frame is needed. Set file
1195 // position to start of next frame for next
1196 // call to Read. FrameOffset is 0.
1197 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1198 }
1199 }
1200 else remainingbytes = 0;
1201
1202 currentframeoffset -= skipsamples;
1203
1204 if (copysamples == 0) {
1205 // skip this frame
1206 pSrc += framebytes - Channels;
1207 }
1208 else {
1209 const unsigned char* const param_l = pSrc;
1210 if (BitDepth == 24) {
1211 if (mode_l != 2) pSrc += 12;
1212
1213 if (Channels == 2) { // Stereo
1214 const unsigned char* const param_r = pSrc;
1215 if (mode_r != 2) pSrc += 12;
1216
1217 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1218 skipsamples, copysamples, TruncatedBits);
1219 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1220 skipsamples, copysamples, TruncatedBits);
1221 pDst24 += copysamples * 6;
1222 }
1223 else { // Mono
1224 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1225 skipsamples, copysamples, TruncatedBits);
1226 pDst24 += copysamples * 3;
1227 }
1228 }
1229 else { // 16 bit
1230 if (mode_l) pSrc += 4;
1231
1232 int step;
1233 if (Channels == 2) { // Stereo
1234 const unsigned char* const param_r = pSrc;
1235 if (mode_r) pSrc += 4;
1236
1237 step = (2 - mode_l) + (2 - mode_r);
1238 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1239 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1240 skipsamples, copysamples);
1241 pDst += copysamples << 1;
1242 }
1243 else { // Mono
1244 step = 2 - mode_l;
1245 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1246 pDst += copysamples;
1247 }
1248 }
1249 pSrc += nextFrameOffset;
1250 }
1251
1252 // reload from disk to local buffer if needed
1253 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1254 assumedsize = GuessSize(remainingsamples);
1255 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1256 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1257 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1258 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1259 }
1260 } // while
1261
1262 this->SamplePos += (SampleCount - remainingsamples);
1263 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1264 return (SampleCount - remainingsamples);
1265 }
1266 }
1267
1268 /** @brief Write sample wave data.
1269 *
1270 * Writes \a SampleCount number of sample points from the buffer pointed
1271 * by \a pBuffer and increments the position within the sample. Use this
1272 * method to directly write the sample data to disk, i.e. if you don't
1273 * want or cannot load the whole sample data into RAM.
1274 *
1275 * You have to Resize() the sample to the desired size and call
1276 * File::Save() <b>before</b> using Write().
1277 *
1278 * Note: there is currently no support for writing compressed samples.
1279 *
1280 * For 16 bit samples, the data in the source buffer should be
1281 * int16_t (using native endianness). For 24 bit, the buffer
1282 * should contain three bytes per sample, little-endian.
1283 *
1284 * @param pBuffer - source buffer
1285 * @param SampleCount - number of sample points to write
1286 * @throws DLS::Exception if current sample size is too small
1287 * @throws gig::Exception if sample is compressed
1288 * @see DLS::LoadSampleData()
1289 */
1290 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1291 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1292
1293 // if this is the first write in this sample, reset the
1294 // checksum calculator
1295 if (pCkData->GetPos() == 0) {
1296 __resetCRC(crc);
1297 }
1298 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1299 unsigned long res;
1300 if (BitDepth == 24) {
1301 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1302 } else { // 16 bit
1303 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1304 : pCkData->Write(pBuffer, SampleCount, 2);
1305 }
1306 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1307
1308 // if this is the last write, update the checksum chunk in the
1309 // file
1310 if (pCkData->GetPos() == pCkData->GetSize()) {
1311 File* pFile = static_cast<File*>(GetParent());
1312 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1313 }
1314 return res;
1315 }
1316
1317 /**
1318 * Allocates a decompression buffer for streaming (compressed) samples
1319 * with Sample::Read(). If you are using more than one streaming thread
1320 * in your application you <b>HAVE</b> to create a decompression buffer
1321 * for <b>EACH</b> of your streaming threads and provide it with the
1322 * Sample::Read() call in order to avoid race conditions and crashes.
1323 *
1324 * You should free the memory occupied by the allocated buffer(s) once
1325 * you don't need one of your streaming threads anymore by calling
1326 * DestroyDecompressionBuffer().
1327 *
1328 * @param MaxReadSize - the maximum size (in sample points) you ever
1329 * expect to read with one Read() call
1330 * @returns allocated decompression buffer
1331 * @see DestroyDecompressionBuffer()
1332 */
1333 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1334 buffer_t result;
1335 const double worstCaseHeaderOverhead =
1336 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1337 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1338 result.pStart = new int8_t[result.Size];
1339 result.NullExtensionSize = 0;
1340 return result;
1341 }
1342
1343 /**
1344 * Free decompression buffer, previously created with
1345 * CreateDecompressionBuffer().
1346 *
1347 * @param DecompressionBuffer - previously allocated decompression
1348 * buffer to free
1349 */
1350 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1351 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1352 delete[] (int8_t*) DecompressionBuffer.pStart;
1353 DecompressionBuffer.pStart = NULL;
1354 DecompressionBuffer.Size = 0;
1355 DecompressionBuffer.NullExtensionSize = 0;
1356 }
1357 }
1358
1359 /**
1360 * Returns pointer to the Group this Sample belongs to. In the .gig
1361 * format a sample always belongs to one group. If it wasn't explicitly
1362 * assigned to a certain group, it will be automatically assigned to a
1363 * default group.
1364 *
1365 * @returns Sample's Group (never NULL)
1366 */
1367 Group* Sample::GetGroup() const {
1368 return pGroup;
1369 }
1370
1371 Sample::~Sample() {
1372 Instances--;
1373 if (!Instances && InternalDecompressionBuffer.Size) {
1374 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1375 InternalDecompressionBuffer.pStart = NULL;
1376 InternalDecompressionBuffer.Size = 0;
1377 }
1378 if (FrameTable) delete[] FrameTable;
1379 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1380 }
1381
1382
1383
1384 // *************** DimensionRegion ***************
1385 // *
1386
1387 uint DimensionRegion::Instances = 0;
1388 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1389
1390 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1391 Instances++;
1392
1393 pSample = NULL;
1394 pRegion = pParent;
1395
1396 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1397 else memset(&Crossfade, 0, 4);
1398
1399 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1400
1401 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1402 if (_3ewa) { // if '3ewa' chunk exists
1403 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1404 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406 _3ewa->ReadInt16(); // unknown
1407 LFO1InternalDepth = _3ewa->ReadUint16();
1408 _3ewa->ReadInt16(); // unknown
1409 LFO3InternalDepth = _3ewa->ReadInt16();
1410 _3ewa->ReadInt16(); // unknown
1411 LFO1ControlDepth = _3ewa->ReadUint16();
1412 _3ewa->ReadInt16(); // unknown
1413 LFO3ControlDepth = _3ewa->ReadInt16();
1414 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1416 _3ewa->ReadInt16(); // unknown
1417 EG1Sustain = _3ewa->ReadUint16();
1418 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1419 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1420 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1421 EG1ControllerInvert = eg1ctrloptions & 0x01;
1422 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1423 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1424 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1425 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1426 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1427 EG2ControllerInvert = eg2ctrloptions & 0x01;
1428 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1429 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1430 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1431 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434 _3ewa->ReadInt16(); // unknown
1435 EG2Sustain = _3ewa->ReadUint16();
1436 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437 _3ewa->ReadInt16(); // unknown
1438 LFO2ControlDepth = _3ewa->ReadUint16();
1439 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1440 _3ewa->ReadInt16(); // unknown
1441 LFO2InternalDepth = _3ewa->ReadUint16();
1442 int32_t eg1decay2 = _3ewa->ReadInt32();
1443 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1444 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1445 _3ewa->ReadInt16(); // unknown
1446 EG1PreAttack = _3ewa->ReadUint16();
1447 int32_t eg2decay2 = _3ewa->ReadInt32();
1448 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1449 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1450 _3ewa->ReadInt16(); // unknown
1451 EG2PreAttack = _3ewa->ReadUint16();
1452 uint8_t velocityresponse = _3ewa->ReadUint8();
1453 if (velocityresponse < 5) {
1454 VelocityResponseCurve = curve_type_nonlinear;
1455 VelocityResponseDepth = velocityresponse;
1456 } else if (velocityresponse < 10) {
1457 VelocityResponseCurve = curve_type_linear;
1458 VelocityResponseDepth = velocityresponse - 5;
1459 } else if (velocityresponse < 15) {
1460 VelocityResponseCurve = curve_type_special;
1461 VelocityResponseDepth = velocityresponse - 10;
1462 } else {
1463 VelocityResponseCurve = curve_type_unknown;
1464 VelocityResponseDepth = 0;
1465 }
1466 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1467 if (releasevelocityresponse < 5) {
1468 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469 ReleaseVelocityResponseDepth = releasevelocityresponse;
1470 } else if (releasevelocityresponse < 10) {
1471 ReleaseVelocityResponseCurve = curve_type_linear;
1472 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1473 } else if (releasevelocityresponse < 15) {
1474 ReleaseVelocityResponseCurve = curve_type_special;
1475 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1476 } else {
1477 ReleaseVelocityResponseCurve = curve_type_unknown;
1478 ReleaseVelocityResponseDepth = 0;
1479 }
1480 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1481 AttenuationControllerThreshold = _3ewa->ReadInt8();
1482 _3ewa->ReadInt32(); // unknown
1483 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1484 _3ewa->ReadInt16(); // unknown
1485 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1486 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1487 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1488 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1489 else DimensionBypass = dim_bypass_ctrl_none;
1490 uint8_t pan = _3ewa->ReadUint8();
1491 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1492 SelfMask = _3ewa->ReadInt8() & 0x01;
1493 _3ewa->ReadInt8(); // unknown
1494 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1495 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1496 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1497 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1498 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1500 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1501 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1502 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1503 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1504 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1505 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1506 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1507 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1508 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1509 : vcf_res_ctrl_none;
1510 uint16_t eg3depth = _3ewa->ReadUint16();
1511 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1512 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1513 _3ewa->ReadInt16(); // unknown
1514 ChannelOffset = _3ewa->ReadUint8() / 4;
1515 uint8_t regoptions = _3ewa->ReadUint8();
1516 MSDecode = regoptions & 0x01; // bit 0
1517 SustainDefeat = regoptions & 0x02; // bit 1
1518 _3ewa->ReadInt16(); // unknown
1519 VelocityUpperLimit = _3ewa->ReadInt8();
1520 _3ewa->ReadInt8(); // unknown
1521 _3ewa->ReadInt16(); // unknown
1522 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1523 _3ewa->ReadInt8(); // unknown
1524 _3ewa->ReadInt8(); // unknown
1525 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1526 uint8_t vcfcutoff = _3ewa->ReadUint8();
1527 VCFEnabled = vcfcutoff & 0x80; // bit 7
1528 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1529 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1530 uint8_t vcfvelscale = _3ewa->ReadUint8();
1531 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1532 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1533 _3ewa->ReadInt8(); // unknown
1534 uint8_t vcfresonance = _3ewa->ReadUint8();
1535 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1536 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1537 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1538 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1539 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1540 uint8_t vcfvelocity = _3ewa->ReadUint8();
1541 VCFVelocityDynamicRange = vcfvelocity % 5;
1542 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1543 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1544 if (VCFType == vcf_type_lowpass) {
1545 if (lfo3ctrl & 0x40) // bit 6
1546 VCFType = vcf_type_lowpassturbo;
1547 }
1548 if (_3ewa->RemainingBytes() >= 8) {
1549 _3ewa->Read(DimensionUpperLimits, 1, 8);
1550 } else {
1551 memset(DimensionUpperLimits, 0, 8);
1552 }
1553 } else { // '3ewa' chunk does not exist yet
1554 // use default values
1555 LFO3Frequency = 1.0;
1556 EG3Attack = 0.0;
1557 LFO1InternalDepth = 0;
1558 LFO3InternalDepth = 0;
1559 LFO1ControlDepth = 0;
1560 LFO3ControlDepth = 0;
1561 EG1Attack = 0.0;
1562 EG1Decay1 = 0.005;
1563 EG1Sustain = 1000;
1564 EG1Release = 0.3;
1565 EG1Controller.type = eg1_ctrl_t::type_none;
1566 EG1Controller.controller_number = 0;
1567 EG1ControllerInvert = false;
1568 EG1ControllerAttackInfluence = 0;
1569 EG1ControllerDecayInfluence = 0;
1570 EG1ControllerReleaseInfluence = 0;
1571 EG2Controller.type = eg2_ctrl_t::type_none;
1572 EG2Controller.controller_number = 0;
1573 EG2ControllerInvert = false;
1574 EG2ControllerAttackInfluence = 0;
1575 EG2ControllerDecayInfluence = 0;
1576 EG2ControllerReleaseInfluence = 0;
1577 LFO1Frequency = 1.0;
1578 EG2Attack = 0.0;
1579 EG2Decay1 = 0.005;
1580 EG2Sustain = 1000;
1581 EG2Release = 0.3;
1582 LFO2ControlDepth = 0;
1583 LFO2Frequency = 1.0;
1584 LFO2InternalDepth = 0;
1585 EG1Decay2 = 0.0;
1586 EG1InfiniteSustain = true;
1587 EG1PreAttack = 0;
1588 EG2Decay2 = 0.0;
1589 EG2InfiniteSustain = true;
1590 EG2PreAttack = 0;
1591 VelocityResponseCurve = curve_type_nonlinear;
1592 VelocityResponseDepth = 3;
1593 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1594 ReleaseVelocityResponseDepth = 3;
1595 VelocityResponseCurveScaling = 32;
1596 AttenuationControllerThreshold = 0;
1597 SampleStartOffset = 0;
1598 PitchTrack = true;
1599 DimensionBypass = dim_bypass_ctrl_none;
1600 Pan = 0;
1601 SelfMask = true;
1602 LFO3Controller = lfo3_ctrl_modwheel;
1603 LFO3Sync = false;
1604 InvertAttenuationController = false;
1605 AttenuationController.type = attenuation_ctrl_t::type_none;
1606 AttenuationController.controller_number = 0;
1607 LFO2Controller = lfo2_ctrl_internal;
1608 LFO2FlipPhase = false;
1609 LFO2Sync = false;
1610 LFO1Controller = lfo1_ctrl_internal;
1611 LFO1FlipPhase = false;
1612 LFO1Sync = false;
1613 VCFResonanceController = vcf_res_ctrl_none;
1614 EG3Depth = 0;
1615 ChannelOffset = 0;
1616 MSDecode = false;
1617 SustainDefeat = false;
1618 VelocityUpperLimit = 0;
1619 ReleaseTriggerDecay = 0;
1620 EG1Hold = false;
1621 VCFEnabled = false;
1622 VCFCutoff = 0;
1623 VCFCutoffController = vcf_cutoff_ctrl_none;
1624 VCFCutoffControllerInvert = false;
1625 VCFVelocityScale = 0;
1626 VCFResonance = 0;
1627 VCFResonanceDynamic = false;
1628 VCFKeyboardTracking = false;
1629 VCFKeyboardTrackingBreakpoint = 0;
1630 VCFVelocityDynamicRange = 0x04;
1631 VCFVelocityCurve = curve_type_linear;
1632 VCFType = vcf_type_lowpass;
1633 memset(DimensionUpperLimits, 127, 8);
1634 }
1635
1636 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1637 VelocityResponseDepth,
1638 VelocityResponseCurveScaling);
1639
1640 pVelocityReleaseTable = GetReleaseVelocityTable(
1641 ReleaseVelocityResponseCurve,
1642 ReleaseVelocityResponseDepth
1643 );
1644
1645 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1646 VCFVelocityDynamicRange,
1647 VCFVelocityScale,
1648 VCFCutoffController);
1649
1650 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1651 VelocityTable = 0;
1652 }
1653
1654 /*
1655 * Constructs a DimensionRegion by copying all parameters from
1656 * another DimensionRegion
1657 */
1658 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1659 Instances++;
1660 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1661 *this = src; // default memberwise shallow copy of all parameters
1662 pParentList = _3ewl; // restore the chunk pointer
1663
1664 // deep copy of owned structures
1665 if (src.VelocityTable) {
1666 VelocityTable = new uint8_t[128];
1667 for (int k = 0 ; k < 128 ; k++)
1668 VelocityTable[k] = src.VelocityTable[k];
1669 }
1670 if (src.pSampleLoops) {
1671 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1672 for (int k = 0 ; k < src.SampleLoops ; k++)
1673 pSampleLoops[k] = src.pSampleLoops[k];
1674 }
1675 }
1676
1677 /**
1678 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1679 * and assign it to this object.
1680 *
1681 * Note that all sample pointers referenced by @a orig are simply copied as
1682 * memory address. Thus the respective samples are shared, not duplicated!
1683 *
1684 * @param orig - original DimensionRegion object to be copied from
1685 */
1686 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1687 CopyAssign(orig, NULL);
1688 }
1689
1690 /**
1691 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1692 * and assign it to this object.
1693 *
1694 * @param orig - original DimensionRegion object to be copied from
1695 * @param mSamples - crosslink map between the foreign file's samples and
1696 * this file's samples
1697 */
1698 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1699 // delete all allocated data first
1700 if (VelocityTable) delete [] VelocityTable;
1701 if (pSampleLoops) delete [] pSampleLoops;
1702
1703 // backup parent list pointer
1704 RIFF::List* p = pParentList;
1705
1706 gig::Sample* pOriginalSample = pSample;
1707 gig::Region* pOriginalRegion = pRegion;
1708
1709 //NOTE: copy code copied from assignment constructor above, see comment there as well
1710
1711 *this = *orig; // default memberwise shallow copy of all parameters
1712
1713 // restore members that shall not be altered
1714 pParentList = p; // restore the chunk pointer
1715 pRegion = pOriginalRegion;
1716
1717 // only take the raw sample reference reference if the
1718 // two DimensionRegion objects are part of the same file
1719 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1720 pSample = pOriginalSample;
1721 }
1722
1723 if (mSamples && mSamples->count(orig->pSample)) {
1724 pSample = mSamples->find(orig->pSample)->second;
1725 }
1726
1727 // deep copy of owned structures
1728 if (orig->VelocityTable) {
1729 VelocityTable = new uint8_t[128];
1730 for (int k = 0 ; k < 128 ; k++)
1731 VelocityTable[k] = orig->VelocityTable[k];
1732 }
1733 if (orig->pSampleLoops) {
1734 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1735 for (int k = 0 ; k < orig->SampleLoops ; k++)
1736 pSampleLoops[k] = orig->pSampleLoops[k];
1737 }
1738 }
1739
1740 /**
1741 * Updates the respective member variable and updates @c SampleAttenuation
1742 * which depends on this value.
1743 */
1744 void DimensionRegion::SetGain(int32_t gain) {
1745 DLS::Sampler::SetGain(gain);
1746 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1747 }
1748
1749 /**
1750 * Apply dimension region settings to the respective RIFF chunks. You
1751 * have to call File::Save() to make changes persistent.
1752 *
1753 * Usually there is absolutely no need to call this method explicitly.
1754 * It will be called automatically when File::Save() was called.
1755 */
1756 void DimensionRegion::UpdateChunks() {
1757 // first update base class's chunk
1758 DLS::Sampler::UpdateChunks();
1759
1760 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1761 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1762 pData[12] = Crossfade.in_start;
1763 pData[13] = Crossfade.in_end;
1764 pData[14] = Crossfade.out_start;
1765 pData[15] = Crossfade.out_end;
1766
1767 // make sure '3ewa' chunk exists
1768 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1769 if (!_3ewa) {
1770 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1771 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1772 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1773 }
1774 pData = (uint8_t*) _3ewa->LoadChunkData();
1775
1776 // update '3ewa' chunk with DimensionRegion's current settings
1777
1778 const uint32_t chunksize = _3ewa->GetNewSize();
1779 store32(&pData[0], chunksize); // unknown, always chunk size?
1780
1781 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1782 store32(&pData[4], lfo3freq);
1783
1784 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1785 store32(&pData[8], eg3attack);
1786
1787 // next 2 bytes unknown
1788
1789 store16(&pData[14], LFO1InternalDepth);
1790
1791 // next 2 bytes unknown
1792
1793 store16(&pData[18], LFO3InternalDepth);
1794
1795 // next 2 bytes unknown
1796
1797 store16(&pData[22], LFO1ControlDepth);
1798
1799 // next 2 bytes unknown
1800
1801 store16(&pData[26], LFO3ControlDepth);
1802
1803 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1804 store32(&pData[28], eg1attack);
1805
1806 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1807 store32(&pData[32], eg1decay1);
1808
1809 // next 2 bytes unknown
1810
1811 store16(&pData[38], EG1Sustain);
1812
1813 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1814 store32(&pData[40], eg1release);
1815
1816 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1817 pData[44] = eg1ctl;
1818
1819 const uint8_t eg1ctrloptions =
1820 (EG1ControllerInvert ? 0x01 : 0x00) |
1821 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1822 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1823 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1824 pData[45] = eg1ctrloptions;
1825
1826 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1827 pData[46] = eg2ctl;
1828
1829 const uint8_t eg2ctrloptions =
1830 (EG2ControllerInvert ? 0x01 : 0x00) |
1831 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1832 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1833 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1834 pData[47] = eg2ctrloptions;
1835
1836 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1837 store32(&pData[48], lfo1freq);
1838
1839 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1840 store32(&pData[52], eg2attack);
1841
1842 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1843 store32(&pData[56], eg2decay1);
1844
1845 // next 2 bytes unknown
1846
1847 store16(&pData[62], EG2Sustain);
1848
1849 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1850 store32(&pData[64], eg2release);
1851
1852 // next 2 bytes unknown
1853
1854 store16(&pData[70], LFO2ControlDepth);
1855
1856 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1857 store32(&pData[72], lfo2freq);
1858
1859 // next 2 bytes unknown
1860
1861 store16(&pData[78], LFO2InternalDepth);
1862
1863 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1864 store32(&pData[80], eg1decay2);
1865
1866 // next 2 bytes unknown
1867
1868 store16(&pData[86], EG1PreAttack);
1869
1870 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1871 store32(&pData[88], eg2decay2);
1872
1873 // next 2 bytes unknown
1874
1875 store16(&pData[94], EG2PreAttack);
1876
1877 {
1878 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1879 uint8_t velocityresponse = VelocityResponseDepth;
1880 switch (VelocityResponseCurve) {
1881 case curve_type_nonlinear:
1882 break;
1883 case curve_type_linear:
1884 velocityresponse += 5;
1885 break;
1886 case curve_type_special:
1887 velocityresponse += 10;
1888 break;
1889 case curve_type_unknown:
1890 default:
1891 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1892 }
1893 pData[96] = velocityresponse;
1894 }
1895
1896 {
1897 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1898 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1899 switch (ReleaseVelocityResponseCurve) {
1900 case curve_type_nonlinear:
1901 break;
1902 case curve_type_linear:
1903 releasevelocityresponse += 5;
1904 break;
1905 case curve_type_special:
1906 releasevelocityresponse += 10;
1907 break;
1908 case curve_type_unknown:
1909 default:
1910 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1911 }
1912 pData[97] = releasevelocityresponse;
1913 }
1914
1915 pData[98] = VelocityResponseCurveScaling;
1916
1917 pData[99] = AttenuationControllerThreshold;
1918
1919 // next 4 bytes unknown
1920
1921 store16(&pData[104], SampleStartOffset);
1922
1923 // next 2 bytes unknown
1924
1925 {
1926 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1927 switch (DimensionBypass) {
1928 case dim_bypass_ctrl_94:
1929 pitchTrackDimensionBypass |= 0x10;
1930 break;
1931 case dim_bypass_ctrl_95:
1932 pitchTrackDimensionBypass |= 0x20;
1933 break;
1934 case dim_bypass_ctrl_none:
1935 //FIXME: should we set anything here?
1936 break;
1937 default:
1938 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1939 }
1940 pData[108] = pitchTrackDimensionBypass;
1941 }
1942
1943 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1944 pData[109] = pan;
1945
1946 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1947 pData[110] = selfmask;
1948
1949 // next byte unknown
1950
1951 {
1952 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1953 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1954 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1955 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1956 pData[112] = lfo3ctrl;
1957 }
1958
1959 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1960 pData[113] = attenctl;
1961
1962 {
1963 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1964 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1965 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1966 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1967 pData[114] = lfo2ctrl;
1968 }
1969
1970 {
1971 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1972 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1973 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1974 if (VCFResonanceController != vcf_res_ctrl_none)
1975 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1976 pData[115] = lfo1ctrl;
1977 }
1978
1979 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1980 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1981 store16(&pData[116], eg3depth);
1982
1983 // next 2 bytes unknown
1984
1985 const uint8_t channeloffset = ChannelOffset * 4;
1986 pData[120] = channeloffset;
1987
1988 {
1989 uint8_t regoptions = 0;
1990 if (MSDecode) regoptions |= 0x01; // bit 0
1991 if (SustainDefeat) regoptions |= 0x02; // bit 1
1992 pData[121] = regoptions;
1993 }
1994
1995 // next 2 bytes unknown
1996
1997 pData[124] = VelocityUpperLimit;
1998
1999 // next 3 bytes unknown
2000
2001 pData[128] = ReleaseTriggerDecay;
2002
2003 // next 2 bytes unknown
2004
2005 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2006 pData[131] = eg1hold;
2007
2008 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2009 (VCFCutoff & 0x7f); /* lower 7 bits */
2010 pData[132] = vcfcutoff;
2011
2012 pData[133] = VCFCutoffController;
2013
2014 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2015 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2016 pData[134] = vcfvelscale;
2017
2018 // next byte unknown
2019
2020 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2021 (VCFResonance & 0x7f); /* lower 7 bits */
2022 pData[136] = vcfresonance;
2023
2024 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2025 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2026 pData[137] = vcfbreakpoint;
2027
2028 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2029 VCFVelocityCurve * 5;
2030 pData[138] = vcfvelocity;
2031
2032 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2033 pData[139] = vcftype;
2034
2035 if (chunksize >= 148) {
2036 memcpy(&pData[140], DimensionUpperLimits, 8);
2037 }
2038 }
2039
2040 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2041 curve_type_t curveType = releaseVelocityResponseCurve;
2042 uint8_t depth = releaseVelocityResponseDepth;
2043 // this models a strange behaviour or bug in GSt: two of the
2044 // velocity response curves for release time are not used even
2045 // if specified, instead another curve is chosen.
2046 if ((curveType == curve_type_nonlinear && depth == 0) ||
2047 (curveType == curve_type_special && depth == 4)) {
2048 curveType = curve_type_nonlinear;
2049 depth = 3;
2050 }
2051 return GetVelocityTable(curveType, depth, 0);
2052 }
2053
2054 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2055 uint8_t vcfVelocityDynamicRange,
2056 uint8_t vcfVelocityScale,
2057 vcf_cutoff_ctrl_t vcfCutoffController)
2058 {
2059 curve_type_t curveType = vcfVelocityCurve;
2060 uint8_t depth = vcfVelocityDynamicRange;
2061 // even stranger GSt: two of the velocity response curves for
2062 // filter cutoff are not used, instead another special curve
2063 // is chosen. This curve is not used anywhere else.
2064 if ((curveType == curve_type_nonlinear && depth == 0) ||
2065 (curveType == curve_type_special && depth == 4)) {
2066 curveType = curve_type_special;
2067 depth = 5;
2068 }
2069 return GetVelocityTable(curveType, depth,
2070 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2071 ? vcfVelocityScale : 0);
2072 }
2073
2074 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2075 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2076 {
2077 double* table;
2078 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2079 if (pVelocityTables->count(tableKey)) { // if key exists
2080 table = (*pVelocityTables)[tableKey];
2081 }
2082 else {
2083 table = CreateVelocityTable(curveType, depth, scaling);
2084 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2085 }
2086 return table;
2087 }
2088
2089 Region* DimensionRegion::GetParent() const {
2090 return pRegion;
2091 }
2092
2093 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2094 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2095 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2096 //#pragma GCC diagnostic push
2097 //#pragma GCC diagnostic error "-Wswitch"
2098
2099 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2100 leverage_ctrl_t decodedcontroller;
2101 switch (EncodedController) {
2102 // special controller
2103 case _lev_ctrl_none:
2104 decodedcontroller.type = leverage_ctrl_t::type_none;
2105 decodedcontroller.controller_number = 0;
2106 break;
2107 case _lev_ctrl_velocity:
2108 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2109 decodedcontroller.controller_number = 0;
2110 break;
2111 case _lev_ctrl_channelaftertouch:
2112 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2113 decodedcontroller.controller_number = 0;
2114 break;
2115
2116 // ordinary MIDI control change controller
2117 case _lev_ctrl_modwheel:
2118 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2119 decodedcontroller.controller_number = 1;
2120 break;
2121 case _lev_ctrl_breath:
2122 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2123 decodedcontroller.controller_number = 2;
2124 break;
2125 case _lev_ctrl_foot:
2126 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2127 decodedcontroller.controller_number = 4;
2128 break;
2129 case _lev_ctrl_effect1:
2130 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2131 decodedcontroller.controller_number = 12;
2132 break;
2133 case _lev_ctrl_effect2:
2134 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2135 decodedcontroller.controller_number = 13;
2136 break;
2137 case _lev_ctrl_genpurpose1:
2138 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139 decodedcontroller.controller_number = 16;
2140 break;
2141 case _lev_ctrl_genpurpose2:
2142 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143 decodedcontroller.controller_number = 17;
2144 break;
2145 case _lev_ctrl_genpurpose3:
2146 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147 decodedcontroller.controller_number = 18;
2148 break;
2149 case _lev_ctrl_genpurpose4:
2150 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151 decodedcontroller.controller_number = 19;
2152 break;
2153 case _lev_ctrl_portamentotime:
2154 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155 decodedcontroller.controller_number = 5;
2156 break;
2157 case _lev_ctrl_sustainpedal:
2158 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159 decodedcontroller.controller_number = 64;
2160 break;
2161 case _lev_ctrl_portamento:
2162 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163 decodedcontroller.controller_number = 65;
2164 break;
2165 case _lev_ctrl_sostenutopedal:
2166 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167 decodedcontroller.controller_number = 66;
2168 break;
2169 case _lev_ctrl_softpedal:
2170 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171 decodedcontroller.controller_number = 67;
2172 break;
2173 case _lev_ctrl_genpurpose5:
2174 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175 decodedcontroller.controller_number = 80;
2176 break;
2177 case _lev_ctrl_genpurpose6:
2178 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179 decodedcontroller.controller_number = 81;
2180 break;
2181 case _lev_ctrl_genpurpose7:
2182 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183 decodedcontroller.controller_number = 82;
2184 break;
2185 case _lev_ctrl_genpurpose8:
2186 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187 decodedcontroller.controller_number = 83;
2188 break;
2189 case _lev_ctrl_effect1depth:
2190 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191 decodedcontroller.controller_number = 91;
2192 break;
2193 case _lev_ctrl_effect2depth:
2194 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195 decodedcontroller.controller_number = 92;
2196 break;
2197 case _lev_ctrl_effect3depth:
2198 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199 decodedcontroller.controller_number = 93;
2200 break;
2201 case _lev_ctrl_effect4depth:
2202 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203 decodedcontroller.controller_number = 94;
2204 break;
2205 case _lev_ctrl_effect5depth:
2206 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207 decodedcontroller.controller_number = 95;
2208 break;
2209
2210 // format extension (these controllers are so far only supported by
2211 // LinuxSampler & gigedit) they will *NOT* work with
2212 // Gigasampler/GigaStudio !
2213 case _lev_ctrl_CC3_EXT:
2214 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215 decodedcontroller.controller_number = 3;
2216 break;
2217 case _lev_ctrl_CC6_EXT:
2218 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219 decodedcontroller.controller_number = 6;
2220 break;
2221 case _lev_ctrl_CC7_EXT:
2222 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223 decodedcontroller.controller_number = 7;
2224 break;
2225 case _lev_ctrl_CC8_EXT:
2226 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227 decodedcontroller.controller_number = 8;
2228 break;
2229 case _lev_ctrl_CC9_EXT:
2230 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2231 decodedcontroller.controller_number = 9;
2232 break;
2233 case _lev_ctrl_CC10_EXT:
2234 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235 decodedcontroller.controller_number = 10;
2236 break;
2237 case _lev_ctrl_CC11_EXT:
2238 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239 decodedcontroller.controller_number = 11;
2240 break;
2241 case _lev_ctrl_CC14_EXT:
2242 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243 decodedcontroller.controller_number = 14;
2244 break;
2245 case _lev_ctrl_CC15_EXT:
2246 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247 decodedcontroller.controller_number = 15;
2248 break;
2249 case _lev_ctrl_CC20_EXT:
2250 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251 decodedcontroller.controller_number = 20;
2252 break;
2253 case _lev_ctrl_CC21_EXT:
2254 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255 decodedcontroller.controller_number = 21;
2256 break;
2257 case _lev_ctrl_CC22_EXT:
2258 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259 decodedcontroller.controller_number = 22;
2260 break;
2261 case _lev_ctrl_CC23_EXT:
2262 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263 decodedcontroller.controller_number = 23;
2264 break;
2265 case _lev_ctrl_CC24_EXT:
2266 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267 decodedcontroller.controller_number = 24;
2268 break;
2269 case _lev_ctrl_CC25_EXT:
2270 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271 decodedcontroller.controller_number = 25;
2272 break;
2273 case _lev_ctrl_CC26_EXT:
2274 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275 decodedcontroller.controller_number = 26;
2276 break;
2277 case _lev_ctrl_CC27_EXT:
2278 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279 decodedcontroller.controller_number = 27;
2280 break;
2281 case _lev_ctrl_CC28_EXT:
2282 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283 decodedcontroller.controller_number = 28;
2284 break;
2285 case _lev_ctrl_CC29_EXT:
2286 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287 decodedcontroller.controller_number = 29;
2288 break;
2289 case _lev_ctrl_CC30_EXT:
2290 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291 decodedcontroller.controller_number = 30;
2292 break;
2293 case _lev_ctrl_CC31_EXT:
2294 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295 decodedcontroller.controller_number = 31;
2296 break;
2297 case _lev_ctrl_CC68_EXT:
2298 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299 decodedcontroller.controller_number = 68;
2300 break;
2301 case _lev_ctrl_CC69_EXT:
2302 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303 decodedcontroller.controller_number = 69;
2304 break;
2305 case _lev_ctrl_CC70_EXT:
2306 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307 decodedcontroller.controller_number = 70;
2308 break;
2309 case _lev_ctrl_CC71_EXT:
2310 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311 decodedcontroller.controller_number = 71;
2312 break;
2313 case _lev_ctrl_CC72_EXT:
2314 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315 decodedcontroller.controller_number = 72;
2316 break;
2317 case _lev_ctrl_CC73_EXT:
2318 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319 decodedcontroller.controller_number = 73;
2320 break;
2321 case _lev_ctrl_CC74_EXT:
2322 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323 decodedcontroller.controller_number = 74;
2324 break;
2325 case _lev_ctrl_CC75_EXT:
2326 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327 decodedcontroller.controller_number = 75;
2328 break;
2329 case _lev_ctrl_CC76_EXT:
2330 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331 decodedcontroller.controller_number = 76;
2332 break;
2333 case _lev_ctrl_CC77_EXT:
2334 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335 decodedcontroller.controller_number = 77;
2336 break;
2337 case _lev_ctrl_CC78_EXT:
2338 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339 decodedcontroller.controller_number = 78;
2340 break;
2341 case _lev_ctrl_CC79_EXT:
2342 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343 decodedcontroller.controller_number = 79;
2344 break;
2345 case _lev_ctrl_CC84_EXT:
2346 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347 decodedcontroller.controller_number = 84;
2348 break;
2349 case _lev_ctrl_CC85_EXT:
2350 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351 decodedcontroller.controller_number = 85;
2352 break;
2353 case _lev_ctrl_CC86_EXT:
2354 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355 decodedcontroller.controller_number = 86;
2356 break;
2357 case _lev_ctrl_CC87_EXT:
2358 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359 decodedcontroller.controller_number = 87;
2360 break;
2361 case _lev_ctrl_CC89_EXT:
2362 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363 decodedcontroller.controller_number = 89;
2364 break;
2365 case _lev_ctrl_CC90_EXT:
2366 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367 decodedcontroller.controller_number = 90;
2368 break;
2369 case _lev_ctrl_CC96_EXT:
2370 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371 decodedcontroller.controller_number = 96;
2372 break;
2373 case _lev_ctrl_CC97_EXT:
2374 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375 decodedcontroller.controller_number = 97;
2376 break;
2377 case _lev_ctrl_CC102_EXT:
2378 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379 decodedcontroller.controller_number = 102;
2380 break;
2381 case _lev_ctrl_CC103_EXT:
2382 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383 decodedcontroller.controller_number = 103;
2384 break;
2385 case _lev_ctrl_CC104_EXT:
2386 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387 decodedcontroller.controller_number = 104;
2388 break;
2389 case _lev_ctrl_CC105_EXT:
2390 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391 decodedcontroller.controller_number = 105;
2392 break;
2393 case _lev_ctrl_CC106_EXT:
2394 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395 decodedcontroller.controller_number = 106;
2396 break;
2397 case _lev_ctrl_CC107_EXT:
2398 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399 decodedcontroller.controller_number = 107;
2400 break;
2401 case _lev_ctrl_CC108_EXT:
2402 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403 decodedcontroller.controller_number = 108;
2404 break;
2405 case _lev_ctrl_CC109_EXT:
2406 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407 decodedcontroller.controller_number = 109;
2408 break;
2409 case _lev_ctrl_CC110_EXT:
2410 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411 decodedcontroller.controller_number = 110;
2412 break;
2413 case _lev_ctrl_CC111_EXT:
2414 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415 decodedcontroller.controller_number = 111;
2416 break;
2417 case _lev_ctrl_CC112_EXT:
2418 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419 decodedcontroller.controller_number = 112;
2420 break;
2421 case _lev_ctrl_CC113_EXT:
2422 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423 decodedcontroller.controller_number = 113;
2424 break;
2425 case _lev_ctrl_CC114_EXT:
2426 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427 decodedcontroller.controller_number = 114;
2428 break;
2429 case _lev_ctrl_CC115_EXT:
2430 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431 decodedcontroller.controller_number = 115;
2432 break;
2433 case _lev_ctrl_CC116_EXT:
2434 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435 decodedcontroller.controller_number = 116;
2436 break;
2437 case _lev_ctrl_CC117_EXT:
2438 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439 decodedcontroller.controller_number = 117;
2440 break;
2441 case _lev_ctrl_CC118_EXT:
2442 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443 decodedcontroller.controller_number = 118;
2444 break;
2445 case _lev_ctrl_CC119_EXT:
2446 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447 decodedcontroller.controller_number = 119;
2448 break;
2449
2450 // unknown controller type
2451 default:
2452 throw gig::Exception("Unknown leverage controller type.");
2453 }
2454 return decodedcontroller;
2455 }
2456
2457 // see above (diagnostic push not supported prior GCC 4.6)
2458 //#pragma GCC diagnostic pop
2459
2460 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2461 _lev_ctrl_t encodedcontroller;
2462 switch (DecodedController.type) {
2463 // special controller
2464 case leverage_ctrl_t::type_none:
2465 encodedcontroller = _lev_ctrl_none;
2466 break;
2467 case leverage_ctrl_t::type_velocity:
2468 encodedcontroller = _lev_ctrl_velocity;
2469 break;
2470 case leverage_ctrl_t::type_channelaftertouch:
2471 encodedcontroller = _lev_ctrl_channelaftertouch;
2472 break;
2473
2474 // ordinary MIDI control change controller
2475 case leverage_ctrl_t::type_controlchange:
2476 switch (DecodedController.controller_number) {
2477 case 1:
2478 encodedcontroller = _lev_ctrl_modwheel;
2479 break;
2480 case 2:
2481 encodedcontroller = _lev_ctrl_breath;
2482 break;
2483 case 4:
2484 encodedcontroller = _lev_ctrl_foot;
2485 break;
2486 case 12:
2487 encodedcontroller = _lev_ctrl_effect1;
2488 break;
2489 case 13:
2490 encodedcontroller = _lev_ctrl_effect2;
2491 break;
2492 case 16:
2493 encodedcontroller = _lev_ctrl_genpurpose1;
2494 break;
2495 case 17:
2496 encodedcontroller = _lev_ctrl_genpurpose2;
2497 break;
2498 case 18:
2499 encodedcontroller = _lev_ctrl_genpurpose3;
2500 break;
2501 case 19:
2502 encodedcontroller = _lev_ctrl_genpurpose4;
2503 break;
2504 case 5:
2505 encodedcontroller = _lev_ctrl_portamentotime;
2506 break;
2507 case 64:
2508 encodedcontroller = _lev_ctrl_sustainpedal;
2509 break;
2510 case 65:
2511 encodedcontroller = _lev_ctrl_portamento;
2512 break;
2513 case 66:
2514 encodedcontroller = _lev_ctrl_sostenutopedal;
2515 break;
2516 case 67:
2517 encodedcontroller = _lev_ctrl_softpedal;
2518 break;
2519 case 80:
2520 encodedcontroller = _lev_ctrl_genpurpose5;
2521 break;
2522 case 81:
2523 encodedcontroller = _lev_ctrl_genpurpose6;
2524 break;
2525 case 82:
2526 encodedcontroller = _lev_ctrl_genpurpose7;
2527 break;
2528 case 83:
2529 encodedcontroller = _lev_ctrl_genpurpose8;
2530 break;
2531 case 91:
2532 encodedcontroller = _lev_ctrl_effect1depth;
2533 break;
2534 case 92:
2535 encodedcontroller = _lev_ctrl_effect2depth;
2536 break;
2537 case 93:
2538 encodedcontroller = _lev_ctrl_effect3depth;
2539 break;
2540 case 94:
2541 encodedcontroller = _lev_ctrl_effect4depth;
2542 break;
2543 case 95:
2544 encodedcontroller = _lev_ctrl_effect5depth;
2545 break;
2546
2547 // format extension (these controllers are so far only
2548 // supported by LinuxSampler & gigedit) they will *NOT*
2549 // work with Gigasampler/GigaStudio !
2550 case 3:
2551 encodedcontroller = _lev_ctrl_CC3_EXT;
2552 break;
2553 case 6:
2554 encodedcontroller = _lev_ctrl_CC6_EXT;
2555 break;
2556 case 7:
2557 encodedcontroller = _lev_ctrl_CC7_EXT;
2558 break;
2559 case 8:
2560 encodedcontroller = _lev_ctrl_CC8_EXT;
2561 break;
2562 case 9:
2563 encodedcontroller = _lev_ctrl_CC9_EXT;
2564 break;
2565 case 10:
2566 encodedcontroller = _lev_ctrl_CC10_EXT;
2567 break;
2568 case 11:
2569 encodedcontroller = _lev_ctrl_CC11_EXT;
2570 break;
2571 case 14:
2572 encodedcontroller = _lev_ctrl_CC14_EXT;
2573 break;
2574 case 15:
2575 encodedcontroller = _lev_ctrl_CC15_EXT;
2576 break;
2577 case 20:
2578 encodedcontroller = _lev_ctrl_CC20_EXT;
2579 break;
2580 case 21:
2581 encodedcontroller = _lev_ctrl_CC21_EXT;
2582 break;
2583 case 22:
2584 encodedcontroller = _lev_ctrl_CC22_EXT;
2585 break;
2586 case 23:
2587 encodedcontroller = _lev_ctrl_CC23_EXT;
2588 break;
2589 case 24:
2590 encodedcontroller = _lev_ctrl_CC24_EXT;
2591 break;
2592 case 25:
2593 encodedcontroller = _lev_ctrl_CC25_EXT;
2594 break;
2595 case 26:
2596 encodedcontroller = _lev_ctrl_CC26_EXT;
2597 break;
2598 case 27:
2599 encodedcontroller = _lev_ctrl_CC27_EXT;
2600 break;
2601 case 28:
2602 encodedcontroller = _lev_ctrl_CC28_EXT;
2603 break;
2604 case 29:
2605 encodedcontroller = _lev_ctrl_CC29_EXT;
2606 break;
2607 case 30:
2608 encodedcontroller = _lev_ctrl_CC30_EXT;
2609 break;
2610 case 31:
2611 encodedcontroller = _lev_ctrl_CC31_EXT;
2612 break;
2613 case 68:
2614 encodedcontroller = _lev_ctrl_CC68_EXT;
2615 break;
2616 case 69:
2617 encodedcontroller = _lev_ctrl_CC69_EXT;
2618 break;
2619 case 70:
2620 encodedcontroller = _lev_ctrl_CC70_EXT;
2621 break;
2622 case 71:
2623 encodedcontroller = _lev_ctrl_CC71_EXT;
2624 break;
2625 case 72:
2626 encodedcontroller = _lev_ctrl_CC72_EXT;
2627 break;
2628 case 73:
2629 encodedcontroller = _lev_ctrl_CC73_EXT;
2630 break;
2631 case 74:
2632 encodedcontroller = _lev_ctrl_CC74_EXT;
2633 break;
2634 case 75:
2635 encodedcontroller = _lev_ctrl_CC75_EXT;
2636 break;
2637 case 76:
2638 encodedcontroller = _lev_ctrl_CC76_EXT;
2639 break;
2640 case 77:
2641 encodedcontroller = _lev_ctrl_CC77_EXT;
2642 break;
2643 case 78:
2644 encodedcontroller = _lev_ctrl_CC78_EXT;
2645 break;
2646 case 79:
2647 encodedcontroller = _lev_ctrl_CC79_EXT;
2648 break;
2649 case 84:
2650 encodedcontroller = _lev_ctrl_CC84_EXT;
2651 break;
2652 case 85:
2653 encodedcontroller = _lev_ctrl_CC85_EXT;
2654 break;
2655 case 86:
2656 encodedcontroller = _lev_ctrl_CC86_EXT;
2657 break;
2658 case 87:
2659 encodedcontroller = _lev_ctrl_CC87_EXT;
2660 break;
2661 case 89:
2662 encodedcontroller = _lev_ctrl_CC89_EXT;
2663 break;
2664 case 90:
2665 encodedcontroller = _lev_ctrl_CC90_EXT;
2666 break;
2667 case 96:
2668 encodedcontroller = _lev_ctrl_CC96_EXT;
2669 break;
2670 case 97:
2671 encodedcontroller = _lev_ctrl_CC97_EXT;
2672 break;
2673 case 102:
2674 encodedcontroller = _lev_ctrl_CC102_EXT;
2675 break;
2676 case 103:
2677 encodedcontroller = _lev_ctrl_CC103_EXT;
2678 break;
2679 case 104:
2680 encodedcontroller = _lev_ctrl_CC104_EXT;
2681 break;
2682 case 105:
2683 encodedcontroller = _lev_ctrl_CC105_EXT;
2684 break;
2685 case 106:
2686 encodedcontroller = _lev_ctrl_CC106_EXT;
2687 break;
2688 case 107:
2689 encodedcontroller = _lev_ctrl_CC107_EXT;
2690 break;
2691 case 108:
2692 encodedcontroller = _lev_ctrl_CC108_EXT;
2693 break;
2694 case 109:
2695 encodedcontroller = _lev_ctrl_CC109_EXT;
2696 break;
2697 case 110:
2698 encodedcontroller = _lev_ctrl_CC110_EXT;
2699 break;
2700 case 111:
2701 encodedcontroller = _lev_ctrl_CC111_EXT;
2702 break;
2703 case 112:
2704 encodedcontroller = _lev_ctrl_CC112_EXT;
2705 break;
2706 case 113:
2707 encodedcontroller = _lev_ctrl_CC113_EXT;
2708 break;
2709 case 114:
2710 encodedcontroller = _lev_ctrl_CC114_EXT;
2711 break;
2712 case 115:
2713 encodedcontroller = _lev_ctrl_CC115_EXT;
2714 break;
2715 case 116:
2716 encodedcontroller = _lev_ctrl_CC116_EXT;
2717 break;
2718 case 117:
2719 encodedcontroller = _lev_ctrl_CC117_EXT;
2720 break;
2721 case 118:
2722 encodedcontroller = _lev_ctrl_CC118_EXT;
2723 break;
2724 case 119:
2725 encodedcontroller = _lev_ctrl_CC119_EXT;
2726 break;
2727
2728 default:
2729 throw gig::Exception("leverage controller number is not supported by the gig format");
2730 }
2731 break;
2732 default:
2733 throw gig::Exception("Unknown leverage controller type.");
2734 }
2735 return encodedcontroller;
2736 }
2737
2738 DimensionRegion::~DimensionRegion() {
2739 Instances--;
2740 if (!Instances) {
2741 // delete the velocity->volume tables
2742 VelocityTableMap::iterator iter;
2743 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2744 double* pTable = iter->second;
2745 if (pTable) delete[] pTable;
2746 }
2747 pVelocityTables->clear();
2748 delete pVelocityTables;
2749 pVelocityTables = NULL;
2750 }
2751 if (VelocityTable) delete[] VelocityTable;
2752 }
2753
2754 /**
2755 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2756 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2757 * and VelocityResponseCurveScaling) involved are taken into account to
2758 * calculate the amplitude factor. Use this method when a key was
2759 * triggered to get the volume with which the sample should be played
2760 * back.
2761 *
2762 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2763 * @returns amplitude factor (between 0.0 and 1.0)
2764 */
2765 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2766 return pVelocityAttenuationTable[MIDIKeyVelocity];
2767 }
2768
2769 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2770 return pVelocityReleaseTable[MIDIKeyVelocity];
2771 }
2772
2773 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2774 return pVelocityCutoffTable[MIDIKeyVelocity];
2775 }
2776
2777 /**
2778 * Updates the respective member variable and the lookup table / cache
2779 * that depends on this value.
2780 */
2781 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2782 pVelocityAttenuationTable =
2783 GetVelocityTable(
2784 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2785 );
2786 VelocityResponseCurve = curve;
2787 }
2788
2789 /**
2790 * Updates the respective member variable and the lookup table / cache
2791 * that depends on this value.
2792 */
2793 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2794 pVelocityAttenuationTable =
2795 GetVelocityTable(
2796 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2797 );
2798 VelocityResponseDepth = depth;
2799 }
2800
2801 /**
2802 * Updates the respective member variable and the lookup table / cache
2803 * that depends on this value.
2804 */
2805 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2806 pVelocityAttenuationTable =
2807 GetVelocityTable(
2808 VelocityResponseCurve, VelocityResponseDepth, scaling
2809 );
2810 VelocityResponseCurveScaling = scaling;
2811 }
2812
2813 /**
2814 * Updates the respective member variable and the lookup table / cache
2815 * that depends on this value.
2816 */
2817 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2818 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2819 ReleaseVelocityResponseCurve = curve;
2820 }
2821
2822 /**
2823 * Updates the respective member variable and the lookup table / cache
2824 * that depends on this value.
2825 */
2826 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2827 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2828 ReleaseVelocityResponseDepth = depth;
2829 }
2830
2831 /**
2832 * Updates the respective member variable and the lookup table / cache
2833 * that depends on this value.
2834 */
2835 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2836 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2837 VCFCutoffController = controller;
2838 }
2839
2840 /**
2841 * Updates the respective member variable and the lookup table / cache
2842 * that depends on this value.
2843 */
2844 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2845 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2846 VCFVelocityCurve = curve;
2847 }
2848
2849 /**
2850 * Updates the respective member variable and the lookup table / cache
2851 * that depends on this value.
2852 */
2853 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2854 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2855 VCFVelocityDynamicRange = range;
2856 }
2857
2858 /**
2859 * Updates the respective member variable and the lookup table / cache
2860 * that depends on this value.
2861 */
2862 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2863 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2864 VCFVelocityScale = scaling;
2865 }
2866
2867 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2868
2869 // line-segment approximations of the 15 velocity curves
2870
2871 // linear
2872 const int lin0[] = { 1, 1, 127, 127 };
2873 const int lin1[] = { 1, 21, 127, 127 };
2874 const int lin2[] = { 1, 45, 127, 127 };
2875 const int lin3[] = { 1, 74, 127, 127 };
2876 const int lin4[] = { 1, 127, 127, 127 };
2877
2878 // non-linear
2879 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2880 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2881 127, 127 };
2882 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2883 127, 127 };
2884 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2885 127, 127 };
2886 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2887
2888 // special
2889 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2890 113, 127, 127, 127 };
2891 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2892 118, 127, 127, 127 };
2893 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2894 85, 90, 91, 127, 127, 127 };
2895 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2896 117, 127, 127, 127 };
2897 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2898 127, 127 };
2899
2900 // this is only used by the VCF velocity curve
2901 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2902 91, 127, 127, 127 };
2903
2904 const int* const curves[] = { non0, non1, non2, non3, non4,
2905 lin0, lin1, lin2, lin3, lin4,
2906 spe0, spe1, spe2, spe3, spe4, spe5 };
2907
2908 double* const table = new double[128];
2909
2910 const int* curve = curves[curveType * 5 + depth];
2911 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2912
2913 table[0] = 0;
2914 for (int x = 1 ; x < 128 ; x++) {
2915
2916 if (x > curve[2]) curve += 2;
2917 double y = curve[1] + (x - curve[0]) *
2918 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2919 y = y / 127;
2920
2921 // Scale up for s > 20, down for s < 20. When
2922 // down-scaling, the curve still ends at 1.0.
2923 if (s < 20 && y >= 0.5)
2924 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2925 else
2926 y = y * (s / 20.0);
2927 if (y > 1) y = 1;
2928
2929 table[x] = y;
2930 }
2931 return table;
2932 }
2933
2934
2935 // *************** Region ***************
2936 // *
2937
2938 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2939 // Initialization
2940 Dimensions = 0;
2941 for (int i = 0; i < 256; i++) {
2942 pDimensionRegions[i] = NULL;
2943 }
2944 Layers = 1;
2945 File* file = (File*) GetParent()->GetParent();
2946 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2947
2948 // Actual Loading
2949
2950 if (!file->GetAutoLoad()) return;
2951
2952 LoadDimensionRegions(rgnList);
2953
2954 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2955 if (_3lnk) {
2956 DimensionRegions = _3lnk->ReadUint32();
2957 for (int i = 0; i < dimensionBits; i++) {
2958 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2959 uint8_t bits = _3lnk->ReadUint8();
2960 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2961 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2962 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2963 if (dimension == dimension_none) { // inactive dimension
2964 pDimensionDefinitions[i].dimension = dimension_none;
2965 pDimensionDefinitions[i].bits = 0;
2966 pDimensionDefinitions[i].zones = 0;
2967 pDimensionDefinitions[i].split_type = split_type_bit;
2968 pDimensionDefinitions[i].zone_size = 0;
2969 }
2970 else { // active dimension
2971 pDimensionDefinitions[i].dimension = dimension;
2972 pDimensionDefinitions[i].bits = bits;
2973 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2974 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2975 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2976 Dimensions++;
2977
2978 // if this is a layer dimension, remember the amount of layers
2979 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2980 }
2981 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2982 }
2983 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2984
2985 // if there's a velocity dimension and custom velocity zone splits are used,
2986 // update the VelocityTables in the dimension regions
2987 UpdateVelocityTable();
2988
2989 // jump to start of the wave pool indices (if not already there)
2990 if (file->pVersion && file->pVersion->major == 3)
2991 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2992 else
2993 _3lnk->SetPos(44);
2994
2995 // load sample references (if auto loading is enabled)
2996 if (file->GetAutoLoad()) {
2997 for (uint i = 0; i < DimensionRegions; i++) {
2998 uint32_t wavepoolindex = _3lnk->ReadUint32();
2999 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3000 }
3001 GetSample(); // load global region sample reference
3002 }
3003 } else {
3004 DimensionRegions = 0;
3005 for (int i = 0 ; i < 8 ; i++) {
3006 pDimensionDefinitions[i].dimension = dimension_none;
3007 pDimensionDefinitions[i].bits = 0;
3008 pDimensionDefinitions[i].zones = 0;
3009 }
3010 }
3011
3012 // make sure there is at least one dimension region
3013 if (!DimensionRegions) {
3014 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3015 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3016 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3017 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3018 DimensionRegions = 1;
3019 }
3020 }
3021
3022 /**
3023 * Apply Region settings and all its DimensionRegions to the respective
3024 * RIFF chunks. You have to call File::Save() to make changes persistent.
3025 *
3026 * Usually there is absolutely no need to call this method explicitly.
3027 * It will be called automatically when File::Save() was called.
3028 *
3029 * @throws gig::Exception if samples cannot be dereferenced
3030 */
3031 void Region::UpdateChunks() {
3032 // in the gig format we don't care about the Region's sample reference
3033 // but we still have to provide some existing one to not corrupt the
3034 // file, so to avoid the latter we simply always assign the sample of
3035 // the first dimension region of this region
3036 pSample = pDimensionRegions[0]->pSample;
3037
3038 // first update base class's chunks
3039 DLS::Region::UpdateChunks();
3040
3041 // update dimension region's chunks
3042 for (int i = 0; i < DimensionRegions; i++) {
3043 pDimensionRegions[i]->UpdateChunks();
3044 }
3045
3046 File* pFile = (File*) GetParent()->GetParent();
3047 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3048 const int iMaxDimensions = version3 ? 8 : 5;
3049 const int iMaxDimensionRegions = version3 ? 256 : 32;
3050
3051 // make sure '3lnk' chunk exists
3052 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3053 if (!_3lnk) {
3054 const int _3lnkChunkSize = version3 ? 1092 : 172;
3055 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3056 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3057
3058 // move 3prg to last position
3059 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3060 }
3061
3062 // update dimension definitions in '3lnk' chunk
3063 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3064 store32(&pData[0], DimensionRegions);
3065 int shift = 0;
3066 for (int i = 0; i < iMaxDimensions; i++) {
3067 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3068 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3069 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3070 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3071 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3072 // next 3 bytes unknown, always zero?
3073
3074 shift += pDimensionDefinitions[i].bits;
3075 }
3076
3077 // update wave pool table in '3lnk' chunk
3078 const int iWavePoolOffset = version3 ? 68 : 44;
3079 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3080 int iWaveIndex = -1;
3081 if (i < DimensionRegions) {
3082 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3083 File::SampleList::iterator iter = pFile->pSamples->begin();
3084 File::SampleList::iterator end = pFile->pSamples->end();
3085 for (int index = 0; iter != end; ++iter, ++index) {
3086 if (*iter == pDimensionRegions[i]->pSample) {
3087 iWaveIndex = index;
3088 break;
3089 }
3090 }
3091 }
3092 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3093 }
3094 }
3095
3096 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3097 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3098 if (_3prg) {
3099 int dimensionRegionNr = 0;
3100 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3101 while (_3ewl) {
3102 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3103 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3104 dimensionRegionNr++;
3105 }
3106 _3ewl = _3prg->GetNextSubList();
3107 }
3108 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3109 }
3110 }
3111
3112 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3113 // update KeyRange struct and make sure regions are in correct order
3114 DLS::Region::SetKeyRange(Low, High);
3115 // update Region key table for fast lookup
3116 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3117 }
3118
3119 void Region::UpdateVelocityTable() {
3120 // get velocity dimension's index
3121 int veldim = -1;
3122 for (int i = 0 ; i < Dimensions ; i++) {
3123 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3124 veldim = i;
3125 break;
3126 }
3127 }
3128 if (veldim == -1) return;
3129
3130 int step = 1;
3131 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3132 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3133 int end = step * pDimensionDefinitions[veldim].zones;
3134
3135 // loop through all dimension regions for all dimensions except the velocity dimension
3136 int dim[8] = { 0 };
3137 for (int i = 0 ; i < DimensionRegions ; i++) {
3138
3139 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3140 pDimensionRegions[i]->VelocityUpperLimit) {
3141 // create the velocity table
3142 uint8_t* table = pDimensionRegions[