/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2922 - (show annotations) (download)
Wed May 18 18:04:49 2016 UTC (4 years, 5 months ago) by schoenebeck
File size: 266362 byte(s)
* Using now native integer size where appropriate.
* Bumped version (4.0.0.svn5).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// libgig's current file format version (for extending the original Giga file
34 /// format with libgig's own custom data / custom features).
35 #define GIG_FILE_EXT_VERSION 2
36
37 /// Initial size of the sample buffer which is used for decompression of
38 /// compressed sample wave streams - this value should always be bigger than
39 /// the biggest sample piece expected to be read by the sampler engine,
40 /// otherwise the buffer size will be raised at runtime and thus the buffer
41 /// reallocated which is time consuming and unefficient.
42 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43
44 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57
58 namespace gig {
59
60 // *************** Internal functions for sample decompression ***************
61 // *
62
63 namespace {
64
65 inline int get12lo(const unsigned char* pSrc)
66 {
67 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68 return x & 0x800 ? x - 0x1000 : x;
69 }
70
71 inline int get12hi(const unsigned char* pSrc)
72 {
73 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74 return x & 0x800 ? x - 0x1000 : x;
75 }
76
77 inline int16_t get16(const unsigned char* pSrc)
78 {
79 return int16_t(pSrc[0] | pSrc[1] << 8);
80 }
81
82 inline int get24(const unsigned char* pSrc)
83 {
84 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85 return x & 0x800000 ? x - 0x1000000 : x;
86 }
87
88 inline void store24(unsigned char* pDst, int x)
89 {
90 pDst[0] = x;
91 pDst[1] = x >> 8;
92 pDst[2] = x >> 16;
93 }
94
95 void Decompress16(int compressionmode, const unsigned char* params,
96 int srcStep, int dstStep,
97 const unsigned char* pSrc, int16_t* pDst,
98 file_offset_t currentframeoffset,
99 file_offset_t copysamples)
100 {
101 switch (compressionmode) {
102 case 0: // 16 bit uncompressed
103 pSrc += currentframeoffset * srcStep;
104 while (copysamples) {
105 *pDst = get16(pSrc);
106 pDst += dstStep;
107 pSrc += srcStep;
108 copysamples--;
109 }
110 break;
111
112 case 1: // 16 bit compressed to 8 bit
113 int y = get16(params);
114 int dy = get16(params + 2);
115 while (currentframeoffset) {
116 dy -= int8_t(*pSrc);
117 y -= dy;
118 pSrc += srcStep;
119 currentframeoffset--;
120 }
121 while (copysamples) {
122 dy -= int8_t(*pSrc);
123 y -= dy;
124 *pDst = y;
125 pDst += dstStep;
126 pSrc += srcStep;
127 copysamples--;
128 }
129 break;
130 }
131 }
132
133 void Decompress24(int compressionmode, const unsigned char* params,
134 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 file_offset_t currentframeoffset,
136 file_offset_t copysamples, int truncatedBits)
137 {
138 int y, dy, ddy, dddy;
139
140 #define GET_PARAMS(params) \
141 y = get24(params); \
142 dy = y - get24((params) + 3); \
143 ddy = get24((params) + 6); \
144 dddy = get24((params) + 9)
145
146 #define SKIP_ONE(x) \
147 dddy -= (x); \
148 ddy -= dddy; \
149 dy = -dy - ddy; \
150 y += dy
151
152 #define COPY_ONE(x) \
153 SKIP_ONE(x); \
154 store24(pDst, y << truncatedBits); \
155 pDst += dstStep
156
157 switch (compressionmode) {
158 case 2: // 24 bit uncompressed
159 pSrc += currentframeoffset * 3;
160 while (copysamples) {
161 store24(pDst, get24(pSrc) << truncatedBits);
162 pDst += dstStep;
163 pSrc += 3;
164 copysamples--;
165 }
166 break;
167
168 case 3: // 24 bit compressed to 16 bit
169 GET_PARAMS(params);
170 while (currentframeoffset) {
171 SKIP_ONE(get16(pSrc));
172 pSrc += 2;
173 currentframeoffset--;
174 }
175 while (copysamples) {
176 COPY_ONE(get16(pSrc));
177 pSrc += 2;
178 copysamples--;
179 }
180 break;
181
182 case 4: // 24 bit compressed to 12 bit
183 GET_PARAMS(params);
184 while (currentframeoffset > 1) {
185 SKIP_ONE(get12lo(pSrc));
186 SKIP_ONE(get12hi(pSrc));
187 pSrc += 3;
188 currentframeoffset -= 2;
189 }
190 if (currentframeoffset) {
191 SKIP_ONE(get12lo(pSrc));
192 currentframeoffset--;
193 if (copysamples) {
194 COPY_ONE(get12hi(pSrc));
195 pSrc += 3;
196 copysamples--;
197 }
198 }
199 while (copysamples > 1) {
200 COPY_ONE(get12lo(pSrc));
201 COPY_ONE(get12hi(pSrc));
202 pSrc += 3;
203 copysamples -= 2;
204 }
205 if (copysamples) {
206 COPY_ONE(get12lo(pSrc));
207 }
208 break;
209
210 case 5: // 24 bit compressed to 8 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(int8_t(*pSrc++));
214 currentframeoffset--;
215 }
216 while (copysamples) {
217 COPY_ONE(int8_t(*pSrc++));
218 copysamples--;
219 }
220 break;
221 }
222 }
223
224 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228 }
229
230
231
232 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233 // *
234
235 static uint32_t* __initCRCTable() {
236 static uint32_t res[256];
237
238 for (int i = 0 ; i < 256 ; i++) {
239 uint32_t c = i;
240 for (int j = 0 ; j < 8 ; j++) {
241 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242 }
243 res[i] = c;
244 }
245 return res;
246 }
247
248 static const uint32_t* __CRCTable = __initCRCTable();
249
250 /**
251 * Initialize a CRC variable.
252 *
253 * @param crc - variable to be initialized
254 */
255 inline static void __resetCRC(uint32_t& crc) {
256 crc = 0xffffffff;
257 }
258
259 /**
260 * Used to calculate checksums of the sample data in a gig file. The
261 * checksums are stored in the 3crc chunk of the gig file and
262 * automatically updated when a sample is written with Sample::Write().
263 *
264 * One should call __resetCRC() to initialize the CRC variable to be
265 * used before calling this function the first time.
266 *
267 * After initializing the CRC variable one can call this function
268 * arbitrary times, i.e. to split the overall CRC calculation into
269 * steps.
270 *
271 * Once the whole data was processed by __calculateCRC(), one should
272 * call __encodeCRC() to get the final CRC result.
273 *
274 * @param buf - pointer to data the CRC shall be calculated of
275 * @param bufSize - size of the data to be processed
276 * @param crc - variable the CRC sum shall be stored to
277 */
278 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279 for (int i = 0 ; i < bufSize ; i++) {
280 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281 }
282 }
283
284 /**
285 * Returns the final CRC result.
286 *
287 * @param crc - variable previously passed to __calculateCRC()
288 */
289 inline static uint32_t __encodeCRC(const uint32_t& crc) {
290 return crc ^ 0xffffffff;
291 }
292
293
294
295 // *************** Other Internal functions ***************
296 // *
297
298 static split_type_t __resolveSplitType(dimension_t dimension) {
299 return (
300 dimension == dimension_layer ||
301 dimension == dimension_samplechannel ||
302 dimension == dimension_releasetrigger ||
303 dimension == dimension_keyboard ||
304 dimension == dimension_roundrobin ||
305 dimension == dimension_random ||
306 dimension == dimension_smartmidi ||
307 dimension == dimension_roundrobinkeyboard
308 ) ? split_type_bit : split_type_normal;
309 }
310
311 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312 return (dimension_definition.split_type == split_type_normal)
313 ? int(128.0 / dimension_definition.zones) : 0;
314 }
315
316
317
318 // *************** Sample ***************
319 // *
320
321 size_t Sample::Instances = 0;
322 buffer_t Sample::InternalDecompressionBuffer;
323
324 /** @brief Constructor.
325 *
326 * Load an existing sample or create a new one. A 'wave' list chunk must
327 * be given to this constructor. In case the given 'wave' list chunk
328 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329 * format and sample data will be loaded from there, otherwise default
330 * values will be used and those chunks will be created when
331 * File::Save() will be called later on.
332 *
333 * @param pFile - pointer to gig::File where this sample is
334 * located (or will be located)
335 * @param waveList - pointer to 'wave' list chunk which is (or
336 * will be) associated with this sample
337 * @param WavePoolOffset - offset of this sample data from wave pool
338 * ('wvpl') list chunk
339 * @param fileNo - number of an extension file where this sample
340 * is located, 0 otherwise
341 */
342 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343 static const DLS::Info::string_length_t fixedStringLengths[] = {
344 { CHUNK_ID_INAM, 64 },
345 { 0, 0 }
346 };
347 pInfo->SetFixedStringLengths(fixedStringLengths);
348 Instances++;
349 FileNo = fileNo;
350
351 __resetCRC(crc);
352
353 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354 if (pCk3gix) {
355 uint16_t iSampleGroup = pCk3gix->ReadInt16();
356 pGroup = pFile->GetGroup(iSampleGroup);
357 } else { // '3gix' chunk missing
358 // by default assigned to that mandatory "Default Group"
359 pGroup = pFile->GetGroup(0);
360 }
361
362 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363 if (pCkSmpl) {
364 Manufacturer = pCkSmpl->ReadInt32();
365 Product = pCkSmpl->ReadInt32();
366 SamplePeriod = pCkSmpl->ReadInt32();
367 MIDIUnityNote = pCkSmpl->ReadInt32();
368 FineTune = pCkSmpl->ReadInt32();
369 pCkSmpl->Read(&SMPTEFormat, 1, 4);
370 SMPTEOffset = pCkSmpl->ReadInt32();
371 Loops = pCkSmpl->ReadInt32();
372 pCkSmpl->ReadInt32(); // manufByt
373 LoopID = pCkSmpl->ReadInt32();
374 pCkSmpl->Read(&LoopType, 1, 4);
375 LoopStart = pCkSmpl->ReadInt32();
376 LoopEnd = pCkSmpl->ReadInt32();
377 LoopFraction = pCkSmpl->ReadInt32();
378 LoopPlayCount = pCkSmpl->ReadInt32();
379 } else { // 'smpl' chunk missing
380 // use default values
381 Manufacturer = 0;
382 Product = 0;
383 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384 MIDIUnityNote = 60;
385 FineTune = 0;
386 SMPTEFormat = smpte_format_no_offset;
387 SMPTEOffset = 0;
388 Loops = 0;
389 LoopID = 0;
390 LoopType = loop_type_normal;
391 LoopStart = 0;
392 LoopEnd = 0;
393 LoopFraction = 0;
394 LoopPlayCount = 0;
395 }
396
397 FrameTable = NULL;
398 SamplePos = 0;
399 RAMCache.Size = 0;
400 RAMCache.pStart = NULL;
401 RAMCache.NullExtensionSize = 0;
402
403 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
404
405 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
406 Compressed = ewav;
407 Dithered = false;
408 TruncatedBits = 0;
409 if (Compressed) {
410 uint32_t version = ewav->ReadInt32();
411 if (version == 3 && BitDepth == 24) {
412 Dithered = ewav->ReadInt32();
413 ewav->SetPos(Channels == 2 ? 84 : 64);
414 TruncatedBits = ewav->ReadInt32();
415 }
416 ScanCompressedSample();
417 }
418
419 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
420 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
421 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
422 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
423 }
424 FrameOffset = 0; // just for streaming compressed samples
425
426 LoopSize = LoopEnd - LoopStart + 1;
427 }
428
429 /**
430 * Make a (semi) deep copy of the Sample object given by @a orig (without
431 * the actual waveform data) and assign it to this object.
432 *
433 * Discussion: copying .gig samples is a bit tricky. It requires three
434 * steps:
435 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436 * its new sample waveform data size.
437 * 2. Saving the file (done by File::Save()) so that it gains correct size
438 * and layout for writing the actual wave form data directly to disc
439 * in next step.
440 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441 *
442 * @param orig - original Sample object to be copied from
443 */
444 void Sample::CopyAssignMeta(const Sample* orig) {
445 // handle base classes
446 DLS::Sample::CopyAssignCore(orig);
447
448 // handle actual own attributes of this class
449 Manufacturer = orig->Manufacturer;
450 Product = orig->Product;
451 SamplePeriod = orig->SamplePeriod;
452 MIDIUnityNote = orig->MIDIUnityNote;
453 FineTune = orig->FineTune;
454 SMPTEFormat = orig->SMPTEFormat;
455 SMPTEOffset = orig->SMPTEOffset;
456 Loops = orig->Loops;
457 LoopID = orig->LoopID;
458 LoopType = orig->LoopType;
459 LoopStart = orig->LoopStart;
460 LoopEnd = orig->LoopEnd;
461 LoopSize = orig->LoopSize;
462 LoopFraction = orig->LoopFraction;
463 LoopPlayCount = orig->LoopPlayCount;
464
465 // schedule resizing this sample to the given sample's size
466 Resize(orig->GetSize());
467 }
468
469 /**
470 * Should be called after CopyAssignMeta() and File::Save() sequence.
471 * Read more about it in the discussion of CopyAssignMeta(). This method
472 * copies the actual waveform data by disk streaming.
473 *
474 * @e CAUTION: this method is currently not thread safe! During this
475 * operation the sample must not be used for other purposes by other
476 * threads!
477 *
478 * @param orig - original Sample object to be copied from
479 */
480 void Sample::CopyAssignWave(const Sample* orig) {
481 const int iReadAtOnce = 32*1024;
482 char* buf = new char[iReadAtOnce * orig->FrameSize];
483 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484 file_offset_t restorePos = pOrig->GetPos();
485 pOrig->SetPos(0);
486 SetPos(0);
487 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488 n = pOrig->Read(buf, iReadAtOnce))
489 {
490 Write(buf, n);
491 }
492 pOrig->SetPos(restorePos);
493 delete [] buf;
494 }
495
496 /**
497 * Apply sample and its settings to the respective RIFF chunks. You have
498 * to call File::Save() to make changes persistent.
499 *
500 * Usually there is absolutely no need to call this method explicitly.
501 * It will be called automatically when File::Save() was called.
502 *
503 * @param pProgress - callback function for progress notification
504 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505 * was provided yet
506 * @throws gig::Exception if there is any invalid sample setting
507 */
508 void Sample::UpdateChunks(progress_t* pProgress) {
509 // first update base class's chunks
510 DLS::Sample::UpdateChunks(pProgress);
511
512 // make sure 'smpl' chunk exists
513 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514 if (!pCkSmpl) {
515 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516 memset(pCkSmpl->LoadChunkData(), 0, 60);
517 }
518 // update 'smpl' chunk
519 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521 store32(&pData[0], Manufacturer);
522 store32(&pData[4], Product);
523 store32(&pData[8], SamplePeriod);
524 store32(&pData[12], MIDIUnityNote);
525 store32(&pData[16], FineTune);
526 store32(&pData[20], SMPTEFormat);
527 store32(&pData[24], SMPTEOffset);
528 store32(&pData[28], Loops);
529
530 // we skip 'manufByt' for now (4 bytes)
531
532 store32(&pData[36], LoopID);
533 store32(&pData[40], LoopType);
534 store32(&pData[44], LoopStart);
535 store32(&pData[48], LoopEnd);
536 store32(&pData[52], LoopFraction);
537 store32(&pData[56], LoopPlayCount);
538
539 // make sure '3gix' chunk exists
540 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542 // determine appropriate sample group index (to be stored in chunk)
543 uint16_t iSampleGroup = 0; // 0 refers to default sample group
544 File* pFile = static_cast<File*>(pParent);
545 if (pFile->pGroups) {
546 std::list<Group*>::iterator iter = pFile->pGroups->begin();
547 std::list<Group*>::iterator end = pFile->pGroups->end();
548 for (int i = 0; iter != end; i++, iter++) {
549 if (*iter == pGroup) {
550 iSampleGroup = i;
551 break; // found
552 }
553 }
554 }
555 // update '3gix' chunk
556 pData = (uint8_t*) pCk3gix->LoadChunkData();
557 store16(&pData[0], iSampleGroup);
558
559 // if the library user toggled the "Compressed" attribute from true to
560 // false, then the EWAV chunk associated with compressed samples needs
561 // to be deleted
562 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563 if (ewav && !Compressed) {
564 pWaveList->DeleteSubChunk(ewav);
565 }
566 }
567
568 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569 void Sample::ScanCompressedSample() {
570 //TODO: we have to add some more scans here (e.g. determine compression rate)
571 this->SamplesTotal = 0;
572 std::list<file_offset_t> frameOffsets;
573
574 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
576
577 // Scanning
578 pCkData->SetPos(0);
579 if (Channels == 2) { // Stereo
580 for (int i = 0 ; ; i++) {
581 // for 24 bit samples every 8:th frame offset is
582 // stored, to save some memory
583 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
584
585 const int mode_l = pCkData->ReadUint8();
586 const int mode_r = pCkData->ReadUint8();
587 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589
590 if (pCkData->RemainingBytes() <= frameSize) {
591 SamplesInLastFrame =
592 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
593 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
594 SamplesTotal += SamplesInLastFrame;
595 break;
596 }
597 SamplesTotal += SamplesPerFrame;
598 pCkData->SetPos(frameSize, RIFF::stream_curpos);
599 }
600 }
601 else { // Mono
602 for (int i = 0 ; ; i++) {
603 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
604
605 const int mode = pCkData->ReadUint8();
606 if (mode > 5) throw gig::Exception("Unknown compression mode");
607 const file_offset_t frameSize = bytesPerFrame[mode];
608
609 if (pCkData->RemainingBytes() <= frameSize) {
610 SamplesInLastFrame =
611 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
612 SamplesTotal += SamplesInLastFrame;
613 break;
614 }
615 SamplesTotal += SamplesPerFrame;
616 pCkData->SetPos(frameSize, RIFF::stream_curpos);
617 }
618 }
619 pCkData->SetPos(0);
620
621 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622 if (FrameTable) delete[] FrameTable;
623 FrameTable = new file_offset_t[frameOffsets.size()];
624 std::list<file_offset_t>::iterator end = frameOffsets.end();
625 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626 for (int i = 0; iter != end; i++, iter++) {
627 FrameTable[i] = *iter;
628 }
629 }
630
631 /**
632 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
633 * ReleaseSampleData() to free the memory if you don't need the cached
634 * sample data anymore.
635 *
636 * @returns buffer_t structure with start address and size of the buffer
637 * in bytes
638 * @see ReleaseSampleData(), Read(), SetPos()
639 */
640 buffer_t Sample::LoadSampleData() {
641 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
642 }
643
644 /**
645 * Reads (uncompresses if needed) and caches the first \a SampleCount
646 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647 * memory space if you don't need the cached samples anymore. There is no
648 * guarantee that exactly \a SampleCount samples will be cached; this is
649 * not an error. The size will be eventually truncated e.g. to the
650 * beginning of a frame of a compressed sample. This is done for
651 * efficiency reasons while streaming the wave by your sampler engine
652 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653 * that will be returned to determine the actual cached samples, but note
654 * that the size is given in bytes! You get the number of actually cached
655 * samples by dividing it by the frame size of the sample:
656 * @code
657 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
658 * long cachedsamples = buf.Size / pSample->FrameSize;
659 * @endcode
660 *
661 * @param SampleCount - number of sample points to load into RAM
662 * @returns buffer_t structure with start address and size of
663 * the cached sample data in bytes
664 * @see ReleaseSampleData(), Read(), SetPos()
665 */
666 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668 }
669
670 /**
671 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672 * ReleaseSampleData() to free the memory if you don't need the cached
673 * sample data anymore.
674 * The method will add \a NullSamplesCount silence samples past the
675 * official buffer end (this won't affect the 'Size' member of the
676 * buffer_t structure, that means 'Size' always reflects the size of the
677 * actual sample data, the buffer might be bigger though). Silence
678 * samples past the official buffer are needed for differential
679 * algorithms that always have to take subsequent samples into account
680 * (resampling/interpolation would be an important example) and avoids
681 * memory access faults in such cases.
682 *
683 * @param NullSamplesCount - number of silence samples the buffer should
684 * be extended past it's data end
685 * @returns buffer_t structure with start address and
686 * size of the buffer in bytes
687 * @see ReleaseSampleData(), Read(), SetPos()
688 */
689 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
690 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
691 }
692
693 /**
694 * Reads (uncompresses if needed) and caches the first \a SampleCount
695 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
696 * memory space if you don't need the cached samples anymore. There is no
697 * guarantee that exactly \a SampleCount samples will be cached; this is
698 * not an error. The size will be eventually truncated e.g. to the
699 * beginning of a frame of a compressed sample. This is done for
700 * efficiency reasons while streaming the wave by your sampler engine
701 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
702 * that will be returned to determine the actual cached samples, but note
703 * that the size is given in bytes! You get the number of actually cached
704 * samples by dividing it by the frame size of the sample:
705 * @code
706 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
707 * long cachedsamples = buf.Size / pSample->FrameSize;
708 * @endcode
709 * The method will add \a NullSamplesCount silence samples past the
710 * official buffer end (this won't affect the 'Size' member of the
711 * buffer_t structure, that means 'Size' always reflects the size of the
712 * actual sample data, the buffer might be bigger though). Silence
713 * samples past the official buffer are needed for differential
714 * algorithms that always have to take subsequent samples into account
715 * (resampling/interpolation would be an important example) and avoids
716 * memory access faults in such cases.
717 *
718 * @param SampleCount - number of sample points to load into RAM
719 * @param NullSamplesCount - number of silence samples the buffer should
720 * be extended past it's data end
721 * @returns buffer_t structure with start address and
722 * size of the cached sample data in bytes
723 * @see ReleaseSampleData(), Read(), SetPos()
724 */
725 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729 SetPos(0); // reset read position to begin of sample
730 RAMCache.pStart = new int8_t[allocationsize];
731 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
733 // fill the remaining buffer space with silence samples
734 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
735 return GetCache();
736 }
737
738 /**
739 * Returns current cached sample points. A buffer_t structure will be
740 * returned which contains address pointer to the begin of the cache and
741 * the size of the cached sample data in bytes. Use
742 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
743 * RAM.
744 *
745 * @returns buffer_t structure with current cached sample points
746 * @see LoadSampleData();
747 */
748 buffer_t Sample::GetCache() {
749 // return a copy of the buffer_t structure
750 buffer_t result;
751 result.Size = this->RAMCache.Size;
752 result.pStart = this->RAMCache.pStart;
753 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
754 return result;
755 }
756
757 /**
758 * Frees the cached sample from RAM if loaded with
759 * <i>LoadSampleData()</i> previously.
760 *
761 * @see LoadSampleData();
762 */
763 void Sample::ReleaseSampleData() {
764 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765 RAMCache.pStart = NULL;
766 RAMCache.Size = 0;
767 RAMCache.NullExtensionSize = 0;
768 }
769
770 /** @brief Resize sample.
771 *
772 * Resizes the sample's wave form data, that is the actual size of
773 * sample wave data possible to be written for this sample. This call
774 * will return immediately and just schedule the resize operation. You
775 * should call File::Save() to actually perform the resize operation(s)
776 * "physically" to the file. As this can take a while on large files, it
777 * is recommended to call Resize() first on all samples which have to be
778 * resized and finally to call File::Save() to perform all those resize
779 * operations in one rush.
780 *
781 * The actual size (in bytes) is dependant to the current FrameSize
782 * value. You may want to set FrameSize before calling Resize().
783 *
784 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785 * enlarged samples before calling File::Save() as this might exceed the
786 * current sample's boundary!
787 *
788 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790 * other formats will fail!
791 *
792 * @param NewSize - new sample wave data size in sample points (must be
793 * greater than zero)
794 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796 * @throws gig::Exception if existing sample is compressed
797 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798 * DLS::Sample::FormatTag, File::Save()
799 */
800 void Sample::Resize(file_offset_t NewSize) {
801 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802 DLS::Sample::Resize(NewSize);
803 }
804
805 /**
806 * Sets the position within the sample (in sample points, not in
807 * bytes). Use this method and <i>Read()</i> if you don't want to load
808 * the sample into RAM, thus for disk streaming.
809 *
810 * Although the original Gigasampler engine doesn't allow positioning
811 * within compressed samples, I decided to implement it. Even though
812 * the Gigasampler format doesn't allow to define loops for compressed
813 * samples at the moment, positioning within compressed samples might be
814 * interesting for some sampler engines though. The only drawback about
815 * my decision is that it takes longer to load compressed gig Files on
816 * startup, because it's neccessary to scan the samples for some
817 * mandatory informations. But I think as it doesn't affect the runtime
818 * efficiency, nobody will have a problem with that.
819 *
820 * @param SampleCount number of sample points to jump
821 * @param Whence optional: to which relation \a SampleCount refers
822 * to, if omited <i>RIFF::stream_start</i> is assumed
823 * @returns the new sample position
824 * @see Read()
825 */
826 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827 if (Compressed) {
828 switch (Whence) {
829 case RIFF::stream_curpos:
830 this->SamplePos += SampleCount;
831 break;
832 case RIFF::stream_end:
833 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
834 break;
835 case RIFF::stream_backward:
836 this->SamplePos -= SampleCount;
837 break;
838 case RIFF::stream_start: default:
839 this->SamplePos = SampleCount;
840 break;
841 }
842 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843
844 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
846 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
847 return this->SamplePos;
848 }
849 else { // not compressed
850 file_offset_t orderedBytes = SampleCount * this->FrameSize;
851 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852 return (result == orderedBytes) ? SampleCount
853 : result / this->FrameSize;
854 }
855 }
856
857 /**
858 * Returns the current position in the sample (in sample points).
859 */
860 file_offset_t Sample::GetPos() const {
861 if (Compressed) return SamplePos;
862 else return pCkData->GetPos() / FrameSize;
863 }
864
865 /**
866 * Reads \a SampleCount number of sample points from the position stored
867 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
868 * the position within the sample respectively, this method honors the
869 * looping informations of the sample (if any). The sample wave stream
870 * will be decompressed on the fly if using a compressed sample. Use this
871 * method if you don't want to load the sample into RAM, thus for disk
872 * streaming. All this methods needs to know to proceed with streaming
873 * for the next time you call this method is stored in \a pPlaybackState.
874 * You have to allocate and initialize the playback_state_t structure by
875 * yourself before you use it to stream a sample:
876 * @code
877 * gig::playback_state_t playbackstate;
878 * playbackstate.position = 0;
879 * playbackstate.reverse = false;
880 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
881 * @endcode
882 * You don't have to take care of things like if there is actually a loop
883 * defined or if the current read position is located within a loop area.
884 * The method already handles such cases by itself.
885 *
886 * <b>Caution:</b> If you are using more than one streaming thread, you
887 * have to use an external decompression buffer for <b>EACH</b>
888 * streaming thread to avoid race conditions and crashes!
889 *
890 * @param pBuffer destination buffer
891 * @param SampleCount number of sample points to read
892 * @param pPlaybackState will be used to store and reload the playback
893 * state for the next ReadAndLoop() call
894 * @param pDimRgn dimension region with looping information
895 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
896 * @returns number of successfully read sample points
897 * @see CreateDecompressionBuffer()
898 */
899 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902 uint8_t* pDst = (uint8_t*) pBuffer;
903
904 SetPos(pPlaybackState->position); // recover position from the last time
905
906 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907
908 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910
911 if (GetPos() <= loopEnd) {
912 switch (loop.LoopType) {
913
914 case loop_type_bidirectional: { //TODO: not tested yet!
915 do {
916 // if not endless loop check if max. number of loop cycles have been passed
917 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918
919 if (!pPlaybackState->reverse) { // forward playback
920 do {
921 samplestoloopend = loopEnd - GetPos();
922 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923 samplestoread -= readsamples;
924 totalreadsamples += readsamples;
925 if (readsamples == samplestoloopend) {
926 pPlaybackState->reverse = true;
927 break;
928 }
929 } while (samplestoread && readsamples);
930 }
931 else { // backward playback
932
933 // as we can only read forward from disk, we have to
934 // determine the end position within the loop first,
935 // read forward from that 'end' and finally after
936 // reading, swap all sample frames so it reflects
937 // backward playback
938
939 file_offset_t swapareastart = totalreadsamples;
940 file_offset_t loopoffset = GetPos() - loop.LoopStart;
941 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
943
944 SetPos(reverseplaybackend);
945
946 // read samples for backward playback
947 do {
948 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949 samplestoreadinloop -= readsamples;
950 samplestoread -= readsamples;
951 totalreadsamples += readsamples;
952 } while (samplestoreadinloop && readsamples);
953
954 SetPos(reverseplaybackend); // pretend we really read backwards
955
956 if (reverseplaybackend == loop.LoopStart) {
957 pPlaybackState->loop_cycles_left--;
958 pPlaybackState->reverse = false;
959 }
960
961 // reverse the sample frames for backward playback
962 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964 }
965 } while (samplestoread && readsamples);
966 break;
967 }
968
969 case loop_type_backward: { // TODO: not tested yet!
970 // forward playback (not entered the loop yet)
971 if (!pPlaybackState->reverse) do {
972 samplestoloopend = loopEnd - GetPos();
973 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974 samplestoread -= readsamples;
975 totalreadsamples += readsamples;
976 if (readsamples == samplestoloopend) {
977 pPlaybackState->reverse = true;
978 break;
979 }
980 } while (samplestoread && readsamples);
981
982 if (!samplestoread) break;
983
984 // as we can only read forward from disk, we have to
985 // determine the end position within the loop first,
986 // read forward from that 'end' and finally after
987 // reading, swap all sample frames so it reflects
988 // backward playback
989
990 file_offset_t swapareastart = totalreadsamples;
991 file_offset_t loopoffset = GetPos() - loop.LoopStart;
992 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993 : samplestoread;
994 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995
996 SetPos(reverseplaybackend);
997
998 // read samples for backward playback
999 do {
1000 // if not endless loop check if max. number of loop cycles have been passed
1001 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002 samplestoloopend = loopEnd - GetPos();
1003 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004 samplestoreadinloop -= readsamples;
1005 samplestoread -= readsamples;
1006 totalreadsamples += readsamples;
1007 if (readsamples == samplestoloopend) {
1008 pPlaybackState->loop_cycles_left--;
1009 SetPos(loop.LoopStart);
1010 }
1011 } while (samplestoreadinloop && readsamples);
1012
1013 SetPos(reverseplaybackend); // pretend we really read backwards
1014
1015 // reverse the sample frames for backward playback
1016 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017 break;
1018 }
1019
1020 default: case loop_type_normal: {
1021 do {
1022 // if not endless loop check if max. number of loop cycles have been passed
1023 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024 samplestoloopend = loopEnd - GetPos();
1025 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026 samplestoread -= readsamples;
1027 totalreadsamples += readsamples;
1028 if (readsamples == samplestoloopend) {
1029 pPlaybackState->loop_cycles_left--;
1030 SetPos(loop.LoopStart);
1031 }
1032 } while (samplestoread && readsamples);
1033 break;
1034 }
1035 }
1036 }
1037 }
1038
1039 // read on without looping
1040 if (samplestoread) do {
1041 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1042 samplestoread -= readsamples;
1043 totalreadsamples += readsamples;
1044 } while (readsamples && samplestoread);
1045
1046 // store current position
1047 pPlaybackState->position = GetPos();
1048
1049 return totalreadsamples;
1050 }
1051
1052 /**
1053 * Reads \a SampleCount number of sample points from the current
1054 * position into the buffer pointed by \a pBuffer and increments the
1055 * position within the sample. The sample wave stream will be
1056 * decompressed on the fly if using a compressed sample. Use this method
1057 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1058 * thus for disk streaming.
1059 *
1060 * <b>Caution:</b> If you are using more than one streaming thread, you
1061 * have to use an external decompression buffer for <b>EACH</b>
1062 * streaming thread to avoid race conditions and crashes!
1063 *
1064 * For 16 bit samples, the data in the buffer will be int16_t
1065 * (using native endianness). For 24 bit, the buffer will
1066 * contain three bytes per sample, little-endian.
1067 *
1068 * @param pBuffer destination buffer
1069 * @param SampleCount number of sample points to read
1070 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1071 * @returns number of successfully read sample points
1072 * @see SetPos(), CreateDecompressionBuffer()
1073 */
1074 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075 if (SampleCount == 0) return 0;
1076 if (!Compressed) {
1077 if (BitDepth == 24) {
1078 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1079 }
1080 else { // 16 bit
1081 // (pCkData->Read does endian correction)
1082 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1083 : pCkData->Read(pBuffer, SampleCount, 2);
1084 }
1085 }
1086 else {
1087 if (this->SamplePos >= this->SamplesTotal) return 0;
1088 //TODO: efficiency: maybe we should test for an average compression rate
1089 file_offset_t assumedsize = GuessSize(SampleCount),
1090 remainingbytes = 0, // remaining bytes in the local buffer
1091 remainingsamples = SampleCount,
1092 copysamples, skipsamples,
1093 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1094 this->FrameOffset = 0;
1095
1096 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1097
1098 // if decompression buffer too small, then reduce amount of samples to read
1099 if (pDecompressionBuffer->Size < assumedsize) {
1100 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1101 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1102 remainingsamples = SampleCount;
1103 assumedsize = GuessSize(SampleCount);
1104 }
1105
1106 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110
1111 while (remainingsamples && remainingbytes) {
1112 file_offset_t framesamples = SamplesPerFrame;
1113 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114
1115 int mode_l = *pSrc++, mode_r = 0;
1116
1117 if (Channels == 2) {
1118 mode_r = *pSrc++;
1119 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1120 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1121 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1122 if (remainingbytes < framebytes) { // last frame in sample
1123 framesamples = SamplesInLastFrame;
1124 if (mode_l == 4 && (framesamples & 1)) {
1125 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1126 }
1127 else {
1128 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1129 }
1130 }
1131 }
1132 else {
1133 framebytes = bytesPerFrame[mode_l] + 1;
1134 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1135 if (remainingbytes < framebytes) {
1136 framesamples = SamplesInLastFrame;
1137 }
1138 }
1139
1140 // determine how many samples in this frame to skip and read
1141 if (currentframeoffset + remainingsamples >= framesamples) {
1142 if (currentframeoffset <= framesamples) {
1143 copysamples = framesamples - currentframeoffset;
1144 skipsamples = currentframeoffset;
1145 }
1146 else {
1147 copysamples = 0;
1148 skipsamples = framesamples;
1149 }
1150 }
1151 else {
1152 // This frame has enough data for pBuffer, but not
1153 // all of the frame is needed. Set file position
1154 // to start of this frame for next call to Read.
1155 copysamples = remainingsamples;
1156 skipsamples = currentframeoffset;
1157 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1158 this->FrameOffset = currentframeoffset + copysamples;
1159 }
1160 remainingsamples -= copysamples;
1161
1162 if (remainingbytes > framebytes) {
1163 remainingbytes -= framebytes;
1164 if (remainingsamples == 0 &&
1165 currentframeoffset + copysamples == framesamples) {
1166 // This frame has enough data for pBuffer, and
1167 // all of the frame is needed. Set file
1168 // position to start of next frame for next
1169 // call to Read. FrameOffset is 0.
1170 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171 }
1172 }
1173 else remainingbytes = 0;
1174
1175 currentframeoffset -= skipsamples;
1176
1177 if (copysamples == 0) {
1178 // skip this frame
1179 pSrc += framebytes - Channels;
1180 }
1181 else {
1182 const unsigned char* const param_l = pSrc;
1183 if (BitDepth == 24) {
1184 if (mode_l != 2) pSrc += 12;
1185
1186 if (Channels == 2) { // Stereo
1187 const unsigned char* const param_r = pSrc;
1188 if (mode_r != 2) pSrc += 12;
1189
1190 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191 skipsamples, copysamples, TruncatedBits);
1192 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193 skipsamples, copysamples, TruncatedBits);
1194 pDst24 += copysamples * 6;
1195 }
1196 else { // Mono
1197 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198 skipsamples, copysamples, TruncatedBits);
1199 pDst24 += copysamples * 3;
1200 }
1201 }
1202 else { // 16 bit
1203 if (mode_l) pSrc += 4;
1204
1205 int step;
1206 if (Channels == 2) { // Stereo
1207 const unsigned char* const param_r = pSrc;
1208 if (mode_r) pSrc += 4;
1209
1210 step = (2 - mode_l) + (2 - mode_r);
1211 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1212 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1213 skipsamples, copysamples);
1214 pDst += copysamples << 1;
1215 }
1216 else { // Mono
1217 step = 2 - mode_l;
1218 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1219 pDst += copysamples;
1220 }
1221 }
1222 pSrc += nextFrameOffset;
1223 }
1224
1225 // reload from disk to local buffer if needed
1226 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1227 assumedsize = GuessSize(remainingsamples);
1228 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1230 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1231 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1232 }
1233 } // while
1234
1235 this->SamplePos += (SampleCount - remainingsamples);
1236 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1237 return (SampleCount - remainingsamples);
1238 }
1239 }
1240
1241 /** @brief Write sample wave data.
1242 *
1243 * Writes \a SampleCount number of sample points from the buffer pointed
1244 * by \a pBuffer and increments the position within the sample. Use this
1245 * method to directly write the sample data to disk, i.e. if you don't
1246 * want or cannot load the whole sample data into RAM.
1247 *
1248 * You have to Resize() the sample to the desired size and call
1249 * File::Save() <b>before</b> using Write().
1250 *
1251 * Note: there is currently no support for writing compressed samples.
1252 *
1253 * For 16 bit samples, the data in the source buffer should be
1254 * int16_t (using native endianness). For 24 bit, the buffer
1255 * should contain three bytes per sample, little-endian.
1256 *
1257 * @param pBuffer - source buffer
1258 * @param SampleCount - number of sample points to write
1259 * @throws DLS::Exception if current sample size is too small
1260 * @throws gig::Exception if sample is compressed
1261 * @see DLS::LoadSampleData()
1262 */
1263 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265
1266 // if this is the first write in this sample, reset the
1267 // checksum calculator
1268 if (pCkData->GetPos() == 0) {
1269 __resetCRC(crc);
1270 }
1271 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272 file_offset_t res;
1273 if (BitDepth == 24) {
1274 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275 } else { // 16 bit
1276 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277 : pCkData->Write(pBuffer, SampleCount, 2);
1278 }
1279 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280
1281 // if this is the last write, update the checksum chunk in the
1282 // file
1283 if (pCkData->GetPos() == pCkData->GetSize()) {
1284 File* pFile = static_cast<File*>(GetParent());
1285 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286 }
1287 return res;
1288 }
1289
1290 /**
1291 * Allocates a decompression buffer for streaming (compressed) samples
1292 * with Sample::Read(). If you are using more than one streaming thread
1293 * in your application you <b>HAVE</b> to create a decompression buffer
1294 * for <b>EACH</b> of your streaming threads and provide it with the
1295 * Sample::Read() call in order to avoid race conditions and crashes.
1296 *
1297 * You should free the memory occupied by the allocated buffer(s) once
1298 * you don't need one of your streaming threads anymore by calling
1299 * DestroyDecompressionBuffer().
1300 *
1301 * @param MaxReadSize - the maximum size (in sample points) you ever
1302 * expect to read with one Read() call
1303 * @returns allocated decompression buffer
1304 * @see DestroyDecompressionBuffer()
1305 */
1306 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307 buffer_t result;
1308 const double worstCaseHeaderOverhead =
1309 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311 result.pStart = new int8_t[result.Size];
1312 result.NullExtensionSize = 0;
1313 return result;
1314 }
1315
1316 /**
1317 * Free decompression buffer, previously created with
1318 * CreateDecompressionBuffer().
1319 *
1320 * @param DecompressionBuffer - previously allocated decompression
1321 * buffer to free
1322 */
1323 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1324 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1325 delete[] (int8_t*) DecompressionBuffer.pStart;
1326 DecompressionBuffer.pStart = NULL;
1327 DecompressionBuffer.Size = 0;
1328 DecompressionBuffer.NullExtensionSize = 0;
1329 }
1330 }
1331
1332 /**
1333 * Returns pointer to the Group this Sample belongs to. In the .gig
1334 * format a sample always belongs to one group. If it wasn't explicitly
1335 * assigned to a certain group, it will be automatically assigned to a
1336 * default group.
1337 *
1338 * @returns Sample's Group (never NULL)
1339 */
1340 Group* Sample::GetGroup() const {
1341 return pGroup;
1342 }
1343
1344 Sample::~Sample() {
1345 Instances--;
1346 if (!Instances && InternalDecompressionBuffer.Size) {
1347 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1348 InternalDecompressionBuffer.pStart = NULL;
1349 InternalDecompressionBuffer.Size = 0;
1350 }
1351 if (FrameTable) delete[] FrameTable;
1352 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1353 }
1354
1355
1356
1357 // *************** DimensionRegion ***************
1358 // *
1359
1360 size_t DimensionRegion::Instances = 0;
1361 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1362
1363 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1364 Instances++;
1365
1366 pSample = NULL;
1367 pRegion = pParent;
1368
1369 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1370 else memset(&Crossfade, 0, 4);
1371
1372 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1373
1374 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1375 if (_3ewa) { // if '3ewa' chunk exists
1376 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1377 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1378 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1379 _3ewa->ReadInt16(); // unknown
1380 LFO1InternalDepth = _3ewa->ReadUint16();
1381 _3ewa->ReadInt16(); // unknown
1382 LFO3InternalDepth = _3ewa->ReadInt16();
1383 _3ewa->ReadInt16(); // unknown
1384 LFO1ControlDepth = _3ewa->ReadUint16();
1385 _3ewa->ReadInt16(); // unknown
1386 LFO3ControlDepth = _3ewa->ReadInt16();
1387 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1388 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1389 _3ewa->ReadInt16(); // unknown
1390 EG1Sustain = _3ewa->ReadUint16();
1391 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1392 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1393 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1394 EG1ControllerInvert = eg1ctrloptions & 0x01;
1395 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1396 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1397 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1398 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1399 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1400 EG2ControllerInvert = eg2ctrloptions & 0x01;
1401 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1402 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1403 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1404 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1407 _3ewa->ReadInt16(); // unknown
1408 EG2Sustain = _3ewa->ReadUint16();
1409 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1410 _3ewa->ReadInt16(); // unknown
1411 LFO2ControlDepth = _3ewa->ReadUint16();
1412 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1413 _3ewa->ReadInt16(); // unknown
1414 LFO2InternalDepth = _3ewa->ReadUint16();
1415 int32_t eg1decay2 = _3ewa->ReadInt32();
1416 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1417 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1418 _3ewa->ReadInt16(); // unknown
1419 EG1PreAttack = _3ewa->ReadUint16();
1420 int32_t eg2decay2 = _3ewa->ReadInt32();
1421 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1422 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1423 _3ewa->ReadInt16(); // unknown
1424 EG2PreAttack = _3ewa->ReadUint16();
1425 uint8_t velocityresponse = _3ewa->ReadUint8();
1426 if (velocityresponse < 5) {
1427 VelocityResponseCurve = curve_type_nonlinear;
1428 VelocityResponseDepth = velocityresponse;
1429 } else if (velocityresponse < 10) {
1430 VelocityResponseCurve = curve_type_linear;
1431 VelocityResponseDepth = velocityresponse - 5;
1432 } else if (velocityresponse < 15) {
1433 VelocityResponseCurve = curve_type_special;
1434 VelocityResponseDepth = velocityresponse - 10;
1435 } else {
1436 VelocityResponseCurve = curve_type_unknown;
1437 VelocityResponseDepth = 0;
1438 }
1439 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1440 if (releasevelocityresponse < 5) {
1441 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1442 ReleaseVelocityResponseDepth = releasevelocityresponse;
1443 } else if (releasevelocityresponse < 10) {
1444 ReleaseVelocityResponseCurve = curve_type_linear;
1445 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1446 } else if (releasevelocityresponse < 15) {
1447 ReleaseVelocityResponseCurve = curve_type_special;
1448 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1449 } else {
1450 ReleaseVelocityResponseCurve = curve_type_unknown;
1451 ReleaseVelocityResponseDepth = 0;
1452 }
1453 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1454 AttenuationControllerThreshold = _3ewa->ReadInt8();
1455 _3ewa->ReadInt32(); // unknown
1456 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1457 _3ewa->ReadInt16(); // unknown
1458 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1459 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1460 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1461 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1462 else DimensionBypass = dim_bypass_ctrl_none;
1463 uint8_t pan = _3ewa->ReadUint8();
1464 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1465 SelfMask = _3ewa->ReadInt8() & 0x01;
1466 _3ewa->ReadInt8(); // unknown
1467 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1468 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1469 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1470 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1471 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1473 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1474 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1475 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1476 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1477 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1478 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1479 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1480 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1481 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1482 : vcf_res_ctrl_none;
1483 uint16_t eg3depth = _3ewa->ReadUint16();
1484 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1485 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1486 _3ewa->ReadInt16(); // unknown
1487 ChannelOffset = _3ewa->ReadUint8() / 4;
1488 uint8_t regoptions = _3ewa->ReadUint8();
1489 MSDecode = regoptions & 0x01; // bit 0
1490 SustainDefeat = regoptions & 0x02; // bit 1
1491 _3ewa->ReadInt16(); // unknown
1492 VelocityUpperLimit = _3ewa->ReadInt8();
1493 _3ewa->ReadInt8(); // unknown
1494 _3ewa->ReadInt16(); // unknown
1495 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1496 _3ewa->ReadInt8(); // unknown
1497 _3ewa->ReadInt8(); // unknown
1498 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1499 uint8_t vcfcutoff = _3ewa->ReadUint8();
1500 VCFEnabled = vcfcutoff & 0x80; // bit 7
1501 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1502 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1503 uint8_t vcfvelscale = _3ewa->ReadUint8();
1504 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1505 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1506 _3ewa->ReadInt8(); // unknown
1507 uint8_t vcfresonance = _3ewa->ReadUint8();
1508 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1509 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1510 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1511 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1512 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1513 uint8_t vcfvelocity = _3ewa->ReadUint8();
1514 VCFVelocityDynamicRange = vcfvelocity % 5;
1515 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1516 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1517 if (VCFType == vcf_type_lowpass) {
1518 if (lfo3ctrl & 0x40) // bit 6
1519 VCFType = vcf_type_lowpassturbo;
1520 }
1521 if (_3ewa->RemainingBytes() >= 8) {
1522 _3ewa->Read(DimensionUpperLimits, 1, 8);
1523 } else {
1524 memset(DimensionUpperLimits, 0, 8);
1525 }
1526 } else { // '3ewa' chunk does not exist yet
1527 // use default values
1528 LFO3Frequency = 1.0;
1529 EG3Attack = 0.0;
1530 LFO1InternalDepth = 0;
1531 LFO3InternalDepth = 0;
1532 LFO1ControlDepth = 0;
1533 LFO3ControlDepth = 0;
1534 EG1Attack = 0.0;
1535 EG1Decay1 = 0.005;
1536 EG1Sustain = 1000;
1537 EG1Release = 0.3;
1538 EG1Controller.type = eg1_ctrl_t::type_none;
1539 EG1Controller.controller_number = 0;
1540 EG1ControllerInvert = false;
1541 EG1ControllerAttackInfluence = 0;
1542 EG1ControllerDecayInfluence = 0;
1543 EG1ControllerReleaseInfluence = 0;
1544 EG2Controller.type = eg2_ctrl_t::type_none;
1545 EG2Controller.controller_number = 0;
1546 EG2ControllerInvert = false;
1547 EG2ControllerAttackInfluence = 0;
1548 EG2ControllerDecayInfluence = 0;
1549 EG2ControllerReleaseInfluence = 0;
1550 LFO1Frequency = 1.0;
1551 EG2Attack = 0.0;
1552 EG2Decay1 = 0.005;
1553 EG2Sustain = 1000;
1554 EG2Release = 0.3;
1555 LFO2ControlDepth = 0;
1556 LFO2Frequency = 1.0;
1557 LFO2InternalDepth = 0;
1558 EG1Decay2 = 0.0;
1559 EG1InfiniteSustain = true;
1560 EG1PreAttack = 0;
1561 EG2Decay2 = 0.0;
1562 EG2InfiniteSustain = true;
1563 EG2PreAttack = 0;
1564 VelocityResponseCurve = curve_type_nonlinear;
1565 VelocityResponseDepth = 3;
1566 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1567 ReleaseVelocityResponseDepth = 3;
1568 VelocityResponseCurveScaling = 32;
1569 AttenuationControllerThreshold = 0;
1570 SampleStartOffset = 0;
1571 PitchTrack = true;
1572 DimensionBypass = dim_bypass_ctrl_none;
1573 Pan = 0;
1574 SelfMask = true;
1575 LFO3Controller = lfo3_ctrl_modwheel;
1576 LFO3Sync = false;
1577 InvertAttenuationController = false;
1578 AttenuationController.type = attenuation_ctrl_t::type_none;
1579 AttenuationController.controller_number = 0;
1580 LFO2Controller = lfo2_ctrl_internal;
1581 LFO2FlipPhase = false;
1582 LFO2Sync = false;
1583 LFO1Controller = lfo1_ctrl_internal;
1584 LFO1FlipPhase = false;
1585 LFO1Sync = false;
1586 VCFResonanceController = vcf_res_ctrl_none;
1587 EG3Depth = 0;
1588 ChannelOffset = 0;
1589 MSDecode = false;
1590 SustainDefeat = false;
1591 VelocityUpperLimit = 0;
1592 ReleaseTriggerDecay = 0;
1593 EG1Hold = false;
1594 VCFEnabled = false;
1595 VCFCutoff = 0;
1596 VCFCutoffController = vcf_cutoff_ctrl_none;
1597 VCFCutoffControllerInvert = false;
1598 VCFVelocityScale = 0;
1599 VCFResonance = 0;
1600 VCFResonanceDynamic = false;
1601 VCFKeyboardTracking = false;
1602 VCFKeyboardTrackingBreakpoint = 0;
1603 VCFVelocityDynamicRange = 0x04;
1604 VCFVelocityCurve = curve_type_linear;
1605 VCFType = vcf_type_lowpass;
1606 memset(DimensionUpperLimits, 127, 8);
1607 }
1608
1609 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1610 VelocityResponseDepth,
1611 VelocityResponseCurveScaling);
1612
1613 pVelocityReleaseTable = GetReleaseVelocityTable(
1614 ReleaseVelocityResponseCurve,
1615 ReleaseVelocityResponseDepth
1616 );
1617
1618 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1619 VCFVelocityDynamicRange,
1620 VCFVelocityScale,
1621 VCFCutoffController);
1622
1623 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1624 VelocityTable = 0;
1625 }
1626
1627 /*
1628 * Constructs a DimensionRegion by copying all parameters from
1629 * another DimensionRegion
1630 */
1631 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1632 Instances++;
1633 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1634 *this = src; // default memberwise shallow copy of all parameters
1635 pParentList = _3ewl; // restore the chunk pointer
1636
1637 // deep copy of owned structures
1638 if (src.VelocityTable) {
1639 VelocityTable = new uint8_t[128];
1640 for (int k = 0 ; k < 128 ; k++)
1641 VelocityTable[k] = src.VelocityTable[k];
1642 }
1643 if (src.pSampleLoops) {
1644 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1645 for (int k = 0 ; k < src.SampleLoops ; k++)
1646 pSampleLoops[k] = src.pSampleLoops[k];
1647 }
1648 }
1649
1650 /**
1651 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1652 * and assign it to this object.
1653 *
1654 * Note that all sample pointers referenced by @a orig are simply copied as
1655 * memory address. Thus the respective samples are shared, not duplicated!
1656 *
1657 * @param orig - original DimensionRegion object to be copied from
1658 */
1659 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1660 CopyAssign(orig, NULL);
1661 }
1662
1663 /**
1664 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1665 * and assign it to this object.
1666 *
1667 * @param orig - original DimensionRegion object to be copied from
1668 * @param mSamples - crosslink map between the foreign file's samples and
1669 * this file's samples
1670 */
1671 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1672 // delete all allocated data first
1673 if (VelocityTable) delete [] VelocityTable;
1674 if (pSampleLoops) delete [] pSampleLoops;
1675
1676 // backup parent list pointer
1677 RIFF::List* p = pParentList;
1678
1679 gig::Sample* pOriginalSample = pSample;
1680 gig::Region* pOriginalRegion = pRegion;
1681
1682 //NOTE: copy code copied from assignment constructor above, see comment there as well
1683
1684 *this = *orig; // default memberwise shallow copy of all parameters
1685
1686 // restore members that shall not be altered
1687 pParentList = p; // restore the chunk pointer
1688 pRegion = pOriginalRegion;
1689
1690 // only take the raw sample reference reference if the
1691 // two DimensionRegion objects are part of the same file
1692 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1693 pSample = pOriginalSample;
1694 }
1695
1696 if (mSamples && mSamples->count(orig->pSample)) {
1697 pSample = mSamples->find(orig->pSample)->second;
1698 }
1699
1700 // deep copy of owned structures
1701 if (orig->VelocityTable) {
1702 VelocityTable = new uint8_t[128];
1703 for (int k = 0 ; k < 128 ; k++)
1704 VelocityTable[k] = orig->VelocityTable[k];
1705 }
1706 if (orig->pSampleLoops) {
1707 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1708 for (int k = 0 ; k < orig->SampleLoops ; k++)
1709 pSampleLoops[k] = orig->pSampleLoops[k];
1710 }
1711 }
1712
1713 /**
1714 * Updates the respective member variable and updates @c SampleAttenuation
1715 * which depends on this value.
1716 */
1717 void DimensionRegion::SetGain(int32_t gain) {
1718 DLS::Sampler::SetGain(gain);
1719 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1720 }
1721
1722 /**
1723 * Apply dimension region settings to the respective RIFF chunks. You
1724 * have to call File::Save() to make changes persistent.
1725 *
1726 * Usually there is absolutely no need to call this method explicitly.
1727 * It will be called automatically when File::Save() was called.
1728 *
1729 * @param pProgress - callback function for progress notification
1730 */
1731 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1732 // first update base class's chunk
1733 DLS::Sampler::UpdateChunks(pProgress);
1734
1735 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1736 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1737 pData[12] = Crossfade.in_start;
1738 pData[13] = Crossfade.in_end;
1739 pData[14] = Crossfade.out_start;
1740 pData[15] = Crossfade.out_end;
1741
1742 // make sure '3ewa' chunk exists
1743 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1744 if (!_3ewa) {
1745 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1746 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1747 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1748 }
1749 pData = (uint8_t*) _3ewa->LoadChunkData();
1750
1751 // update '3ewa' chunk with DimensionRegion's current settings
1752
1753 const uint32_t chunksize = _3ewa->GetNewSize();
1754 store32(&pData[0], chunksize); // unknown, always chunk size?
1755
1756 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1757 store32(&pData[4], lfo3freq);
1758
1759 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1760 store32(&pData[8], eg3attack);
1761
1762 // next 2 bytes unknown
1763
1764 store16(&pData[14], LFO1InternalDepth);
1765
1766 // next 2 bytes unknown
1767
1768 store16(&pData[18], LFO3InternalDepth);
1769
1770 // next 2 bytes unknown
1771
1772 store16(&pData[22], LFO1ControlDepth);
1773
1774 // next 2 bytes unknown
1775
1776 store16(&pData[26], LFO3ControlDepth);
1777
1778 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1779 store32(&pData[28], eg1attack);
1780
1781 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1782 store32(&pData[32], eg1decay1);
1783
1784 // next 2 bytes unknown
1785
1786 store16(&pData[38], EG1Sustain);
1787
1788 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1789 store32(&pData[40], eg1release);
1790
1791 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1792 pData[44] = eg1ctl;
1793
1794 const uint8_t eg1ctrloptions =
1795 (EG1ControllerInvert ? 0x01 : 0x00) |
1796 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1797 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1798 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1799 pData[45] = eg1ctrloptions;
1800
1801 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1802 pData[46] = eg2ctl;
1803
1804 const uint8_t eg2ctrloptions =
1805 (EG2ControllerInvert ? 0x01 : 0x00) |
1806 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1807 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1808 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1809 pData[47] = eg2ctrloptions;
1810
1811 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1812 store32(&pData[48], lfo1freq);
1813
1814 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1815 store32(&pData[52], eg2attack);
1816
1817 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1818 store32(&pData[56], eg2decay1);
1819
1820 // next 2 bytes unknown
1821
1822 store16(&pData[62], EG2Sustain);
1823
1824 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1825 store32(&pData[64], eg2release);
1826
1827 // next 2 bytes unknown
1828
1829 store16(&pData[70], LFO2ControlDepth);
1830
1831 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1832 store32(&pData[72], lfo2freq);
1833
1834 // next 2 bytes unknown
1835
1836 store16(&pData[78], LFO2InternalDepth);
1837
1838 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1839 store32(&pData[80], eg1decay2);
1840
1841 // next 2 bytes unknown
1842
1843 store16(&pData[86], EG1PreAttack);
1844
1845 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1846 store32(&pData[88], eg2decay2);
1847
1848 // next 2 bytes unknown
1849
1850 store16(&pData[94], EG2PreAttack);
1851
1852 {
1853 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1854 uint8_t velocityresponse = VelocityResponseDepth;
1855 switch (VelocityResponseCurve) {
1856 case curve_type_nonlinear:
1857 break;
1858 case curve_type_linear:
1859 velocityresponse += 5;
1860 break;
1861 case curve_type_special:
1862 velocityresponse += 10;
1863 break;
1864 case curve_type_unknown:
1865 default:
1866 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1867 }
1868 pData[96] = velocityresponse;
1869 }
1870
1871 {
1872 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1873 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1874 switch (ReleaseVelocityResponseCurve) {
1875 case curve_type_nonlinear:
1876 break;
1877 case curve_type_linear:
1878 releasevelocityresponse += 5;
1879 break;
1880 case curve_type_special:
1881 releasevelocityresponse += 10;
1882 break;
1883 case curve_type_unknown:
1884 default:
1885 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1886 }
1887 pData[97] = releasevelocityresponse;
1888 }
1889
1890 pData[98] = VelocityResponseCurveScaling;
1891
1892 pData[99] = AttenuationControllerThreshold;
1893
1894 // next 4 bytes unknown
1895
1896 store16(&pData[104], SampleStartOffset);
1897
1898 // next 2 bytes unknown
1899
1900 {
1901 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1902 switch (DimensionBypass) {
1903 case dim_bypass_ctrl_94:
1904 pitchTrackDimensionBypass |= 0x10;
1905 break;
1906 case dim_bypass_ctrl_95:
1907 pitchTrackDimensionBypass |= 0x20;
1908 break;
1909 case dim_bypass_ctrl_none:
1910 //FIXME: should we set anything here?
1911 break;
1912 default:
1913 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1914 }
1915 pData[108] = pitchTrackDimensionBypass;
1916 }
1917
1918 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1919 pData[109] = pan;
1920
1921 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1922 pData[110] = selfmask;
1923
1924 // next byte unknown
1925
1926 {
1927 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1928 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1929 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1930 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1931 pData[112] = lfo3ctrl;
1932 }
1933
1934 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1935 pData[113] = attenctl;
1936
1937 {
1938 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1939 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1940 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1941 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1942 pData[114] = lfo2ctrl;
1943 }
1944
1945 {
1946 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1947 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1948 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1949 if (VCFResonanceController != vcf_res_ctrl_none)
1950 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1951 pData[115] = lfo1ctrl;
1952 }
1953
1954 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1955 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1956 store16(&pData[116], eg3depth);
1957
1958 // next 2 bytes unknown
1959
1960 const uint8_t channeloffset = ChannelOffset * 4;
1961 pData[120] = channeloffset;
1962
1963 {
1964 uint8_t regoptions = 0;
1965 if (MSDecode) regoptions |= 0x01; // bit 0
1966 if (SustainDefeat) regoptions |= 0x02; // bit 1
1967 pData[121] = regoptions;
1968 }
1969
1970 // next 2 bytes unknown
1971
1972 pData[124] = VelocityUpperLimit;
1973
1974 // next 3 bytes unknown
1975
1976 pData[128] = ReleaseTriggerDecay;
1977
1978 // next 2 bytes unknown
1979
1980 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1981 pData[131] = eg1hold;
1982
1983 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1984 (VCFCutoff & 0x7f); /* lower 7 bits */
1985 pData[132] = vcfcutoff;
1986
1987 pData[133] = VCFCutoffController;
1988
1989 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1990 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1991 pData[134] = vcfvelscale;
1992
1993 // next byte unknown
1994
1995 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1996 (VCFResonance & 0x7f); /* lower 7 bits */
1997 pData[136] = vcfresonance;
1998
1999 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2000 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2001 pData[137] = vcfbreakpoint;
2002
2003 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2004 VCFVelocityCurve * 5;
2005 pData[138] = vcfvelocity;
2006
2007 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2008 pData[139] = vcftype;
2009
2010 if (chunksize >= 148) {
2011 memcpy(&pData[140], DimensionUpperLimits, 8);
2012 }
2013 }
2014
2015 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2016 curve_type_t curveType = releaseVelocityResponseCurve;
2017 uint8_t depth = releaseVelocityResponseDepth;
2018 // this models a strange behaviour or bug in GSt: two of the
2019 // velocity response curves for release time are not used even
2020 // if specified, instead another curve is chosen.
2021 if ((curveType == curve_type_nonlinear && depth == 0) ||
2022 (curveType == curve_type_special && depth == 4)) {
2023 curveType = curve_type_nonlinear;
2024 depth = 3;
2025 }
2026 return GetVelocityTable(curveType, depth, 0);
2027 }
2028
2029 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2030 uint8_t vcfVelocityDynamicRange,
2031 uint8_t vcfVelocityScale,
2032 vcf_cutoff_ctrl_t vcfCutoffController)
2033 {
2034 curve_type_t curveType = vcfVelocityCurve;
2035 uint8_t depth = vcfVelocityDynamicRange;
2036 // even stranger GSt: two of the velocity response curves for
2037 // filter cutoff are not used, instead another special curve
2038 // is chosen. This curve is not used anywhere else.
2039 if ((curveType == curve_type_nonlinear && depth == 0) ||
2040 (curveType == curve_type_special && depth == 4)) {
2041 curveType = curve_type_special;
2042 depth = 5;
2043 }
2044 return GetVelocityTable(curveType, depth,
2045 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2046 ? vcfVelocityScale : 0);
2047 }
2048
2049 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2050 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2051 {
2052 double* table;
2053 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2054 if (pVelocityTables->count(tableKey)) { // if key exists
2055 table = (*pVelocityTables)[tableKey];
2056 }
2057 else {
2058 table = CreateVelocityTable(curveType, depth, scaling);
2059 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2060 }
2061 return table;
2062 }
2063
2064 Region* DimensionRegion::GetParent() const {
2065 return pRegion;
2066 }
2067
2068 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2069 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2070 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2071 //#pragma GCC diagnostic push
2072 //#pragma GCC diagnostic error "-Wswitch"
2073
2074 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2075 leverage_ctrl_t decodedcontroller;
2076 switch (EncodedController) {
2077 // special controller
2078 case _lev_ctrl_none:
2079 decodedcontroller.type = leverage_ctrl_t::type_none;
2080 decodedcontroller.controller_number = 0;
2081 break;
2082 case _lev_ctrl_velocity:
2083 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2084 decodedcontroller.controller_number = 0;
2085 break;
2086 case _lev_ctrl_channelaftertouch:
2087 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2088 decodedcontroller.controller_number = 0;
2089 break;
2090
2091 // ordinary MIDI control change controller
2092 case _lev_ctrl_modwheel:
2093 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2094 decodedcontroller.controller_number = 1;
2095 break;
2096 case _lev_ctrl_breath:
2097 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2098 decodedcontroller.controller_number = 2;
2099 break;
2100 case _lev_ctrl_foot:
2101 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2102 decodedcontroller.controller_number = 4;
2103 break;
2104 case _lev_ctrl_effect1:
2105 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2106 decodedcontroller.controller_number = 12;
2107 break;
2108 case _lev_ctrl_effect2:
2109 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2110 decodedcontroller.controller_number = 13;
2111 break;
2112 case _lev_ctrl_genpurpose1:
2113 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2114 decodedcontroller.controller_number = 16;
2115 break;
2116 case _lev_ctrl_genpurpose2:
2117 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118 decodedcontroller.controller_number = 17;
2119 break;
2120 case _lev_ctrl_genpurpose3:
2121 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122 decodedcontroller.controller_number = 18;
2123 break;
2124 case _lev_ctrl_genpurpose4:
2125 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126 decodedcontroller.controller_number = 19;
2127 break;
2128 case _lev_ctrl_portamentotime:
2129 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130 decodedcontroller.controller_number = 5;
2131 break;
2132 case _lev_ctrl_sustainpedal:
2133 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134 decodedcontroller.controller_number = 64;
2135 break;
2136 case _lev_ctrl_portamento:
2137 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138 decodedcontroller.controller_number = 65;
2139 break;
2140 case _lev_ctrl_sostenutopedal:
2141 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142 decodedcontroller.controller_number = 66;
2143 break;
2144 case _lev_ctrl_softpedal:
2145 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146 decodedcontroller.controller_number = 67;
2147 break;
2148 case _lev_ctrl_genpurpose5:
2149 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150 decodedcontroller.controller_number = 80;
2151 break;
2152 case _lev_ctrl_genpurpose6:
2153 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154 decodedcontroller.controller_number = 81;
2155 break;
2156 case _lev_ctrl_genpurpose7:
2157 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158 decodedcontroller.controller_number = 82;
2159 break;
2160 case _lev_ctrl_genpurpose8:
2161 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162 decodedcontroller.controller_number = 83;
2163 break;
2164 case _lev_ctrl_effect1depth:
2165 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166 decodedcontroller.controller_number = 91;
2167 break;
2168 case _lev_ctrl_effect2depth:
2169 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170 decodedcontroller.controller_number = 92;
2171 break;
2172 case _lev_ctrl_effect3depth:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 93;
2175 break;
2176 case _lev_ctrl_effect4depth:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 94;
2179 break;
2180 case _lev_ctrl_effect5depth:
2181 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182 decodedcontroller.controller_number = 95;
2183 break;
2184
2185 // format extension (these controllers are so far only supported by
2186 // LinuxSampler & gigedit) they will *NOT* work with
2187 // Gigasampler/GigaStudio !
2188 case _lev_ctrl_CC3_EXT:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 3;
2191 break;
2192 case _lev_ctrl_CC6_EXT:
2193 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194 decodedcontroller.controller_number = 6;
2195 break;
2196 case _lev_ctrl_CC7_EXT:
2197 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198 decodedcontroller.controller_number = 7;
2199 break;
2200 case _lev_ctrl_CC8_EXT:
2201 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202 decodedcontroller.controller_number = 8;
2203 break;
2204 case _lev_ctrl_CC9_EXT:
2205 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206 decodedcontroller.controller_number = 9;
2207 break;
2208 case _lev_ctrl_CC10_EXT:
2209 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210 decodedcontroller.controller_number = 10;
2211 break;
2212 case _lev_ctrl_CC11_EXT:
2213 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214 decodedcontroller.controller_number = 11;
2215 break;
2216 case _lev_ctrl_CC14_EXT:
2217 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218 decodedcontroller.controller_number = 14;
2219 break;
2220 case _lev_ctrl_CC15_EXT:
2221 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222 decodedcontroller.controller_number = 15;
2223 break;
2224 case _lev_ctrl_CC20_EXT:
2225 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226 decodedcontroller.controller_number = 20;
2227 break;
2228 case _lev_ctrl_CC21_EXT:
2229 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230 decodedcontroller.controller_number = 21;
2231 break;
2232 case _lev_ctrl_CC22_EXT:
2233 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234 decodedcontroller.controller_number = 22;
2235 break;
2236 case _lev_ctrl_CC23_EXT:
2237 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238 decodedcontroller.controller_number = 23;
2239 break;
2240 case _lev_ctrl_CC24_EXT:
2241 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242 decodedcontroller.controller_number = 24;
2243 break;
2244 case _lev_ctrl_CC25_EXT:
2245 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246 decodedcontroller.controller_number = 25;
2247 break;
2248 case _lev_ctrl_CC26_EXT:
2249 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250 decodedcontroller.controller_number = 26;
2251 break;
2252 case _lev_ctrl_CC27_EXT:
2253 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254 decodedcontroller.controller_number = 27;
2255 break;
2256 case _lev_ctrl_CC28_EXT:
2257 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258 decodedcontroller.controller_number = 28;
2259 break;
2260 case _lev_ctrl_CC29_EXT:
2261 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262 decodedcontroller.controller_number = 29;
2263 break;
2264 case _lev_ctrl_CC30_EXT:
2265 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266 decodedcontroller.controller_number = 30;
2267 break;
2268 case _lev_ctrl_CC31_EXT:
2269 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270 decodedcontroller.controller_number = 31;
2271 break;
2272 case _lev_ctrl_CC68_EXT:
2273 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274 decodedcontroller.controller_number = 68;
2275 break;
2276 case _lev_ctrl_CC69_EXT:
2277 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278 decodedcontroller.controller_number = 69;
2279 break;
2280 case _lev_ctrl_CC70_EXT:
2281 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282 decodedcontroller.controller_number = 70;
2283 break;
2284 case _lev_ctrl_CC71_EXT:
2285 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286 decodedcontroller.controller_number = 71;
2287 break;
2288 case _lev_ctrl_CC72_EXT:
2289 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290 decodedcontroller.controller_number = 72;
2291 break;
2292 case _lev_ctrl_CC73_EXT:
2293 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294 decodedcontroller.controller_number = 73;
2295 break;
2296 case _lev_ctrl_CC74_EXT:
2297 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298 decodedcontroller.controller_number = 74;
2299 break;
2300 case _lev_ctrl_CC75_EXT:
2301 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302 decodedcontroller.controller_number = 75;
2303 break;
2304 case _lev_ctrl_CC76_EXT:
2305 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306 decodedcontroller.controller_number = 76;
2307 break;
2308 case _lev_ctrl_CC77_EXT:
2309 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310 decodedcontroller.controller_number = 77;
2311 break;
2312 case _lev_ctrl_CC78_EXT:
2313 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314 decodedcontroller.controller_number = 78;
2315 break;
2316 case _lev_ctrl_CC79_EXT:
2317 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318 decodedcontroller.controller_number = 79;
2319 break;
2320 case _lev_ctrl_CC84_EXT:
2321 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322 decodedcontroller.controller_number = 84;
2323 break;
2324 case _lev_ctrl_CC85_EXT:
2325 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326 decodedcontroller.controller_number = 85;
2327 break;
2328 case _lev_ctrl_CC86_EXT:
2329 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330 decodedcontroller.controller_number = 86;
2331 break;
2332 case _lev_ctrl_CC87_EXT:
2333 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334 decodedcontroller.controller_number = 87;
2335 break;
2336 case _lev_ctrl_CC89_EXT:
2337 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338 decodedcontroller.controller_number = 89;
2339 break;
2340 case _lev_ctrl_CC90_EXT:
2341 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342 decodedcontroller.controller_number = 90;
2343 break;
2344 case _lev_ctrl_CC96_EXT:
2345 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346 decodedcontroller.controller_number = 96;
2347 break;
2348 case _lev_ctrl_CC97_EXT:
2349 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350 decodedcontroller.controller_number = 97;
2351 break;
2352 case _lev_ctrl_CC102_EXT:
2353 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354 decodedcontroller.controller_number = 102;
2355 break;
2356 case _lev_ctrl_CC103_EXT:
2357 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358 decodedcontroller.controller_number = 103;
2359 break;
2360 case _lev_ctrl_CC104_EXT:
2361 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362 decodedcontroller.controller_number = 104;
2363 break;
2364 case _lev_ctrl_CC105_EXT:
2365 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366 decodedcontroller.controller_number = 105;
2367 break;
2368 case _lev_ctrl_CC106_EXT:
2369 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370 decodedcontroller.controller_number = 106;
2371 break;
2372 case _lev_ctrl_CC107_EXT:
2373 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374 decodedcontroller.controller_number = 107;
2375 break;
2376 case _lev_ctrl_CC108_EXT:
2377 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378 decodedcontroller.controller_number = 108;
2379 break;
2380 case _lev_ctrl_CC109_EXT:
2381 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382 decodedcontroller.controller_number = 109;
2383 break;
2384 case _lev_ctrl_CC110_EXT:
2385 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386 decodedcontroller.controller_number = 110;
2387 break;
2388 case _lev_ctrl_CC111_EXT:
2389 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390 decodedcontroller.controller_number = 111;
2391 break;
2392 case _lev_ctrl_CC112_EXT:
2393 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394 decodedcontroller.controller_number = 112;
2395 break;
2396 case _lev_ctrl_CC113_EXT:
2397 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398 decodedcontroller.controller_number = 113;
2399 break;
2400 case _lev_ctrl_CC114_EXT:
2401 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402 decodedcontroller.controller_number = 114;
2403 break;
2404 case _lev_ctrl_CC115_EXT:
2405 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406 decodedcontroller.controller_number = 115;
2407 break;
2408 case _lev_ctrl_CC116_EXT:
2409 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410 decodedcontroller.controller_number = 116;
2411 break;
2412 case _lev_ctrl_CC117_EXT:
2413 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414 decodedcontroller.controller_number = 117;
2415 break;
2416 case _lev_ctrl_CC118_EXT:
2417 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418 decodedcontroller.controller_number = 118;
2419 break;
2420 case _lev_ctrl_CC119_EXT:
2421 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422 decodedcontroller.controller_number = 119;
2423 break;
2424
2425 // unknown controller type
2426 default:
2427 throw gig::Exception("Unknown leverage controller type.");
2428 }
2429 return decodedcontroller;
2430 }
2431
2432 // see above (diagnostic push not supported prior GCC 4.6)
2433 //#pragma GCC diagnostic pop
2434
2435 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2436 _lev_ctrl_t encodedcontroller;
2437 switch (DecodedController.type) {
2438 // special controller
2439 case leverage_ctrl_t::type_none:
2440 encodedcontroller = _lev_ctrl_none;
2441 break;
2442 case leverage_ctrl_t::type_velocity:
2443 encodedcontroller = _lev_ctrl_velocity;
2444 break;
2445 case leverage_ctrl_t::type_channelaftertouch:
2446 encodedcontroller = _lev_ctrl_channelaftertouch;
2447 break;
2448
2449 // ordinary MIDI control change controller
2450 case leverage_ctrl_t::type_controlchange:
2451 switch (DecodedController.controller_number) {
2452 case 1:
2453 encodedcontroller = _lev_ctrl_modwheel;
2454 break;
2455 case 2:
2456 encodedcontroller = _lev_ctrl_breath;
2457 break;
2458 case 4:
2459 encodedcontroller = _lev_ctrl_foot;
2460 break;
2461 case 12:
2462 encodedcontroller = _lev_ctrl_effect1;
2463 break;
2464 case 13:
2465 encodedcontroller = _lev_ctrl_effect2;
2466 break;
2467 case 16:
2468 encodedcontroller = _lev_ctrl_genpurpose1;
2469 break;
2470 case 17:
2471 encodedcontroller = _lev_ctrl_genpurpose2;
2472 break;
2473 case 18:
2474 encodedcontroller = _lev_ctrl_genpurpose3;
2475 break;
2476 case 19:
2477 encodedcontroller = _lev_ctrl_genpurpose4;
2478 break;
2479 case 5:
2480 encodedcontroller = _lev_ctrl_portamentotime;
2481 break;
2482 case 64:
2483 encodedcontroller = _lev_ctrl_sustainpedal;
2484 break;
2485 case 65:
2486 encodedcontroller = _lev_ctrl_portamento;
2487 break;
2488 case 66:
2489 encodedcontroller = _lev_ctrl_sostenutopedal;
2490 break;
2491 case 67:
2492 encodedcontroller = _lev_ctrl_softpedal;
2493 break;
2494 case 80:
2495 encodedcontroller = _lev_ctrl_genpurpose5;
2496 break;
2497 case 81:
2498 encodedcontroller = _lev_ctrl_genpurpose6;
2499 break;
2500 case 82:
2501 encodedcontroller = _lev_ctrl_genpurpose7;
2502 break;
2503 case 83:
2504 encodedcontroller = _lev_ctrl_genpurpose8;
2505 break;
2506 case 91:
2507 encodedcontroller = _lev_ctrl_effect1depth;
2508 break;
2509 case 92:
2510 encodedcontroller = _lev_ctrl_effect2depth;
2511 break;
2512 case 93:
2513 encodedcontroller = _lev_ctrl_effect3depth;
2514 break;
2515 case 94:
2516 encodedcontroller = _lev_ctrl_effect4depth;
2517 break;
2518 case 95:
2519 encodedcontroller = _lev_ctrl_effect5depth;
2520 break;
2521
2522 // format extension (these controllers are so far only
2523 // supported by LinuxSampler & gigedit) they will *NOT*
2524 // work with Gigasampler/GigaStudio !
2525 case 3:
2526 encodedcontroller = _lev_ctrl_CC3_EXT;
2527 break;
2528 case 6:
2529 encodedcontroller = _lev_ctrl_CC6_EXT;
2530 break;
2531 case 7:
2532 encodedcontroller = _lev_ctrl_CC7_EXT;
2533 break;
2534 case 8:
2535 encodedcontroller = _lev_ctrl_CC8_EXT;
2536 break;
2537 case 9:
2538 encodedcontroller = _lev_ctrl_CC9_EXT;
2539 break;
2540 case 10:
2541 encodedcontroller = _lev_ctrl_CC10_EXT;
2542 break;
2543 case 11:
2544 encodedcontroller = _lev_ctrl_CC11_EXT;
2545 break;
2546 case 14:
2547 encodedcontroller = _lev_ctrl_CC14_EXT;
2548 break;
2549 case 15:
2550 encodedcontroller = _lev_ctrl_CC15_EXT;
2551 break;
2552 case 20:
2553 encodedcontroller = _lev_ctrl_CC20_EXT;
2554 break;
2555 case 21:
2556 encodedcontroller = _lev_ctrl_CC21_EXT;
2557 break;
2558 case 22:
2559 encodedcontroller = _lev_ctrl_CC22_EXT;
2560 break;
2561 case 23:
2562 encodedcontroller = _lev_ctrl_CC23_EXT;
2563 break;
2564 case 24:
2565 encodedcontroller = _lev_ctrl_CC24_EXT;
2566 break;
2567 case 25:
2568 encodedcontroller = _lev_ctrl_CC25_EXT;
2569 break;
2570 case 26:
2571 encodedcontroller = _lev_ctrl_CC26_EXT;
2572 break;
2573 case 27:
2574 encodedcontroller = _lev_ctrl_CC27_EXT;
2575 break;
2576 case 28:
2577 encodedcontroller = _lev_ctrl_CC28_EXT;
2578 break;
2579 case 29:
2580 encodedcontroller = _lev_ctrl_CC29_EXT;
2581 break;
2582 case 30:
2583 encodedcontroller = _lev_ctrl_CC30_EXT;
2584 break;
2585 case 31:
2586 encodedcontroller = _lev_ctrl_CC31_EXT;
2587 break;
2588 case 68:
2589 encodedcontroller = _lev_ctrl_CC68_EXT;
2590 break;
2591 case 69:
2592 encodedcontroller = _lev_ctrl_CC69_EXT;
2593 break;
2594 case 70:
2595 encodedcontroller = _lev_ctrl_CC70_EXT;
2596 break;
2597 case 71:
2598 encodedcontroller = _lev_ctrl_CC71_EXT;
2599 break;
2600 case 72:
2601 encodedcontroller = _lev_ctrl_CC72_EXT;
2602 break;
2603 case 73:
2604 encodedcontroller = _lev_ctrl_CC73_EXT;
2605 break;
2606 case 74:
2607 encodedcontroller = _lev_ctrl_CC74_EXT;
2608 break;
2609 case 75:
2610 encodedcontroller = _lev_ctrl_CC75_EXT;
2611 break;
2612 case 76:
2613 encodedcontroller = _lev_ctrl_CC76_EXT;
2614 break;
2615 case 77:
2616 encodedcontroller = _lev_ctrl_CC77_EXT;
2617 break;
2618 case 78:
2619 encodedcontroller = _lev_ctrl_CC78_EXT;
2620 break;
2621 case 79:
2622 encodedcontroller = _lev_ctrl_CC79_EXT;
2623 break;
2624 case 84:
2625 encodedcontroller = _lev_ctrl_CC84_EXT;
2626 break;
2627 case 85:
2628 encodedcontroller = _lev_ctrl_CC85_EXT;
2629 break;
2630 case 86:
2631 encodedcontroller = _lev_ctrl_CC86_EXT;
2632 break;
2633 case 87:
2634 encodedcontroller = _lev_ctrl_CC87_EXT;
2635 break;
2636 case 89:
2637 encodedcontroller = _lev_ctrl_CC89_EXT;
2638 break;
2639 case 90:
2640 encodedcontroller = _lev_ctrl_CC90_EXT;
2641 break;
2642 case 96:
2643 encodedcontroller = _lev_ctrl_CC96_EXT;
2644 break;
2645 case 97:
2646 encodedcontroller = _lev_ctrl_CC97_EXT;
2647 break;
2648 case 102:
2649 encodedcontroller = _lev_ctrl_CC102_EXT;
2650 break;
2651 case 103:
2652 encodedcontroller = _lev_ctrl_CC103_EXT;
2653 break;
2654 case 104:
2655 encodedcontroller = _lev_ctrl_CC104_EXT;
2656 break;
2657 case 105:
2658 encodedcontroller = _lev_ctrl_CC105_EXT;
2659 break;
2660 case 106:
2661 encodedcontroller = _lev_ctrl_CC106_EXT;
2662 break;
2663 case 107:
2664 encodedcontroller = _lev_ctrl_CC107_EXT;
2665 break;
2666 case 108:
2667 encodedcontroller = _lev_ctrl_CC108_EXT;
2668 break;
2669 case 109:
2670 encodedcontroller = _lev_ctrl_CC109_EXT;
2671 break;
2672 case 110:
2673 encodedcontroller = _lev_ctrl_CC110_EXT;
2674 break;
2675 case 111:
2676 encodedcontroller = _lev_ctrl_CC111_EXT;
2677 break;
2678 case 112:
2679 encodedcontroller = _lev_ctrl_CC112_EXT;
2680 break;
2681 case 113:
2682 encodedcontroller = _lev_ctrl_CC113_EXT;
2683 break;
2684 case 114:
2685 encodedcontroller = _lev_ctrl_CC114_EXT;
2686 break;
2687 case 115:
2688 encodedcontroller = _lev_ctrl_CC115_EXT;
2689 break;
2690 case 116:
2691 encodedcontroller = _lev_ctrl_CC116_EXT;
2692 break;
2693 case 117:
2694 encodedcontroller = _lev_ctrl_CC117_EXT;
2695 break;
2696 case 118:
2697 encodedcontroller = _lev_ctrl_CC118_EXT;
2698 break;
2699 case 119:
2700 encodedcontroller = _lev_ctrl_CC119_EXT;
2701 break;
2702
2703 default:
2704 throw gig::Exception("leverage controller number is not supported by the gig format");
2705 }
2706 break;
2707 default:
2708 throw gig::Exception("Unknown leverage controller type.");
2709 }
2710 return encodedcontroller;
2711 }
2712
2713 DimensionRegion::~DimensionRegion() {
2714 Instances--;
2715 if (!Instances) {
2716 // delete the velocity->volume tables
2717 VelocityTableMap::iterator iter;
2718 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2719 double* pTable = iter->second;
2720 if (pTable) delete[] pTable;
2721 }
2722 pVelocityTables->clear();
2723 delete pVelocityTables;
2724 pVelocityTables = NULL;
2725 }
2726 if (VelocityTable) delete[] VelocityTable;
2727 }
2728
2729 /**
2730 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2731 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2732 * and VelocityResponseCurveScaling) involved are taken into account to
2733 * calculate the amplitude factor. Use this method when a key was
2734 * triggered to get the volume with which the sample should be played
2735 * back.
2736 *
2737 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2738 * @returns amplitude factor (between 0.0 and 1.0)
2739 */
2740 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2741 return pVelocityAttenuationTable[MIDIKeyVelocity];
2742 }
2743
2744 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2745 return pVelocityReleaseTable[MIDIKeyVelocity];
2746 }
2747
2748 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2749 return pVelocityCutoffTable[MIDIKeyVelocity];
2750 }
2751
2752 /**
2753 * Updates the respective member variable and the lookup table / cache
2754 * that depends on this value.
2755 */
2756 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2757 pVelocityAttenuationTable =
2758 GetVelocityTable(
2759 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2760 );
2761 VelocityResponseCurve = curve;
2762 }
2763
2764 /**
2765 * Updates the respective member variable and the lookup table / cache
2766 * that depends on this value.
2767 */
2768 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2769 pVelocityAttenuationTable =
2770 GetVelocityTable(
2771 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2772 );
2773 VelocityResponseDepth = depth;
2774 }
2775
2776 /**
2777 * Updates the respective member variable and the lookup table / cache
2778 * that depends on this value.
2779 */
2780 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2781 pVelocityAttenuationTable =
2782 GetVelocityTable(
2783 VelocityResponseCurve, VelocityResponseDepth, scaling
2784 );
2785 VelocityResponseCurveScaling = scaling;
2786 }
2787
2788 /**
2789 * Updates the respective member variable and the lookup table / cache
2790 * that depends on this value.
2791 */
2792 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2793 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2794 ReleaseVelocityResponseCurve = curve;
2795 }
2796
2797 /**
2798 * Updates the respective member variable and the lookup table / cache
2799 * that depends on this value.
2800 */
2801 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2802 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2803 ReleaseVelocityResponseDepth = depth;
2804 }
2805
2806 /**
2807 * Updates the respective member variable and the lookup table / cache
2808 * that depends on this value.
2809 */
2810 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2811 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2812 VCFCutoffController = controller;
2813 }
2814
2815 /**
2816 * Updates the respective member variable and the lookup table / cache
2817 * that depends on this value.
2818 */
2819 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2820 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2821 VCFVelocityCurve = curve;
2822 }
2823
2824 /**
2825 * Updates the respective member variable and the lookup table / cache
2826 * that depends on this value.
2827 */
2828 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2829 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2830 VCFVelocityDynamicRange = range;
2831 }
2832
2833 /**
2834 * Updates the respective member variable and the lookup table / cache
2835 * that depends on this value.
2836 */
2837 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2838 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2839 VCFVelocityScale = scaling;
2840 }
2841
2842 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2843
2844 // line-segment approximations of the 15 velocity curves
2845
2846 // linear
2847 const int lin0[] = { 1, 1, 127, 127 };
2848 const int lin1[] = { 1, 21, 127, 127 };
2849 const int lin2[] = { 1, 45, 127, 127 };
2850 const int lin3[] = { 1, 74, 127, 127 };
2851 const int lin4[] = { 1, 127, 127, 127 };
2852
2853 // non-linear
2854 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2855 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2856 127, 127 };
2857 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2858 127, 127 };
2859 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2860 127, 127 };
2861 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2862
2863 // special
2864 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2865 113, 127, 127, 127 };
2866 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2867 118, 127, 127, 127 };
2868 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2869 85, 90, 91, 127, 127, 127 };
2870 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2871 117, 127, 127, 127 };
2872 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2873 127, 127 };
2874
2875 // this is only used by the VCF velocity curve
2876 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2877 91, 127, 127, 127 };
2878
2879 const int* const curves[] = { non0, non1, non2, non3, non4,
2880 lin0, lin1, lin2, lin3, lin4,
2881 spe0, spe1, spe2, spe3, spe4, spe5 };
2882
2883 double* const table = new double[128];
2884
2885 const int* curve = curves[curveType * 5 + depth];
2886 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2887
2888 table[0] = 0;
2889 for (int x = 1 ; x < 128 ; x++) {
2890
2891 if (x > curve[2]) curve += 2;
2892 double y = curve[1] + (x - curve[0]) *
2893 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2894 y = y / 127;
2895
2896 // Scale up for s > 20, down for s < 20. When
2897 // down-scaling, the curve still ends at 1.0.
2898 if (s < 20 && y >= 0.5)
2899 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2900 else
2901 y = y * (s / 20.0);
2902 if (y > 1) y = 1;
2903
2904 table[x] = y;
2905 }
2906 return table;
2907 }
2908
2909
2910 // *************** Region ***************
2911 // *
2912
2913 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2914 // Initialization
2915 Dimensions = 0;
2916 for (int i = 0; i < 256; i++) {
2917 pDimensionRegions[i] = NULL;
2918 }
2919 Layers = 1;
2920 File* file = (File*) GetParent()->GetParent();
2921 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2922
2923 // Actual Loading
2924
2925 if (!file->GetAutoLoad()) return;
2926
2927 LoadDimensionRegions(rgnList);
2928
2929 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2930 if (_3lnk) {
2931 DimensionRegions = _3lnk->ReadUint32();
2932 for (int i = 0; i < dimensionBits; i++) {
2933 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2934 uint8_t bits = _3lnk->ReadUint8();
2935 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2936 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2937 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2938 if (dimension == dimension_none) { // inactive dimension
2939 pDimensionDefinitions[i].dimension = dimension_none;
2940 pDimensionDefinitions[i].bits = 0;
2941 pDimensionDefinitions[i].zones = 0;
2942 pDimensionDefinitions[i].split_type = split_type_bit;
2943 pDimensionDefinitions[i].zone_size = 0;
2944 }
2945 else { // active dimension
2946 pDimensionDefinitions[i].dimension = dimension;
2947 pDimensionDefinitions[i].bits = bits;
2948 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2949 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2950 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2951 Dimensions++;
2952
2953 // if this is a layer dimension, remember the amount of layers
2954 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2955 }
2956 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2957 }
2958 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2959
2960 // if there's a velocity dimension and custom velocity zone splits are used,
2961 // update the VelocityTables in the dimension regions
2962 UpdateVelocityTable();
2963
2964 // jump to start of the wave pool indices (if not already there)
2965 if (file->pVersion && file->pVersion->major == 3)
2966 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2967 else
2968 _3lnk->SetPos(44);
2969
2970 // load sample references (if auto loading is enabled)
2971 if (file->GetAutoLoad()) {
2972 for (uint i = 0; i < DimensionRegions; i++) {
2973 uint32_t wavepoolindex = _3lnk->ReadUint32();
2974 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2975 }
2976 GetSample(); // load global region sample reference
2977 }
2978 } else {
2979 DimensionRegions = 0;
2980 for (int i = 0 ; i < 8 ; i++) {
2981 pDimensionDefinitions[i].dimension = dimension_none;
2982 pDimensionDefinitions[i].bits = 0;
2983 pDimensionDefinitions[i].zones = 0;
2984 }
2985 }
2986
2987 // make sure there is at least one dimension region
2988 if (!DimensionRegions) {
2989 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2990 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2991 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2992 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2993 DimensionRegions = 1;
2994 }
2995 }
2996
2997 /**
2998 * Apply Region settings and all its DimensionRegions to the respective
2999 * RIFF chunks. You have to call File::Save() to make changes persistent.
3000 *
3001 * Usually there is absolutely no need to call this method explicitly.
3002 * It will be called automatically when File::Save() was called.
3003 *
3004 * @param pProgress - callback function for progress notification
3005 * @throws gig::Exception if samples cannot be dereferenced
3006 */
3007 void Region::UpdateChunks(progress_t* pProgress) {
3008 // in the gig format we don't care about the Region's sample reference
3009 // but we still have to provide some existing one to not corrupt the
3010 // file, so to avoid the latter we simply always assign the sample of
3011 // the first dimension region of this region
3012 pSample = pDimensionRegions[0]->pSample;
3013
3014 // first update base class's chunks
3015 DLS::Region::UpdateChunks(pProgress);
3016
3017 // update dimension region's chunks
3018 for (int i = 0; i < DimensionRegions; i++) {
3019 pDimensionRegions[i]->UpdateChunks(pProgress);
3020 }
3021
3022 File* pFile = (File*) GetParent()->GetParent();
3023 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3024 const int iMaxDimensions = version3 ? 8 : 5;
3025 const int iMaxDimensionRegions = version3 ? 256 : 32;
3026
3027 // make sure '3lnk' chunk exists
3028 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3029 if (!_3lnk) {
3030 const int _3lnkChunkSize = version3 ? 1092 : 172;
3031 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3032 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3033
3034 // move 3prg to last position
3035 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3036 }
3037
3038 // update dimension definitions in '3lnk' chunk
3039 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3040 store32(&pData[0], DimensionRegions);
3041 int shift = 0;
3042 for (int i = 0; i < iMaxDimensions; i++) {
3043 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3044 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3045 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3046 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3047 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3048 // next 3 bytes unknown, always zero?
3049
3050 shift += pDimensionDefinitions[i].bits;
3051 }
3052
3053 // update wave pool table in '3lnk' chunk
3054 const int iWavePoolOffset = version3 ? 68 : 44;
3055 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3056 int iWaveIndex = -1;
3057 if (i < DimensionRegions) {
3058 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3059 File::SampleList::iterator iter = pFile->pSamples->begin();
3060 File::SampleList::iterator end = pFile->pSamples->end();
3061 for (int index = 0; iter != end; ++iter, ++index) {
3062 if (*iter == pDimensionRegions[i]->pSample) {
3063 iWaveIndex = index;
3064 break;
3065 }
3066 }
3067 }
3068 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3069 }
3070 }
3071
3072 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3073 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3074 if (_3prg) {
3075 int dimensionRegionNr = 0;
3076 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3077 while (_3ewl) {
3078 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3079 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3080 dimensionRegionNr++;
3081 }
3082 _3ewl = _3prg->GetNextSubList();
3083 }
3084 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3085 }
3086 }
3087
3088 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3089 // update KeyRange struct and make sure regions are in correct order
3090 DLS::Region::SetKeyRange(Low, High);
3091 // update Region key table for fast lookup
3092 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3093 }
3094
3095 void Region::UpdateVelocityTable() {
3096 // get velocity dimension's index
3097 int veldim = -1;
3098 for (int i = 0 ; i < Dimensions ; i++) {
3099 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3100 veldim = i;
3101 break;
3102 }
3103 }
3104 if (veldim == -1) return;
3105
3106 int step = 1;
3107 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3108 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3109 int end = step * pDimensionDefinitions[veldim].zones;
3110
3111 // loop through all dimension regions for all dimensions except the velocity dimension
3112 int dim[8] = { 0 };
3113 for (int i = 0 ; i < DimensionRegions ; i++) {
3114
3115 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3116 pDimensionRegions[i]->VelocityUpperLimit) {
3117 // create the velocity table
3118 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3119 if (!table) {
3120 table = new uint8_t[128];
3121 pDimensionRegions[i]->VelocityTable = table;
3122 }
3123 int tableidx = 0;
3124 int velocityZone = 0;
3125 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3126 for (int k = i ; k < end ; k += step) {
3127 DimensionRegion *d = pDimensionRegions[k];
3128 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3129 velocityZone++;
3130 }
3131 } else { // gig2
3132 for (int k = i ; k < end ; k += step) {
3133 DimensionRegion *d = pDimensionRegions[k];
3134 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3135 velocityZone++;
3136 }
3137 }
3138 } else {
3139 if (pDimensionRegions[i]->VelocityTable) {
3140 delete[] pDimensionRegions[i]->VelocityTable;
3141 pDimensionRegions[i]->VelocityTable = 0;
3142 }