/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2682 - (show annotations) (download)
Mon Dec 29 16:25:51 2014 UTC (9 years, 3 months ago) by schoenebeck
File size: 262356 byte(s)
* gig: Added support for custom progress notification while saving to
  gig file.
* DLS: Added support for custom progress notification while saving to
  DLS file.
* RIFF: Added support for custom progress notification while saving to
  RIFF file.
* Bumped version (3.3.0.svn22).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// Initial size of the sample buffer which is used for decompression of
34 /// compressed sample wave streams - this value should always be bigger than
35 /// the biggest sample piece expected to be read by the sampler engine,
36 /// otherwise the buffer size will be raised at runtime and thus the buffer
37 /// reallocated which is time consuming and unefficient.
38 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
39
40 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
41 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
42 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
43 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
44 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
45 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
46 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
47 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
48 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
49 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
50 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
51 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
52 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
53
54 namespace gig {
55
56 // *************** Internal functions for sample decompression ***************
57 // *
58
59 namespace {
60
61 inline int get12lo(const unsigned char* pSrc)
62 {
63 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
64 return x & 0x800 ? x - 0x1000 : x;
65 }
66
67 inline int get12hi(const unsigned char* pSrc)
68 {
69 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
70 return x & 0x800 ? x - 0x1000 : x;
71 }
72
73 inline int16_t get16(const unsigned char* pSrc)
74 {
75 return int16_t(pSrc[0] | pSrc[1] << 8);
76 }
77
78 inline int get24(const unsigned char* pSrc)
79 {
80 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
81 return x & 0x800000 ? x - 0x1000000 : x;
82 }
83
84 inline void store24(unsigned char* pDst, int x)
85 {
86 pDst[0] = x;
87 pDst[1] = x >> 8;
88 pDst[2] = x >> 16;
89 }
90
91 void Decompress16(int compressionmode, const unsigned char* params,
92 int srcStep, int dstStep,
93 const unsigned char* pSrc, int16_t* pDst,
94 unsigned long currentframeoffset,
95 unsigned long copysamples)
96 {
97 switch (compressionmode) {
98 case 0: // 16 bit uncompressed
99 pSrc += currentframeoffset * srcStep;
100 while (copysamples) {
101 *pDst = get16(pSrc);
102 pDst += dstStep;
103 pSrc += srcStep;
104 copysamples--;
105 }
106 break;
107
108 case 1: // 16 bit compressed to 8 bit
109 int y = get16(params);
110 int dy = get16(params + 2);
111 while (currentframeoffset) {
112 dy -= int8_t(*pSrc);
113 y -= dy;
114 pSrc += srcStep;
115 currentframeoffset--;
116 }
117 while (copysamples) {
118 dy -= int8_t(*pSrc);
119 y -= dy;
120 *pDst = y;
121 pDst += dstStep;
122 pSrc += srcStep;
123 copysamples--;
124 }
125 break;
126 }
127 }
128
129 void Decompress24(int compressionmode, const unsigned char* params,
130 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
131 unsigned long currentframeoffset,
132 unsigned long copysamples, int truncatedBits)
133 {
134 int y, dy, ddy, dddy;
135
136 #define GET_PARAMS(params) \
137 y = get24(params); \
138 dy = y - get24((params) + 3); \
139 ddy = get24((params) + 6); \
140 dddy = get24((params) + 9)
141
142 #define SKIP_ONE(x) \
143 dddy -= (x); \
144 ddy -= dddy; \
145 dy = -dy - ddy; \
146 y += dy
147
148 #define COPY_ONE(x) \
149 SKIP_ONE(x); \
150 store24(pDst, y << truncatedBits); \
151 pDst += dstStep
152
153 switch (compressionmode) {
154 case 2: // 24 bit uncompressed
155 pSrc += currentframeoffset * 3;
156 while (copysamples) {
157 store24(pDst, get24(pSrc) << truncatedBits);
158 pDst += dstStep;
159 pSrc += 3;
160 copysamples--;
161 }
162 break;
163
164 case 3: // 24 bit compressed to 16 bit
165 GET_PARAMS(params);
166 while (currentframeoffset) {
167 SKIP_ONE(get16(pSrc));
168 pSrc += 2;
169 currentframeoffset--;
170 }
171 while (copysamples) {
172 COPY_ONE(get16(pSrc));
173 pSrc += 2;
174 copysamples--;
175 }
176 break;
177
178 case 4: // 24 bit compressed to 12 bit
179 GET_PARAMS(params);
180 while (currentframeoffset > 1) {
181 SKIP_ONE(get12lo(pSrc));
182 SKIP_ONE(get12hi(pSrc));
183 pSrc += 3;
184 currentframeoffset -= 2;
185 }
186 if (currentframeoffset) {
187 SKIP_ONE(get12lo(pSrc));
188 currentframeoffset--;
189 if (copysamples) {
190 COPY_ONE(get12hi(pSrc));
191 pSrc += 3;
192 copysamples--;
193 }
194 }
195 while (copysamples > 1) {
196 COPY_ONE(get12lo(pSrc));
197 COPY_ONE(get12hi(pSrc));
198 pSrc += 3;
199 copysamples -= 2;
200 }
201 if (copysamples) {
202 COPY_ONE(get12lo(pSrc));
203 }
204 break;
205
206 case 5: // 24 bit compressed to 8 bit
207 GET_PARAMS(params);
208 while (currentframeoffset) {
209 SKIP_ONE(int8_t(*pSrc++));
210 currentframeoffset--;
211 }
212 while (copysamples) {
213 COPY_ONE(int8_t(*pSrc++));
214 copysamples--;
215 }
216 break;
217 }
218 }
219
220 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
221 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
222 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
223 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
224 }
225
226
227
228 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
229 // *
230
231 static uint32_t* __initCRCTable() {
232 static uint32_t res[256];
233
234 for (int i = 0 ; i < 256 ; i++) {
235 uint32_t c = i;
236 for (int j = 0 ; j < 8 ; j++) {
237 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
238 }
239 res[i] = c;
240 }
241 return res;
242 }
243
244 static const uint32_t* __CRCTable = __initCRCTable();
245
246 /**
247 * Initialize a CRC variable.
248 *
249 * @param crc - variable to be initialized
250 */
251 inline static void __resetCRC(uint32_t& crc) {
252 crc = 0xffffffff;
253 }
254
255 /**
256 * Used to calculate checksums of the sample data in a gig file. The
257 * checksums are stored in the 3crc chunk of the gig file and
258 * automatically updated when a sample is written with Sample::Write().
259 *
260 * One should call __resetCRC() to initialize the CRC variable to be
261 * used before calling this function the first time.
262 *
263 * After initializing the CRC variable one can call this function
264 * arbitrary times, i.e. to split the overall CRC calculation into
265 * steps.
266 *
267 * Once the whole data was processed by __calculateCRC(), one should
268 * call __encodeCRC() to get the final CRC result.
269 *
270 * @param buf - pointer to data the CRC shall be calculated of
271 * @param bufSize - size of the data to be processed
272 * @param crc - variable the CRC sum shall be stored to
273 */
274 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
275 for (int i = 0 ; i < bufSize ; i++) {
276 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
277 }
278 }
279
280 /**
281 * Returns the final CRC result.
282 *
283 * @param crc - variable previously passed to __calculateCRC()
284 */
285 inline static uint32_t __encodeCRC(const uint32_t& crc) {
286 return crc ^ 0xffffffff;
287 }
288
289
290
291 // *************** Other Internal functions ***************
292 // *
293
294 static split_type_t __resolveSplitType(dimension_t dimension) {
295 return (
296 dimension == dimension_layer ||
297 dimension == dimension_samplechannel ||
298 dimension == dimension_releasetrigger ||
299 dimension == dimension_keyboard ||
300 dimension == dimension_roundrobin ||
301 dimension == dimension_random ||
302 dimension == dimension_smartmidi ||
303 dimension == dimension_roundrobinkeyboard
304 ) ? split_type_bit : split_type_normal;
305 }
306
307 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
308 return (dimension_definition.split_type == split_type_normal)
309 ? int(128.0 / dimension_definition.zones) : 0;
310 }
311
312
313
314 // *************** Sample ***************
315 // *
316
317 unsigned int Sample::Instances = 0;
318 buffer_t Sample::InternalDecompressionBuffer;
319
320 /** @brief Constructor.
321 *
322 * Load an existing sample or create a new one. A 'wave' list chunk must
323 * be given to this constructor. In case the given 'wave' list chunk
324 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
325 * format and sample data will be loaded from there, otherwise default
326 * values will be used and those chunks will be created when
327 * File::Save() will be called later on.
328 *
329 * @param pFile - pointer to gig::File where this sample is
330 * located (or will be located)
331 * @param waveList - pointer to 'wave' list chunk which is (or
332 * will be) associated with this sample
333 * @param WavePoolOffset - offset of this sample data from wave pool
334 * ('wvpl') list chunk
335 * @param fileNo - number of an extension file where this sample
336 * is located, 0 otherwise
337 */
338 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
339 static const DLS::Info::string_length_t fixedStringLengths[] = {
340 { CHUNK_ID_INAM, 64 },
341 { 0, 0 }
342 };
343 pInfo->SetFixedStringLengths(fixedStringLengths);
344 Instances++;
345 FileNo = fileNo;
346
347 __resetCRC(crc);
348
349 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
350 if (pCk3gix) {
351 uint16_t iSampleGroup = pCk3gix->ReadInt16();
352 pGroup = pFile->GetGroup(iSampleGroup);
353 } else { // '3gix' chunk missing
354 // by default assigned to that mandatory "Default Group"
355 pGroup = pFile->GetGroup(0);
356 }
357
358 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
359 if (pCkSmpl) {
360 Manufacturer = pCkSmpl->ReadInt32();
361 Product = pCkSmpl->ReadInt32();
362 SamplePeriod = pCkSmpl->ReadInt32();
363 MIDIUnityNote = pCkSmpl->ReadInt32();
364 FineTune = pCkSmpl->ReadInt32();
365 pCkSmpl->Read(&SMPTEFormat, 1, 4);
366 SMPTEOffset = pCkSmpl->ReadInt32();
367 Loops = pCkSmpl->ReadInt32();
368 pCkSmpl->ReadInt32(); // manufByt
369 LoopID = pCkSmpl->ReadInt32();
370 pCkSmpl->Read(&LoopType, 1, 4);
371 LoopStart = pCkSmpl->ReadInt32();
372 LoopEnd = pCkSmpl->ReadInt32();
373 LoopFraction = pCkSmpl->ReadInt32();
374 LoopPlayCount = pCkSmpl->ReadInt32();
375 } else { // 'smpl' chunk missing
376 // use default values
377 Manufacturer = 0;
378 Product = 0;
379 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
380 MIDIUnityNote = 60;
381 FineTune = 0;
382 SMPTEFormat = smpte_format_no_offset;
383 SMPTEOffset = 0;
384 Loops = 0;
385 LoopID = 0;
386 LoopType = loop_type_normal;
387 LoopStart = 0;
388 LoopEnd = 0;
389 LoopFraction = 0;
390 LoopPlayCount = 0;
391 }
392
393 FrameTable = NULL;
394 SamplePos = 0;
395 RAMCache.Size = 0;
396 RAMCache.pStart = NULL;
397 RAMCache.NullExtensionSize = 0;
398
399 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
400
401 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
402 Compressed = ewav;
403 Dithered = false;
404 TruncatedBits = 0;
405 if (Compressed) {
406 uint32_t version = ewav->ReadInt32();
407 if (version == 3 && BitDepth == 24) {
408 Dithered = ewav->ReadInt32();
409 ewav->SetPos(Channels == 2 ? 84 : 64);
410 TruncatedBits = ewav->ReadInt32();
411 }
412 ScanCompressedSample();
413 }
414
415 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
416 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
417 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
418 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
419 }
420 FrameOffset = 0; // just for streaming compressed samples
421
422 LoopSize = LoopEnd - LoopStart + 1;
423 }
424
425 /**
426 * Make a (semi) deep copy of the Sample object given by @a orig (without
427 * the actual waveform data) and assign it to this object.
428 *
429 * Discussion: copying .gig samples is a bit tricky. It requires three
430 * steps:
431 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
432 * its new sample waveform data size.
433 * 2. Saving the file (done by File::Save()) so that it gains correct size
434 * and layout for writing the actual wave form data directly to disc
435 * in next step.
436 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
437 *
438 * @param orig - original Sample object to be copied from
439 */
440 void Sample::CopyAssignMeta(const Sample* orig) {
441 // handle base classes
442 DLS::Sample::CopyAssignCore(orig);
443
444 // handle actual own attributes of this class
445 Manufacturer = orig->Manufacturer;
446 Product = orig->Product;
447 SamplePeriod = orig->SamplePeriod;
448 MIDIUnityNote = orig->MIDIUnityNote;
449 FineTune = orig->FineTune;
450 SMPTEFormat = orig->SMPTEFormat;
451 SMPTEOffset = orig->SMPTEOffset;
452 Loops = orig->Loops;
453 LoopID = orig->LoopID;
454 LoopType = orig->LoopType;
455 LoopStart = orig->LoopStart;
456 LoopEnd = orig->LoopEnd;
457 LoopSize = orig->LoopSize;
458 LoopFraction = orig->LoopFraction;
459 LoopPlayCount = orig->LoopPlayCount;
460
461 // schedule resizing this sample to the given sample's size
462 Resize(orig->GetSize());
463 }
464
465 /**
466 * Should be called after CopyAssignMeta() and File::Save() sequence.
467 * Read more about it in the discussion of CopyAssignMeta(). This method
468 * copies the actual waveform data by disk streaming.
469 *
470 * @e CAUTION: this method is currently not thread safe! During this
471 * operation the sample must not be used for other purposes by other
472 * threads!
473 *
474 * @param orig - original Sample object to be copied from
475 */
476 void Sample::CopyAssignWave(const Sample* orig) {
477 const int iReadAtOnce = 32*1024;
478 char* buf = new char[iReadAtOnce * orig->FrameSize];
479 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
480 unsigned long restorePos = pOrig->GetPos();
481 pOrig->SetPos(0);
482 SetPos(0);
483 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
484 n = pOrig->Read(buf, iReadAtOnce))
485 {
486 Write(buf, n);
487 }
488 pOrig->SetPos(restorePos);
489 delete [] buf;
490 }
491
492 /**
493 * Apply sample and its settings to the respective RIFF chunks. You have
494 * to call File::Save() to make changes persistent.
495 *
496 * Usually there is absolutely no need to call this method explicitly.
497 * It will be called automatically when File::Save() was called.
498 *
499 * @param pProgress - callback function for progress notification
500 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
501 * was provided yet
502 * @throws gig::Exception if there is any invalid sample setting
503 */
504 void Sample::UpdateChunks(progress_t* pProgress) {
505 // first update base class's chunks
506 DLS::Sample::UpdateChunks(pProgress);
507
508 // make sure 'smpl' chunk exists
509 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
510 if (!pCkSmpl) {
511 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
512 memset(pCkSmpl->LoadChunkData(), 0, 60);
513 }
514 // update 'smpl' chunk
515 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
516 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
517 store32(&pData[0], Manufacturer);
518 store32(&pData[4], Product);
519 store32(&pData[8], SamplePeriod);
520 store32(&pData[12], MIDIUnityNote);
521 store32(&pData[16], FineTune);
522 store32(&pData[20], SMPTEFormat);
523 store32(&pData[24], SMPTEOffset);
524 store32(&pData[28], Loops);
525
526 // we skip 'manufByt' for now (4 bytes)
527
528 store32(&pData[36], LoopID);
529 store32(&pData[40], LoopType);
530 store32(&pData[44], LoopStart);
531 store32(&pData[48], LoopEnd);
532 store32(&pData[52], LoopFraction);
533 store32(&pData[56], LoopPlayCount);
534
535 // make sure '3gix' chunk exists
536 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
537 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
538 // determine appropriate sample group index (to be stored in chunk)
539 uint16_t iSampleGroup = 0; // 0 refers to default sample group
540 File* pFile = static_cast<File*>(pParent);
541 if (pFile->pGroups) {
542 std::list<Group*>::iterator iter = pFile->pGroups->begin();
543 std::list<Group*>::iterator end = pFile->pGroups->end();
544 for (int i = 0; iter != end; i++, iter++) {
545 if (*iter == pGroup) {
546 iSampleGroup = i;
547 break; // found
548 }
549 }
550 }
551 // update '3gix' chunk
552 pData = (uint8_t*) pCk3gix->LoadChunkData();
553 store16(&pData[0], iSampleGroup);
554
555 // if the library user toggled the "Compressed" attribute from true to
556 // false, then the EWAV chunk associated with compressed samples needs
557 // to be deleted
558 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
559 if (ewav && !Compressed) {
560 pWaveList->DeleteSubChunk(ewav);
561 }
562 }
563
564 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
565 void Sample::ScanCompressedSample() {
566 //TODO: we have to add some more scans here (e.g. determine compression rate)
567 this->SamplesTotal = 0;
568 std::list<unsigned long> frameOffsets;
569
570 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
571 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
572
573 // Scanning
574 pCkData->SetPos(0);
575 if (Channels == 2) { // Stereo
576 for (int i = 0 ; ; i++) {
577 // for 24 bit samples every 8:th frame offset is
578 // stored, to save some memory
579 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
580
581 const int mode_l = pCkData->ReadUint8();
582 const int mode_r = pCkData->ReadUint8();
583 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
584 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
585
586 if (pCkData->RemainingBytes() <= frameSize) {
587 SamplesInLastFrame =
588 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
589 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
590 SamplesTotal += SamplesInLastFrame;
591 break;
592 }
593 SamplesTotal += SamplesPerFrame;
594 pCkData->SetPos(frameSize, RIFF::stream_curpos);
595 }
596 }
597 else { // Mono
598 for (int i = 0 ; ; i++) {
599 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
600
601 const int mode = pCkData->ReadUint8();
602 if (mode > 5) throw gig::Exception("Unknown compression mode");
603 const unsigned long frameSize = bytesPerFrame[mode];
604
605 if (pCkData->RemainingBytes() <= frameSize) {
606 SamplesInLastFrame =
607 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
608 SamplesTotal += SamplesInLastFrame;
609 break;
610 }
611 SamplesTotal += SamplesPerFrame;
612 pCkData->SetPos(frameSize, RIFF::stream_curpos);
613 }
614 }
615 pCkData->SetPos(0);
616
617 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
618 if (FrameTable) delete[] FrameTable;
619 FrameTable = new unsigned long[frameOffsets.size()];
620 std::list<unsigned long>::iterator end = frameOffsets.end();
621 std::list<unsigned long>::iterator iter = frameOffsets.begin();
622 for (int i = 0; iter != end; i++, iter++) {
623 FrameTable[i] = *iter;
624 }
625 }
626
627 /**
628 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
629 * ReleaseSampleData() to free the memory if you don't need the cached
630 * sample data anymore.
631 *
632 * @returns buffer_t structure with start address and size of the buffer
633 * in bytes
634 * @see ReleaseSampleData(), Read(), SetPos()
635 */
636 buffer_t Sample::LoadSampleData() {
637 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
638 }
639
640 /**
641 * Reads (uncompresses if needed) and caches the first \a SampleCount
642 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
643 * memory space if you don't need the cached samples anymore. There is no
644 * guarantee that exactly \a SampleCount samples will be cached; this is
645 * not an error. The size will be eventually truncated e.g. to the
646 * beginning of a frame of a compressed sample. This is done for
647 * efficiency reasons while streaming the wave by your sampler engine
648 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
649 * that will be returned to determine the actual cached samples, but note
650 * that the size is given in bytes! You get the number of actually cached
651 * samples by dividing it by the frame size of the sample:
652 * @code
653 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
654 * long cachedsamples = buf.Size / pSample->FrameSize;
655 * @endcode
656 *
657 * @param SampleCount - number of sample points to load into RAM
658 * @returns buffer_t structure with start address and size of
659 * the cached sample data in bytes
660 * @see ReleaseSampleData(), Read(), SetPos()
661 */
662 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
663 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
664 }
665
666 /**
667 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
668 * ReleaseSampleData() to free the memory if you don't need the cached
669 * sample data anymore.
670 * The method will add \a NullSamplesCount silence samples past the
671 * official buffer end (this won't affect the 'Size' member of the
672 * buffer_t structure, that means 'Size' always reflects the size of the
673 * actual sample data, the buffer might be bigger though). Silence
674 * samples past the official buffer are needed for differential
675 * algorithms that always have to take subsequent samples into account
676 * (resampling/interpolation would be an important example) and avoids
677 * memory access faults in such cases.
678 *
679 * @param NullSamplesCount - number of silence samples the buffer should
680 * be extended past it's data end
681 * @returns buffer_t structure with start address and
682 * size of the buffer in bytes
683 * @see ReleaseSampleData(), Read(), SetPos()
684 */
685 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
686 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
687 }
688
689 /**
690 * Reads (uncompresses if needed) and caches the first \a SampleCount
691 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
692 * memory space if you don't need the cached samples anymore. There is no
693 * guarantee that exactly \a SampleCount samples will be cached; this is
694 * not an error. The size will be eventually truncated e.g. to the
695 * beginning of a frame of a compressed sample. This is done for
696 * efficiency reasons while streaming the wave by your sampler engine
697 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
698 * that will be returned to determine the actual cached samples, but note
699 * that the size is given in bytes! You get the number of actually cached
700 * samples by dividing it by the frame size of the sample:
701 * @code
702 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
703 * long cachedsamples = buf.Size / pSample->FrameSize;
704 * @endcode
705 * The method will add \a NullSamplesCount silence samples past the
706 * official buffer end (this won't affect the 'Size' member of the
707 * buffer_t structure, that means 'Size' always reflects the size of the
708 * actual sample data, the buffer might be bigger though). Silence
709 * samples past the official buffer are needed for differential
710 * algorithms that always have to take subsequent samples into account
711 * (resampling/interpolation would be an important example) and avoids
712 * memory access faults in such cases.
713 *
714 * @param SampleCount - number of sample points to load into RAM
715 * @param NullSamplesCount - number of silence samples the buffer should
716 * be extended past it's data end
717 * @returns buffer_t structure with start address and
718 * size of the cached sample data in bytes
719 * @see ReleaseSampleData(), Read(), SetPos()
720 */
721 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
722 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
723 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
724 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
725 SetPos(0); // reset read position to begin of sample
726 RAMCache.pStart = new int8_t[allocationsize];
727 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
728 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
729 // fill the remaining buffer space with silence samples
730 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
731 return GetCache();
732 }
733
734 /**
735 * Returns current cached sample points. A buffer_t structure will be
736 * returned which contains address pointer to the begin of the cache and
737 * the size of the cached sample data in bytes. Use
738 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
739 * RAM.
740 *
741 * @returns buffer_t structure with current cached sample points
742 * @see LoadSampleData();
743 */
744 buffer_t Sample::GetCache() {
745 // return a copy of the buffer_t structure
746 buffer_t result;
747 result.Size = this->RAMCache.Size;
748 result.pStart = this->RAMCache.pStart;
749 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
750 return result;
751 }
752
753 /**
754 * Frees the cached sample from RAM if loaded with
755 * <i>LoadSampleData()</i> previously.
756 *
757 * @see LoadSampleData();
758 */
759 void Sample::ReleaseSampleData() {
760 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
761 RAMCache.pStart = NULL;
762 RAMCache.Size = 0;
763 RAMCache.NullExtensionSize = 0;
764 }
765
766 /** @brief Resize sample.
767 *
768 * Resizes the sample's wave form data, that is the actual size of
769 * sample wave data possible to be written for this sample. This call
770 * will return immediately and just schedule the resize operation. You
771 * should call File::Save() to actually perform the resize operation(s)
772 * "physically" to the file. As this can take a while on large files, it
773 * is recommended to call Resize() first on all samples which have to be
774 * resized and finally to call File::Save() to perform all those resize
775 * operations in one rush.
776 *
777 * The actual size (in bytes) is dependant to the current FrameSize
778 * value. You may want to set FrameSize before calling Resize().
779 *
780 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
781 * enlarged samples before calling File::Save() as this might exceed the
782 * current sample's boundary!
783 *
784 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
785 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
786 * other formats will fail!
787 *
788 * @param iNewSize - new sample wave data size in sample points (must be
789 * greater than zero)
790 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
791 * or if \a iNewSize is less than 1
792 * @throws gig::Exception if existing sample is compressed
793 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
794 * DLS::Sample::FormatTag, File::Save()
795 */
796 void Sample::Resize(int iNewSize) {
797 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
798 DLS::Sample::Resize(iNewSize);
799 }
800
801 /**
802 * Sets the position within the sample (in sample points, not in
803 * bytes). Use this method and <i>Read()</i> if you don't want to load
804 * the sample into RAM, thus for disk streaming.
805 *
806 * Although the original Gigasampler engine doesn't allow positioning
807 * within compressed samples, I decided to implement it. Even though
808 * the Gigasampler format doesn't allow to define loops for compressed
809 * samples at the moment, positioning within compressed samples might be
810 * interesting for some sampler engines though. The only drawback about
811 * my decision is that it takes longer to load compressed gig Files on
812 * startup, because it's neccessary to scan the samples for some
813 * mandatory informations. But I think as it doesn't affect the runtime
814 * efficiency, nobody will have a problem with that.
815 *
816 * @param SampleCount number of sample points to jump
817 * @param Whence optional: to which relation \a SampleCount refers
818 * to, if omited <i>RIFF::stream_start</i> is assumed
819 * @returns the new sample position
820 * @see Read()
821 */
822 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
823 if (Compressed) {
824 switch (Whence) {
825 case RIFF::stream_curpos:
826 this->SamplePos += SampleCount;
827 break;
828 case RIFF::stream_end:
829 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
830 break;
831 case RIFF::stream_backward:
832 this->SamplePos -= SampleCount;
833 break;
834 case RIFF::stream_start: default:
835 this->SamplePos = SampleCount;
836 break;
837 }
838 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
839
840 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
841 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
842 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
843 return this->SamplePos;
844 }
845 else { // not compressed
846 unsigned long orderedBytes = SampleCount * this->FrameSize;
847 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
848 return (result == orderedBytes) ? SampleCount
849 : result / this->FrameSize;
850 }
851 }
852
853 /**
854 * Returns the current position in the sample (in sample points).
855 */
856 unsigned long Sample::GetPos() const {
857 if (Compressed) return SamplePos;
858 else return pCkData->GetPos() / FrameSize;
859 }
860
861 /**
862 * Reads \a SampleCount number of sample points from the position stored
863 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
864 * the position within the sample respectively, this method honors the
865 * looping informations of the sample (if any). The sample wave stream
866 * will be decompressed on the fly if using a compressed sample. Use this
867 * method if you don't want to load the sample into RAM, thus for disk
868 * streaming. All this methods needs to know to proceed with streaming
869 * for the next time you call this method is stored in \a pPlaybackState.
870 * You have to allocate and initialize the playback_state_t structure by
871 * yourself before you use it to stream a sample:
872 * @code
873 * gig::playback_state_t playbackstate;
874 * playbackstate.position = 0;
875 * playbackstate.reverse = false;
876 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
877 * @endcode
878 * You don't have to take care of things like if there is actually a loop
879 * defined or if the current read position is located within a loop area.
880 * The method already handles such cases by itself.
881 *
882 * <b>Caution:</b> If you are using more than one streaming thread, you
883 * have to use an external decompression buffer for <b>EACH</b>
884 * streaming thread to avoid race conditions and crashes!
885 *
886 * @param pBuffer destination buffer
887 * @param SampleCount number of sample points to read
888 * @param pPlaybackState will be used to store and reload the playback
889 * state for the next ReadAndLoop() call
890 * @param pDimRgn dimension region with looping information
891 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
892 * @returns number of successfully read sample points
893 * @see CreateDecompressionBuffer()
894 */
895 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
896 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
897 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
898 uint8_t* pDst = (uint8_t*) pBuffer;
899
900 SetPos(pPlaybackState->position); // recover position from the last time
901
902 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
903
904 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
905 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
906
907 if (GetPos() <= loopEnd) {
908 switch (loop.LoopType) {
909
910 case loop_type_bidirectional: { //TODO: not tested yet!
911 do {
912 // if not endless loop check if max. number of loop cycles have been passed
913 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
914
915 if (!pPlaybackState->reverse) { // forward playback
916 do {
917 samplestoloopend = loopEnd - GetPos();
918 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
919 samplestoread -= readsamples;
920 totalreadsamples += readsamples;
921 if (readsamples == samplestoloopend) {
922 pPlaybackState->reverse = true;
923 break;
924 }
925 } while (samplestoread && readsamples);
926 }
927 else { // backward playback
928
929 // as we can only read forward from disk, we have to
930 // determine the end position within the loop first,
931 // read forward from that 'end' and finally after
932 // reading, swap all sample frames so it reflects
933 // backward playback
934
935 unsigned long swapareastart = totalreadsamples;
936 unsigned long loopoffset = GetPos() - loop.LoopStart;
937 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
938 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
939
940 SetPos(reverseplaybackend);
941
942 // read samples for backward playback
943 do {
944 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
945 samplestoreadinloop -= readsamples;
946 samplestoread -= readsamples;
947 totalreadsamples += readsamples;
948 } while (samplestoreadinloop && readsamples);
949
950 SetPos(reverseplaybackend); // pretend we really read backwards
951
952 if (reverseplaybackend == loop.LoopStart) {
953 pPlaybackState->loop_cycles_left--;
954 pPlaybackState->reverse = false;
955 }
956
957 // reverse the sample frames for backward playback
958 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
959 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
960 }
961 } while (samplestoread && readsamples);
962 break;
963 }
964
965 case loop_type_backward: { // TODO: not tested yet!
966 // forward playback (not entered the loop yet)
967 if (!pPlaybackState->reverse) do {
968 samplestoloopend = loopEnd - GetPos();
969 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
970 samplestoread -= readsamples;
971 totalreadsamples += readsamples;
972 if (readsamples == samplestoloopend) {
973 pPlaybackState->reverse = true;
974 break;
975 }
976 } while (samplestoread && readsamples);
977
978 if (!samplestoread) break;
979
980 // as we can only read forward from disk, we have to
981 // determine the end position within the loop first,
982 // read forward from that 'end' and finally after
983 // reading, swap all sample frames so it reflects
984 // backward playback
985
986 unsigned long swapareastart = totalreadsamples;
987 unsigned long loopoffset = GetPos() - loop.LoopStart;
988 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
989 : samplestoread;
990 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
991
992 SetPos(reverseplaybackend);
993
994 // read samples for backward playback
995 do {
996 // if not endless loop check if max. number of loop cycles have been passed
997 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
998 samplestoloopend = loopEnd - GetPos();
999 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1000 samplestoreadinloop -= readsamples;
1001 samplestoread -= readsamples;
1002 totalreadsamples += readsamples;
1003 if (readsamples == samplestoloopend) {
1004 pPlaybackState->loop_cycles_left--;
1005 SetPos(loop.LoopStart);
1006 }
1007 } while (samplestoreadinloop && readsamples);
1008
1009 SetPos(reverseplaybackend); // pretend we really read backwards
1010
1011 // reverse the sample frames for backward playback
1012 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1013 break;
1014 }
1015
1016 default: case loop_type_normal: {
1017 do {
1018 // if not endless loop check if max. number of loop cycles have been passed
1019 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1020 samplestoloopend = loopEnd - GetPos();
1021 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1022 samplestoread -= readsamples;
1023 totalreadsamples += readsamples;
1024 if (readsamples == samplestoloopend) {
1025 pPlaybackState->loop_cycles_left--;
1026 SetPos(loop.LoopStart);
1027 }
1028 } while (samplestoread && readsamples);
1029 break;
1030 }
1031 }
1032 }
1033 }
1034
1035 // read on without looping
1036 if (samplestoread) do {
1037 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1038 samplestoread -= readsamples;
1039 totalreadsamples += readsamples;
1040 } while (readsamples && samplestoread);
1041
1042 // store current position
1043 pPlaybackState->position = GetPos();
1044
1045 return totalreadsamples;
1046 }
1047
1048 /**
1049 * Reads \a SampleCount number of sample points from the current
1050 * position into the buffer pointed by \a pBuffer and increments the
1051 * position within the sample. The sample wave stream will be
1052 * decompressed on the fly if using a compressed sample. Use this method
1053 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1054 * thus for disk streaming.
1055 *
1056 * <b>Caution:</b> If you are using more than one streaming thread, you
1057 * have to use an external decompression buffer for <b>EACH</b>
1058 * streaming thread to avoid race conditions and crashes!
1059 *
1060 * For 16 bit samples, the data in the buffer will be int16_t
1061 * (using native endianness). For 24 bit, the buffer will
1062 * contain three bytes per sample, little-endian.
1063 *
1064 * @param pBuffer destination buffer
1065 * @param SampleCount number of sample points to read
1066 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1067 * @returns number of successfully read sample points
1068 * @see SetPos(), CreateDecompressionBuffer()
1069 */
1070 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1071 if (SampleCount == 0) return 0;
1072 if (!Compressed) {
1073 if (BitDepth == 24) {
1074 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1075 }
1076 else { // 16 bit
1077 // (pCkData->Read does endian correction)
1078 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1079 : pCkData->Read(pBuffer, SampleCount, 2);
1080 }
1081 }
1082 else {
1083 if (this->SamplePos >= this->SamplesTotal) return 0;
1084 //TODO: efficiency: maybe we should test for an average compression rate
1085 unsigned long assumedsize = GuessSize(SampleCount),
1086 remainingbytes = 0, // remaining bytes in the local buffer
1087 remainingsamples = SampleCount,
1088 copysamples, skipsamples,
1089 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1090 this->FrameOffset = 0;
1091
1092 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1093
1094 // if decompression buffer too small, then reduce amount of samples to read
1095 if (pDecompressionBuffer->Size < assumedsize) {
1096 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1097 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1098 remainingsamples = SampleCount;
1099 assumedsize = GuessSize(SampleCount);
1100 }
1101
1102 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1103 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1104 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1105 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1106
1107 while (remainingsamples && remainingbytes) {
1108 unsigned long framesamples = SamplesPerFrame;
1109 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1110
1111 int mode_l = *pSrc++, mode_r = 0;
1112
1113 if (Channels == 2) {
1114 mode_r = *pSrc++;
1115 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1116 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1117 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1118 if (remainingbytes < framebytes) { // last frame in sample
1119 framesamples = SamplesInLastFrame;
1120 if (mode_l == 4 && (framesamples & 1)) {
1121 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1122 }
1123 else {
1124 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1125 }
1126 }
1127 }
1128 else {
1129 framebytes = bytesPerFrame[mode_l] + 1;
1130 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1131 if (remainingbytes < framebytes) {
1132 framesamples = SamplesInLastFrame;
1133 }
1134 }
1135
1136 // determine how many samples in this frame to skip and read
1137 if (currentframeoffset + remainingsamples >= framesamples) {
1138 if (currentframeoffset <= framesamples) {
1139 copysamples = framesamples - currentframeoffset;
1140 skipsamples = currentframeoffset;
1141 }
1142 else {
1143 copysamples = 0;
1144 skipsamples = framesamples;
1145 }
1146 }
1147 else {
1148 // This frame has enough data for pBuffer, but not
1149 // all of the frame is needed. Set file position
1150 // to start of this frame for next call to Read.
1151 copysamples = remainingsamples;
1152 skipsamples = currentframeoffset;
1153 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1154 this->FrameOffset = currentframeoffset + copysamples;
1155 }
1156 remainingsamples -= copysamples;
1157
1158 if (remainingbytes > framebytes) {
1159 remainingbytes -= framebytes;
1160 if (remainingsamples == 0 &&
1161 currentframeoffset + copysamples == framesamples) {
1162 // This frame has enough data for pBuffer, and
1163 // all of the frame is needed. Set file
1164 // position to start of next frame for next
1165 // call to Read. FrameOffset is 0.
1166 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1167 }
1168 }
1169 else remainingbytes = 0;
1170
1171 currentframeoffset -= skipsamples;
1172
1173 if (copysamples == 0) {
1174 // skip this frame
1175 pSrc += framebytes - Channels;
1176 }
1177 else {
1178 const unsigned char* const param_l = pSrc;
1179 if (BitDepth == 24) {
1180 if (mode_l != 2) pSrc += 12;
1181
1182 if (Channels == 2) { // Stereo
1183 const unsigned char* const param_r = pSrc;
1184 if (mode_r != 2) pSrc += 12;
1185
1186 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1187 skipsamples, copysamples, TruncatedBits);
1188 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1189 skipsamples, copysamples, TruncatedBits);
1190 pDst24 += copysamples * 6;
1191 }
1192 else { // Mono
1193 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1194 skipsamples, copysamples, TruncatedBits);
1195 pDst24 += copysamples * 3;
1196 }
1197 }
1198 else { // 16 bit
1199 if (mode_l) pSrc += 4;
1200
1201 int step;
1202 if (Channels == 2) { // Stereo
1203 const unsigned char* const param_r = pSrc;
1204 if (mode_r) pSrc += 4;
1205
1206 step = (2 - mode_l) + (2 - mode_r);
1207 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1208 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1209 skipsamples, copysamples);
1210 pDst += copysamples << 1;
1211 }
1212 else { // Mono
1213 step = 2 - mode_l;
1214 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1215 pDst += copysamples;
1216 }
1217 }
1218 pSrc += nextFrameOffset;
1219 }
1220
1221 // reload from disk to local buffer if needed
1222 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1223 assumedsize = GuessSize(remainingsamples);
1224 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1225 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1226 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1227 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1228 }
1229 } // while
1230
1231 this->SamplePos += (SampleCount - remainingsamples);
1232 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1233 return (SampleCount - remainingsamples);
1234 }
1235 }
1236
1237 /** @brief Write sample wave data.
1238 *
1239 * Writes \a SampleCount number of sample points from the buffer pointed
1240 * by \a pBuffer and increments the position within the sample. Use this
1241 * method to directly write the sample data to disk, i.e. if you don't
1242 * want or cannot load the whole sample data into RAM.
1243 *
1244 * You have to Resize() the sample to the desired size and call
1245 * File::Save() <b>before</b> using Write().
1246 *
1247 * Note: there is currently no support for writing compressed samples.
1248 *
1249 * For 16 bit samples, the data in the source buffer should be
1250 * int16_t (using native endianness). For 24 bit, the buffer
1251 * should contain three bytes per sample, little-endian.
1252 *
1253 * @param pBuffer - source buffer
1254 * @param SampleCount - number of sample points to write
1255 * @throws DLS::Exception if current sample size is too small
1256 * @throws gig::Exception if sample is compressed
1257 * @see DLS::LoadSampleData()
1258 */
1259 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1260 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1261
1262 // if this is the first write in this sample, reset the
1263 // checksum calculator
1264 if (pCkData->GetPos() == 0) {
1265 __resetCRC(crc);
1266 }
1267 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1268 unsigned long res;
1269 if (BitDepth == 24) {
1270 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1271 } else { // 16 bit
1272 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1273 : pCkData->Write(pBuffer, SampleCount, 2);
1274 }
1275 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1276
1277 // if this is the last write, update the checksum chunk in the
1278 // file
1279 if (pCkData->GetPos() == pCkData->GetSize()) {
1280 File* pFile = static_cast<File*>(GetParent());
1281 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1282 }
1283 return res;
1284 }
1285
1286 /**
1287 * Allocates a decompression buffer for streaming (compressed) samples
1288 * with Sample::Read(). If you are using more than one streaming thread
1289 * in your application you <b>HAVE</b> to create a decompression buffer
1290 * for <b>EACH</b> of your streaming threads and provide it with the
1291 * Sample::Read() call in order to avoid race conditions and crashes.
1292 *
1293 * You should free the memory occupied by the allocated buffer(s) once
1294 * you don't need one of your streaming threads anymore by calling
1295 * DestroyDecompressionBuffer().
1296 *
1297 * @param MaxReadSize - the maximum size (in sample points) you ever
1298 * expect to read with one Read() call
1299 * @returns allocated decompression buffer
1300 * @see DestroyDecompressionBuffer()
1301 */
1302 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1303 buffer_t result;
1304 const double worstCaseHeaderOverhead =
1305 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1306 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1307 result.pStart = new int8_t[result.Size];
1308 result.NullExtensionSize = 0;
1309 return result;
1310 }
1311
1312 /**
1313 * Free decompression buffer, previously created with
1314 * CreateDecompressionBuffer().
1315 *
1316 * @param DecompressionBuffer - previously allocated decompression
1317 * buffer to free
1318 */
1319 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1320 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1321 delete[] (int8_t*) DecompressionBuffer.pStart;
1322 DecompressionBuffer.pStart = NULL;
1323 DecompressionBuffer.Size = 0;
1324 DecompressionBuffer.NullExtensionSize = 0;
1325 }
1326 }
1327
1328 /**
1329 * Returns pointer to the Group this Sample belongs to. In the .gig
1330 * format a sample always belongs to one group. If it wasn't explicitly
1331 * assigned to a certain group, it will be automatically assigned to a
1332 * default group.
1333 *
1334 * @returns Sample's Group (never NULL)
1335 */
1336 Group* Sample::GetGroup() const {
1337 return pGroup;
1338 }
1339
1340 Sample::~Sample() {
1341 Instances--;
1342 if (!Instances && InternalDecompressionBuffer.Size) {
1343 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1344 InternalDecompressionBuffer.pStart = NULL;
1345 InternalDecompressionBuffer.Size = 0;
1346 }
1347 if (FrameTable) delete[] FrameTable;
1348 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1349 }
1350
1351
1352
1353 // *************** DimensionRegion ***************
1354 // *
1355
1356 uint DimensionRegion::Instances = 0;
1357 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1358
1359 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1360 Instances++;
1361
1362 pSample = NULL;
1363 pRegion = pParent;
1364
1365 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1366 else memset(&Crossfade, 0, 4);
1367
1368 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1369
1370 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1371 if (_3ewa) { // if '3ewa' chunk exists
1372 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1373 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1374 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1375 _3ewa->ReadInt16(); // unknown
1376 LFO1InternalDepth = _3ewa->ReadUint16();
1377 _3ewa->ReadInt16(); // unknown
1378 LFO3InternalDepth = _3ewa->ReadInt16();
1379 _3ewa->ReadInt16(); // unknown
1380 LFO1ControlDepth = _3ewa->ReadUint16();
1381 _3ewa->ReadInt16(); // unknown
1382 LFO3ControlDepth = _3ewa->ReadInt16();
1383 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1384 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1385 _3ewa->ReadInt16(); // unknown
1386 EG1Sustain = _3ewa->ReadUint16();
1387 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1388 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1389 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1390 EG1ControllerInvert = eg1ctrloptions & 0x01;
1391 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1392 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1393 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1394 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1395 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1396 EG2ControllerInvert = eg2ctrloptions & 0x01;
1397 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1398 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1399 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1400 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1401 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1402 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1403 _3ewa->ReadInt16(); // unknown
1404 EG2Sustain = _3ewa->ReadUint16();
1405 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406 _3ewa->ReadInt16(); // unknown
1407 LFO2ControlDepth = _3ewa->ReadUint16();
1408 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1409 _3ewa->ReadInt16(); // unknown
1410 LFO2InternalDepth = _3ewa->ReadUint16();
1411 int32_t eg1decay2 = _3ewa->ReadInt32();
1412 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1413 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1414 _3ewa->ReadInt16(); // unknown
1415 EG1PreAttack = _3ewa->ReadUint16();
1416 int32_t eg2decay2 = _3ewa->ReadInt32();
1417 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1418 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1419 _3ewa->ReadInt16(); // unknown
1420 EG2PreAttack = _3ewa->ReadUint16();
1421 uint8_t velocityresponse = _3ewa->ReadUint8();
1422 if (velocityresponse < 5) {
1423 VelocityResponseCurve = curve_type_nonlinear;
1424 VelocityResponseDepth = velocityresponse;
1425 } else if (velocityresponse < 10) {
1426 VelocityResponseCurve = curve_type_linear;
1427 VelocityResponseDepth = velocityresponse - 5;
1428 } else if (velocityresponse < 15) {
1429 VelocityResponseCurve = curve_type_special;
1430 VelocityResponseDepth = velocityresponse - 10;
1431 } else {
1432 VelocityResponseCurve = curve_type_unknown;
1433 VelocityResponseDepth = 0;
1434 }
1435 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1436 if (releasevelocityresponse < 5) {
1437 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1438 ReleaseVelocityResponseDepth = releasevelocityresponse;
1439 } else if (releasevelocityresponse < 10) {
1440 ReleaseVelocityResponseCurve = curve_type_linear;
1441 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1442 } else if (releasevelocityresponse < 15) {
1443 ReleaseVelocityResponseCurve = curve_type_special;
1444 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1445 } else {
1446 ReleaseVelocityResponseCurve = curve_type_unknown;
1447 ReleaseVelocityResponseDepth = 0;
1448 }
1449 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1450 AttenuationControllerThreshold = _3ewa->ReadInt8();
1451 _3ewa->ReadInt32(); // unknown
1452 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1453 _3ewa->ReadInt16(); // unknown
1454 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1455 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1456 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1457 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1458 else DimensionBypass = dim_bypass_ctrl_none;
1459 uint8_t pan = _3ewa->ReadUint8();
1460 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1461 SelfMask = _3ewa->ReadInt8() & 0x01;
1462 _3ewa->ReadInt8(); // unknown
1463 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1464 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1465 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1466 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1467 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1468 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1469 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1470 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1471 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1472 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1473 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1474 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1475 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1476 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1477 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1478 : vcf_res_ctrl_none;
1479 uint16_t eg3depth = _3ewa->ReadUint16();
1480 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1481 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1482 _3ewa->ReadInt16(); // unknown
1483 ChannelOffset = _3ewa->ReadUint8() / 4;
1484 uint8_t regoptions = _3ewa->ReadUint8();
1485 MSDecode = regoptions & 0x01; // bit 0
1486 SustainDefeat = regoptions & 0x02; // bit 1
1487 _3ewa->ReadInt16(); // unknown
1488 VelocityUpperLimit = _3ewa->ReadInt8();
1489 _3ewa->ReadInt8(); // unknown
1490 _3ewa->ReadInt16(); // unknown
1491 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1492 _3ewa->ReadInt8(); // unknown
1493 _3ewa->ReadInt8(); // unknown
1494 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1495 uint8_t vcfcutoff = _3ewa->ReadUint8();
1496 VCFEnabled = vcfcutoff & 0x80; // bit 7
1497 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1498 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1499 uint8_t vcfvelscale = _3ewa->ReadUint8();
1500 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1501 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1502 _3ewa->ReadInt8(); // unknown
1503 uint8_t vcfresonance = _3ewa->ReadUint8();
1504 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1505 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1506 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1507 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1508 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1509 uint8_t vcfvelocity = _3ewa->ReadUint8();
1510 VCFVelocityDynamicRange = vcfvelocity % 5;
1511 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1512 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1513 if (VCFType == vcf_type_lowpass) {
1514 if (lfo3ctrl & 0x40) // bit 6
1515 VCFType = vcf_type_lowpassturbo;
1516 }
1517 if (_3ewa->RemainingBytes() >= 8) {
1518 _3ewa->Read(DimensionUpperLimits, 1, 8);
1519 } else {
1520 memset(DimensionUpperLimits, 0, 8);
1521 }
1522 } else { // '3ewa' chunk does not exist yet
1523 // use default values
1524 LFO3Frequency = 1.0;
1525 EG3Attack = 0.0;
1526 LFO1InternalDepth = 0;
1527 LFO3InternalDepth = 0;
1528 LFO1ControlDepth = 0;
1529 LFO3ControlDepth = 0;
1530 EG1Attack = 0.0;
1531 EG1Decay1 = 0.005;
1532 EG1Sustain = 1000;
1533 EG1Release = 0.3;
1534 EG1Controller.type = eg1_ctrl_t::type_none;
1535 EG1Controller.controller_number = 0;
1536 EG1ControllerInvert = false;
1537 EG1ControllerAttackInfluence = 0;
1538 EG1ControllerDecayInfluence = 0;
1539 EG1ControllerReleaseInfluence = 0;
1540 EG2Controller.type = eg2_ctrl_t::type_none;
1541 EG2Controller.controller_number = 0;
1542 EG2ControllerInvert = false;
1543 EG2ControllerAttackInfluence = 0;
1544 EG2ControllerDecayInfluence = 0;
1545 EG2ControllerReleaseInfluence = 0;
1546 LFO1Frequency = 1.0;
1547 EG2Attack = 0.0;
1548 EG2Decay1 = 0.005;
1549 EG2Sustain = 1000;
1550 EG2Release = 0.3;
1551 LFO2ControlDepth = 0;
1552 LFO2Frequency = 1.0;
1553 LFO2InternalDepth = 0;
1554 EG1Decay2 = 0.0;
1555 EG1InfiniteSustain = true;
1556 EG1PreAttack = 0;
1557 EG2Decay2 = 0.0;
1558 EG2InfiniteSustain = true;
1559 EG2PreAttack = 0;
1560 VelocityResponseCurve = curve_type_nonlinear;
1561 VelocityResponseDepth = 3;
1562 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1563 ReleaseVelocityResponseDepth = 3;
1564 VelocityResponseCurveScaling = 32;
1565 AttenuationControllerThreshold = 0;
1566 SampleStartOffset = 0;
1567 PitchTrack = true;
1568 DimensionBypass = dim_bypass_ctrl_none;
1569 Pan = 0;
1570 SelfMask = true;
1571 LFO3Controller = lfo3_ctrl_modwheel;
1572 LFO3Sync = false;
1573 InvertAttenuationController = false;
1574 AttenuationController.type = attenuation_ctrl_t::type_none;
1575 AttenuationController.controller_number = 0;
1576 LFO2Controller = lfo2_ctrl_internal;
1577 LFO2FlipPhase = false;
1578 LFO2Sync = false;
1579 LFO1Controller = lfo1_ctrl_internal;
1580 LFO1FlipPhase = false;
1581 LFO1Sync = false;
1582 VCFResonanceController = vcf_res_ctrl_none;
1583 EG3Depth = 0;
1584 ChannelOffset = 0;
1585 MSDecode = false;
1586 SustainDefeat = false;
1587 VelocityUpperLimit = 0;
1588 ReleaseTriggerDecay = 0;
1589 EG1Hold = false;
1590 VCFEnabled = false;
1591 VCFCutoff = 0;
1592 VCFCutoffController = vcf_cutoff_ctrl_none;
1593 VCFCutoffControllerInvert = false;
1594 VCFVelocityScale = 0;
1595 VCFResonance = 0;
1596 VCFResonanceDynamic = false;
1597 VCFKeyboardTracking = false;
1598 VCFKeyboardTrackingBreakpoint = 0;
1599 VCFVelocityDynamicRange = 0x04;
1600 VCFVelocityCurve = curve_type_linear;
1601 VCFType = vcf_type_lowpass;
1602 memset(DimensionUpperLimits, 127, 8);
1603 }
1604
1605 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1606 VelocityResponseDepth,
1607 VelocityResponseCurveScaling);
1608
1609 pVelocityReleaseTable = GetReleaseVelocityTable(
1610 ReleaseVelocityResponseCurve,
1611 ReleaseVelocityResponseDepth
1612 );
1613
1614 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1615 VCFVelocityDynamicRange,
1616 VCFVelocityScale,
1617 VCFCutoffController);
1618
1619 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1620 VelocityTable = 0;
1621 }
1622
1623 /*
1624 * Constructs a DimensionRegion by copying all parameters from
1625 * another DimensionRegion
1626 */
1627 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1628 Instances++;
1629 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1630 *this = src; // default memberwise shallow copy of all parameters
1631 pParentList = _3ewl; // restore the chunk pointer
1632
1633 // deep copy of owned structures
1634 if (src.VelocityTable) {
1635 VelocityTable = new uint8_t[128];
1636 for (int k = 0 ; k < 128 ; k++)
1637 VelocityTable[k] = src.VelocityTable[k];
1638 }
1639 if (src.pSampleLoops) {
1640 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1641 for (int k = 0 ; k < src.SampleLoops ; k++)
1642 pSampleLoops[k] = src.pSampleLoops[k];
1643 }
1644 }
1645
1646 /**
1647 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1648 * and assign it to this object.
1649 *
1650 * Note that all sample pointers referenced by @a orig are simply copied as
1651 * memory address. Thus the respective samples are shared, not duplicated!
1652 *
1653 * @param orig - original DimensionRegion object to be copied from
1654 */
1655 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1656 CopyAssign(orig, NULL);
1657 }
1658
1659 /**
1660 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1661 * and assign it to this object.
1662 *
1663 * @param orig - original DimensionRegion object to be copied from
1664 * @param mSamples - crosslink map between the foreign file's samples and
1665 * this file's samples
1666 */
1667 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1668 // delete all allocated data first
1669 if (VelocityTable) delete [] VelocityTable;
1670 if (pSampleLoops) delete [] pSampleLoops;
1671
1672 // backup parent list pointer
1673 RIFF::List* p = pParentList;
1674
1675 gig::Sample* pOriginalSample = pSample;
1676 gig::Region* pOriginalRegion = pRegion;
1677
1678 //NOTE: copy code copied from assignment constructor above, see comment there as well
1679
1680 *this = *orig; // default memberwise shallow copy of all parameters
1681
1682 // restore members that shall not be altered
1683 pParentList = p; // restore the chunk pointer
1684 pRegion = pOriginalRegion;
1685
1686 // only take the raw sample reference reference if the
1687 // two DimensionRegion objects are part of the same file
1688 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1689 pSample = pOriginalSample;
1690 }
1691
1692 if (mSamples && mSamples->count(orig->pSample)) {
1693 pSample = mSamples->find(orig->pSample)->second;
1694 }
1695
1696 // deep copy of owned structures
1697 if (orig->VelocityTable) {
1698 VelocityTable = new uint8_t[128];
1699 for (int k = 0 ; k < 128 ; k++)
1700 VelocityTable[k] = orig->VelocityTable[k];
1701 }
1702 if (orig->pSampleLoops) {
1703 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1704 for (int k = 0 ; k < orig->SampleLoops ; k++)
1705 pSampleLoops[k] = orig->pSampleLoops[k];
1706 }
1707 }
1708
1709 /**
1710 * Updates the respective member variable and updates @c SampleAttenuation
1711 * which depends on this value.
1712 */
1713 void DimensionRegion::SetGain(int32_t gain) {
1714 DLS::Sampler::SetGain(gain);
1715 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1716 }
1717
1718 /**
1719 * Apply dimension region settings to the respective RIFF chunks. You
1720 * have to call File::Save() to make changes persistent.
1721 *
1722 * Usually there is absolutely no need to call this method explicitly.
1723 * It will be called automatically when File::Save() was called.
1724 *
1725 * @param pProgress - callback function for progress notification
1726 */
1727 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1728 // first update base class's chunk
1729 DLS::Sampler::UpdateChunks(pProgress);
1730
1731 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1732 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1733 pData[12] = Crossfade.in_start;
1734 pData[13] = Crossfade.in_end;
1735 pData[14] = Crossfade.out_start;
1736 pData[15] = Crossfade.out_end;
1737
1738 // make sure '3ewa' chunk exists
1739 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1740 if (!_3ewa) {
1741 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1742 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1743 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1744 }
1745 pData = (uint8_t*) _3ewa->LoadChunkData();
1746
1747 // update '3ewa' chunk with DimensionRegion's current settings
1748
1749 const uint32_t chunksize = _3ewa->GetNewSize();
1750 store32(&pData[0], chunksize); // unknown, always chunk size?
1751
1752 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1753 store32(&pData[4], lfo3freq);
1754
1755 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1756 store32(&pData[8], eg3attack);
1757
1758 // next 2 bytes unknown
1759
1760 store16(&pData[14], LFO1InternalDepth);
1761
1762 // next 2 bytes unknown
1763
1764 store16(&pData[18], LFO3InternalDepth);
1765
1766 // next 2 bytes unknown
1767
1768 store16(&pData[22], LFO1ControlDepth);
1769
1770 // next 2 bytes unknown
1771
1772 store16(&pData[26], LFO3ControlDepth);
1773
1774 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1775 store32(&pData[28], eg1attack);
1776
1777 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1778 store32(&pData[32], eg1decay1);
1779
1780 // next 2 bytes unknown
1781
1782 store16(&pData[38], EG1Sustain);
1783
1784 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1785 store32(&pData[40], eg1release);
1786
1787 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1788 pData[44] = eg1ctl;
1789
1790 const uint8_t eg1ctrloptions =
1791 (EG1ControllerInvert ? 0x01 : 0x00) |
1792 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1793 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1794 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1795 pData[45] = eg1ctrloptions;
1796
1797 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1798 pData[46] = eg2ctl;
1799
1800 const uint8_t eg2ctrloptions =
1801 (EG2ControllerInvert ? 0x01 : 0x00) |
1802 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1803 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1804 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1805 pData[47] = eg2ctrloptions;
1806
1807 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1808 store32(&pData[48], lfo1freq);
1809
1810 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1811 store32(&pData[52], eg2attack);
1812
1813 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1814 store32(&pData[56], eg2decay1);
1815
1816 // next 2 bytes unknown
1817
1818 store16(&pData[62], EG2Sustain);
1819
1820 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1821 store32(&pData[64], eg2release);
1822
1823 // next 2 bytes unknown
1824
1825 store16(&pData[70], LFO2ControlDepth);
1826
1827 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1828 store32(&pData[72], lfo2freq);
1829
1830 // next 2 bytes unknown
1831
1832 store16(&pData[78], LFO2InternalDepth);
1833
1834 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1835 store32(&pData[80], eg1decay2);
1836
1837 // next 2 bytes unknown
1838
1839 store16(&pData[86], EG1PreAttack);
1840
1841 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1842 store32(&pData[88], eg2decay2);
1843
1844 // next 2 bytes unknown
1845
1846 store16(&pData[94], EG2PreAttack);
1847
1848 {
1849 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1850 uint8_t velocityresponse = VelocityResponseDepth;
1851 switch (VelocityResponseCurve) {
1852 case curve_type_nonlinear:
1853 break;
1854 case curve_type_linear:
1855 velocityresponse += 5;
1856 break;
1857 case curve_type_special:
1858 velocityresponse += 10;
1859 break;
1860 case curve_type_unknown:
1861 default:
1862 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1863 }
1864 pData[96] = velocityresponse;
1865 }
1866
1867 {
1868 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1869 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1870 switch (ReleaseVelocityResponseCurve) {
1871 case curve_type_nonlinear:
1872 break;
1873 case curve_type_linear:
1874 releasevelocityresponse += 5;
1875 break;
1876 case curve_type_special:
1877 releasevelocityresponse += 10;
1878 break;
1879 case curve_type_unknown:
1880 default:
1881 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1882 }
1883 pData[97] = releasevelocityresponse;
1884 }
1885
1886 pData[98] = VelocityResponseCurveScaling;
1887
1888 pData[99] = AttenuationControllerThreshold;
1889
1890 // next 4 bytes unknown
1891
1892 store16(&pData[104], SampleStartOffset);
1893
1894 // next 2 bytes unknown
1895
1896 {
1897 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1898 switch (DimensionBypass) {
1899 case dim_bypass_ctrl_94:
1900 pitchTrackDimensionBypass |= 0x10;
1901 break;
1902 case dim_bypass_ctrl_95:
1903 pitchTrackDimensionBypass |= 0x20;
1904 break;
1905 case dim_bypass_ctrl_none:
1906 //FIXME: should we set anything here?
1907 break;
1908 default:
1909 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1910 }
1911 pData[108] = pitchTrackDimensionBypass;
1912 }
1913
1914 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1915 pData[109] = pan;
1916
1917 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1918 pData[110] = selfmask;
1919
1920 // next byte unknown
1921
1922 {
1923 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1924 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1925 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1926 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1927 pData[112] = lfo3ctrl;
1928 }
1929
1930 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1931 pData[113] = attenctl;
1932
1933 {
1934 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1935 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1936 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1937 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1938 pData[114] = lfo2ctrl;
1939 }
1940
1941 {
1942 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1943 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1944 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1945 if (VCFResonanceController != vcf_res_ctrl_none)
1946 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1947 pData[115] = lfo1ctrl;
1948 }
1949
1950 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1951 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1952 store16(&pData[116], eg3depth);
1953
1954 // next 2 bytes unknown
1955
1956 const uint8_t channeloffset = ChannelOffset * 4;
1957 pData[120] = channeloffset;
1958
1959 {
1960 uint8_t regoptions = 0;
1961 if (MSDecode) regoptions |= 0x01; // bit 0
1962 if (SustainDefeat) regoptions |= 0x02; // bit 1
1963 pData[121] = regoptions;
1964 }
1965
1966 // next 2 bytes unknown
1967
1968 pData[124] = VelocityUpperLimit;
1969
1970 // next 3 bytes unknown
1971
1972 pData[128] = ReleaseTriggerDecay;
1973
1974 // next 2 bytes unknown
1975
1976 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1977 pData[131] = eg1hold;
1978
1979 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1980 (VCFCutoff & 0x7f); /* lower 7 bits */
1981 pData[132] = vcfcutoff;
1982
1983 pData[133] = VCFCutoffController;
1984
1985 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1986 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1987 pData[134] = vcfvelscale;
1988
1989 // next byte unknown
1990
1991 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1992 (VCFResonance & 0x7f); /* lower 7 bits */
1993 pData[136] = vcfresonance;
1994
1995 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1996 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1997 pData[137] = vcfbreakpoint;
1998
1999 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2000 VCFVelocityCurve * 5;
2001 pData[138] = vcfvelocity;
2002
2003 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2004 pData[139] = vcftype;
2005
2006 if (chunksize >= 148) {
2007 memcpy(&pData[140], DimensionUpperLimits, 8);
2008 }
2009 }
2010
2011 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2012 curve_type_t curveType = releaseVelocityResponseCurve;
2013 uint8_t depth = releaseVelocityResponseDepth;
2014 // this models a strange behaviour or bug in GSt: two of the
2015 // velocity response curves for release time are not used even
2016 // if specified, instead another curve is chosen.
2017 if ((curveType == curve_type_nonlinear && depth == 0) ||
2018 (curveType == curve_type_special && depth == 4)) {
2019 curveType = curve_type_nonlinear;
2020 depth = 3;
2021 }
2022 return GetVelocityTable(curveType, depth, 0);
2023 }
2024
2025 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2026 uint8_t vcfVelocityDynamicRange,
2027 uint8_t vcfVelocityScale,
2028 vcf_cutoff_ctrl_t vcfCutoffController)
2029 {
2030 curve_type_t curveType = vcfVelocityCurve;
2031 uint8_t depth = vcfVelocityDynamicRange;
2032 // even stranger GSt: two of the velocity response curves for
2033 // filter cutoff are not used, instead another special curve
2034 // is chosen. This curve is not used anywhere else.
2035 if ((curveType == curve_type_nonlinear && depth == 0) ||
2036 (curveType == curve_type_special && depth == 4)) {
2037 curveType = curve_type_special;
2038 depth = 5;
2039 }
2040 return GetVelocityTable(curveType, depth,
2041 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2042 ? vcfVelocityScale : 0);
2043 }
2044
2045 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2046 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2047 {
2048 double* table;
2049 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2050 if (pVelocityTables->count(tableKey)) { // if key exists
2051 table = (*pVelocityTables)[tableKey];
2052 }
2053 else {
2054 table = CreateVelocityTable(curveType, depth, scaling);
2055 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2056 }
2057 return table;
2058 }
2059
2060 Region* DimensionRegion::GetParent() const {
2061 return pRegion;
2062 }
2063
2064 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2065 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2066 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2067 //#pragma GCC diagnostic push
2068 //#pragma GCC diagnostic error "-Wswitch"
2069
2070 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2071 leverage_ctrl_t decodedcontroller;
2072 switch (EncodedController) {
2073 // special controller
2074 case _lev_ctrl_none:
2075 decodedcontroller.type = leverage_ctrl_t::type_none;
2076 decodedcontroller.controller_number = 0;
2077 break;
2078 case _lev_ctrl_velocity:
2079 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2080 decodedcontroller.controller_number = 0;
2081 break;
2082 case _lev_ctrl_channelaftertouch:
2083 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2084 decodedcontroller.controller_number = 0;
2085 break;
2086
2087 // ordinary MIDI control change controller
2088 case _lev_ctrl_modwheel:
2089 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2090 decodedcontroller.controller_number = 1;
2091 break;
2092 case _lev_ctrl_breath:
2093 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2094 decodedcontroller.controller_number = 2;
2095 break;
2096 case _lev_ctrl_foot:
2097 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2098 decodedcontroller.controller_number = 4;
2099 break;
2100 case _lev_ctrl_effect1:
2101 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2102 decodedcontroller.controller_number = 12;
2103 break;
2104 case _lev_ctrl_effect2:
2105 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2106 decodedcontroller.controller_number = 13;
2107 break;
2108 case _lev_ctrl_genpurpose1:
2109 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2110 decodedcontroller.controller_number = 16;
2111 break;
2112 case _lev_ctrl_genpurpose2:
2113 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2114 decodedcontroller.controller_number = 17;
2115 break;
2116 case _lev_ctrl_genpurpose3:
2117 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118 decodedcontroller.controller_number = 18;
2119 break;
2120 case _lev_ctrl_genpurpose4:
2121 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122 decodedcontroller.controller_number = 19;
2123 break;
2124 case _lev_ctrl_portamentotime:
2125 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126 decodedcontroller.controller_number = 5;
2127 break;
2128 case _lev_ctrl_sustainpedal:
2129 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130 decodedcontroller.controller_number = 64;
2131 break;
2132 case _lev_ctrl_portamento:
2133 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134 decodedcontroller.controller_number = 65;
2135 break;
2136 case _lev_ctrl_sostenutopedal:
2137 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138 decodedcontroller.controller_number = 66;
2139 break;
2140 case _lev_ctrl_softpedal:
2141 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142 decodedcontroller.controller_number = 67;
2143 break;
2144 case _lev_ctrl_genpurpose5:
2145 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146 decodedcontroller.controller_number = 80;
2147 break;
2148 case _lev_ctrl_genpurpose6:
2149 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150 decodedcontroller.controller_number = 81;
2151 break;
2152 case _lev_ctrl_genpurpose7:
2153 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154 decodedcontroller.controller_number = 82;
2155 break;
2156 case _lev_ctrl_genpurpose8:
2157 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158 decodedcontroller.controller_number = 83;
2159 break;
2160 case _lev_ctrl_effect1depth:
2161 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162 decodedcontroller.controller_number = 91;
2163 break;
2164 case _lev_ctrl_effect2depth:
2165 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166 decodedcontroller.controller_number = 92;
2167 break;
2168 case _lev_ctrl_effect3depth:
2169 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170 decodedcontroller.controller_number = 93;
2171 break;
2172 case _lev_ctrl_effect4depth:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 94;
2175 break;
2176 case _lev_ctrl_effect5depth:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 95;
2179 break;
2180
2181 // format extension (these controllers are so far only supported by
2182 // LinuxSampler & gigedit) they will *NOT* work with
2183 // Gigasampler/GigaStudio !
2184 case _lev_ctrl_CC3_EXT:
2185 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186 decodedcontroller.controller_number = 3;
2187 break;
2188 case _lev_ctrl_CC6_EXT:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 6;
2191 break;
2192 case _lev_ctrl_CC7_EXT:
2193 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194 decodedcontroller.controller_number = 7;
2195 break;
2196 case _lev_ctrl_CC8_EXT:
2197 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198 decodedcontroller.controller_number = 8;
2199 break;
2200 case _lev_ctrl_CC9_EXT:
2201 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202 decodedcontroller.controller_number = 9;
2203 break;
2204 case _lev_ctrl_CC10_EXT:
2205 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206 decodedcontroller.controller_number = 10;
2207 break;
2208 case _lev_ctrl_CC11_EXT:
2209 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210 decodedcontroller.controller_number = 11;
2211 break;
2212 case _lev_ctrl_CC14_EXT:
2213 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214 decodedcontroller.controller_number = 14;
2215 break;
2216 case _lev_ctrl_CC15_EXT:
2217 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218 decodedcontroller.controller_number = 15;
2219 break;
2220 case _lev_ctrl_CC20_EXT:
2221 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222 decodedcontroller.controller_number = 20;
2223 break;
2224 case _lev_ctrl_CC21_EXT:
2225 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226 decodedcontroller.controller_number = 21;
2227 break;
2228 case _lev_ctrl_CC22_EXT:
2229 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230 decodedcontroller.controller_number = 22;
2231 break;
2232 case _lev_ctrl_CC23_EXT:
2233 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234 decodedcontroller.controller_number = 23;
2235 break;
2236 case _lev_ctrl_CC24_EXT:
2237 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238 decodedcontroller.controller_number = 24;
2239 break;
2240 case _lev_ctrl_CC25_EXT:
2241 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242 decodedcontroller.controller_number = 25;
2243 break;
2244 case _lev_ctrl_CC26_EXT:
2245 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246 decodedcontroller.controller_number = 26;
2247 break;
2248 case _lev_ctrl_CC27_EXT:
2249 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250 decodedcontroller.controller_number = 27;
2251 break;
2252 case _lev_ctrl_CC28_EXT:
2253 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254 decodedcontroller.controller_number = 28;
2255 break;
2256 case _lev_ctrl_CC29_EXT:
2257 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258 decodedcontroller.controller_number = 29;
2259 break;
2260 case _lev_ctrl_CC30_EXT:
2261 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262 decodedcontroller.controller_number = 30;
2263 break;
2264 case _lev_ctrl_CC31_EXT:
2265 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266 decodedcontroller.controller_number = 31;
2267 break;
2268 case _lev_ctrl_CC68_EXT:
2269 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270 decodedcontroller.controller_number = 68;
2271 break;
2272 case _lev_ctrl_CC69_EXT:
2273 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274 decodedcontroller.controller_number = 69;
2275 break;
2276 case _lev_ctrl_CC70_EXT:
2277 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278 decodedcontroller.controller_number = 70;
2279 break;
2280 case _lev_ctrl_CC71_EXT:
2281 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282 decodedcontroller.controller_number = 71;
2283 break;
2284 case _lev_ctrl_CC72_EXT:
2285 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286 decodedcontroller.controller_number = 72;
2287 break;
2288 case _lev_ctrl_CC73_EXT:
2289 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290 decodedcontroller.controller_number = 73;
2291 break;
2292 case _lev_ctrl_CC74_EXT:
2293 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294 decodedcontroller.controller_number = 74;
2295 break;
2296 case _lev_ctrl_CC75_EXT:
2297 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298 decodedcontroller.controller_number = 75;
2299 break;
2300 case _lev_ctrl_CC76_EXT:
2301 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302 decodedcontroller.controller_number = 76;
2303 break;
2304 case _lev_ctrl_CC77_EXT:
2305 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306 decodedcontroller.controller_number = 77;
2307 break;
2308 case _lev_ctrl_CC78_EXT:
2309 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310 decodedcontroller.controller_number = 78;
2311 break;
2312 case _lev_ctrl_CC79_EXT:
2313 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314 decodedcontroller.controller_number = 79;
2315 break;
2316 case _lev_ctrl_CC84_EXT:
2317 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318 decodedcontroller.controller_number = 84;
2319 break;
2320 case _lev_ctrl_CC85_EXT:
2321 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322 decodedcontroller.controller_number = 85;
2323 break;
2324 case _lev_ctrl_CC86_EXT:
2325 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326 decodedcontroller.controller_number = 86;
2327 break;
2328 case _lev_ctrl_CC87_EXT:
2329 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330 decodedcontroller.controller_number = 87;
2331 break;
2332 case _lev_ctrl_CC89_EXT:
2333 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334 decodedcontroller.controller_number = 89;
2335 break;
2336 case _lev_ctrl_CC90_EXT:
2337 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338 decodedcontroller.controller_number = 90;
2339 break;
2340 case _lev_ctrl_CC96_EXT:
2341 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342 decodedcontroller.controller_number = 96;
2343 break;
2344 case _lev_ctrl_CC97_EXT:
2345 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346 decodedcontroller.controller_number = 97;
2347 break;
2348 case _lev_ctrl_CC102_EXT:
2349 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350 decodedcontroller.controller_number = 102;
2351 break;
2352 case _lev_ctrl_CC103_EXT:
2353 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354 decodedcontroller.controller_number = 103;
2355 break;
2356 case _lev_ctrl_CC104_EXT:
2357 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358 decodedcontroller.controller_number = 104;
2359 break;
2360 case _lev_ctrl_CC105_EXT:
2361 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362 decodedcontroller.controller_number = 105;
2363 break;
2364 case _lev_ctrl_CC106_EXT:
2365 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366 decodedcontroller.controller_number = 106;
2367 break;
2368 case _lev_ctrl_CC107_EXT:
2369 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370 decodedcontroller.controller_number = 107;
2371 break;
2372 case _lev_ctrl_CC108_EXT:
2373 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374 decodedcontroller.controller_number = 108;
2375 break;
2376 case _lev_ctrl_CC109_EXT:
2377 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378 decodedcontroller.controller_number = 109;
2379 break;
2380 case _lev_ctrl_CC110_EXT:
2381 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382 decodedcontroller.controller_number = 110;
2383 break;
2384 case _lev_ctrl_CC111_EXT:
2385 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386 decodedcontroller.controller_number = 111;
2387 break;
2388 case _lev_ctrl_CC112_EXT:
2389 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390 decodedcontroller.controller_number = 112;
2391 break;
2392 case _lev_ctrl_CC113_EXT:
2393 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394 decodedcontroller.controller_number = 113;
2395 break;
2396 case _lev_ctrl_CC114_EXT:
2397 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398 decodedcontroller.controller_number = 114;
2399 break;
2400 case _lev_ctrl_CC115_EXT:
2401 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402 decodedcontroller.controller_number = 115;
2403 break;
2404 case _lev_ctrl_CC116_EXT:
2405 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406 decodedcontroller.controller_number = 116;
2407 break;
2408 case _lev_ctrl_CC117_EXT:
2409 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410 decodedcontroller.controller_number = 117;
2411 break;
2412 case _lev_ctrl_CC118_EXT:
2413 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414 decodedcontroller.controller_number = 118;
2415 break;
2416 case _lev_ctrl_CC119_EXT:
2417 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418 decodedcontroller.controller_number = 119;
2419 break;
2420
2421 // unknown controller type
2422 default:
2423 throw gig::Exception("Unknown leverage controller type.");
2424 }
2425 return decodedcontroller;
2426 }
2427
2428 // see above (diagnostic push not supported prior GCC 4.6)
2429 //#pragma GCC diagnostic pop
2430
2431 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2432 _lev_ctrl_t encodedcontroller;
2433 switch (DecodedController.type) {
2434 // special controller
2435 case leverage_ctrl_t::type_none:
2436 encodedcontroller = _lev_ctrl_none;
2437 break;
2438 case leverage_ctrl_t::type_velocity:
2439 encodedcontroller = _lev_ctrl_velocity;
2440 break;
2441 case leverage_ctrl_t::type_channelaftertouch:
2442 encodedcontroller = _lev_ctrl_channelaftertouch;
2443 break;
2444
2445 // ordinary MIDI control change controller
2446 case leverage_ctrl_t::type_controlchange:
2447 switch (DecodedController.controller_number) {
2448 case 1:
2449 encodedcontroller = _lev_ctrl_modwheel;
2450 break;
2451 case 2:
2452 encodedcontroller = _lev_ctrl_breath;
2453 break;
2454 case 4:
2455 encodedcontroller = _lev_ctrl_foot;
2456 break;
2457 case 12:
2458 encodedcontroller = _lev_ctrl_effect1;
2459 break;
2460 case 13:
2461 encodedcontroller = _lev_ctrl_effect2;
2462 break;
2463 case 16:
2464 encodedcontroller = _lev_ctrl_genpurpose1;
2465 break;
2466 case 17:
2467 encodedcontroller = _lev_ctrl_genpurpose2;
2468 break;
2469 case 18:
2470 encodedcontroller = _lev_ctrl_genpurpose3;
2471 break;
2472 case 19:
2473 encodedcontroller = _lev_ctrl_genpurpose4;
2474 break;
2475 case 5:
2476 encodedcontroller = _lev_ctrl_portamentotime;
2477 break;
2478 case 64:
2479 encodedcontroller = _lev_ctrl_sustainpedal;
2480 break;
2481 case 65:
2482 encodedcontroller = _lev_ctrl_portamento;
2483 break;
2484 case 66:
2485 encodedcontroller = _lev_ctrl_sostenutopedal;
2486 break;
2487 case 67:
2488 encodedcontroller = _lev_ctrl_softpedal;
2489 break;
2490 case 80:
2491 encodedcontroller = _lev_ctrl_genpurpose5;
2492 break;
2493 case 81:
2494 encodedcontroller = _lev_ctrl_genpurpose6;
2495 break;
2496 case 82:
2497 encodedcontroller = _lev_ctrl_genpurpose7;
2498 break;
2499 case 83:
2500 encodedcontroller = _lev_ctrl_genpurpose8;
2501 break;
2502 case 91:
2503 encodedcontroller = _lev_ctrl_effect1depth;
2504 break;
2505 case 92:
2506 encodedcontroller = _lev_ctrl_effect2depth;
2507 break;
2508 case 93:
2509 encodedcontroller = _lev_ctrl_effect3depth;
2510 break;
2511 case 94:
2512 encodedcontroller = _lev_ctrl_effect4depth;
2513 break;
2514 case 95:
2515 encodedcontroller = _lev_ctrl_effect5depth;
2516 break;
2517
2518 // format extension (these controllers are so far only
2519 // supported by LinuxSampler & gigedit) they will *NOT*
2520 // work with Gigasampler/GigaStudio !
2521 case 3:
2522 encodedcontroller = _lev_ctrl_CC3_EXT;
2523 break;
2524 case 6:
2525 encodedcontroller = _lev_ctrl_CC6_EXT;
2526 break;
2527 case 7:
2528 encodedcontroller = _lev_ctrl_CC7_EXT;
2529 break;
2530 case 8:
2531 encodedcontroller = _lev_ctrl_CC8_EXT;
2532 break;
2533 case 9:
2534 encodedcontroller = _lev_ctrl_CC9_EXT;
2535 break;
2536 case 10:
2537 encodedcontroller = _lev_ctrl_CC10_EXT;
2538 break;
2539 case 11:
2540 encodedcontroller = _lev_ctrl_CC11_EXT;
2541 break;
2542 case 14:
2543 encodedcontroller = _lev_ctrl_CC14_EXT;
2544 break;
2545 case 15:
2546 encodedcontroller = _lev_ctrl_CC15_EXT;
2547 break;
2548 case 20:
2549 encodedcontroller = _lev_ctrl_CC20_EXT;
2550 break;
2551 case 21:
2552 encodedcontroller = _lev_ctrl_CC21_EXT;
2553 break;
2554 case 22:
2555 encodedcontroller = _lev_ctrl_CC22_EXT;
2556 break;
2557 case 23:
2558 encodedcontroller = _lev_ctrl_CC23_EXT;
2559 break;
2560 case 24:
2561 encodedcontroller = _lev_ctrl_CC24_EXT;
2562 break;
2563 case 25:
2564 encodedcontroller = _lev_ctrl_CC25_EXT;
2565 break;
2566 case 26:
2567 encodedcontroller = _lev_ctrl_CC26_EXT;
2568 break;
2569 case 27:
2570 encodedcontroller = _lev_ctrl_CC27_EXT;
2571 break;
2572 case 28:
2573 encodedcontroller = _lev_ctrl_CC28_EXT;
2574 break;
2575 case 29:
2576 encodedcontroller = _lev_ctrl_CC29_EXT;
2577 break;
2578 case 30:
2579 encodedcontroller = _lev_ctrl_CC30_EXT;
2580 break;
2581 case 31:
2582 encodedcontroller = _lev_ctrl_CC31_EXT;
2583 break;
2584 case 68:
2585 encodedcontroller = _lev_ctrl_CC68_EXT;
2586 break;
2587 case 69:
2588 encodedcontroller = _lev_ctrl_CC69_EXT;
2589 break;
2590 case 70:
2591 encodedcontroller = _lev_ctrl_CC70_EXT;
2592 break;
2593 case 71:
2594 encodedcontroller = _lev_ctrl_CC71_EXT;
2595 break;
2596 case 72:
2597 encodedcontroller = _lev_ctrl_CC72_EXT;
2598 break;
2599 case 73:
2600 encodedcontroller = _lev_ctrl_CC73_EXT;
2601 break;
2602 case 74:
2603 encodedcontroller = _lev_ctrl_CC74_EXT;
2604 break;
2605 case 75:
2606 encodedcontroller = _lev_ctrl_CC75_EXT;
2607 break;
2608 case 76:
2609 encodedcontroller = _lev_ctrl_CC76_EXT;
2610 break;
2611 case 77:
2612 encodedcontroller = _lev_ctrl_CC77_EXT;
2613 break;
2614 case 78:
2615 encodedcontroller = _lev_ctrl_CC78_EXT;
2616 break;
2617 case 79:
2618 encodedcontroller = _lev_ctrl_CC79_EXT;
2619 break;
2620 case 84:
2621 encodedcontroller = _lev_ctrl_CC84_EXT;
2622 break;
2623 case 85:
2624 encodedcontroller = _lev_ctrl_CC85_EXT;
2625 break;
2626 case 86:
2627 encodedcontroller = _lev_ctrl_CC86_EXT;
2628 break;
2629 case 87:
2630 encodedcontroller = _lev_ctrl_CC87_EXT;
2631 break;
2632 case 89:
2633 encodedcontroller = _lev_ctrl_CC89_EXT;
2634 break;
2635 case 90:
2636 encodedcontroller = _lev_ctrl_CC90_EXT;
2637 break;
2638 case 96:
2639 encodedcontroller = _lev_ctrl_CC96_EXT;
2640 break;
2641 case 97:
2642 encodedcontroller = _lev_ctrl_CC97_EXT;
2643 break;
2644 case 102:
2645 encodedcontroller = _lev_ctrl_CC102_EXT;
2646 break;
2647 case 103:
2648 encodedcontroller = _lev_ctrl_CC103_EXT;
2649 break;
2650 case 104:
2651 encodedcontroller = _lev_ctrl_CC104_EXT;
2652 break;
2653 case 105:
2654 encodedcontroller = _lev_ctrl_CC105_EXT;
2655 break;
2656 case 106:
2657 encodedcontroller = _lev_ctrl_CC106_EXT;
2658 break;
2659 case 107:
2660 encodedcontroller = _lev_ctrl_CC107_EXT;
2661 break;
2662 case 108:
2663 encodedcontroller = _lev_ctrl_CC108_EXT;
2664 break;
2665 case 109:
2666 encodedcontroller = _lev_ctrl_CC109_EXT;
2667 break;
2668 case 110:
2669 encodedcontroller = _lev_ctrl_CC110_EXT;
2670 break;
2671 case 111:
2672 encodedcontroller = _lev_ctrl_CC111_EXT;
2673 break;
2674 case 112:
2675 encodedcontroller = _lev_ctrl_CC112_EXT;
2676 break;
2677 case 113:
2678 encodedcontroller = _lev_ctrl_CC113_EXT;
2679 break;
2680 case 114:
2681 encodedcontroller = _lev_ctrl_CC114_EXT;
2682 break;
2683 case 115:
2684 encodedcontroller = _lev_ctrl_CC115_EXT;
2685 break;
2686 case 116:
2687 encodedcontroller = _lev_ctrl_CC116_EXT;
2688 break;
2689 case 117:
2690 encodedcontroller = _lev_ctrl_CC117_EXT;
2691 break;
2692 case 118:
2693 encodedcontroller = _lev_ctrl_CC118_EXT;
2694 break;
2695 case 119:
2696 encodedcontroller = _lev_ctrl_CC119_EXT;
2697 break;
2698
2699 default:
2700 throw gig::Exception("leverage controller number is not supported by the gig format");
2701 }
2702 break;
2703 default:
2704 throw gig::Exception("Unknown leverage controller type.");
2705 }
2706 return encodedcontroller;
2707 }
2708
2709 DimensionRegion::~DimensionRegion() {
2710 Instances--;
2711 if (!Instances) {
2712 // delete the velocity->volume tables
2713 VelocityTableMap::iterator iter;
2714 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2715 double* pTable = iter->second;
2716 if (pTable) delete[] pTable;
2717 }
2718 pVelocityTables->clear();
2719 delete pVelocityTables;
2720 pVelocityTables = NULL;
2721 }
2722 if (VelocityTable) delete[] VelocityTable;
2723 }
2724
2725 /**
2726 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2727 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2728 * and VelocityResponseCurveScaling) involved are taken into account to
2729 * calculate the amplitude factor. Use this method when a key was
2730 * triggered to get the volume with which the sample should be played
2731 * back.
2732 *
2733 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2734 * @returns amplitude factor (between 0.0 and 1.0)
2735 */
2736 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2737 return pVelocityAttenuationTable[MIDIKeyVelocity];
2738 }
2739
2740 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2741 return pVelocityReleaseTable[MIDIKeyVelocity];
2742 }
2743
2744 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2745 return pVelocityCutoffTable[MIDIKeyVelocity];
2746 }
2747
2748 /**
2749 * Updates the respective member variable and the lookup table / cache
2750 * that depends on this value.
2751 */
2752 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2753 pVelocityAttenuationTable =
2754 GetVelocityTable(
2755 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2756 );
2757 VelocityResponseCurve = curve;
2758 }
2759
2760 /**
2761 * Updates the respective member variable and the lookup table / cache
2762 * that depends on this value.
2763 */
2764 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2765 pVelocityAttenuationTable =
2766 GetVelocityTable(
2767 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2768 );
2769 VelocityResponseDepth = depth;
2770 }
2771
2772 /**
2773 * Updates the respective member variable and the lookup table / cache
2774 * that depends on this value.
2775 */
2776 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2777 pVelocityAttenuationTable =
2778 GetVelocityTable(
2779 VelocityResponseCurve, VelocityResponseDepth, scaling
2780 );
2781 VelocityResponseCurveScaling = scaling;
2782 }
2783
2784 /**
2785 * Updates the respective member variable and the lookup table / cache
2786 * that depends on this value.
2787 */
2788 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2789 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2790 ReleaseVelocityResponseCurve = curve;
2791 }
2792
2793 /**
2794 * Updates the respective member variable and the lookup table / cache
2795 * that depends on this value.
2796 */
2797 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2798 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2799 ReleaseVelocityResponseDepth = depth;
2800 }
2801
2802 /**
2803 * Updates the respective member variable and the lookup table / cache
2804 * that depends on this value.
2805 */
2806 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2807 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2808 VCFCutoffController = controller;
2809 }
2810
2811 /**
2812 * Updates the respective member variable and the lookup table / cache
2813 * that depends on this value.
2814 */
2815 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2816 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2817 VCFVelocityCurve = curve;
2818 }
2819
2820 /**
2821 * Updates the respective member variable and the lookup table / cache
2822 * that depends on this value.
2823 */
2824 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2825 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2826 VCFVelocityDynamicRange = range;
2827 }
2828
2829 /**
2830 * Updates the respective member variable and the lookup table / cache
2831 * that depends on this value.
2832 */
2833 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2834 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2835 VCFVelocityScale = scaling;
2836 }
2837
2838 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2839
2840 // line-segment approximations of the 15 velocity curves
2841
2842 // linear
2843 const int lin0[] = { 1, 1, 127, 127 };
2844 const int lin1[] = { 1, 21, 127, 127 };
2845 const int lin2[] = { 1, 45, 127, 127 };
2846 const int lin3[] = { 1, 74, 127, 127 };
2847 const int lin4[] = { 1, 127, 127, 127 };
2848
2849 // non-linear
2850 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2851 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2852 127, 127 };
2853 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2854 127, 127 };
2855 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2856 127, 127 };
2857 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2858
2859 // special
2860 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2861 113, 127, 127, 127 };
2862 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2863 118, 127, 127, 127 };
2864 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2865 85, 90, 91, 127, 127, 127 };
2866 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2867 117, 127, 127, 127 };
2868 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2869 127, 127 };
2870
2871 // this is only used by the VCF velocity curve
2872 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2873 91, 127, 127, 127 };
2874
2875 const int* const curves[] = { non0, non1, non2, non3, non4,
2876 lin0, lin1, lin2, lin3, lin4,
2877 spe0, spe1, spe2, spe3, spe4, spe5 };
2878
2879 double* const table = new double[128];
2880
2881 const int* curve = curves[curveType * 5 + depth];
2882 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2883
2884 table[0] = 0;
2885 for (int x = 1 ; x < 128 ; x++) {
2886
2887 if (x > curve[2]) curve += 2;
2888 double y = curve[1] + (x - curve[0]) *
2889 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2890 y = y / 127;
2891
2892 // Scale up for s > 20, down for s < 20. When
2893 // down-scaling, the curve still ends at 1.0.
2894 if (s < 20 && y >= 0.5)
2895 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2896 else
2897 y = y * (s / 20.0);
2898 if (y > 1) y = 1;
2899
2900 table[x] = y;
2901 }
2902 return table;
2903 }
2904
2905
2906 // *************** Region ***************
2907 // *
2908
2909 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2910 // Initialization
2911 Dimensions = 0;
2912 for (int i = 0; i < 256; i++) {
2913 pDimensionRegions[i] = NULL;
2914 }
2915 Layers = 1;
2916 File* file = (File*) GetParent()->GetParent();
2917 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2918
2919 // Actual Loading
2920
2921 if (!file->GetAutoLoad()) return;
2922
2923 LoadDimensionRegions(rgnList);
2924
2925 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2926 if (_3lnk) {
2927 DimensionRegions = _3lnk->ReadUint32();
2928 for (int i = 0; i < dimensionBits; i++) {
2929 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2930 uint8_t bits = _3lnk->ReadUint8();
2931 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2932 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2933 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2934 if (dimension == dimension_none) { // inactive dimension
2935 pDimensionDefinitions[i].dimension = dimension_none;
2936 pDimensionDefinitions[i].bits = 0;
2937 pDimensionDefinitions[i].zones = 0;
2938 pDimensionDefinitions[i].split_type = split_type_bit;
2939 pDimensionDefinitions[i].zone_size = 0;
2940 }
2941 else { // active dimension
2942 pDimensionDefinitions[i].dimension = dimension;
2943 pDimensionDefinitions[i].bits = bits;
2944 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2945 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2946 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2947 Dimensions++;
2948
2949 // if this is a layer dimension, remember the amount of layers
2950 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2951 }
2952 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2953 }
2954 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2955
2956 // if there's a velocity dimension and custom velocity zone splits are used,
2957 // update the VelocityTables in the dimension regions
2958 UpdateVelocityTable();
2959
2960 // jump to start of the wave pool indices (if not already there)
2961 if (file->pVersion && file->pVersion->major == 3)
2962 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2963 else
2964 _3lnk->SetPos(44);
2965
2966 // load sample references (if auto loading is enabled)
2967 if (file->GetAutoLoad()) {
2968 for (uint i = 0; i < DimensionRegions; i++) {
2969 uint32_t wavepoolindex = _3lnk->ReadUint32();
2970 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2971 }
2972 GetSample(); // load global region sample reference
2973 }
2974 } else {
2975 DimensionRegions = 0;
2976 for (int i = 0 ; i < 8 ; i++) {
2977 pDimensionDefinitions[i].dimension = dimension_none;
2978 pDimensionDefinitions[i].bits = 0;
2979 pDimensionDefinitions[i].zones = 0;
2980 }
2981 }
2982
2983 // make sure there is at least one dimension region
2984 if (!DimensionRegions) {
2985 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2986 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2987 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2988 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2989 DimensionRegions = 1;
2990 }
2991 }
2992
2993 /**
2994 * Apply Region settings and all its DimensionRegions to the respective
2995 * RIFF chunks. You have to call File::Save() to make changes persistent.
2996 *
2997 * Usually there is absolutely no need to call this method explicitly.
2998 * It will be called automatically when File::Save() was called.
2999 *
3000 * @param pProgress - callback function for progress notification
3001 * @throws gig::Exception if samples cannot be dereferenced
3002 */
3003 void Region::UpdateChunks(progress_t* pProgress) {
3004 // in the gig format we don't care about the Region's sample reference
3005 // but we still have to provide some existing one to not corrupt the
3006 // file, so to avoid the latter we simply always assign the sample of
3007 // the first dimension region of this region
3008 pSample = pDimensionRegions[0]->pSample;
3009
3010 // first update base class's chunks
3011 DLS::Region::UpdateChunks(pProgress);
3012
3013 // update dimension region's chunks
3014 for (int i = 0; i < DimensionRegions; i++) {
3015 pDimensionRegions[i]->UpdateChunks(pProgress);
3016 }
3017
3018 File* pFile = (File*) GetParent()->GetParent();
3019 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3020 const int iMaxDimensions = version3 ? 8 : 5;
3021 const int iMaxDimensionRegions = version3 ? 256 : 32;
3022
3023 // make sure '3lnk' chunk exists
3024 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3025 if (!_3lnk) {
3026 const int _3lnkChunkSize = version3 ? 1092 : 172;
3027 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3028 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3029
3030 // move 3prg to last position
3031 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3032 }
3033
3034 // update dimension definitions in '3lnk' chunk
3035 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3036 store32(&pData[0], DimensionRegions);
3037 int shift = 0;
3038 for (int i = 0; i < iMaxDimensions; i++) {
3039 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3040 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3041 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3042 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3043 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3044 // next 3 bytes unknown, always zero?
3045
3046 shift += pDimensionDefinitions[i].bits;
3047 }
3048
3049 // update wave pool table in '3lnk' chunk
3050 const int iWavePoolOffset = version3 ? 68 : 44;
3051 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3052 int iWaveIndex = -1;
3053 if (i < DimensionRegions) {
3054 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3055 File::SampleList::iterator iter = pFile->pSamples->begin();
3056 File::SampleList::iterator end = pFile->pSamples->end();
3057 for (int index = 0; iter != end; ++iter, ++index) {
3058 if (*iter == pDimensionRegions[i]->pSample) {
3059 iWaveIndex = index;
3060 break;
3061 }
3062 }
3063 }
3064 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3065 }
3066 }
3067
3068 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3069 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3070 if (_3prg) {
3071 int dimensionRegionNr = 0;
3072 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3073 while (_3ewl) {
3074 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3075 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3076 dimensionRegionNr++;
3077 }
3078 _3ewl = _3prg->GetNextSubList();
3079 }
3080 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3081 }
3082 }
3083
3084 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3085 // update KeyRange struct and make sure regions are in correct order
3086 DLS::Region::SetKeyRange(Low, High);
3087 // update Region key table for fast lookup
3088 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3089 }
3090
3091 void Region::UpdateVelocityTable() {
3092 // get velocity dimension's index
3093 int veldim = -1;
3094 for (int i = 0 ; i < Dimensions ; i++) {
3095 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3096 veldim = i;
3097 break;
3098 }
3099 }
3100 if (veldim == -1) return;
3101
3102 int step = 1;
3103 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3104 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3105 int end = step * pDimensionDefinitions[veldim].zones;
3106
3107 // loop through all dimension regions for all dimensions except the velocity dimension
3108 int dim[8] = { 0 };
3109 for (int i = 0 ; i < DimensionRegions ; i++) {
3110
3111 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3112 pDimensionRegions[i]->VelocityUpperLimit) {
3113 // create the velocity table
3114 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3115 if (!table) {
3116 table = new uint8_t[128];
3117 pDimensionRegions[i]->VelocityTable = table;
3118 }
3119 int tableidx = 0;
3120 int velocityZone = 0;
3121 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3122 for (int k = i ; k < end ; k += step) {
3123 DimensionRegion *d = pDimensionRegions[k];
3124 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3125 velocityZone++;
3126 }
3127 } else { // gig2
3128 for (int k = i ; k < end ; k += step) {
3129 DimensionRegion *d = pDimensionRegions[k];
3130 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3131 velocityZone++;
3132 }
3133 }
3134 } else {
3135 if (pDimensionRegions[i]->VelocityTable) {
3136 delete[] pDimensionRegions[i]->VelocityTable;
3137 pDimensionRegions[i]->VelocityTable = 0;
3138 }
3139 }
3140
3141 int j;
3142 int shift = 0;
3143 for (j = 0 ; j < Dimensions ; j++) {
3144 if (j == veldim) i += skipveldim; // skip velocity dimension
3145 else {
3146 dim[j]++;
3147 if (dim[j] < pDimensionDefinitions[j].zones) break;
3148 else {
3149 // skip unused dimension regions
3150 dim[j] = 0;
3151 i += ((1 << pDimensionDefinitions[j].bits) -
3152 pDimensionDefinitions[j].zones) << shift;
3153 }
3154 }
3155 shift += pDimensionDefinitions[j].bits;
3156 }
3157 if (j == Dimensions) break;
3158 }
3159 }
3160
3161 /** @brief Einstein would have dreamed of it - create a new dimension.
3162 *
3163 * Creates a new dimension with the dimension definition given by
3164 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3165 * There is a hard limit of dimensions and total amount of "bits" all
3166 * dimensions can have. This limit is dependant to what gig file format
3167 * version this file refers to. The gig v2 (and lower) format has a
3168 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3169 * format has a limit of 8.
3170 *
3171 * @param pDimDef - defintion of the new dimension
3172 * @throws gig::Exception if dimension of the same type exists already
3173 * @throws gig::Exception if amount of dimensions or total amount of
3174 * dimension bits limit is violated
3175 */
3176 void Region::AddDimension(dimension_def_t* pDimDef) {
3177 // some initial sanity checks of the given dimension definition
3178 if (pDimDef->zones < 2)
3179 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3180 if (pDimDef->bits < 1)
3181 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3182 if (pDimDef->dimension == dimension_samplechannel) {
3183 if (pDimDef->zones != 2)
3184 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3185 if (pDimDef->bits != 1)
3186 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3187 }
3188
3189 // check if max. amount of dimensions reached
3190 File* file = (File*) GetParent()->GetParent();
3191 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3192 if (Dimensions >= iMaxDimensions)
3193 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3194 // check if max. amount of dimension bits reached
3195 int iCurrentBits = 0;
3196 for (int i = 0; i < Dimensions; i++)
3197 iCurrentBits += pDimensionDefinitions[i].bits;
3198 if (iCurrentBits >= iMaxDimensions)
3199 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3200 const int iNewBits = iCurrentBits + pDimDef->bits;
3201 if (iNewBits > iMaxDimensions)
3202 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3203 // check if there's already a dimensions of the same type
3204 for (int i = 0; i < Dimensions; i++)
3205 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3206 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3207
3208 // pos is where the new dimension should be placed, normally
3209 // last in list, except for the samplechannel dimension which
3210 // has to be first in list
3211 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3212 int bitpos = 0;
3213 for (int i = 0 ; i < pos ; i++)
3214 bitpos += pDimensionDefinitions[i].bits;
3215
3216 // make room for the new dimension
3217 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3218 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3219 for (int j = Dimensions ; j > pos ; j--) {
3220 pDimensionRegions[i]->DimensionUpperLimits[j] =
3221 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3222 }
3223 }
3224
3225 // assign definition of new dimension
3226 pDimensionDefinitions[pos] = *pDimDef;
3227
3228 // auto correct certain dimension definition fields (where possible)
3229 pDimensionDefinitions[pos].split_type =
3230 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3231 pDimensionDefinitions[pos].zone_size =
3232 __resolveZoneSize(pDimensionDefinitions[pos]);
3233
3234 // create new dimension region(s) for this new dimension, and make
3235 // sure that the dimension regions are placed correctly in both the
3236 // RIFF list and the pDimensionRegions array
3237 RIFF::Chunk* moveTo = NULL;
3238 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3239 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3240 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3241 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3242 }
3243 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3244 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3245 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3246 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3247 // create a new dimension region and copy all parameter values from
3248 // an existing dimension region
3249 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3250 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3251
3252 DimensionRegions++;
3253 }
3254 }
3255 moveTo = pDimensionRegions[i]->pParentList;
3256 }
3257
3258 // initialize the upper limits for this dimension
3259 int mask = (1 << bitpos) - 1;
3260 for (int z = 0 ; z < pDimDef->zones ; z++) {
3261 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3262 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3263 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3264 (z << bitpos) |
3265 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3266 }
3267 }
3268
3269 Dimensions++;
3270
3271 // if this is a layer dimension, update 'Layers' attribute
3272 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3273
3274 UpdateVelocityTable();
3275 }
3276
3277 /** @brief Delete an existing dimension.
3278 *
3279 * Deletes the dimension given by \a pDimDef and deletes all respective
3280 * dimension regions, that is all dimension regions where the dimension's
3281 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3282 * for example this would delete all dimension regions for the case(s)
3283 * where the sustain pedal is pressed down.
3284 *
3285 * @param pDimDef - dimension to delete
3286 * @throws gig::Exception if given dimension cannot be found
3287 */
3288 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3289 // get dimension's index
3290 int iDimensionNr = -1;
3291 for (int i = 0; i < Dimensions; i++) {
3292 if (&pDimensionDefinitions[i] == pDimDef) {
3293 iDimensionNr = i;
3294 break;
3295 }
3296 }
3297 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3298
3299 // get amount of bits below the dimension to delete
3300 int iLowerBits = 0;
3301 for (int i = 0; i < iDimensionNr; i++)
3302 iLowerBits += pDimensionDefinitions[i].bits;
3303
3304 // get amount ot bits above the dimension to delete
3305 int iUpperBits = 0;
3306 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3307 iUpperBits += pDimensionDefinitions[i].bits;
3308
3309 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3310
3311 // delete dimension regions which belong to the given dimension
3312 // (that is where the dimension's bit > 0)
3313 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3314 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3315 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3316 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3317 iObsoleteBit << iLowerBits |
3318 iLowerBit;
3319
3320 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3321 delete pDimensionRegions[iToDelete];
3322 pDimensionRegions[iToDelete] = NULL;
3323 DimensionRegions--;
3324 }
3325 }
3326 }
3327
3328 // defrag pDimensionRegions array
3329 // (that is remove the NULL spaces within the pDimensionRegions array)
3330 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3331 if (!pDimensionRegions[iTo]) {
3332 if (iFrom <= iTo) iFrom = iTo + 1;
3333 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3334 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3335 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3336 pDimensionRegions[iFrom] = NULL;
3337 }
3338 }
3339 }
3340
3341 // remove the this dimension from the upper limits arrays
3342 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3343 DimensionRegion* d = pDimensionRegions[j];
3344 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3345 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3346 }
3347 d->DimensionUpperLimits[Dimensions - 1] = 127;
3348 }
3349
3350 // 'remove' dimension definition
3351 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3352 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3353 }
3354 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3355 pDimensionDefinitions[Dimensions - 1].bits = 0;
3356 pDimensionDefinitions[Dimensions - 1].zones = 0;
3357
3358 Dimensions--;
3359
3360 // if this was a layer dimension, update 'Layers' attribute
3361 if (pDimDef->dimension == dimension_layer) Layers = 1;
3362 }
3363
3364 /** @brief Delete one split zone of a dimension (decrement zone amount).
3365 *
3366 * Instead of deleting an entire dimensions, this method will only delete
3367 * one particular split zone given by @a zone of the Region's dimension
3368 * given by @a type. So this method will simply decrement the amount of
3369 * zones by one of the dimension in question. To be able to do that, the
3370 * respective dimension must exist on this Region and it must have at least
3371 * 3 zones. All DimensionRegion objects associated with the zone will be
3372 * deleted.
3373 *
3374 * @param type - identifies the dimension where a zone shall be deleted
3375 * @param zone - index of the dimension split zone that shall be deleted
3376 * @throws gig::Exception if requested zone could not be deleted
3377 */
3378 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3379 dimension_def_t* oldDef = GetDimensionDefinition(type);
3380 if (!oldDef)
3381 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3382 if (oldDef->zones <= 2)
3383 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3384 if (zone < 0 || zone >= oldDef->zones)
3385 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3386
3387 const int newZoneSize = oldDef->zones - 1;
3388
3389 // create a temporary Region which just acts as a temporary copy
3390 // container and will be deleted at the end of this function and will
3391 // also not be visible through the API during this process
3392 gig::Region* tempRgn = NULL;
3393 {
3394 // adding these temporary chunks is probably not even necessary
3395 Instrument* instr = static_cast<Instrument*>(GetParent());
3396 RIFF::List* pCkInstrument = instr->pCkInstrument;
3397 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3398 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3399 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3400 tempRgn = new Region(instr, rgn);
3401 }
3402
3403 // copy this region's dimensions (with already the dimension split size
3404 // requested by the arguments of this method call) to the temporary
3405 // region, and don't use Region::CopyAssign() here for this task, since
3406 // it would also alter fast lookup helper variables here and there
3407 dimension_def_t newDef;
3408 for (int i = 0; i < Dimensions; ++i) {
3409 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3410 // is this the dimension requested by the method arguments? ...
3411 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3412 def.zones = newZoneSize;
3413 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3414 newDef = def;
3415 }
3416 tempRgn->AddDimension(&def);
3417 }
3418
3419 // find the dimension index in the tempRegion which is the dimension
3420 // type passed to this method (paranoidly expecting different order)
3421 int tempReducedDimensionIndex = -1;
3422 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3423 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3424 tempReducedDimensionIndex = d;
3425 break;
3426 }
3427 }
3428
3429 // copy dimension regions from this region to the temporary region
3430 for (int iDst = 0; iDst < 256; ++iDst) {
3431 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3432 if (!dstDimRgn) continue;
3433 std::map<dimension_t,int> dimCase;
3434 bool isValidZone = true;
3435 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3436 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3437 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3438 (iDst >> baseBits) & ((1 << dstBits) - 1);
3439 baseBits += dstBits;
3440 // there are also DimensionRegion objects of unused zones, skip them
3441 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3442 isValidZone = false;
3443 break;
3444 }
3445 }
3446 if (!isValidZone) continue;
3447 // a bit paranoid: cope with the chance that the dimensions would
3448 // have different order in source and destination regions
3449 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3450 if (dimCase[type] >= zone) dimCase[type]++;
3451 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3452 dstDimRgn->CopyAssign(srcDimRgn);
3453 // if this is the upper most zone of the dimension passed to this
3454 // method, then correct (raise) its upper limit to 127
3455 if (newDef.split_type == split_type_normal && isLastZone)
3456 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3457 }
3458
3459 // now tempRegion's dimensions and DimensionRegions basically reflect
3460 // what we wanted to get for this actual Region here, so we now just
3461 // delete and recreate the dimension in question with the new amount
3462 // zones and then copy back from tempRegion
3463 DeleteDimension(oldDef);
3464 AddDimension(&newDef);
3465 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3466 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3467 if (!srcDimRgn) continue;
3468 std::map<dimension_t,int> dimCase;
3469 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3470 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3471 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3472 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3473 baseBits += srcBits;
3474 }
3475 // a bit paranoid: cope with the chance that the dimensions would
3476 // have different order in source and destination regions
3477 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3478 if (!dstDimRgn) continue;
3479 dstDimRgn->CopyAssign(srcDimRgn);
3480 }
3481
3482 // delete temporary region
3483 delete tempRgn;
3484
3485 UpdateVelocityTable();
3486 }
3487
3488 /** @brief Divide split zone of a dimension in two (increment zone amount).
3489 *
3490 * This will increment the amount of zones for the dimension (given by
3491 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3492 * in the middle of its zone range in two. So the two zones resulting from
3493 * the zone being splitted, will be an equivalent copy regarding all their
3494 * articulation informations and sample reference. The two zones will only
3495 * differ in their zone's upper limit
3496 * (DimensionRegion::DimensionUpperLimits).
3497 *
3498 * @param type - identifies the dimension where a zone shall be splitted
3499 * @param zone - index of the dimension split zone that shall be splitted
3500 * @throws gig::Exception if requested zone could not be splitted
3501 */
3502 void Region::SplitDimensionZone(dimension_t type, int zone) {
3503 dimension_def_t* oldDef = GetDimensionDefinition(type);
3504 if (!oldDef)
3505 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3506 if (zone < 0 || zone >= oldDef->zones)
3507 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3508
3509 const int newZoneSize = oldDef->zones + 1;
3510
3511 // create a temporary Region which just acts as a temporary copy
3512 // container and will be deleted at the end of this function and will
3513 // also not be visible through the API during this process
3514 gig::Region* tempRgn = NULL;
3515 {
3516 // adding these temporary chunks is probably not even necessary
3517 Instrument* instr = static_cast<Instrument*>(GetParent());
3518 RIFF::List* pCkInstrument = instr->pCkInstrument;
3519 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3520 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3521 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3522 tempRgn = new Region(instr, rgn);
3523 }
3524
3525 // copy this region's dimensions (with already the dimension split size
3526 // requested by the arguments of this method call) to the temporary
3527 // region, and don't use Region::CopyAssign() here for this task, since
3528 // it would also alter fast lookup helper variables here and there
3529 dimension_def_t newDef;
3530 for (int i = 0; i < Dimensions; ++i) {
3531 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3532 // is this the dimension requested by the method arguments? ...
3533 if (def.dimension == type) { // ... if yes, increment zone amount by one
3534 def.zones = newZoneSize;
3535 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3536 newDef = def;
3537 }
3538 tempRgn->AddDimension(&def);
3539 }
3540
3541 // find the dimension index in the tempRegion which is the dimension
3542 // type passed to this method (paranoidly expecting different order)
3543 int tempIncreasedDimensionIndex = -1;
3544 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3545 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3546 tempIncreasedDimensionIndex = d;
3547 break;
3548 }
3549 }
3550
3551 // copy dimension regions from this region to the temporary region
3552 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3553 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3554 if (!srcDimRgn) continue;
3555 std::map<dimension_t,int> dimCase;
3556 bool isValidZone = true;
3557 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3558 const int srcBits = pDimensionDefinitions[d].bits;
3559 dimCase[pDimensionDefinitions[d].dimension] =
3560 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3561 // there are also DimensionRegion objects for unused zones, skip them
3562 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3563 isValidZone = false;
3564 break;
3565 }
3566 baseBits += srcBits;
3567 }
3568 if (!isValidZone) continue;
3569 // a bit paranoid: cope with the chance that the dimensions would
3570 // have different order in source and destination regions
3571 if (dimCase[type] > zone) dimCase[type]++;
3572 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3573 dstDimRgn->CopyAssign(srcDimRgn);
3574 // if this is the requested zone to be splitted, then also copy
3575 // the source DimensionRegion to the newly created target zone
3576 // and set the old zones upper limit lower
3577 if (dimCase[type] == zone) {
3578 // lower old zones upper limit
3579 if (newDef.split_type == split_type_normal) {
3580 const int high =
3581 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3582 int low = 0;
3583 if (zone > 0) {
3584 std::map<dimension_t,int> lowerCase = dimCase;
3585 lowerCase[type]--;
3586 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3587 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3588 }
3589 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3590 }
3591 // fill the newly created zone of the divided zone as well
3592 dimCase[type]++;
3593 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3594 dstDimRgn->CopyAssign(srcDimRgn);
3595 }
3596 }
3597
3598 // now tempRegion's dimensions and DimensionRegions basically reflect
3599 // what we wanted to get for this actual Region here, so we now just
3600 // delete and recreate the dimension in question with the new amount
3601 // zones and then copy back from tempRegion
3602 DeleteDimension(oldDef);
3603 AddDimension(&newDef);
3604 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3605 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3606 if (!srcDimRgn) continue;
3607 std::map<dimension_t,int> dimCase;
3608 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3609 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3610 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3611 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3612 baseBits += srcBits;
3613 }
3614 // a bit paranoid: cope with the chance that the dimensions would
3615 // have different order in source and destination regions
3616 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3617 if (!dstDimRgn) continue;
3618 dstDimRgn->CopyAssign(srcDimRgn);
3619 }
3620
3621 // delete temporary region
3622 delete tempRgn;
3623
3624 UpdateVelocityTable();
3625 }
3626
3627 /** @brief Change type of an existing dimension.
3628 *
3629 * Alters the dimension type of a dimension already existing on this
3630 * region. If there is currently no dimension on this Region with type
3631 * @a oldType, then this call with throw an Exception. Likewise there are
3632 * cases where the requested dimension type cannot be performed. For example
3633 * if the new dimension type shall be gig::dimension_samplechannel, and the
3634 * current dimension has more than 2 zones. In such cases an Exception is
3635 * thrown as well.
3636 *
3637 * @param oldType - identifies the existing dimension to be changed
3638 * @param newType - to which dimension type it should be changed to
3639 * @throws gig::Exception if requested change cannot be performed
3640 */
3641 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3642 if (oldType == newType) return;
3643 dimension_def_t* def = GetDimensionDefinition(oldType);
3644 if (!def)
3645 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3646 if (newType == dimension_samplechannel && def->zones != 2)
3647 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3648 if (GetDimensionDefinition(newType))
3649 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3650 def->dimension = newType;
3651 def->split_type = __resolveSplitType(newType);
3652 }
3653
3654 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3655 uint8_t bits[8] = {};
3656 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3657 it != DimCase.end(); ++it)
3658 {
3659 for (int d = 0; d < Dimensions; ++d) {
3660 if (pDimensionDefinitions[d].dimension == it->first) {
3661 bits[d] = it->second;
3662 goto nextDimCaseSlice;
3663 }
3664 }
3665 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3666 nextDimCaseSlice:
3667 ; // noop
3668 }
3669 return GetDimensionRegionByBit(bits);
3670 }
3671
3672 /**
3673 * Searches in the current Region for a dimension of the given dimension
3674 * type and returns the precise configuration of that dimension in this
3675 * Region.
3676 *
3677 * @param type - dimension type of the sought dimension
3678 * @returns dimension definition or NULL if there is no dimension with
3679 * sought type in this Region.
3680 */
3681 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3682 for (int i = 0; i < Dimensions; ++i)
3683 if (pDimensionDefinitions[i].dimension == type)
3684 return &pDimensionDefinitions[i];
3685 return NULL;
3686 }
3687
3688 Region::~Region() {
3689 for (int i = 0; i < 256; i++) {
3690 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3691 }
3692 }
3693
3694 /**
3695 * Use this method in your audio engine to get the appropriate dimension
3696 * region with it's articulation data for the current situation. Just
3697 * call the method with the current MIDI controller values and you'll get
3698 * the DimensionRegion with the appropriate articulation data for the
3699 * current situation (for this Region of course only). To do that you'll
3700 * first have to look which dimensions with which controllers and in
3701 * which order are defined for this Region when you load the .gig file.
3702 * Special cases are e.g. layer or channel dimensions where you just put
3703 * in the index numbers instead of a MIDI controller value (means 0 for
3704 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3705 * etc.).
3706 *
3707 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3708 * @returns adress to the DimensionRegion for the given situation
3709 * @see pDimensionDefinitions
3710 * @see Dimensions
3711 */
3712 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3713 uint8_t bits;
3714 int veldim = -1;
3715 int velbitpos;
3716 int bitpos = 0;
3717 int dimregidx = 0;
3718 for (uint i = 0; i < Dimensions; i++) {
3719 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3720 // the velocity dimension must be handled after the other dimensions
3721 veldim = i;
3722 velbitpos = bitpos;
3723 } else {
3724 switch (pDimensionDefinitions[i].split_type) {
3725 case split_type_normal:
3726 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3727 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3728 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3729 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3730 }
3731 } else {
3732 // gig2: evenly sized zones
3733 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3734 }
3735 break;
3736 case split_type_bit: // the value is already the sought dimension bit number
3737 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3738 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3739 break;
3740 }
3741 dimregidx |= bits << bitpos;
3742 }
3743 bitpos += pDimensionDefinitions[i].bits;
3744 }
3745 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3746 if (!dimreg) return NULL;
3747 if (veldim != -1) {
3748 // (dimreg is now the dimension region for the lowest velocity)
3749 if (dimreg->VelocityTable) // custom defined zone ranges
3750 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3751 else // normal split type
3752 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3753
3754 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3755 dimregidx |= (bits & limiter_mask) << velbitpos;
3756 dimreg = pDimensionRegions[dimregidx & 255];
3757 }
3758 return dimreg;
3759 }
3760
3761 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3762 uint8_t bits;
3763 int veldim = -1;
3764 int velbitpos;
3765 int bitpos = 0;
3766 int dimregidx = 0;
3767 for (uint i = 0; i < Dimensions; i++) {
3768 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3769 // the velocity dimension must be handled after the other dimensions
3770 veldim = i;
3771 velbitpos = bitpos;
3772 } else {
3773 switch (pDimensionDefinitions[i].split_type) {
3774 case split_type_normal:
3775 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3776 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3777 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3778 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3779 }
3780 } else {
3781 // gig2: evenly sized zones
3782 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3783 }
3784 break;
3785 case split_type_bit: // the value is already the sought dimension bit number
3786 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3787 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3788 break;
3789 }
3790 dimregidx |= bits << bitpos;
3791 }
3792 bitpos += pDimensionDefinitions[i].bits;
3793 }
3794 dimregidx &= 255;
3795 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3796 if (!dimreg) return -1;
3797 if (veldim != -1) {
3798 // (dimreg is now the dimension region for the lowest velocity)
3799 if (dimreg->VelocityTable) // custom defined zone ranges
3800 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3801 else // normal split type
3802 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3803
3804 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3805 dimregidx |= (bits & limiter_mask) << velbitpos;
3806 dimregidx &= 255;
3807 }
3808 return dimregidx;
3809 }
3810
3811 /**
3812 * Returns the appropriate DimensionRegion for the given dimension bit
3813 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3814 * instead of calling this method directly!
3815 *
3816 * @param DimBits Bit numbers for dimension 0 to 7
3817 * @returns adress to the DimensionRegion for the given dimension
3818 * bit numbers
3819 * @see GetDimensionRegionByValue()
3820 */
3821 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3822 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3823 << pDimensionDefinitions[5].bits | DimBits[5])
3824 << pDimensionDefinitions[4].bits | DimBits[4])
3825 << pDimensionDefinitions[3].bits | DimBits[3])
3826 << pDimensionDefinitions[2].bits | DimBits[2])
3827 << pDimensionDefinitions[1].bits | DimBits[1])
3828 << pDimensionDefinitions[0].bits | DimBits[0]];
3829 }
3830
3831 /**
3832 * Returns pointer address to the Sample referenced with this region.
3833 * This is the global Sample for the entire Region (not sure if this is
3834 * actually used by the Gigasampler engine - I would only use the Sample
3835 * referenced by the appropriate DimensionRegion instead of this sample).
3836 *
3837 * @returns address to Sample or NULL if there is no reference to a
3838 * sample saved in the .gig file
3839 */
3840 Sample* Region::GetSample() {
3841 if (pSample) return static_cast<gig::Sample*>(pSample);
3842 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3843 }
3844
3845 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3846 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3847 File* file = (File*) GetParent()->GetParent();
3848 if (!file->pWavePoolTable) return NULL;
3849 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3850 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3851 Sample* sample = file->GetFirstSample(pProgress);
3852 while (sample) {
3853 if (sample->ulWavePoolOffset == soughtoffset &&
3854 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3855 sample = file->GetNextSample();
3856 }
3857 return NULL;
3858 }
3859
3860 /**
3861 * Make a (semi) deep copy of the Region object given by @a orig
3862 * and assign it to this object.
3863 *
3864 * Note that all sample pointers referenced by @a orig are simply copied as
3865 * memory address. Thus the respective samples are shared, not duplicated!
3866 *
3867 * @param orig - original Region object to be copied from
3868 */
3869 void Region::CopyAssign(const Region* orig) {
3870 CopyAssign(orig, NULL);
3871 }
3872
3873 /**
3874 * Make a (semi) deep copy of the Region object given by @a orig and
3875 * assign it to this object
3876 *
3877 * @param mSamples - crosslink map between the foreign file's samples and
3878 * this file's samples
3879 */
3880 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3881 // handle base classes
3882 DLS::Region::CopyAssign(orig);
3883
3884 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3885 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3886 }
3887
3888 // handle own member variables
3889 for (int i = Dimensions - 1; i >= 0; --i) {
3890 DeleteDimension(&pDimensionDefinitions[i]);
3891 }
3892 Layers = 0; // just to be sure
3893 for (int i = 0; i < orig->Dimensions; i++) {
3894 // we need to copy the dim definition here, to avoid the compiler
3895 // complaining about const-ness issue
3896 dimension_def_t def = orig->pDimensionDefinitions[i];
3897 AddDimension(&def);
3898 }
3899 for (int i = 0; i < 256; i++) {
3900 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3901 pDimensionRegions[i]->CopyAssign(
3902 orig->pDimensionRegions[i],
3903 mSamples
3904 );
3905 }
3906 }
3907 Layers = orig->Layers;
3908 }
3909
3910
3911 // *************** MidiRule ***************
3912 // *
3913
3914 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3915 _3ewg->SetPos(36);
3916 Triggers = _3ewg->ReadUint8();
3917 _3ewg->SetPos(40);
3918 ControllerNumber = _3ewg->ReadUint8();
3919 _3ewg->SetPos(46);
3920 for (int i = 0 ; i < Triggers ; i++) {
3921 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3922 pTriggers[i].Descending = _3ewg->ReadUint8();
3923 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3924 pTriggers[i].Key = _3ewg->ReadUint8();
3925 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3926 pTriggers[i].Velocity = _3ewg->ReadUint8();
3927 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3928 _3ewg->ReadUint8();
3929 }
3930 }
3931
3932 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3933 ControllerNumber(0),
3934 Triggers(0) {
3935 }
3936
3937 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3938 pData[32] = 4;
3939 pData[33] = 16;
3940 pData[36] = Triggers;
3941 pData[40] = ControllerNumber;
3942 for (int i = 0 ; i < Triggers ; i++) {
3943 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3944 pData[47 + i * 8] = pTriggers[i].Descending;
3945 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3946 pData[49 + i * 8] = pTriggers[i].Key;
3947 pData[50 + i * 8] = pTriggers[i].NoteOff;
3948 pData[51 + i * 8] = pTriggers[i].Velocity;
3949 pData[52 + i * 8] = pTriggers[i].OverridePedal;
3950 }
3951 }
3952
3953 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3954 _3ewg->SetPos(36);
3955 LegatoSamples = _3ewg->ReadUint8(); // always 12
3956 _3ewg->SetPos(40);
3957 BypassUseController = _3ewg->ReadUint8();
3958 BypassKey = _3ewg->ReadUint8();
3959 BypassController = _3ewg->ReadUint8();
3960 ThresholdTime = _3ewg->ReadUint16();
3961 _3ewg->ReadInt16();
3962 ReleaseTime = _3ewg->ReadUint16();
3963 _3ewg->ReadInt16();
3964 KeyRange.low = _3ewg->ReadUint8();
3965 KeyRange.high = _3ewg->ReadUint8();
3966 _3ewg->SetPos(64);
3967 ReleaseTriggerKey = _3ewg->ReadUint8();
3968 AltSustain1Key = _3ewg->ReadUint8();
3969 AltSustain2Key = _3ewg->ReadUint8();
3970 }
3971
3972 MidiRuleLegato::MidiRuleLegato() :
3973 LegatoSamples(12),
3974 BypassUseController(false),
3975 BypassKey(0),
3976 BypassController(1),
3977 ThresholdTime(20),
3978 ReleaseTime(20),
3979 ReleaseTriggerKey(0),
3980 AltSustain1Key(0),
3981 AltSustain2Key(0)
3982 {
3983 KeyRange.low = KeyRange.high = 0;
3984 }
3985
3986 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3987 pData[32] = 0;
3988 pData[33] = 16;
3989 pData[36] = LegatoSamples;
3990 pData[40] = BypassUseController;
3991 pData[41] = BypassKey;
3992 pData[42] = BypassController;
3993 store16(&pData[43], ThresholdTime);
3994 store16(&pData[47], ReleaseTime);
3995 pData[51] = KeyRange.low;
3996 pData[52] = KeyRange.high;
3997 pData[64] = ReleaseTriggerKey;
3998 pData[65] = AltSustain1Key;
3999 pData[66] = AltSustain2Key;
4000 }
4001
4002 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4003 _3ewg->SetPos(36);
4004 Articulations = _3ewg->ReadUint8();
4005 int flags = _3ewg->ReadUint8();
4006 Polyphonic = flags & 8;
4007 Chained = flags & 4;
4008 Selector = (flags & 2) ? selector_controller :
4009 (flags & 1) ? selector_key_switch : selector_none;
4010 Patterns = _3ewg->ReadUint8();
4011 _3ewg->ReadUint8(); // chosen row
4012 _3ewg->ReadUint8(); // unknown
4013 _3ewg->ReadUint8(); // unknown
4014 _3ewg->ReadUint8(); // unknown
4015 KeySwitchRange.low = _3ewg->ReadUint8();
4016 KeySwitchRange.high = _3ewg->ReadUint8();
4017 Controller = _3ewg->ReadUint8();
4018 PlayRange.low = _3ewg->ReadUint8();
4019 PlayRange.high = _3ewg->ReadUint8();
4020
4021 int n = std::min(int(Articulations), 32);
4022 for (int i = 0 ; i < n ; i++) {
4023 _3ewg->ReadString(pArticulations[i], 32);
4024 }
4025 _3ewg->SetPos(1072);
4026 n = std::min(int(Patterns), 32);
4027 for (int i = 0 ; i < n ; i++) {
4028 _3ewg->ReadString(pPatterns[i].Name, 16);
4029 pPatterns[i].Size = _3ewg->ReadUint8();
4030 _3ewg->Read(&pPatterns[i][0], 1, 32);
4031 }
4032 }
4033
4034 MidiRuleAlternator::MidiRuleAlternator() :
4035 Articulations(0),
4036 Patterns(0),
4037 Selector(selector_none),
4038 Controller(0),
4039 Polyphonic(false),
4040 Chained(false)
4041 {
4042 PlayRange.low = PlayRange.high = 0;
4043 KeySwitchRange.low = KeySwitchRange.high = 0;
4044 }
4045
4046 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4047 pData[32] = 3;
4048 pData[33] = 16;
4049 pData[36] = Articulations;
4050 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4051 (Selector == selector_controller ? 2 :
4052 (Selector == selector_key_switch ? 1 : 0));
4053 pData[38] = Patterns;
4054
4055 pData[43] = KeySwitchRange.low;
4056 pData[44] = KeySwitchRange.high;
4057 pData[45] = Controller;
4058 pData[46] = PlayRange.low;
4059 pData[47] = PlayRange.high;
4060
4061 char* str = reinterpret_cast<char*>(pData);
4062 int pos = 48;
4063 int n = std::min(int(Articulations), 32);
4064 for (int i = 0 ; i < n ; i++, pos += 32) {
4065 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4066 }
4067
4068 pos = 1072;
4069 n = std::min(int(Patterns), 32);
4070 for (int i = 0 ; i < n ; i++, pos += 49) {
4071 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4072 pData[pos + 16] = pPatterns[i].Size;
4073 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4074 }
4075 }
4076
4077 // *************** Script ***************
4078 // *
4079
4080 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4081 pGroup = group;
4082 pChunk = ckScri;
4083 if (ckScri) { // object is loaded from file ...
4084 // read header
4085 uint32_t headerSize = ckScri->ReadUint32();
4086 Compression = (Compression_t) ckScri->ReadUint32();
4087 Encoding = (Encoding_t) ckScri->ReadUint32();
4088 Language = (Language_t) ckScri->ReadUint32();
4089 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4090 crc = ckScri->ReadUint32();
4091 uint32_t nameSize = ckScri->ReadUint32();
4092 Name.resize(nameSize, ' ');
4093 for (int i = 0; i < nameSize; ++i)
4094 Name[i] = ckScri->ReadUint8();
4095 // to handle potential future extensions of the header
4096 ckScri->SetPos(sizeof(int32_t) + headerSize);
4097 // read actual script data
4098 uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4099 data.resize(scriptSize);
4100 for (int i = 0; i < scriptSize; ++i)
4101 data[i] = ckScri->ReadUint8();
4102 } else { // this is a new script object, so just initialize it as such ...
4103 Compression = COMPRESSION_NONE;
4104 Encoding = ENCODING_ASCII;
4105 Language = LANGUAGE_NKSP;
4106 Bypass = false;
4107 crc = 0;
4108 Name = "Unnamed Script";
4109 }
4110 }
4111
4112 Script::~Script() {
4113 }
4114
4115 /**
4116 * Returns the current script (i.e. as source code) in text format.
4117 */
4118 String Script::GetScriptAsText() {
4119 String s;
4120 s.resize(data.size(), ' ');
4121 memcpy(&s[0], &data[0], data.size());
4122 return s;
4123 }
4124
4125 /**
4126 * Replaces the current script with the new script source code text given
4127 * by @a text.
4128 *
4129 * @param text - new script source code
4130 */
4131 void Script::SetScriptAsText(const String& text) {
4132 data.resize(text.size());
4133 memcpy(&data[0], &text[0], text.size());
4134 }
4135
4136 /**
4137 * Apply this script to the respective RIFF chunks. You have to call
4138 * File::Save() to make changes persistent.
4139 *
4140 * Usually there is absolutely no need to call this method explicitly.
4141 * It will be called automatically when File::Save() was called.
4142 *
4143 * @param pProgress - callback function for progress notification
4144 */
4145 void Script::UpdateChunks(progress_t* pProgress) {
4146 // recalculate CRC32 check sum
4147 __resetCRC(crc);
4148 __calculateCRC(&data[0], data.size(), crc);
4149 __encodeCRC(crc);
4150 // make sure chunk exists and has the required size
4151 const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4152 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4153 else pChunk->Resize(chunkSize);
4154 // fill the chunk data to be written to disk
4155 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4156 int pos = 0;
4157 store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4158 pos += sizeof(int32_t);
4159 store32(&pData[pos], Compression);
4160 pos += sizeof(int32_t);
4161 store32(&pData[pos], Encoding);
4162 pos += sizeof(int32_t);
4163 store32(&pData[pos], Language);
4164 pos += sizeof(int32_t);
4165 store32(&pData[pos], Bypass ? 1 : 0);
4166 pos += sizeof(int32_t);
4167 store32(&pData[pos], crc);
4168 pos += sizeof(int32_t);
4169 store32(&pData[pos], Name.size());
4170 pos += sizeof(int32_t);
4171 for (int i = 0; i < Name.size(); ++i, ++pos)
4172 pData[pos] = Name[i];
4173 for (int i = 0; i < data.size(); ++i, ++pos)
4174 pData[pos] = data[i];
4175 }
4176
4177 /**
4178 * Move this script from its current ScriptGroup to another ScriptGroup
4179 * given by @a pGroup.
4180 *
4181 * @param pGroup - script's new group
4182 */
4183 void Script::SetGroup(ScriptGroup* pGroup) {
4184 if (this->pGroup = pGroup) return;
4185 if (pChunk)
4186 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4187 this->pGroup = pGroup;
4188 }
4189
4190 /**
4191 * Returns the script group this script currently belongs to. Each script
4192 * is a member of exactly one ScriptGroup.
4193 *
4194 * @returns current script group
4195 */
4196 ScriptGroup* Script::GetGroup() const {
4197 return pGroup;
4198 }
4199
4200 void Script::RemoveAllScriptReferences() {
4201 File* pFile = pGroup->pFile;
4202 for (int i = 0; pFile->GetInstrument(i); ++i) {
4203 Instrument* instr = pFile->GetInstrument(i);
4204 instr->RemoveScript(this);
4205 }
4206 }
4207
4208 // *************** ScriptGroup ***************
4209 // *
4210
4211 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4212 pFile = file;
4213 pList = lstRTIS;
4214 pScripts = NULL;
4215 if (lstRTIS) {
4216 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4217 ::LoadString(ckName, Name);
4218 } else {
4219 Name = "Default Group";
4220 }
4221 }
4222
4223 ScriptGroup::~ScriptGroup() {
4224 if (pScripts) {
4225 std::list<Script*>::iterator iter = pScripts->begin();
4226 std::list<Script*>::iterator end = pScripts->end();
4227 while (iter != end) {
4228 delete *iter;
4229 ++iter;
4230 }
4231 delete pScripts;
4232 }
4233 }
4234
4235 /**
4236 * Apply this script group to the respective RIFF chunks. You have to call
4237 * File::Save() to make changes persistent.
4238 *
4239 * Usually there is absolutely no need to call this method explicitly.
4240 * It will be called automatically when File::Save() was called.
4241 *
4242 * @param pProgress - callback function for progress notification
4243 */
4244 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4245 if (pScripts) {
4246 if (!pList)
4247 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4248
4249 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4250 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4251
4252 for (std::list<Script*>::iterator it = pScripts->begin();
4253 it != pScripts->end(); ++it)
4254 {
4255 (*it)->UpdateChunks(pProgress);
4256 }
4257 }
4258 }
4259
4260 /** @brief Get instrument script.
4261 *
4262 * Returns the real-time instrument script with the given index.
4263 *
4264 * @param index - number of the sought script (0..n)
4265 * @returns sought script or NULL if there's no such script
4266 */
4267 Script* ScriptGroup::GetScript(uint index) {
4268 if (!pScripts) LoadScripts();
4269 std::list<Script*>::iterator it = pScripts->begin();
4270 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4271 if (i == index) return *it;
4272 return NULL;
4273 }
4274
4275 /** @brief Add new instrument script.
4276 *
4277 * Adds a new real-time instrument script to the file. The script is not
4278 * actually used / executed unless it is referenced by an instrument to be
4279 * used. This is similar to samples, which you can add to a file, without
4280 * an instrument necessarily actually using it.
4281 *
4282 * You have to call Save() to make this persistent to the file.
4283 *
4284 * @return new empty script object
4285 */
4286 Script* ScriptGroup::AddScript() {
4287 if (!pScripts) LoadScripts();
4288 Script* pScript = new Script(this, NULL);
4289 pScripts->push_back(pScript);
4290 return pScript;
4291 }
4292
4293 /** @brief Delete an instrument script.
4294 *
4295 * This will delete the given real-time instrument script. References of
4296 * instruments that are using that script will be removed accordingly.
4297 *
4298 * You have to call Save() to make this persistent to the file.
4299 *
4300 * @param pScript - script to delete
4301 * @throws gig::Exception if given script could not be found
4302 */
4303 void ScriptGroup::DeleteScript(Script* pScript) {
4304 if (!pScripts) LoadScripts();
4305 std::list<Script*>::iterator iter =
4306 find(pScripts->begin(), pScripts->end(), pScript);
4307 if (iter == pScripts->end())
4308 throw gig::Exception("Could not delete script, could not find given script");
4309 pScripts->erase(iter);
4310 pScript->RemoveAllScriptReferences();
4311 if (pScript->pChunk)
4312 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4313 delete pScript;
4314 }
4315
4316 void ScriptGroup::LoadScripts() {
4317 if (pScripts) return;
4318 pScripts = new std::list<Script*>;
4319 if (!pList) return;
4320
4321 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4322 ck = pList->GetNextSubChunk())
4323 {
4324 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4325 pScripts->push_back(new Script(this, ck));
4326 }
4327 }
4328 }
4329
4330 // *************** Instrument ***************
4331 // *
4332
4333 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4334 static const DLS::Info::string_length_t fixedStringLengths[] = {
4335 { CHUNK_ID_INAM, 64 },
4336 { CHUNK_ID_ISFT, 12 },
4337 { 0, 0 }
4338 };
4339 pInfo->SetFixedStringLengths(fixedStringLengths);
4340
4341 // Initialization
4342 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4343 EffectSend = 0;
4344 Attenuation = 0;
4345 FineTune = 0;
4346 PitchbendRange = 0;
4347 PianoReleaseMode = false;
4348 DimensionKeyRange.low = 0;
4349 DimensionKeyRange.high = 0;
4350 pMidiRules = new MidiRule*[3];
4351 pMidiRules[0] = NULL;
4352 pScriptRefs = NULL;
4353
4354 // Loading
4355 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4356 if (lart) {
4357 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4358 if (_3ewg) {
4359 EffectSend = _3ewg->ReadUint16();
4360 Attenuation = _3ewg->ReadInt32();
4361 FineTune = _3ewg->ReadInt16();
4362 PitchbendRange = _3ewg->ReadInt16();
4363 uint8_t dimkeystart = _3ewg->ReadUint8();
4364 PianoReleaseMode = dimkeystart & 0x01;
4365 DimensionKeyRange.low = dimkeystart >> 1;
4366 DimensionKeyRange.high = _3ewg->ReadUint8();
4367
4368 if (_3ewg->GetSize() > 32) {
4369 // read MIDI rules
4370 int i = 0;
4371 _3ewg->SetPos(32);
4372 uint8_t id1 = _3ewg->ReadUint8();
4373 uint8_t id2 = _3ewg->ReadUint8();
4374
4375 if (id2 == 16) {
4376 if (id1 == 4) {
4377 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4378 } else if (id1 == 0) {
4379 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4380 } else if (id1 == 3) {
4381 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4382 } else {
4383 pMidiRules[i++] = new MidiRuleUnknown;
4384 }
4385 }
4386 else if (id1 != 0 || id2 != 0) {
4387 pMidiRules[i++] = new MidiRuleUnknown;
4388 }
4389 //TODO: all the other types of rules
4390
4391 pMidiRules[i] = NULL;
4392 }
4393 }
4394 }
4395
4396 if (pFile->GetAutoLoad()) {
4397 if (!pRegions) pRegions = new RegionList;
4398 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4399 if (lrgn) {
4400 RIFF::List* rgn = lrgn->GetFirstSubList();
4401 while (rgn) {
4402 if (rgn->GetListType() == LIST_TYPE_RGN) {
4403 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4404 pRegions->push_back(new Region(this, rgn));
4405 }
4406 rgn = lrgn->GetNextSubList();
4407 }
4408 // Creating Region Key Table for fast lookup
4409 UpdateRegionKeyTable();
4410 }
4411 }
4412
4413 // own gig format extensions
4414 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4415 if (lst3LS) {
4416 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4417 if (ckSCSL) {
4418 int headerSize = ckSCSL->ReadUint32();
4419 int slotCount = ckSCSL->ReadUint32();
4420 if (slotCount) {
4421 int slotSize = ckSCSL->ReadUint32();
4422 ckSCSL->SetPos(headerSize); // in case of future header extensions
4423 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4424 for (int i = 0; i < slotCount; ++i) {
4425 _ScriptPooolEntry e;
4426 e.fileOffset = ckSCSL->ReadUint32();
4427 e.bypass = ckSCSL->ReadUint32() & 1;
4428 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4429 scriptPoolFileOffsets.push_back(e);
4430 }
4431 }
4432 }
4433 }
4434
4435 __notify_progress(pProgress, 1.0f); // notify done
4436 }
4437
4438 void Instrument::UpdateRegionKeyTable() {
4439 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4440 RegionList::iterator iter = pRegions->begin();
4441 RegionList::iterator end = pRegions->end();
4442 for (; iter != end; ++iter) {
4443 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4444 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4445 RegionKeyTable[iKey] = pRegion;
4446 }
4447 }
4448 }
4449
4450 Instrument::~Instrument() {
4451 for (int i = 0 ; pMidiRules[i] ; i++) {
4452 delete pMidiRules[i];
4453 }
4454 delete[] pMidiRules;
4455 if (pScriptRefs) delete pScriptRefs;
4456 }
4457
4458 /**
4459 * Apply Instrument with all its Regions to the respective RIFF chunks.
4460 * You have to call File::Save() to make changes persistent.
4461 *
4462 * Usually there is absolutely no need to call this method explicitly.
4463 * It will be called automatically when File::Save() was called.
4464 *
4465 * @param pProgress - callback function for progress notification
4466 * @throws gig::Exception if samples cannot be dereferenced
4467 */
4468 void Instrument::UpdateChunks(progress_t* pProgress) {
4469 // first update base classes' chunks
4470 DLS::Instrument::UpdateChunks(pProgress);
4471
4472 // update Regions' chunks
4473 {
4474 RegionList::iterator iter = pRegions->begin();
4475 RegionList::iterator end = pRegions->end();
4476 for (; iter != end; ++iter)
4477 (*iter)->UpdateChunks(pProgress);
4478 }
4479
4480 // make sure 'lart' RIFF list chunk exists
4481 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4482 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4483 // make sure '3ewg' RIFF chunk exists
4484 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4485 if (!_3ewg) {
4486 File* pFile = (File*) GetParent();
4487
4488 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4489 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4490 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4491 memset(_3ewg->LoadChunkData(), 0, size);
4492 }
4493 // update '3ewg' RIFF chunk
4494 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4495 store16(&pData[0], EffectSend);
4496 store32(&pData[2], Attenuation);
4497 store16(&pData[6], FineTune);
4498 store16(&pData[8], PitchbendRange);
4499 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4500 DimensionKeyRange.low << 1;
4501 pData[10] = dimkeystart;
4502 pData[11] = DimensionKeyRange.high;
4503
4504 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4505 pData[32] = 0;
4506 pData[33] = 0;
4507 } else {
4508 for (int i = 0 ; pMidiRules[i] ; i++) {
4509 pMidiRules[i]->UpdateChunks(pData);
4510 }
4511 }
4512
4513 // own gig format extensions
4514 if (ScriptSlotCount()) {
4515 // make sure we have converted the original loaded script file
4516 // offsets into valid Script object pointers
4517 LoadScripts();
4518
4519 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4520 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4521 const int slotCount = pScriptRefs->size();
4522 const int headerSize = 3 * sizeof(uint32_t);
4523 const int slotSize = 2 * sizeof(uint32_t);
4524 const int totalChunkSize = headerSize + slotCount * slotSize;
4525 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4526 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4527 else ckSCSL->Resize(totalChunkSize);
4528 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4529 int pos = 0;
4530 store32(&pData[pos], headerSize);
4531 pos += sizeof(uint32_t);
4532 store32(&pData[pos], slotCount);
4533 pos += sizeof(uint32_t);
4534 store32(&pData[pos], slotSize);
4535 pos += sizeof(uint32_t);
4536 for (int i = 0; i < slotCount; ++i) {
4537 // arbitrary value, the actual file offset will be updated in
4538 // UpdateScriptFileOffsets() after the file has been resized
4539 int bogusFileOffset = 0;
4540 store32(&pData[pos], bogusFileOffset);
4541 pos += sizeof(uint32_t);
4542 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4543 pos += sizeof(uint32_t);
4544 }
4545 } else {
4546 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4547 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4548 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4549 }
4550 }
4551
4552 void Instrument::UpdateScriptFileOffsets() {
4553 // own gig format extensions
4554 if (pScriptRefs && pScriptRefs->size() > 0) {
4555 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4556 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4557 const int slotCount = pScriptRefs->size();
4558 const int headerSize = 3 * sizeof(uint32_t);
4559 ckSCSL->SetPos(headerSize);
4560 for (int i = 0; i < slotCount; ++i) {
4561 uint32_t fileOffset =
4562 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4563 (*pScriptRefs)[i].script->pChunk->GetPos() -
4564 CHUNK_HEADER_SIZE;
4565 ckSCSL->WriteUint32(&fileOffset);
4566 // jump over flags entry (containing the bypass flag)
4567 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4568 }
4569 }
4570 }
4571
4572 /**
4573 * Returns the appropriate Region for a triggered note.
4574 *
4575 * @param Key MIDI Key number of triggered note / key (0 - 127)
4576 * @returns pointer adress to the appropriate Region or NULL if there
4577 * there is no Region defined for the given \a Key
4578 */
4579 Region* Instrument::GetRegion(unsigned int Key) {
4580 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4581 return RegionKeyTable[Key];
4582
4583 /*for (int i = 0; i < Regions; i++) {
4584 if (Key <= pRegions[i]->KeyRange.high &&
4585 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4586 }
4587 return NULL;*/
4588 }
4589
4590 /**
4591 * Returns the first Region of the instrument. You have to call this
4592 * method once before you use GetNextRegion().
4593 *
4594 * @returns pointer address to first region or NULL if there is none
4595 * @see GetNextRegion()
4596 */
4597 Region* Instrument::GetFirstRegion() {
4598 if (!pRegions) return NULL;
4599 RegionsIterator = pRegions->begin();
4600 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4601 }
4602
4603 /**
4604 * Returns the next Region of the instrument. You have to call
4605 * GetFirstRegion() once before you can use this method. By calling this
4606 * method multiple times it iterates through the available Regions.
4607 *
4608 * @returns pointer address to the next region or NULL if end reached
4609 * @see GetFirstRegion()
4610 */
4611 Region* Instrument::GetNextRegion() {
4612 if (!pRegions) return NULL;
4613 RegionsIterator++;
4614 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4615 }
4616
4617 Region* Instrument::AddRegion() {
4618 // create new Region object (and its RIFF chunks)
4619 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4620 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4621 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4622 Region* pNewRegion = new Region(this, rgn);
4623 pRegions->push_back(pNewRegion);
4624 Regions = pRegions->size();
4625 // update Region key table for fast lookup
4626 UpdateRegionKeyTable();
4627 // done
4628 return pNewRegion;
4629 }
4630
4631 void Instrument::DeleteRegion(Region* pRegion) {
4632 if (!pRegions) return;
4633 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4634 // update Region key table for fast lookup
4635 UpdateRegionKeyTable();
4636 }
4637
4638 /**
4639 * Returns a MIDI rule of the instrument.
4640 *
4641 * The list of MIDI rules, at least in gig v3, always contains at
4642 * most two rules. The second rule can only be the DEF filter
4643 * (which currently isn't supported by libgig).
4644 *
4645 * @param i - MIDI rule number
4646 * @returns pointer address to MIDI rule number i or NULL if there is none
4647 */
4648 MidiRule* Instrument::GetMidiRule(int i) {
4649 return pMidiRules[i];
4650 }
4651
4652 /**
4653 * Adds the "controller trigger" MIDI rule to the instrument.
4654 *
4655 * @returns the new MIDI rule
4656 */
4657 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4658 delete pMidiRules[0];
4659 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4660 pMidiRules[0] = r;
4661 pMidiRules[1] = 0;
4662 return r;
4663 }
4664
4665 /**
4666 * Adds the legato MIDI rule to the instrument.
4667 *
4668 * @returns the new MIDI rule
4669 */
4670 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4671 delete pMidiRules[0];
4672 MidiRuleLegato* r = new MidiRuleLegato;
4673 pMidiRules[0] = r;
4674 pMidiRules[1] = 0;
4675 return r;
4676 }
4677
4678 /**
4679 * Adds the alternator MIDI rule to the instrument.
4680 *
4681 * @returns the new MIDI rule
4682 */
4683 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4684 delete pMidiRules[0];
4685 MidiRuleAlternator* r = new MidiRuleAlternator;
4686 pMidiRules[0] = r;
4687 pMidiRules[1] = 0;
4688 return r;
4689 }
4690
4691 /**
4692 * Deletes a MIDI rule from the instrument.
4693 *
4694 * @param i - MIDI rule number
4695 */
4696 void Instrument::DeleteMidiRule(int i) {
4697 delete pMidiRules[i];
4698 pMidiRules[i] = 0;
4699 }
4700
4701 void Instrument::LoadScripts() {
4702 if (pScriptRefs) return;
4703 pScriptRefs = new std::vector<_ScriptPooolRef>;
4704 if (scriptPoolFileOffsets.empty()) return;
4705 File* pFile = (File*) GetParent();
4706 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4707 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4708 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4709 ScriptGroup* group = pFile->GetScriptGroup(i);
4710 for (uint s = 0; group->GetScript(s); ++s) {
4711 Script* script = group->GetScript(s);
4712 if (script->pChunk) {
4713 uint32_t offset = script->pChunk->GetFilePos() -
4714 script->pChunk->GetPos() -
4715 CHUNK_HEADER_SIZE;
4716 if (offset == soughtOffset)
4717 {
4718 _ScriptPooolRef ref;
4719 ref.script = script;
4720 ref.bypass = scriptPoolFileOffsets[k].bypass;
4721 pScriptRefs->push_back(ref);
4722 break;
4723 }
4724 }
4725 }
4726 }
4727 }
4728 // we don't need that anymore
4729 scriptPoolFileOffsets.clear();
4730 }
4731
4732 /** @brief Get instrument script (gig format extension).
4733 *
4734 * Returns the real-time instrument script of instrument script slot
4735 * @a index.
4736 *
4737 * @note This is an own format extension which did not exist i.e. in the
4738 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4739 * gigedit.
4740 *
4741 * @param index - instrument script slot index
4742 * @returns script or NULL if index is out of bounds
4743 */
4744 Script* Instrument::GetScriptOfSlot(uint index) {
4745 LoadScripts();
4746 if (index >= pScriptRefs->size()) return NULL;
4747 return pScriptRefs->at(index).script;
4748 }
4749
4750 /** @brief Add new instrument script slot (gig format extension).
4751 *
4752 * Add the given real-time instrument script reference to this instrument,
4753 * which shall be executed by the sampler for for this instrument. The
4754 * script will be added to the end of the script list of this instrument.
4755 * The positions of the scripts in the Instrument's Script list are
4756 * relevant, because they define in which order they shall be executed by
4757 * the sampler. For this reason it is also legal to add the same script
4758 * twice to an instrument, for example you might have a script called
4759 * "MyFilter" which performs an event filter task, and you might have
4760 * another script called "MyNoteTrigger" which triggers new notes, then you
4761 * might for example have the following list of scripts on the instrument:
4762 *
4763 * 1. Script "MyFilter"
4764 * 2. Script "MyNoteTrigger"
4765 * 3. Script "MyFilter"
4766 *
4767 * Which would make sense, because the 2nd script launched new events, which
4768 * you might need to filter as well.
4769 *
4770 * There are two ways to disable / "bypass" scripts. You can either disable
4771 * a script locally for the respective script slot on an instrument (i.e. by
4772 * passing @c false to the 2nd argument of this method, or by calling
4773 * SetScriptBypassed()). Or you can disable a script globally for all slots
4774 * and all instruments by setting Script::Bypass.
4775 *
4776 * @note This is an own format extension which did not exist i.e. in the
4777 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4778 * gigedit.
4779 *
4780 * @param pScript - script that shall be executed for this instrument
4781 * @param bypass - if enabled, the sampler shall skip executing this
4782 * script (in the respective list position)
4783 * @see SetScriptBypassed()
4784 */
4785 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4786 LoadScripts();
4787 _ScriptPooolRef ref = { pScript, bypass };
4788 pScriptRefs->push_back(ref);
4789 }
4790
4791 /** @brief Flip two script slots with each other (gig format extension).
4792 *
4793 * Swaps the position of the two given scripts in the Instrument's Script
4794 * list. The positions of the scripts in the Instrument's Script list are
4795 * relevant, because they define in which order they shall be executed by
4796 * the sampler.
4797 *
4798 * @note This is an own format extension which did not exist i.e. in the
4799 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4800 * gigedit.
4801 *
4802 * @param index1 - index of the first script slot to swap
4803 * @param index2 - index of the second script slot to swap
4804 */
4805 void Instrument::SwapScriptSlots(uint index1, uint index2) {
4806 LoadScripts();
4807 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4808 return;
4809 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4810 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4811 (*pScriptRefs)[index2] = tmp;
4812 }
4813
4814 /** @brief Remove script slot.
4815 *
4816 * Removes the script slot with the given slot index.
4817 *
4818 * @param index - index of script slot to remove
4819 */
4820 void Instrument::RemoveScriptSlot(uint index) {
4821 LoadScripts();
4822 if (index >= pScriptRefs->size()) return;
4823 pScriptRefs->erase( pScriptRefs->begin() + index );
4824 }
4825
4826 /** @brief Remove reference to given Script (gig format extension).
4827 *
4828 * This will remove all script slots on the instrument which are referencing
4829 * the given script.
4830 *
4831 * @note This is an own format extension which did not exist i.e. in the
4832 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4833 * gigedit.
4834 *
4835 * @param pScript - script reference to remove from this instrument
4836 * @see RemoveScriptSlot()
4837 */
4838 void Instrument::RemoveScript(Script* pScript) {
4839 LoadScripts();
4840 for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4841 if ((*pScriptRefs)[i].script == pScript) {
4842 pScriptRefs->erase( pScriptRefs->begin() + i );
4843 }
4844 }
4845 }
4846
4847 /** @brief Instrument's amount of script slots.
4848 *
4849 * This method returns the amount of script slots this instrument currently
4850 * uses.
4851 *
4852 * A script slot is a reference of a real-time instrument script to be
4853 * executed by the sampler. The scripts will be executed by the sampler in
4854 * sequence of the slots. One (same) script may be referenced multiple
4855 * times in different slots.
4856 *
4857 * @note This is an own format extension which did not exist i.e. in the
4858 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4859 * gigedit.
4860 */
4861 uint Instrument::ScriptSlotCount() const {
4862 return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4863 }
4864
4865 /** @brief Whether script execution shall be skipped.
4866 *
4867 * Defines locally for the Script reference slot in the Instrument's Script
4868 * list, whether the script shall be skipped by the sampler regarding
4869 * execution.
4870 *
4871 * It is also possible to ignore exeuction of the script globally, for all
4872 * slots and for all instruments by setting Script::Bypass.
4873 *
4874 * @note This is an own format extension which did not exist i.e. in the
4875 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4876 * gigedit.
4877 *
4878 * @param index - index of the script slot on this instrument
4879 * @see Script::Bypass
4880 */
4881 bool Instrument::IsScriptSlotBypassed(uint index) {
4882 if (index >= ScriptSlotCount()) return false;
4883 return pScriptRefs ? pScriptRefs->at(index).bypass
4884 : scriptPoolFileOffsets.at(index).bypass;
4885
4886 }
4887
4888 /** @brief Defines whether execution shall be skipped.
4889 *
4890 * You can call this method to define locally whether or whether not the
4891 * given script slot shall be executed by the sampler.
4892 *
4893 * @note This is an own format extension which did not exist i.e. in the
4894 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4895 * gigedit.
4896 *
4897 * @param index - script slot index on this instrument
4898 * @param bBypass - if true, the script slot will be skipped by the sampler
4899 * @see Script::Bypass
4900 */
4901 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4902 if (index >= ScriptSlotCount()) return;
4903 if (pScriptRefs)
4904 pScriptRefs->at(index).bypass = bBypass;
4905 else
4906 scriptPoolFileOffsets.at(index).bypass = bBypass;
4907 }
4908
4909 /**
4910 * Make a (semi) deep copy of the Instrument object given by @a orig
4911 * and assign it to this object.
4912 *
4913 * Note that all sample pointers referenced by @a orig are simply copied as
4914 * memory address. Thus the respective samples are shared, not duplicated!
4915 *
4916 * @param orig - original Instrument object to be copied from
4917 */
4918 void Instrument::CopyAssign(const Instrument* orig) {
4919 CopyAssign(orig, NULL);
4920 }
4921
4922 /**
4923 * Make a (semi) deep copy of the Instrument object given by @a orig
4924 * and assign it to this object.
4925 *
4926 * @param orig - original Instrument object to be copied from
4927 * @param mSamples - crosslink map between the foreign file's samples and
4928 * this file's samples
4929 */
4930 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4931 // handle base class
4932 // (without copying DLS region stuff)
4933 DLS::Instrument::CopyAssignCore(orig);
4934
4935 // handle own member variables
4936 Attenuation = orig->Attenuation;
4937 EffectSend = orig->EffectSend;
4938 FineTune = orig->FineTune;
4939 PitchbendRange = orig->PitchbendRange;
4940 PianoReleaseMode = orig->PianoReleaseMode;
4941 DimensionKeyRange = orig->DimensionKeyRange;
4942 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
4943 pScriptRefs = orig->pScriptRefs;
4944
4945 // free old midi rules
4946 for (int i = 0 ; pMidiRules[i] ; i++) {
4947 delete pMidiRules[i];
4948 }
4949 //TODO: MIDI rule copying
4950 pMidiRules[0] = NULL;
4951
4952 // delete all old regions
4953 while (Regions) DeleteRegion(GetFirstRegion());
4954 // create new regions and copy them from original
4955 {
4956 RegionList::const_iterator it = orig->pRegions->begin();
4957 for (int i = 0; i < orig->Regions; ++i, ++it) {
4958 Region* dstRgn = AddRegion();
4959 //NOTE: Region does semi-deep copy !
4960 dstRgn->CopyAssign(
4961 static_cast<gig::Region*>(*it),
4962 mSamples
4963 );
4964 }
4965 }
4966
4967 UpdateRegionKeyTable();
4968 }
4969
4970
4971 // *************** Group ***************
4972 // *
4973
4974 /** @brief Constructor.
4975 *
4976 * @param file - pointer to the gig::File object
4977 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4978 * NULL if this is a new Group
4979 */
4980 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4981 pFile = file;
4982 pNameChunk = ck3gnm;
4983 ::LoadString(pNameChunk, Name);
4984 }
4985
4986 Group::~Group() {
4987 // remove the chunk associated with this group (if any)
4988 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4989 }
4990
4991 /** @brief Update chunks with current group settings.
4992 *
4993 * Apply current Group field values to the respective chunks. You have
4994 * to call File::Save() to make changes persistent.
4995 *
4996 * Usually there is absolutely no need to call this method explicitly.
4997 * It will be called automatically when File::Save() was called.
4998 *
4999 * @param pProgress - callback function for progress notification
5000 */
5001 void Group::UpdateChunks(progress_t* pProgress) {
5002 // make sure <3gri> and <3gnl> list chunks exist
5003 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5004 if (!_3gri) {
5005 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5006 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5007 }
5008 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5009 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5010
5011 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5012 // v3 has a fixed list of 128 strings, find a free one
5013 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5014 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5015 pNameChunk = ck;
5016 break;
5017 }
5018 }
5019 }
5020
5021 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5022 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5023 }
5024
5025 /**
5026 * Returns the first Sample of this Group. You have to call this method
5027 * once before you use GetNextSample().
5028 *
5029 * <b>Notice:</b> this method might block for a long time, in case the
5030 * samples of this .gig file were not scanned yet
5031 *
5032 * @returns pointer address to first Sample or NULL if there is none
5033 * applied to this Group
5034 * @see GetNextSample()
5035 */
5036 Sample* Group::GetFirstSample() {
5037 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5038 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5039 if (pSample->GetGroup() == this) return pSample;
5040 }
5041 return NULL;
5042 }
5043
5044 /**
5045 * Returns the next Sample of the Group. You have to call
5046 * GetFirstSample() once before you can use this method. By calling this
5047 * method multiple times it iterates through the Samples assigned to
5048 * this Group.
5049 *
5050 * @returns pointer address to the next Sample of this Group or NULL if
5051 * end reached
5052 * @see GetFirstSample()
5053 */
5054 Sample* Group::GetNextSample() {
5055 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5056 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5057 if (pSample->GetGroup() == this) return pSample;
5058 }
5059 return NULL;
5060 }
5061
5062 /**
5063 * Move Sample given by \a pSample from another Group to this Group.
5064 */
5065 void Group::AddSample(Sample* pSample) {
5066 pSample->pGroup = this;
5067 }
5068
5069 /**
5070 * Move all members of this group to another group (preferably the 1st
5071 * one except this). This method is called explicitly by
5072 * File::DeleteGroup() thus when a Group was deleted. This code was
5073 * intentionally not placed in the destructor!
5074 */
5075 void Group::MoveAll() {
5076 // get "that" other group first
5077 Group* pOtherGroup = NULL;
5078 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5079 if (pOtherGroup != this) break;
5080 }
5081 if (!pOtherGroup) throw Exception(
5082 "Could not move samples to another group, since there is no "
5083 "other Group. This is a bug, report it!"
5084 );
5085 // now move all samples of this group to the other group
5086 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5087 pOtherGroup->AddSample(pSample);
5088 }
5089 }
5090
5091
5092
5093 // *************** File ***************
5094 // *
5095
5096 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5097 const DLS::version_t File::VERSION_2 = {
5098 0, 2, 19980628 & 0xffff, 19980628 >> 16
5099 };
5100
5101 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5102 const DLS::version_t File::VERSION_3 = {
5103 0, 3, 20030331 & 0xffff, 20030331 >> 16
5104 };
5105
5106 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5107 { CHUNK_ID_IARL, 256 },
5108 { CHUNK_ID_IART, 128 },
5109 { CHUNK_ID_ICMS, 128 },
5110 { CHUNK_ID_ICMT, 1024 },
5111 { CHUNK_ID_ICOP, 128 },
5112 { CHUNK_ID_ICRD, 128 },
5113 { CHUNK_ID_IENG, 128 },
5114 { CHUNK_ID_IGNR, 128 },
5115 { CHUNK_ID_IKEY, 128 },
5116 { CHUNK_ID_IMED, 128 },
5117 { CHUNK_ID_INAM, 128 },
5118 { CHUNK_ID_IPRD, 128 },
5119 { CHUNK_ID_ISBJ, 128 },
5120 { CHUNK_ID_ISFT, 128 },
5121 { CHUNK_ID_ISRC, 128 },
5122 { CHUNK_ID_ISRF, 128 },
5123 { CHUNK_ID_ITCH, 128 },
5124 { 0, 0 }
5125 };
5126
5127 File::File() : DLS::File() {
5128 bAutoLoad = true;
5129 *pVersion = VERSION_3;
5130 pGroups = NULL;
5131 pScriptGroups = NULL;
5132 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5133 pInfo->ArchivalLocation = String(256, ' ');
5134
5135 // add some mandatory chunks to get the file chunks in right
5136 // order (INFO chunk will be moved to first position later)
5137 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5138 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5139 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5140
5141 GenerateDLSID();
5142 }
5143
5144 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5145 bAutoLoad = true;
5146 pGroups = NULL;
5147 pScriptGroups = NULL;
5148 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5149 }
5150
5151 File::~File() {
5152 if (pGroups) {
5153 std::list<Group*>::iterator iter = pGroups->begin();
5154 std::list<Group*>::iterator end = pGroups->end();
5155 while (iter != end) {
5156 delete *iter;
5157 ++iter;
5158 }
5159 delete pGroups;
5160 }
5161 if (pScriptGroups) {
5162 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5163 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5164 while (iter != end) {
5165 delete *iter;
5166 ++iter;
5167 }
5168 delete pScriptGroups;
5169 }
5170 }
5171
5172 Sample* File::GetFirstSample(progress_t* pProgress) {
5173 if (!pSamples) LoadSamples(pProgress);
5174 if (!pSamples) return NULL;
5175 SamplesIterator = pSamples->begin();
5176 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5177 }
5178
5179 Sample* File::GetNextSample() {
5180 if (!pSamples) return NULL;
5181 SamplesIterator++;
5182 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5183 }
5184
5185 /**
5186 * Returns Sample object of @a index.
5187 *
5188 * @returns sample object or NULL if index is out of bounds
5189 */
5190 Sample* File::GetSample(uint index) {
5191 if (!pSamples) LoadSamples();
5192 if (!pSamples) return NULL;
5193 DLS::File::SampleList::iterator it = pSamples->begin();
5194 for (int i = 0; i < index; ++i) {
5195 ++it;
5196 if (it == pSamples->end()) return NULL;
5197 }
5198 if (it == pSamples->end()) return NULL;
5199 return static_cast<gig::Sample*>( *it );
5200 }
5201
5202 /** @brief Add a new sample.
5203 *
5204 * This will create a new Sample object for the gig file. You have to
5205 * call Save() to make this persistent to the file.
5206 *
5207 * @returns pointer to new Sample object
5208 */
5209 Sample* File::AddSample() {
5210 if (!pSamples) LoadSamples();
5211 __ensureMandatoryChunksExist();
5212 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5213 // create new Sample object and its respective 'wave' list chunk
5214 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5215 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5216
5217 // add mandatory chunks to get the chunks in right order
5218 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5219 wave->AddSubList(LIST_TYPE_INFO);
5220
5221 pSamples->push_back(pSample);
5222 return pSample;
5223 }
5224
5225 /** @brief Delete a sample.
5226 *
5227 * This will delete the given Sample object from the gig file. Any
5228 * references to this sample from Regions and DimensionRegions will be
5229 * removed. You have to call Save() to make this persistent to the file.
5230 *
5231 * @param pSample - sample to delete
5232 * @throws gig::Exception if given sample could not be found
5233 */
5234 void File::DeleteSample(Sample* pSample) {
5235 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5236 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5237 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5238 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5239 pSamples->erase(iter);
5240 delete pSample;
5241
5242 SampleList::iterator tmp = SamplesIterator;
5243 // remove all references to the sample
5244 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5245 instrument = GetNextInstrument()) {
5246 for (Region* region = instrument->GetFirstRegion() ; region ;
5247 region = instrument->GetNextRegion()) {
5248
5249 if (region->GetSample() == pSample) region->SetSample(NULL);
5250
5251 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5252 gig::DimensionRegion *d = region->pDimensionRegions[i];
5253 if (d->pSample == pSample) d->pSample = NULL;
5254 }
5255 }
5256 }
5257 SamplesIterator = tmp; // restore iterator
5258 }
5259
5260 void File::LoadSamples() {
5261 LoadSamples(NULL);
5262 }
5263
5264 void File::LoadSamples(progress_t* pProgress) {
5265 // Groups must be loaded before samples, because samples will try
5266 // to resolve the group they belong to
5267 if (!pGroups) LoadGroups();
5268
5269 if (!pSamples) pSamples = new SampleList;
5270
5271 RIFF::File* file = pRIFF;
5272
5273 // just for progress calculation
5274 int iSampleIndex = 0;
5275 int iTotalSamples = WavePoolCount;
5276
5277 // check if samples should be loaded from extension files
5278 int lastFileNo = 0;
5279 for (int i = 0 ; i < WavePoolCount ; i++) {
5280 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5281 }
5282 String name(pRIFF->GetFileName());
5283 int nameLen = name.length();
5284 char suffix[6];
5285 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5286
5287 for (int fileNo = 0 ; ; ) {
5288 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5289 if (wvpl) {
5290 unsigned long wvplFileOffset = wvpl->GetFilePos();
5291 RIFF::List* wave = wvpl->GetFirstSubList();
5292 while (wave) {
5293 if (wave->GetListType() == LIST_TYPE_WAVE) {
5294 // notify current progress
5295 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5296 __notify_progress(pProgress, subprogress);
5297
5298 unsigned long waveFileOffset = wave->GetFilePos();
5299 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5300
5301 iSampleIndex++;
5302 }
5303 wave = wvpl->GetNextSubList();
5304 }
5305
5306 if (fileNo == lastFileNo) break;
5307
5308 // open extension file (*.gx01, *.gx02, ...)
5309 fileNo++;
5310 sprintf(suffix, ".gx%02d", fileNo);
5311 name.replace(nameLen, 5, suffix);
5312 file = new RIFF::File(name);
5313 ExtensionFiles.push_back(file);
5314 } else break;
5315 }
5316
5317 __notify_progress(pProgress, 1.0); // notify done
5318 }
5319
5320 Instrument* File::GetFirstInstrument() {
5321 if (!pInstruments) LoadInstruments();
5322 if (!pInstruments) return NULL;
5323 InstrumentsIterator = pInstruments->begin();
5324 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5325 }
5326
5327 Instrument* File::GetNextInstrument() {
5328 if (!pInstruments) return NULL;
5329 InstrumentsIterator++;
5330 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5331 }
5332
5333 /**
5334 * Returns the instrument with the given index.
5335 *
5336 * @param index - number of the sought instrument (0..n)
5337 * @param pProgress - optional: callback function for progress notification
5338 * @returns sought instrument or NULL if there's no such instrument
5339 */
5340 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5341 if (!pInstruments) {
5342 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5343
5344 // sample loading subtask
5345 progress_t subprogress;
5346 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5347 __notify_progress(&subprogress, 0.0f);
5348 if (GetAutoLoad())
5349 GetFirstSample(&subprogress); // now force all samples to be loaded
5350 __notify_progress(&subprogress, 1.0f);
5351
5352 // instrument loading subtask
5353 if (pProgress && pProgress->callback) {
5354 subprogress.__range_min = subprogress.__range_max;
5355 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5356 }
5357 __notify_progress(&subprogress, 0.0f);
5358 LoadInstruments(&subprogress);
5359 __notify_progress(&subprogress, 1.0f);
5360 }
5361 if (!pInstruments) return NULL;
5362 InstrumentsIterator = pInstruments->begin();
5363 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5364 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5365 InstrumentsIterator++;
5366 }
5367 return NULL;
5368 }
5369
5370 /** @brief Add a new instrument definition.
5371 *
5372 * This will create a new Instrument object for the gig file. You have
5373 * to call Save() to make this persistent to the file.
5374 *
5375 * @returns pointer to new Instrument object
5376 */
5377 Instrument* File::AddInstrument() {
5378 if (!pInstruments) LoadInstruments();
5379 __ensureMandatoryChunksExist();
5380 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5381 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5382
5383 // add mandatory chunks to get the chunks in right order
5384 lstInstr->AddSubList(LIST_TYPE_INFO);
5385 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5386
5387 Instrument* pInstrument = new Instrument(this, lstInstr);
5388 pInstrument->GenerateDLSID();
5389
5390 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5391
5392 // this string is needed for the gig to be loadable in GSt:
5393 pInstrument->pInfo->Software = "Endless Wave";
5394
5395 pInstruments->push_back(pInstrument);
5396 return pInstrument;
5397 }
5398
5399 /** @brief Add a duplicate of an existing instrument.
5400 *
5401 * Duplicates the instrument definition given by @a orig and adds it
5402 * to this file. This allows in an instrument editor application to
5403 * easily create variations of an instrument, which will be stored in
5404 * the same .gig file, sharing i.e. the same samples.
5405 *
5406 * Note that all sample pointers referenced by @a orig are simply copied as
5407 * memory address. Thus the respective samples are shared, not duplicated!
5408 *
5409 * You have to call Save() to make this persistent to the file.
5410 *
5411 * @param orig - original instrument to be copied
5412 * @returns duplicated copy of the given instrument
5413 */
5414 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5415 Instrument* instr = AddInstrument();
5416 instr->CopyAssign(orig);
5417 return instr;
5418 }
5419
5420 /** @brief Add content of another existing file.
5421 *
5422 * Duplicates the samples, groups and instruments of the original file
5423 * given by @a pFile and adds them to @c this File. In case @c this File is
5424 * a new one that you haven't saved before, then you have to call
5425 * SetFileName() before calling AddContentOf(), because this method will
5426 * automatically save this file during operation, which is required for
5427 * writing the sample waveform data by disk streaming.
5428 *
5429 * @param pFile - original file whose's content shall be copied from
5430 */
5431 void File::AddContentOf(File* pFile) {
5432 static int iCallCount = -1;
5433 iCallCount++;
5434 std::map<Group*,Group*> mGroups;
5435 std::map<Sample*,Sample*> mSamples;
5436
5437 // clone sample groups
5438 for (int i = 0; pFile->GetGroup(i); ++i) {
5439 Group* g = AddGroup();
5440 g->Name =
5441 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5442 mGroups[pFile->GetGroup(i)] = g;
5443 }
5444
5445 // clone samples (not waveform data here yet)
5446 for (int i = 0; pFile->GetSample(i); ++i) {
5447 Sample* s = AddSample();
5448 s->CopyAssignMeta(pFile->GetSample(i));
5449 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5450 mSamples[pFile->GetSample(i)] = s;
5451 }
5452
5453 //BUG: For some reason this method only works with this additional
5454 // Save() call in between here.
5455 //
5456 // Important: The correct one of the 2 Save() methods has to be called
5457 // here, depending on whether the file is completely new or has been
5458 // saved to disk already, otherwise it will result in data corruption.
5459 if (pRIFF->IsNew())
5460 Save(GetFileName());
5461 else
5462 Save();
5463
5464 // clone instruments
5465 // (passing the crosslink table here for the cloned samples)
5466 for (int i = 0; pFile->GetInstrument(i); ++i) {
5467 Instrument* instr = AddInstrument();
5468 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5469 }
5470
5471 // Mandatory: file needs to be saved to disk at this point, so this
5472 // file has the correct size and data layout for writing the samples'
5473 // waveform data to disk.
5474 Save();
5475
5476 // clone samples' waveform data
5477 // (using direct read & write disk streaming)
5478 for (int i = 0; pFile->GetSample(i); ++i) {
5479 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5480 }
5481 }
5482
5483 /** @brief Delete an instrument.
5484 *
5485 * This will delete the given Instrument object from the gig file. You
5486 * have to call Save() to make this persistent to the file.
5487 *
5488 * @param pInstrument - instrument to delete
5489 * @throws gig::Exception if given instrument could not be found
5490 */
5491 void File::DeleteInstrument(Instrument* pInstrument) {
5492 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5493 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5494 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5495 pInstruments->erase(iter);
5496 delete pInstrument;
5497 }
5498
5499 void File::LoadInstruments() {
5500 LoadInstruments(NULL);
5501 }
5502
5503 void File::LoadInstruments(progress_t* pProgress) {
5504 if (!pInstruments) pInstruments = new InstrumentList;
5505 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5506 if (lstInstruments) {
5507 int iInstrumentIndex = 0;
5508 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5509 while (lstInstr) {
5510 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5511 // notify current progress
5512 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5513 __notify_progress(pProgress, localProgress);
5514
5515 // divide local progress into subprogress for loading current Instrument
5516 progress_t subprogress;
5517 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5518
5519 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5520
5521 iInstrumentIndex++;
5522 }
5523 lstInstr = lstInstruments->GetNextSubList();
5524 }
5525 __notify_progress(pProgress, 1.0); // notify done
5526 }
5527 }
5528
5529 /// Updates the 3crc chunk with the checksum of a sample. The
5530 /// update is done directly to disk, as this method is called
5531 /// after File::Save()
5532 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5533 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5534 if (!_3crc) return;
5535
5536 // get the index of the sample
5537 int iWaveIndex = -1;
5538 File::SampleList::iterator iter = pSamples->begin();
5539 File::SampleList::iterator end = pSamples->end();
5540 for (int index = 0; iter != end; ++iter, ++index) {
5541 if (*iter == pSample) {
5542 iWaveIndex = index;
5543 break;
5544 }
5545 }
5546 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5547
5548 // write the CRC-32 checksum to disk
5549 _3crc->SetPos(iWaveIndex * 8);
5550 uint32_t tmp = 1;
5551 _3crc->WriteUint32(&tmp); // unknown, always 1?
5552 _3crc->WriteUint32(&crc);
5553 }
5554
5555 Group* File::GetFirstGroup() {
5556 if (!pGroups) LoadGroups();
5557 // there must always be at least one group
5558 GroupsIterator = pGroups->begin();
5559 return *GroupsIterator;
5560 }
5561
5562 Group* File::GetNextGroup() {
5563 if (!pGroups) return NULL;
5564 ++GroupsIterator;
5565 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5566 }
5567
5568 /**
5569 * Returns the group with the given index.
5570 *
5571 * @param index - number of the sought group (0..n)
5572 * @returns sought group or NULL if there's no such group
5573 */
5574 Group* File::GetGroup(uint index) {
5575 if (!pGroups) LoadGroups();
5576 GroupsIterator = pGroups->begin();
5577 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5578 if (i == index) return *GroupsIterator;
5579 ++GroupsIterator;
5580 }
5581 return NULL;
5582 }
5583
5584 /**
5585 * Returns the group with the given group name.
5586 *
5587 * Note: group names don't have to be unique in the gig format! So there
5588 * can be multiple groups with the same name. This method will simply
5589 * return the first group found with the given name.
5590 *
5591 * @param name - name of the sought group
5592 * @returns sought group or NULL if there's no group with that name
5593 */
5594 Group* File::GetGroup(String name) {
5595 if (!pGroups) LoadGroups();
5596 GroupsIterator = pGroups->begin();
5597 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5598 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5599 return NULL;
5600 }
5601
5602 Group* File::AddGroup() {
5603 if (!pGroups) LoadGroups();
5604 // there must always be at least one group
5605 __ensureMandatoryChunksExist();
5606 Group* pGroup = new Group(this, NULL);
5607 pGroups->push_back(pGroup);
5608 return pGroup;
5609 }
5610
5611 /** @brief Delete a group and its samples.
5612 *
5613 * This will delete the given Group object and all the samples that
5614 * belong to this group from the gig file. You have to call Save() to
5615 * make this persistent to the file.
5616 *
5617 * @param pGroup - group to delete
5618 * @throws gig::Exception if given group could not be found
5619 */
5620 void File::DeleteGroup(Group* pGroup) {
5621 if (!pGroups) LoadGroups();
5622 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5623 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5624 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5625 // delete all members of this group
5626 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5627 DeleteSample(pSample);
5628 }
5629 // now delete this group object
5630 pGroups->erase(iter);
5631 delete pGroup;
5632 }
5633
5634 /** @brief Delete a group.
5635 *
5636 * This will delete the given Group object from the gig file. All the
5637 * samples that belong to this group will not be deleted, but instead
5638 * be moved to another group. You have to call Save() to make this
5639 * persistent to the file.
5640 *
5641 * @param pGroup - group to delete
5642 * @throws gig::Exception if given group could not be found
5643 */
5644 void File::DeleteGroupOnly(Group* pGroup) {
5645 if (!pGroups) LoadGroups();
5646 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5647 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5648 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5649 // move all members of this group to another group
5650 pGroup->MoveAll();
5651 pGroups->erase(iter);
5652 delete pGroup;
5653 }
5654
5655 void File::LoadGroups() {
5656 if (!pGroups) pGroups = new std::list<Group*>;
5657 // try to read defined groups from file
5658 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5659 if (lst3gri) {
5660 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5661 if (lst3gnl) {
5662 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5663 while (ck) {
5664 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5665 if (pVersion && pVersion->major == 3 &&
5666 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5667
5668 pGroups->push_back(new Group(this, ck));
5669 }
5670 ck = lst3gnl->GetNextSubChunk();
5671 }
5672 }
5673 }
5674 // if there were no group(s), create at least the mandatory default group
5675 if (!pGroups->size()) {
5676 Group* pGroup = new Group(this, NULL);
5677 pGroup->Name = "Default Group";
5678 pGroups->push_back(pGroup);
5679 }
5680 }
5681
5682 /** @brief Get instrument script group (by index).
5683 *
5684 * Returns the real-time instrument script group with the given index.
5685 *
5686 * @param index - number of the sought group (0..n)
5687 * @returns sought script group or NULL if there's no such group
5688 */
5689 ScriptGroup* File::GetScriptGroup(uint index) {
5690 if (!pScriptGroups) LoadScriptGroups();
5691 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5692 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5693 if (i == index) return *it;
5694 return NULL;
5695 }
5696
5697 /** @brief Get instrument script group (by name).
5698 *
5699 * Returns the first real-time instrument script group found with the given
5700 * group name. Note that group names may not necessarily be unique.
5701 *
5702 * @param name - name of the sought script group
5703 * @returns sought script group or NULL if there's no such group
5704 */
5705 ScriptGroup* File::GetScriptGroup(const String& name) {
5706 if (!pScriptGroups) LoadScriptGroups();
5707 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5708 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5709 if ((*it)->Name == name) return *it;
5710 return NULL;
5711 }
5712
5713 /** @brief Add new instrument script group.
5714 *
5715 * Adds a new, empty real-time instrument script group to the file.
5716 *
5717 * You have to call Save() to make this persistent to the file.
5718 *
5719 * @return new empty script group
5720 */
5721 ScriptGroup* File::AddScriptGroup() {
5722 if (!pScriptGroups) LoadScriptGroups();
5723 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5724 pScriptGroups->push_back(pScriptGroup);
5725 return pScriptGroup;
5726 }
5727
5728 /** @brief Delete an instrument script group.
5729 *
5730 * This will delete the given real-time instrument script group and all its
5731 * instrument scripts it contains. References inside instruments that are
5732 * using the deleted scripts will be removed from the respective instruments
5733 * accordingly.
5734 *
5735 * You have to call Save() to make this persistent to the file.
5736 *
5737 * @param pScriptGroup - script group to delete
5738 * @throws gig::Exception if given script group could not be found
5739 */
5740 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5741 if (!pScriptGroups) LoadScriptGroups();
5742 std::list<ScriptGroup*>::iterator iter =
5743 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5744 if (iter == pScriptGroups->end())
5745 throw gig::Exception("Could not delete script group, could not find given script group");
5746 pScriptGroups->erase(iter);
5747 for (int i = 0; pScriptGroup->GetScript(i); ++i)
5748 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5749 if (pScriptGroup->pList)
5750 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5751 delete pScriptGroup;
5752 }
5753
5754 void File::LoadScriptGroups() {
5755 if (pScriptGroups) return;
5756 pScriptGroups = new std::list<ScriptGroup*>;
5757 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5758 if (lstLS) {
5759 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5760 lst = lstLS->GetNextSubList())
5761 {
5762 if (lst->GetListType() == LIST_TYPE_RTIS) {
5763 pScriptGroups->push_back(new ScriptGroup(this, lst));
5764 }
5765 }
5766 }
5767 }
5768
5769 /**
5770 * Apply all the gig file's current instruments, samples, groups and settings
5771 * to the respective RIFF chunks. You have to call Save() to make changes
5772 * persistent.
5773 *
5774 * Usually there is absolutely no need to call this method explicitly.
5775 * It will be called automatically when File::Save() was called.
5776 *
5777 * @param pProgress - callback function for progress notification
5778 * @throws Exception - on errors
5779 */
5780 void File::UpdateChunks(progress_t* pProgress) {
5781 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5782
5783 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
5784
5785 // update own gig format extension chunks
5786 // (not part of the GigaStudio 4 format)
5787 //
5788 // This must be performed before writing the chunks for instruments,
5789 // because the instruments' script slots will write the file offsets
5790 // of the respective instrument script chunk as reference.
5791 if (pScriptGroups) {
5792 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5793 if (pScriptGroups->empty()) {
5794 if (lst3LS) pRIFF->DeleteSubChunk(lst3LS);
5795 } else {
5796 if (!lst3LS) lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5797
5798 // Update instrument script (group) chunks.
5799
5800 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5801 it != pScriptGroups->end(); ++it)
5802 {
5803 (*it)->UpdateChunks(pProgress);
5804 }
5805 }
5806 }
5807
5808 // first update base class's chunks
5809 DLS::File::UpdateChunks(pProgress);
5810
5811 if (newFile) {
5812 // INFO was added by Resource::UpdateChunks - make sure it
5813 // is placed first in file
5814 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5815 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5816 if (first != info) {
5817 pRIFF->MoveSubChunk(info, first);
5818 }
5819 }
5820
5821 // update group's chunks
5822 if (pGroups) {
5823 // make sure '3gri' and '3gnl' list chunks exist
5824 // (before updating the Group chunks)
5825 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5826 if (!_3gri) {
5827 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5828 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5829 }
5830 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5831 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5832
5833 // v3: make sure the file has 128 3gnm chunks
5834 // (before updating the Group chunks)
5835 if (pVersion && pVersion->major == 3) {
5836 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5837 for (int i = 0 ; i < 128 ; i++) {
5838 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5839 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5840 }
5841 }
5842
5843 std::list<Group*>::iterator iter = pGroups->begin();
5844 std::list<Group*>::iterator end = pGroups->end();
5845 for (; iter != end; ++iter) {
5846 (*iter)->UpdateChunks(pProgress);
5847 }
5848 }
5849
5850 // update einf chunk
5851
5852 // The einf chunk contains statistics about the gig file, such
5853 // as the number of regions and samples used by each
5854 // instrument. It is divided in equally sized parts, where the
5855 // first part contains information about the whole gig file,
5856 // and the rest of the parts map to each instrument in the
5857 // file.
5858 //
5859 // At the end of each part there is a bit map of each sample
5860 // in the file, where a set bit means that the sample is used
5861 // by the file/instrument.
5862 //
5863 // Note that there are several fields with unknown use. These
5864 // are set to zero.
5865
5866 int sublen = pSamples->size() / 8 + 49;
5867 int einfSize = (Instruments + 1) * sublen;
5868
5869 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5870 if (einf) {
5871 if (einf->GetSize() != einfSize) {
5872 einf->Resize(einfSize);
5873 memset(einf->LoadChunkData(), 0, einfSize);
5874 }
5875 } else if (newFile) {
5876 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5877 }
5878 if (einf) {
5879 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5880
5881 std::map<gig::Sample*,int> sampleMap;
5882 int sampleIdx = 0;
5883 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5884 sampleMap[pSample] = sampleIdx++;
5885 }
5886
5887 int totnbusedsamples = 0;
5888 int totnbusedchannels = 0;
5889 int totnbregions = 0;
5890 int totnbdimregions = 0;
5891 int totnbloops = 0;
5892 int instrumentIdx = 0;
5893
5894 memset(&pData[48], 0, sublen - 48);
5895
5896 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5897 instrument = GetNextInstrument()) {
5898 int nbusedsamples = 0;
5899 int nbusedchannels = 0;
5900 int nbdimregions = 0;
5901 int nbloops = 0;
5902
5903 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5904
5905 for (Region* region = instrument->GetFirstRegion() ; region ;
5906 region = instrument->GetNextRegion()) {
5907 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5908 gig::DimensionRegion *d = region->pDimensionRegions[i];
5909 if (d->pSample) {
5910 int sampleIdx = sampleMap[d->pSample];
5911 int byte = 48 + sampleIdx / 8;
5912 int bit = 1 << (sampleIdx & 7);
5913 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5914 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
5915 nbusedsamples++;
5916 nbusedchannels += d->pSample->Channels;
5917
5918 if ((pData[byte] & bit) == 0) {
5919 pData[byte] |= bit;
5920 totnbusedsamples++;
5921 totnbusedchannels += d->pSample->Channels;
5922 }
5923 }
5924 }
5925 if (d->SampleLoops) nbloops++;
5926 }
5927 nbdimregions += region->DimensionRegions;
5928 }
5929 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5930 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
5931 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
5932 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
5933 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
5934 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
5935 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
5936 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
5937 // next 8 bytes unknown
5938 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
5939 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
5940 // next 4 bytes unknown
5941
5942 totnbregions += instrument->Regions;
5943 totnbdimregions += nbdimregions;
5944 totnbloops += nbloops;
5945 instrumentIdx++;
5946 }
5947 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5948 // store32(&pData[0], sublen);
5949 store32(&pData[4], totnbusedchannels);
5950 store32(&pData[8], totnbusedsamples);
5951 store32(&pData[12], Instruments);
5952 store32(&pData[16], totnbregions);
5953 store32(&pData[20], totnbdimregions);
5954 store32(&pData[24], totnbloops);
5955 // next 8 bytes unknown
5956 // next 4 bytes unknown, not always 0
5957 store32(&pData[40], pSamples->size());
5958 // next 4 bytes unknown
5959 }
5960
5961 // update 3crc chunk
5962
5963 // The 3crc chunk contains CRC-32 checksums for the
5964 // samples. The actual checksum values will be filled in
5965 // later, by Sample::Write.
5966
5967 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5968 if (_3crc) {
5969 _3crc->Resize(pSamples->size() * 8);
5970 } else if (newFile) {
5971 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5972 _3crc->LoadChunkData();
5973
5974 // the order of einf and 3crc is not the same in v2 and v3
5975 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5976 }
5977 }
5978
5979 void File::UpdateFileOffsets() {
5980 DLS::File::UpdateFileOffsets();
5981
5982 for (Instrument* instrument = GetFirstInstrument(); instrument;
5983 instrument = GetNextInstrument())
5984 {
5985 instrument->UpdateScriptFileOffsets();
5986 }
5987 }
5988
5989 /**
5990 * Enable / disable automatic loading. By default this properyt is
5991 * enabled and all informations are loaded automatically. However
5992 * loading all Regions, DimensionRegions and especially samples might
5993 * take a long time for large .gig files, and sometimes one might only
5994 * be interested in retrieving very superficial informations like the
5995 * amount of instruments and their names. In this case one might disable
5996 * automatic loading to avoid very slow response times.
5997 *
5998 * @e CAUTION: by disabling this property many pointers (i.e. sample
5999 * references) and informations will have invalid or even undefined
6000 * data! This feature is currently only intended for retrieving very
6001 * superficial informations in a very fast way. Don't use it to retrieve
6002 * details like synthesis informations or even to modify .gig files!
6003 */
6004 void File::SetAutoLoad(bool b) {
6005 bAutoLoad = b;
6006 }
6007
6008 /**
6009 * Returns whether automatic loading is enabled.
6010 * @see SetAutoLoad()
6011 */
6012 bool File::GetAutoLoad() {
6013 return bAutoLoad;
6014 }
6015
6016
6017
6018 // *************** Exception ***************
6019 // *
6020
6021 Exception::Exception(String Message) : DLS::Exception(Message) {
6022 }
6023
6024 void Exception::PrintMessage() {
6025 std::cout << "gig::Exception: " << Message << std::endl;
6026 }
6027
6028
6029 // *************** functions ***************
6030 // *
6031
6032 /**
6033 * Returns the name of this C++ library. This is usually "libgig" of
6034 * course. This call is equivalent to RIFF::libraryName() and
6035 * DLS::libraryName().
6036 */
6037 String libraryName() {
6038 return PACKAGE;
6039 }
6040
6041 /**
6042 * Returns version of this C++ library. This call is equivalent to
6043 * RIFF::libraryVersion() and DLS::libraryVersion().
6044 */
6045 String libraryVersion() {
6046 return VERSION;
6047 }
6048
6049 } // namespace gig

  ViewVC Help
Powered by ViewVC