/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2985 - (show annotations) (download)
Tue Sep 20 22:13:37 2016 UTC (7 years, 5 months ago) by schoenebeck
File size: 274049 byte(s)
* gig.cpp/gig.h: Added new method Sample::VerifyWaveData() which
  allows to check whether a sample had been damaged for some
  reason.
* gigdump tool: added and implemented new parameter "--verify"
  which allows to check the raw wave form data integrity of all
  samples.
* gigdump tool: added and implemented new parameter
  "--rebuild-checksums" which allows to recalculate the CRC32
  checksum of all samples' raw wave data and rebuilding the gig
  file's global checksum table (i.e. in case the file's checksum
  table was damaged).
* Bumped version (4.0.0.svn8).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// libgig's current file format version (for extending the original Giga file
34 /// format with libgig's own custom data / custom features).
35 #define GIG_FILE_EXT_VERSION 2
36
37 /// Initial size of the sample buffer which is used for decompression of
38 /// compressed sample wave streams - this value should always be bigger than
39 /// the biggest sample piece expected to be read by the sampler engine,
40 /// otherwise the buffer size will be raised at runtime and thus the buffer
41 /// reallocated which is time consuming and unefficient.
42 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43
44 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57
58 namespace gig {
59
60 // *************** Internal functions for sample decompression ***************
61 // *
62
63 namespace {
64
65 inline int get12lo(const unsigned char* pSrc)
66 {
67 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68 return x & 0x800 ? x - 0x1000 : x;
69 }
70
71 inline int get12hi(const unsigned char* pSrc)
72 {
73 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74 return x & 0x800 ? x - 0x1000 : x;
75 }
76
77 inline int16_t get16(const unsigned char* pSrc)
78 {
79 return int16_t(pSrc[0] | pSrc[1] << 8);
80 }
81
82 inline int get24(const unsigned char* pSrc)
83 {
84 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85 return x & 0x800000 ? x - 0x1000000 : x;
86 }
87
88 inline void store24(unsigned char* pDst, int x)
89 {
90 pDst[0] = x;
91 pDst[1] = x >> 8;
92 pDst[2] = x >> 16;
93 }
94
95 void Decompress16(int compressionmode, const unsigned char* params,
96 int srcStep, int dstStep,
97 const unsigned char* pSrc, int16_t* pDst,
98 file_offset_t currentframeoffset,
99 file_offset_t copysamples)
100 {
101 switch (compressionmode) {
102 case 0: // 16 bit uncompressed
103 pSrc += currentframeoffset * srcStep;
104 while (copysamples) {
105 *pDst = get16(pSrc);
106 pDst += dstStep;
107 pSrc += srcStep;
108 copysamples--;
109 }
110 break;
111
112 case 1: // 16 bit compressed to 8 bit
113 int y = get16(params);
114 int dy = get16(params + 2);
115 while (currentframeoffset) {
116 dy -= int8_t(*pSrc);
117 y -= dy;
118 pSrc += srcStep;
119 currentframeoffset--;
120 }
121 while (copysamples) {
122 dy -= int8_t(*pSrc);
123 y -= dy;
124 *pDst = y;
125 pDst += dstStep;
126 pSrc += srcStep;
127 copysamples--;
128 }
129 break;
130 }
131 }
132
133 void Decompress24(int compressionmode, const unsigned char* params,
134 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 file_offset_t currentframeoffset,
136 file_offset_t copysamples, int truncatedBits)
137 {
138 int y, dy, ddy, dddy;
139
140 #define GET_PARAMS(params) \
141 y = get24(params); \
142 dy = y - get24((params) + 3); \
143 ddy = get24((params) + 6); \
144 dddy = get24((params) + 9)
145
146 #define SKIP_ONE(x) \
147 dddy -= (x); \
148 ddy -= dddy; \
149 dy = -dy - ddy; \
150 y += dy
151
152 #define COPY_ONE(x) \
153 SKIP_ONE(x); \
154 store24(pDst, y << truncatedBits); \
155 pDst += dstStep
156
157 switch (compressionmode) {
158 case 2: // 24 bit uncompressed
159 pSrc += currentframeoffset * 3;
160 while (copysamples) {
161 store24(pDst, get24(pSrc) << truncatedBits);
162 pDst += dstStep;
163 pSrc += 3;
164 copysamples--;
165 }
166 break;
167
168 case 3: // 24 bit compressed to 16 bit
169 GET_PARAMS(params);
170 while (currentframeoffset) {
171 SKIP_ONE(get16(pSrc));
172 pSrc += 2;
173 currentframeoffset--;
174 }
175 while (copysamples) {
176 COPY_ONE(get16(pSrc));
177 pSrc += 2;
178 copysamples--;
179 }
180 break;
181
182 case 4: // 24 bit compressed to 12 bit
183 GET_PARAMS(params);
184 while (currentframeoffset > 1) {
185 SKIP_ONE(get12lo(pSrc));
186 SKIP_ONE(get12hi(pSrc));
187 pSrc += 3;
188 currentframeoffset -= 2;
189 }
190 if (currentframeoffset) {
191 SKIP_ONE(get12lo(pSrc));
192 currentframeoffset--;
193 if (copysamples) {
194 COPY_ONE(get12hi(pSrc));
195 pSrc += 3;
196 copysamples--;
197 }
198 }
199 while (copysamples > 1) {
200 COPY_ONE(get12lo(pSrc));
201 COPY_ONE(get12hi(pSrc));
202 pSrc += 3;
203 copysamples -= 2;
204 }
205 if (copysamples) {
206 COPY_ONE(get12lo(pSrc));
207 }
208 break;
209
210 case 5: // 24 bit compressed to 8 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(int8_t(*pSrc++));
214 currentframeoffset--;
215 }
216 while (copysamples) {
217 COPY_ONE(int8_t(*pSrc++));
218 copysamples--;
219 }
220 break;
221 }
222 }
223
224 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228 }
229
230
231
232 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233 // *
234
235 static uint32_t* __initCRCTable() {
236 static uint32_t res[256];
237
238 for (int i = 0 ; i < 256 ; i++) {
239 uint32_t c = i;
240 for (int j = 0 ; j < 8 ; j++) {
241 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242 }
243 res[i] = c;
244 }
245 return res;
246 }
247
248 static const uint32_t* __CRCTable = __initCRCTable();
249
250 /**
251 * Initialize a CRC variable.
252 *
253 * @param crc - variable to be initialized
254 */
255 inline static void __resetCRC(uint32_t& crc) {
256 crc = 0xffffffff;
257 }
258
259 /**
260 * Used to calculate checksums of the sample data in a gig file. The
261 * checksums are stored in the 3crc chunk of the gig file and
262 * automatically updated when a sample is written with Sample::Write().
263 *
264 * One should call __resetCRC() to initialize the CRC variable to be
265 * used before calling this function the first time.
266 *
267 * After initializing the CRC variable one can call this function
268 * arbitrary times, i.e. to split the overall CRC calculation into
269 * steps.
270 *
271 * Once the whole data was processed by __calculateCRC(), one should
272 * call __encodeCRC() to get the final CRC result.
273 *
274 * @param buf - pointer to data the CRC shall be calculated of
275 * @param bufSize - size of the data to be processed
276 * @param crc - variable the CRC sum shall be stored to
277 */
278 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279 for (int i = 0 ; i < bufSize ; i++) {
280 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281 }
282 }
283
284 /**
285 * Returns the final CRC result.
286 *
287 * @param crc - variable previously passed to __calculateCRC()
288 */
289 inline static uint32_t __encodeCRC(const uint32_t& crc) {
290 return crc ^ 0xffffffff;
291 }
292
293
294
295 // *************** Other Internal functions ***************
296 // *
297
298 static split_type_t __resolveSplitType(dimension_t dimension) {
299 return (
300 dimension == dimension_layer ||
301 dimension == dimension_samplechannel ||
302 dimension == dimension_releasetrigger ||
303 dimension == dimension_keyboard ||
304 dimension == dimension_roundrobin ||
305 dimension == dimension_random ||
306 dimension == dimension_smartmidi ||
307 dimension == dimension_roundrobinkeyboard
308 ) ? split_type_bit : split_type_normal;
309 }
310
311 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312 return (dimension_definition.split_type == split_type_normal)
313 ? int(128.0 / dimension_definition.zones) : 0;
314 }
315
316
317
318 // *************** Sample ***************
319 // *
320
321 size_t Sample::Instances = 0;
322 buffer_t Sample::InternalDecompressionBuffer;
323
324 /** @brief Constructor.
325 *
326 * Load an existing sample or create a new one. A 'wave' list chunk must
327 * be given to this constructor. In case the given 'wave' list chunk
328 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329 * format and sample data will be loaded from there, otherwise default
330 * values will be used and those chunks will be created when
331 * File::Save() will be called later on.
332 *
333 * @param pFile - pointer to gig::File where this sample is
334 * located (or will be located)
335 * @param waveList - pointer to 'wave' list chunk which is (or
336 * will be) associated with this sample
337 * @param WavePoolOffset - offset of this sample data from wave pool
338 * ('wvpl') list chunk
339 * @param fileNo - number of an extension file where this sample
340 * is located, 0 otherwise
341 */
342 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
343 static const DLS::Info::string_length_t fixedStringLengths[] = {
344 { CHUNK_ID_INAM, 64 },
345 { 0, 0 }
346 };
347 pInfo->SetFixedStringLengths(fixedStringLengths);
348 Instances++;
349 FileNo = fileNo;
350
351 __resetCRC(crc);
352
353 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
354 if (pCk3gix) {
355 uint16_t iSampleGroup = pCk3gix->ReadInt16();
356 pGroup = pFile->GetGroup(iSampleGroup);
357 } else { // '3gix' chunk missing
358 // by default assigned to that mandatory "Default Group"
359 pGroup = pFile->GetGroup(0);
360 }
361
362 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
363 if (pCkSmpl) {
364 Manufacturer = pCkSmpl->ReadInt32();
365 Product = pCkSmpl->ReadInt32();
366 SamplePeriod = pCkSmpl->ReadInt32();
367 MIDIUnityNote = pCkSmpl->ReadInt32();
368 FineTune = pCkSmpl->ReadInt32();
369 pCkSmpl->Read(&SMPTEFormat, 1, 4);
370 SMPTEOffset = pCkSmpl->ReadInt32();
371 Loops = pCkSmpl->ReadInt32();
372 pCkSmpl->ReadInt32(); // manufByt
373 LoopID = pCkSmpl->ReadInt32();
374 pCkSmpl->Read(&LoopType, 1, 4);
375 LoopStart = pCkSmpl->ReadInt32();
376 LoopEnd = pCkSmpl->ReadInt32();
377 LoopFraction = pCkSmpl->ReadInt32();
378 LoopPlayCount = pCkSmpl->ReadInt32();
379 } else { // 'smpl' chunk missing
380 // use default values
381 Manufacturer = 0;
382 Product = 0;
383 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
384 MIDIUnityNote = 60;
385 FineTune = 0;
386 SMPTEFormat = smpte_format_no_offset;
387 SMPTEOffset = 0;
388 Loops = 0;
389 LoopID = 0;
390 LoopType = loop_type_normal;
391 LoopStart = 0;
392 LoopEnd = 0;
393 LoopFraction = 0;
394 LoopPlayCount = 0;
395 }
396
397 FrameTable = NULL;
398 SamplePos = 0;
399 RAMCache.Size = 0;
400 RAMCache.pStart = NULL;
401 RAMCache.NullExtensionSize = 0;
402
403 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
404
405 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
406 Compressed = ewav;
407 Dithered = false;
408 TruncatedBits = 0;
409 if (Compressed) {
410 uint32_t version = ewav->ReadInt32();
411 if (version == 3 && BitDepth == 24) {
412 Dithered = ewav->ReadInt32();
413 ewav->SetPos(Channels == 2 ? 84 : 64);
414 TruncatedBits = ewav->ReadInt32();
415 }
416 ScanCompressedSample();
417 }
418
419 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
420 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
421 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
422 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
423 }
424 FrameOffset = 0; // just for streaming compressed samples
425
426 LoopSize = LoopEnd - LoopStart + 1;
427 }
428
429 /**
430 * Make a (semi) deep copy of the Sample object given by @a orig (without
431 * the actual waveform data) and assign it to this object.
432 *
433 * Discussion: copying .gig samples is a bit tricky. It requires three
434 * steps:
435 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
436 * its new sample waveform data size.
437 * 2. Saving the file (done by File::Save()) so that it gains correct size
438 * and layout for writing the actual wave form data directly to disc
439 * in next step.
440 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
441 *
442 * @param orig - original Sample object to be copied from
443 */
444 void Sample::CopyAssignMeta(const Sample* orig) {
445 // handle base classes
446 DLS::Sample::CopyAssignCore(orig);
447
448 // handle actual own attributes of this class
449 Manufacturer = orig->Manufacturer;
450 Product = orig->Product;
451 SamplePeriod = orig->SamplePeriod;
452 MIDIUnityNote = orig->MIDIUnityNote;
453 FineTune = orig->FineTune;
454 SMPTEFormat = orig->SMPTEFormat;
455 SMPTEOffset = orig->SMPTEOffset;
456 Loops = orig->Loops;
457 LoopID = orig->LoopID;
458 LoopType = orig->LoopType;
459 LoopStart = orig->LoopStart;
460 LoopEnd = orig->LoopEnd;
461 LoopSize = orig->LoopSize;
462 LoopFraction = orig->LoopFraction;
463 LoopPlayCount = orig->LoopPlayCount;
464
465 // schedule resizing this sample to the given sample's size
466 Resize(orig->GetSize());
467 }
468
469 /**
470 * Should be called after CopyAssignMeta() and File::Save() sequence.
471 * Read more about it in the discussion of CopyAssignMeta(). This method
472 * copies the actual waveform data by disk streaming.
473 *
474 * @e CAUTION: this method is currently not thread safe! During this
475 * operation the sample must not be used for other purposes by other
476 * threads!
477 *
478 * @param orig - original Sample object to be copied from
479 */
480 void Sample::CopyAssignWave(const Sample* orig) {
481 const int iReadAtOnce = 32*1024;
482 char* buf = new char[iReadAtOnce * orig->FrameSize];
483 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
484 file_offset_t restorePos = pOrig->GetPos();
485 pOrig->SetPos(0);
486 SetPos(0);
487 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
488 n = pOrig->Read(buf, iReadAtOnce))
489 {
490 Write(buf, n);
491 }
492 pOrig->SetPos(restorePos);
493 delete [] buf;
494 }
495
496 /**
497 * Apply sample and its settings to the respective RIFF chunks. You have
498 * to call File::Save() to make changes persistent.
499 *
500 * Usually there is absolutely no need to call this method explicitly.
501 * It will be called automatically when File::Save() was called.
502 *
503 * @param pProgress - callback function for progress notification
504 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
505 * was provided yet
506 * @throws gig::Exception if there is any invalid sample setting
507 */
508 void Sample::UpdateChunks(progress_t* pProgress) {
509 // first update base class's chunks
510 DLS::Sample::UpdateChunks(pProgress);
511
512 // make sure 'smpl' chunk exists
513 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
514 if (!pCkSmpl) {
515 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
516 memset(pCkSmpl->LoadChunkData(), 0, 60);
517 }
518 // update 'smpl' chunk
519 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
520 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
521 store32(&pData[0], Manufacturer);
522 store32(&pData[4], Product);
523 store32(&pData[8], SamplePeriod);
524 store32(&pData[12], MIDIUnityNote);
525 store32(&pData[16], FineTune);
526 store32(&pData[20], SMPTEFormat);
527 store32(&pData[24], SMPTEOffset);
528 store32(&pData[28], Loops);
529
530 // we skip 'manufByt' for now (4 bytes)
531
532 store32(&pData[36], LoopID);
533 store32(&pData[40], LoopType);
534 store32(&pData[44], LoopStart);
535 store32(&pData[48], LoopEnd);
536 store32(&pData[52], LoopFraction);
537 store32(&pData[56], LoopPlayCount);
538
539 // make sure '3gix' chunk exists
540 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
541 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
542 // determine appropriate sample group index (to be stored in chunk)
543 uint16_t iSampleGroup = 0; // 0 refers to default sample group
544 File* pFile = static_cast<File*>(pParent);
545 if (pFile->pGroups) {
546 std::list<Group*>::iterator iter = pFile->pGroups->begin();
547 std::list<Group*>::iterator end = pFile->pGroups->end();
548 for (int i = 0; iter != end; i++, iter++) {
549 if (*iter == pGroup) {
550 iSampleGroup = i;
551 break; // found
552 }
553 }
554 }
555 // update '3gix' chunk
556 pData = (uint8_t*) pCk3gix->LoadChunkData();
557 store16(&pData[0], iSampleGroup);
558
559 // if the library user toggled the "Compressed" attribute from true to
560 // false, then the EWAV chunk associated with compressed samples needs
561 // to be deleted
562 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
563 if (ewav && !Compressed) {
564 pWaveList->DeleteSubChunk(ewav);
565 }
566 }
567
568 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
569 void Sample::ScanCompressedSample() {
570 //TODO: we have to add some more scans here (e.g. determine compression rate)
571 this->SamplesTotal = 0;
572 std::list<file_offset_t> frameOffsets;
573
574 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
575 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
576
577 // Scanning
578 pCkData->SetPos(0);
579 if (Channels == 2) { // Stereo
580 for (int i = 0 ; ; i++) {
581 // for 24 bit samples every 8:th frame offset is
582 // stored, to save some memory
583 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
584
585 const int mode_l = pCkData->ReadUint8();
586 const int mode_r = pCkData->ReadUint8();
587 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
588 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
589
590 if (pCkData->RemainingBytes() <= frameSize) {
591 SamplesInLastFrame =
592 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
593 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
594 SamplesTotal += SamplesInLastFrame;
595 break;
596 }
597 SamplesTotal += SamplesPerFrame;
598 pCkData->SetPos(frameSize, RIFF::stream_curpos);
599 }
600 }
601 else { // Mono
602 for (int i = 0 ; ; i++) {
603 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
604
605 const int mode = pCkData->ReadUint8();
606 if (mode > 5) throw gig::Exception("Unknown compression mode");
607 const file_offset_t frameSize = bytesPerFrame[mode];
608
609 if (pCkData->RemainingBytes() <= frameSize) {
610 SamplesInLastFrame =
611 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
612 SamplesTotal += SamplesInLastFrame;
613 break;
614 }
615 SamplesTotal += SamplesPerFrame;
616 pCkData->SetPos(frameSize, RIFF::stream_curpos);
617 }
618 }
619 pCkData->SetPos(0);
620
621 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
622 if (FrameTable) delete[] FrameTable;
623 FrameTable = new file_offset_t[frameOffsets.size()];
624 std::list<file_offset_t>::iterator end = frameOffsets.end();
625 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
626 for (int i = 0; iter != end; i++, iter++) {
627 FrameTable[i] = *iter;
628 }
629 }
630
631 /**
632 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
633 * ReleaseSampleData() to free the memory if you don't need the cached
634 * sample data anymore.
635 *
636 * @returns buffer_t structure with start address and size of the buffer
637 * in bytes
638 * @see ReleaseSampleData(), Read(), SetPos()
639 */
640 buffer_t Sample::LoadSampleData() {
641 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
642 }
643
644 /**
645 * Reads (uncompresses if needed) and caches the first \a SampleCount
646 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647 * memory space if you don't need the cached samples anymore. There is no
648 * guarantee that exactly \a SampleCount samples will be cached; this is
649 * not an error. The size will be eventually truncated e.g. to the
650 * beginning of a frame of a compressed sample. This is done for
651 * efficiency reasons while streaming the wave by your sampler engine
652 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653 * that will be returned to determine the actual cached samples, but note
654 * that the size is given in bytes! You get the number of actually cached
655 * samples by dividing it by the frame size of the sample:
656 * @code
657 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
658 * long cachedsamples = buf.Size / pSample->FrameSize;
659 * @endcode
660 *
661 * @param SampleCount - number of sample points to load into RAM
662 * @returns buffer_t structure with start address and size of
663 * the cached sample data in bytes
664 * @see ReleaseSampleData(), Read(), SetPos()
665 */
666 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
667 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
668 }
669
670 /**
671 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672 * ReleaseSampleData() to free the memory if you don't need the cached
673 * sample data anymore.
674 * The method will add \a NullSamplesCount silence samples past the
675 * official buffer end (this won't affect the 'Size' member of the
676 * buffer_t structure, that means 'Size' always reflects the size of the
677 * actual sample data, the buffer might be bigger though). Silence
678 * samples past the official buffer are needed for differential
679 * algorithms that always have to take subsequent samples into account
680 * (resampling/interpolation would be an important example) and avoids
681 * memory access faults in such cases.
682 *
683 * @param NullSamplesCount - number of silence samples the buffer should
684 * be extended past it's data end
685 * @returns buffer_t structure with start address and
686 * size of the buffer in bytes
687 * @see ReleaseSampleData(), Read(), SetPos()
688 */
689 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
690 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
691 }
692
693 /**
694 * Reads (uncompresses if needed) and caches the first \a SampleCount
695 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
696 * memory space if you don't need the cached samples anymore. There is no
697 * guarantee that exactly \a SampleCount samples will be cached; this is
698 * not an error. The size will be eventually truncated e.g. to the
699 * beginning of a frame of a compressed sample. This is done for
700 * efficiency reasons while streaming the wave by your sampler engine
701 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
702 * that will be returned to determine the actual cached samples, but note
703 * that the size is given in bytes! You get the number of actually cached
704 * samples by dividing it by the frame size of the sample:
705 * @code
706 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
707 * long cachedsamples = buf.Size / pSample->FrameSize;
708 * @endcode
709 * The method will add \a NullSamplesCount silence samples past the
710 * official buffer end (this won't affect the 'Size' member of the
711 * buffer_t structure, that means 'Size' always reflects the size of the
712 * actual sample data, the buffer might be bigger though). Silence
713 * samples past the official buffer are needed for differential
714 * algorithms that always have to take subsequent samples into account
715 * (resampling/interpolation would be an important example) and avoids
716 * memory access faults in such cases.
717 *
718 * @param SampleCount - number of sample points to load into RAM
719 * @param NullSamplesCount - number of silence samples the buffer should
720 * be extended past it's data end
721 * @returns buffer_t structure with start address and
722 * size of the cached sample data in bytes
723 * @see ReleaseSampleData(), Read(), SetPos()
724 */
725 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
726 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
727 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
728 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
729 SetPos(0); // reset read position to begin of sample
730 RAMCache.pStart = new int8_t[allocationsize];
731 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
732 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
733 // fill the remaining buffer space with silence samples
734 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
735 return GetCache();
736 }
737
738 /**
739 * Returns current cached sample points. A buffer_t structure will be
740 * returned which contains address pointer to the begin of the cache and
741 * the size of the cached sample data in bytes. Use
742 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
743 * RAM.
744 *
745 * @returns buffer_t structure with current cached sample points
746 * @see LoadSampleData();
747 */
748 buffer_t Sample::GetCache() {
749 // return a copy of the buffer_t structure
750 buffer_t result;
751 result.Size = this->RAMCache.Size;
752 result.pStart = this->RAMCache.pStart;
753 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
754 return result;
755 }
756
757 /**
758 * Frees the cached sample from RAM if loaded with
759 * <i>LoadSampleData()</i> previously.
760 *
761 * @see LoadSampleData();
762 */
763 void Sample::ReleaseSampleData() {
764 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
765 RAMCache.pStart = NULL;
766 RAMCache.Size = 0;
767 RAMCache.NullExtensionSize = 0;
768 }
769
770 /** @brief Resize sample.
771 *
772 * Resizes the sample's wave form data, that is the actual size of
773 * sample wave data possible to be written for this sample. This call
774 * will return immediately and just schedule the resize operation. You
775 * should call File::Save() to actually perform the resize operation(s)
776 * "physically" to the file. As this can take a while on large files, it
777 * is recommended to call Resize() first on all samples which have to be
778 * resized and finally to call File::Save() to perform all those resize
779 * operations in one rush.
780 *
781 * The actual size (in bytes) is dependant to the current FrameSize
782 * value. You may want to set FrameSize before calling Resize().
783 *
784 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
785 * enlarged samples before calling File::Save() as this might exceed the
786 * current sample's boundary!
787 *
788 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
789 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
790 * other formats will fail!
791 *
792 * @param NewSize - new sample wave data size in sample points (must be
793 * greater than zero)
794 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
795 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
796 * @throws gig::Exception if existing sample is compressed
797 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
798 * DLS::Sample::FormatTag, File::Save()
799 */
800 void Sample::Resize(file_offset_t NewSize) {
801 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
802 DLS::Sample::Resize(NewSize);
803 }
804
805 /**
806 * Sets the position within the sample (in sample points, not in
807 * bytes). Use this method and <i>Read()</i> if you don't want to load
808 * the sample into RAM, thus for disk streaming.
809 *
810 * Although the original Gigasampler engine doesn't allow positioning
811 * within compressed samples, I decided to implement it. Even though
812 * the Gigasampler format doesn't allow to define loops for compressed
813 * samples at the moment, positioning within compressed samples might be
814 * interesting for some sampler engines though. The only drawback about
815 * my decision is that it takes longer to load compressed gig Files on
816 * startup, because it's neccessary to scan the samples for some
817 * mandatory informations. But I think as it doesn't affect the runtime
818 * efficiency, nobody will have a problem with that.
819 *
820 * @param SampleCount number of sample points to jump
821 * @param Whence optional: to which relation \a SampleCount refers
822 * to, if omited <i>RIFF::stream_start</i> is assumed
823 * @returns the new sample position
824 * @see Read()
825 */
826 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
827 if (Compressed) {
828 switch (Whence) {
829 case RIFF::stream_curpos:
830 this->SamplePos += SampleCount;
831 break;
832 case RIFF::stream_end:
833 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
834 break;
835 case RIFF::stream_backward:
836 this->SamplePos -= SampleCount;
837 break;
838 case RIFF::stream_start: default:
839 this->SamplePos = SampleCount;
840 break;
841 }
842 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
843
844 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
845 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
846 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
847 return this->SamplePos;
848 }
849 else { // not compressed
850 file_offset_t orderedBytes = SampleCount * this->FrameSize;
851 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
852 return (result == orderedBytes) ? SampleCount
853 : result / this->FrameSize;
854 }
855 }
856
857 /**
858 * Returns the current position in the sample (in sample points).
859 */
860 file_offset_t Sample::GetPos() const {
861 if (Compressed) return SamplePos;
862 else return pCkData->GetPos() / FrameSize;
863 }
864
865 /**
866 * Reads \a SampleCount number of sample points from the position stored
867 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
868 * the position within the sample respectively, this method honors the
869 * looping informations of the sample (if any). The sample wave stream
870 * will be decompressed on the fly if using a compressed sample. Use this
871 * method if you don't want to load the sample into RAM, thus for disk
872 * streaming. All this methods needs to know to proceed with streaming
873 * for the next time you call this method is stored in \a pPlaybackState.
874 * You have to allocate and initialize the playback_state_t structure by
875 * yourself before you use it to stream a sample:
876 * @code
877 * gig::playback_state_t playbackstate;
878 * playbackstate.position = 0;
879 * playbackstate.reverse = false;
880 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
881 * @endcode
882 * You don't have to take care of things like if there is actually a loop
883 * defined or if the current read position is located within a loop area.
884 * The method already handles such cases by itself.
885 *
886 * <b>Caution:</b> If you are using more than one streaming thread, you
887 * have to use an external decompression buffer for <b>EACH</b>
888 * streaming thread to avoid race conditions and crashes!
889 *
890 * @param pBuffer destination buffer
891 * @param SampleCount number of sample points to read
892 * @param pPlaybackState will be used to store and reload the playback
893 * state for the next ReadAndLoop() call
894 * @param pDimRgn dimension region with looping information
895 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
896 * @returns number of successfully read sample points
897 * @see CreateDecompressionBuffer()
898 */
899 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
900 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
901 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
902 uint8_t* pDst = (uint8_t*) pBuffer;
903
904 SetPos(pPlaybackState->position); // recover position from the last time
905
906 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
907
908 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
909 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
910
911 if (GetPos() <= loopEnd) {
912 switch (loop.LoopType) {
913
914 case loop_type_bidirectional: { //TODO: not tested yet!
915 do {
916 // if not endless loop check if max. number of loop cycles have been passed
917 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
918
919 if (!pPlaybackState->reverse) { // forward playback
920 do {
921 samplestoloopend = loopEnd - GetPos();
922 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
923 samplestoread -= readsamples;
924 totalreadsamples += readsamples;
925 if (readsamples == samplestoloopend) {
926 pPlaybackState->reverse = true;
927 break;
928 }
929 } while (samplestoread && readsamples);
930 }
931 else { // backward playback
932
933 // as we can only read forward from disk, we have to
934 // determine the end position within the loop first,
935 // read forward from that 'end' and finally after
936 // reading, swap all sample frames so it reflects
937 // backward playback
938
939 file_offset_t swapareastart = totalreadsamples;
940 file_offset_t loopoffset = GetPos() - loop.LoopStart;
941 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
942 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
943
944 SetPos(reverseplaybackend);
945
946 // read samples for backward playback
947 do {
948 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
949 samplestoreadinloop -= readsamples;
950 samplestoread -= readsamples;
951 totalreadsamples += readsamples;
952 } while (samplestoreadinloop && readsamples);
953
954 SetPos(reverseplaybackend); // pretend we really read backwards
955
956 if (reverseplaybackend == loop.LoopStart) {
957 pPlaybackState->loop_cycles_left--;
958 pPlaybackState->reverse = false;
959 }
960
961 // reverse the sample frames for backward playback
962 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
963 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
964 }
965 } while (samplestoread && readsamples);
966 break;
967 }
968
969 case loop_type_backward: { // TODO: not tested yet!
970 // forward playback (not entered the loop yet)
971 if (!pPlaybackState->reverse) do {
972 samplestoloopend = loopEnd - GetPos();
973 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
974 samplestoread -= readsamples;
975 totalreadsamples += readsamples;
976 if (readsamples == samplestoloopend) {
977 pPlaybackState->reverse = true;
978 break;
979 }
980 } while (samplestoread && readsamples);
981
982 if (!samplestoread) break;
983
984 // as we can only read forward from disk, we have to
985 // determine the end position within the loop first,
986 // read forward from that 'end' and finally after
987 // reading, swap all sample frames so it reflects
988 // backward playback
989
990 file_offset_t swapareastart = totalreadsamples;
991 file_offset_t loopoffset = GetPos() - loop.LoopStart;
992 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
993 : samplestoread;
994 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
995
996 SetPos(reverseplaybackend);
997
998 // read samples for backward playback
999 do {
1000 // if not endless loop check if max. number of loop cycles have been passed
1001 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1002 samplestoloopend = loopEnd - GetPos();
1003 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1004 samplestoreadinloop -= readsamples;
1005 samplestoread -= readsamples;
1006 totalreadsamples += readsamples;
1007 if (readsamples == samplestoloopend) {
1008 pPlaybackState->loop_cycles_left--;
1009 SetPos(loop.LoopStart);
1010 }
1011 } while (samplestoreadinloop && readsamples);
1012
1013 SetPos(reverseplaybackend); // pretend we really read backwards
1014
1015 // reverse the sample frames for backward playback
1016 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1017 break;
1018 }
1019
1020 default: case loop_type_normal: {
1021 do {
1022 // if not endless loop check if max. number of loop cycles have been passed
1023 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1024 samplestoloopend = loopEnd - GetPos();
1025 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1026 samplestoread -= readsamples;
1027 totalreadsamples += readsamples;
1028 if (readsamples == samplestoloopend) {
1029 pPlaybackState->loop_cycles_left--;
1030 SetPos(loop.LoopStart);
1031 }
1032 } while (samplestoread && readsamples);
1033 break;
1034 }
1035 }
1036 }
1037 }
1038
1039 // read on without looping
1040 if (samplestoread) do {
1041 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1042 samplestoread -= readsamples;
1043 totalreadsamples += readsamples;
1044 } while (readsamples && samplestoread);
1045
1046 // store current position
1047 pPlaybackState->position = GetPos();
1048
1049 return totalreadsamples;
1050 }
1051
1052 /**
1053 * Reads \a SampleCount number of sample points from the current
1054 * position into the buffer pointed by \a pBuffer and increments the
1055 * position within the sample. The sample wave stream will be
1056 * decompressed on the fly if using a compressed sample. Use this method
1057 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1058 * thus for disk streaming.
1059 *
1060 * <b>Caution:</b> If you are using more than one streaming thread, you
1061 * have to use an external decompression buffer for <b>EACH</b>
1062 * streaming thread to avoid race conditions and crashes!
1063 *
1064 * For 16 bit samples, the data in the buffer will be int16_t
1065 * (using native endianness). For 24 bit, the buffer will
1066 * contain three bytes per sample, little-endian.
1067 *
1068 * @param pBuffer destination buffer
1069 * @param SampleCount number of sample points to read
1070 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1071 * @returns number of successfully read sample points
1072 * @see SetPos(), CreateDecompressionBuffer()
1073 */
1074 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1075 if (SampleCount == 0) return 0;
1076 if (!Compressed) {
1077 if (BitDepth == 24) {
1078 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1079 }
1080 else { // 16 bit
1081 // (pCkData->Read does endian correction)
1082 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1083 : pCkData->Read(pBuffer, SampleCount, 2);
1084 }
1085 }
1086 else {
1087 if (this->SamplePos >= this->SamplesTotal) return 0;
1088 //TODO: efficiency: maybe we should test for an average compression rate
1089 file_offset_t assumedsize = GuessSize(SampleCount),
1090 remainingbytes = 0, // remaining bytes in the local buffer
1091 remainingsamples = SampleCount,
1092 copysamples, skipsamples,
1093 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1094 this->FrameOffset = 0;
1095
1096 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1097
1098 // if decompression buffer too small, then reduce amount of samples to read
1099 if (pDecompressionBuffer->Size < assumedsize) {
1100 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1101 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1102 remainingsamples = SampleCount;
1103 assumedsize = GuessSize(SampleCount);
1104 }
1105
1106 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1107 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1108 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1109 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1110
1111 while (remainingsamples && remainingbytes) {
1112 file_offset_t framesamples = SamplesPerFrame;
1113 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1114
1115 int mode_l = *pSrc++, mode_r = 0;
1116
1117 if (Channels == 2) {
1118 mode_r = *pSrc++;
1119 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1120 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1121 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1122 if (remainingbytes < framebytes) { // last frame in sample
1123 framesamples = SamplesInLastFrame;
1124 if (mode_l == 4 && (framesamples & 1)) {
1125 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1126 }
1127 else {
1128 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1129 }
1130 }
1131 }
1132 else {
1133 framebytes = bytesPerFrame[mode_l] + 1;
1134 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1135 if (remainingbytes < framebytes) {
1136 framesamples = SamplesInLastFrame;
1137 }
1138 }
1139
1140 // determine how many samples in this frame to skip and read
1141 if (currentframeoffset + remainingsamples >= framesamples) {
1142 if (currentframeoffset <= framesamples) {
1143 copysamples = framesamples - currentframeoffset;
1144 skipsamples = currentframeoffset;
1145 }
1146 else {
1147 copysamples = 0;
1148 skipsamples = framesamples;
1149 }
1150 }
1151 else {
1152 // This frame has enough data for pBuffer, but not
1153 // all of the frame is needed. Set file position
1154 // to start of this frame for next call to Read.
1155 copysamples = remainingsamples;
1156 skipsamples = currentframeoffset;
1157 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1158 this->FrameOffset = currentframeoffset + copysamples;
1159 }
1160 remainingsamples -= copysamples;
1161
1162 if (remainingbytes > framebytes) {
1163 remainingbytes -= framebytes;
1164 if (remainingsamples == 0 &&
1165 currentframeoffset + copysamples == framesamples) {
1166 // This frame has enough data for pBuffer, and
1167 // all of the frame is needed. Set file
1168 // position to start of next frame for next
1169 // call to Read. FrameOffset is 0.
1170 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171 }
1172 }
1173 else remainingbytes = 0;
1174
1175 currentframeoffset -= skipsamples;
1176
1177 if (copysamples == 0) {
1178 // skip this frame
1179 pSrc += framebytes - Channels;
1180 }
1181 else {
1182 const unsigned char* const param_l = pSrc;
1183 if (BitDepth == 24) {
1184 if (mode_l != 2) pSrc += 12;
1185
1186 if (Channels == 2) { // Stereo
1187 const unsigned char* const param_r = pSrc;
1188 if (mode_r != 2) pSrc += 12;
1189
1190 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1191 skipsamples, copysamples, TruncatedBits);
1192 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1193 skipsamples, copysamples, TruncatedBits);
1194 pDst24 += copysamples * 6;
1195 }
1196 else { // Mono
1197 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1198 skipsamples, copysamples, TruncatedBits);
1199 pDst24 += copysamples * 3;
1200 }
1201 }
1202 else { // 16 bit
1203 if (mode_l) pSrc += 4;
1204
1205 int step;
1206 if (Channels == 2) { // Stereo
1207 const unsigned char* const param_r = pSrc;
1208 if (mode_r) pSrc += 4;
1209
1210 step = (2 - mode_l) + (2 - mode_r);
1211 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1212 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1213 skipsamples, copysamples);
1214 pDst += copysamples << 1;
1215 }
1216 else { // Mono
1217 step = 2 - mode_l;
1218 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1219 pDst += copysamples;
1220 }
1221 }
1222 pSrc += nextFrameOffset;
1223 }
1224
1225 // reload from disk to local buffer if needed
1226 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1227 assumedsize = GuessSize(remainingsamples);
1228 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1230 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1231 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1232 }
1233 } // while
1234
1235 this->SamplePos += (SampleCount - remainingsamples);
1236 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1237 return (SampleCount - remainingsamples);
1238 }
1239 }
1240
1241 /** @brief Write sample wave data.
1242 *
1243 * Writes \a SampleCount number of sample points from the buffer pointed
1244 * by \a pBuffer and increments the position within the sample. Use this
1245 * method to directly write the sample data to disk, i.e. if you don't
1246 * want or cannot load the whole sample data into RAM.
1247 *
1248 * You have to Resize() the sample to the desired size and call
1249 * File::Save() <b>before</b> using Write().
1250 *
1251 * Note: there is currently no support for writing compressed samples.
1252 *
1253 * For 16 bit samples, the data in the source buffer should be
1254 * int16_t (using native endianness). For 24 bit, the buffer
1255 * should contain three bytes per sample, little-endian.
1256 *
1257 * @param pBuffer - source buffer
1258 * @param SampleCount - number of sample points to write
1259 * @throws DLS::Exception if current sample size is too small
1260 * @throws gig::Exception if sample is compressed
1261 * @see DLS::LoadSampleData()
1262 */
1263 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1264 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1265
1266 // if this is the first write in this sample, reset the
1267 // checksum calculator
1268 if (pCkData->GetPos() == 0) {
1269 __resetCRC(crc);
1270 }
1271 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1272 file_offset_t res;
1273 if (BitDepth == 24) {
1274 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1275 } else { // 16 bit
1276 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1277 : pCkData->Write(pBuffer, SampleCount, 2);
1278 }
1279 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1280
1281 // if this is the last write, update the checksum chunk in the
1282 // file
1283 if (pCkData->GetPos() == pCkData->GetSize()) {
1284 File* pFile = static_cast<File*>(GetParent());
1285 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1286 }
1287 return res;
1288 }
1289
1290 /**
1291 * Allocates a decompression buffer for streaming (compressed) samples
1292 * with Sample::Read(). If you are using more than one streaming thread
1293 * in your application you <b>HAVE</b> to create a decompression buffer
1294 * for <b>EACH</b> of your streaming threads and provide it with the
1295 * Sample::Read() call in order to avoid race conditions and crashes.
1296 *
1297 * You should free the memory occupied by the allocated buffer(s) once
1298 * you don't need one of your streaming threads anymore by calling
1299 * DestroyDecompressionBuffer().
1300 *
1301 * @param MaxReadSize - the maximum size (in sample points) you ever
1302 * expect to read with one Read() call
1303 * @returns allocated decompression buffer
1304 * @see DestroyDecompressionBuffer()
1305 */
1306 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1307 buffer_t result;
1308 const double worstCaseHeaderOverhead =
1309 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1310 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1311 result.pStart = new int8_t[result.Size];
1312 result.NullExtensionSize = 0;
1313 return result;
1314 }
1315
1316 /**
1317 * Free decompression buffer, previously created with
1318 * CreateDecompressionBuffer().
1319 *
1320 * @param DecompressionBuffer - previously allocated decompression
1321 * buffer to free
1322 */
1323 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1324 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1325 delete[] (int8_t*) DecompressionBuffer.pStart;
1326 DecompressionBuffer.pStart = NULL;
1327 DecompressionBuffer.Size = 0;
1328 DecompressionBuffer.NullExtensionSize = 0;
1329 }
1330 }
1331
1332 /**
1333 * Returns pointer to the Group this Sample belongs to. In the .gig
1334 * format a sample always belongs to one group. If it wasn't explicitly
1335 * assigned to a certain group, it will be automatically assigned to a
1336 * default group.
1337 *
1338 * @returns Sample's Group (never NULL)
1339 */
1340 Group* Sample::GetGroup() const {
1341 return pGroup;
1342 }
1343
1344 /**
1345 * Checks the integrity of this sample's raw audio wave data. Whenever a
1346 * Sample's raw wave data is intentionally modified (i.e. by calling
1347 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1348 * is calculated and stored/updated for this sample, along to the sample's
1349 * meta informations.
1350 *
1351 * Now by calling this method the current raw audio wave data is checked
1352 * against the already stored CRC32 check sum in order to check whether the
1353 * sample data had been damaged unintentionally for some reason. Since by
1354 * calling this method always the entire raw audio wave data has to be
1355 * read, verifying all samples this way may take a long time accordingly.
1356 * And that's also the reason why the sample integrity is not checked by
1357 * default whenever a gig file is loaded. So this method must be called
1358 * explicitly to fulfill this task.
1359 *
1360 * @returns true if sample is OK or false if the sample is damaged
1361 * @throws Exception if no checksum had been stored to disk for this
1362 * sample yet, or on I/O issues
1363 */
1364 bool Sample::VerifyWaveData() {
1365 File* pFile = static_cast<File*>(GetParent());
1366 const uint32_t referenceCRC = pFile->GetSampleChecksum(this);
1367 uint32_t crc = CalculateWaveDataChecksum();
1368 return crc == referenceCRC;
1369 }
1370
1371 uint32_t Sample::CalculateWaveDataChecksum() {
1372 const size_t sz = 20*1024; // 20kB buffer size
1373 std::vector<uint8_t> buffer(sz);
1374 buffer.resize(sz);
1375
1376 const size_t n = sz / FrameSize;
1377 SetPos(0);
1378 uint32_t crc = 0;
1379 __resetCRC(crc);
1380 while (true) {
1381 file_offset_t nRead = Read(&buffer[0], n);
1382 if (nRead <= 0) break;
1383 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1384 }
1385 __encodeCRC(crc);
1386 return crc;
1387 }
1388
1389 Sample::~Sample() {
1390 Instances--;
1391 if (!Instances && InternalDecompressionBuffer.Size) {
1392 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1393 InternalDecompressionBuffer.pStart = NULL;
1394 InternalDecompressionBuffer.Size = 0;
1395 }
1396 if (FrameTable) delete[] FrameTable;
1397 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1398 }
1399
1400
1401
1402 // *************** DimensionRegion ***************
1403 // *
1404
1405 size_t DimensionRegion::Instances = 0;
1406 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1407
1408 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1409 Instances++;
1410
1411 pSample = NULL;
1412 pRegion = pParent;
1413
1414 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1415 else memset(&Crossfade, 0, 4);
1416
1417 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1418
1419 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1420 if (_3ewa) { // if '3ewa' chunk exists
1421 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1422 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1423 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1424 _3ewa->ReadInt16(); // unknown
1425 LFO1InternalDepth = _3ewa->ReadUint16();
1426 _3ewa->ReadInt16(); // unknown
1427 LFO3InternalDepth = _3ewa->ReadInt16();
1428 _3ewa->ReadInt16(); // unknown
1429 LFO1ControlDepth = _3ewa->ReadUint16();
1430 _3ewa->ReadInt16(); // unknown
1431 LFO3ControlDepth = _3ewa->ReadInt16();
1432 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1434 _3ewa->ReadInt16(); // unknown
1435 EG1Sustain = _3ewa->ReadUint16();
1436 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1437 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1438 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1439 EG1ControllerInvert = eg1ctrloptions & 0x01;
1440 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1441 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1442 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1443 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1444 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1445 EG2ControllerInvert = eg2ctrloptions & 0x01;
1446 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1447 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1448 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1449 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1450 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1451 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1452 _3ewa->ReadInt16(); // unknown
1453 EG2Sustain = _3ewa->ReadUint16();
1454 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1455 _3ewa->ReadInt16(); // unknown
1456 LFO2ControlDepth = _3ewa->ReadUint16();
1457 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458 _3ewa->ReadInt16(); // unknown
1459 LFO2InternalDepth = _3ewa->ReadUint16();
1460 int32_t eg1decay2 = _3ewa->ReadInt32();
1461 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1462 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1463 _3ewa->ReadInt16(); // unknown
1464 EG1PreAttack = _3ewa->ReadUint16();
1465 int32_t eg2decay2 = _3ewa->ReadInt32();
1466 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1467 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1468 _3ewa->ReadInt16(); // unknown
1469 EG2PreAttack = _3ewa->ReadUint16();
1470 uint8_t velocityresponse = _3ewa->ReadUint8();
1471 if (velocityresponse < 5) {
1472 VelocityResponseCurve = curve_type_nonlinear;
1473 VelocityResponseDepth = velocityresponse;
1474 } else if (velocityresponse < 10) {
1475 VelocityResponseCurve = curve_type_linear;
1476 VelocityResponseDepth = velocityresponse - 5;
1477 } else if (velocityresponse < 15) {
1478 VelocityResponseCurve = curve_type_special;
1479 VelocityResponseDepth = velocityresponse - 10;
1480 } else {
1481 VelocityResponseCurve = curve_type_unknown;
1482 VelocityResponseDepth = 0;
1483 }
1484 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1485 if (releasevelocityresponse < 5) {
1486 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1487 ReleaseVelocityResponseDepth = releasevelocityresponse;
1488 } else if (releasevelocityresponse < 10) {
1489 ReleaseVelocityResponseCurve = curve_type_linear;
1490 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1491 } else if (releasevelocityresponse < 15) {
1492 ReleaseVelocityResponseCurve = curve_type_special;
1493 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1494 } else {
1495 ReleaseVelocityResponseCurve = curve_type_unknown;
1496 ReleaseVelocityResponseDepth = 0;
1497 }
1498 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1499 AttenuationControllerThreshold = _3ewa->ReadInt8();
1500 _3ewa->ReadInt32(); // unknown
1501 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1502 _3ewa->ReadInt16(); // unknown
1503 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1504 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1505 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1506 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1507 else DimensionBypass = dim_bypass_ctrl_none;
1508 uint8_t pan = _3ewa->ReadUint8();
1509 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1510 SelfMask = _3ewa->ReadInt8() & 0x01;
1511 _3ewa->ReadInt8(); // unknown
1512 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1513 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1514 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1515 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1516 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1517 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1518 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1519 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1520 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1521 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1522 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1523 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1524 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1525 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1526 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1527 : vcf_res_ctrl_none;
1528 uint16_t eg3depth = _3ewa->ReadUint16();
1529 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1530 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1531 _3ewa->ReadInt16(); // unknown
1532 ChannelOffset = _3ewa->ReadUint8() / 4;
1533 uint8_t regoptions = _3ewa->ReadUint8();
1534 MSDecode = regoptions & 0x01; // bit 0
1535 SustainDefeat = regoptions & 0x02; // bit 1
1536 _3ewa->ReadInt16(); // unknown
1537 VelocityUpperLimit = _3ewa->ReadInt8();
1538 _3ewa->ReadInt8(); // unknown
1539 _3ewa->ReadInt16(); // unknown
1540 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1541 _3ewa->ReadInt8(); // unknown
1542 _3ewa->ReadInt8(); // unknown
1543 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1544 uint8_t vcfcutoff = _3ewa->ReadUint8();
1545 VCFEnabled = vcfcutoff & 0x80; // bit 7
1546 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1547 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1548 uint8_t vcfvelscale = _3ewa->ReadUint8();
1549 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1550 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1551 _3ewa->ReadInt8(); // unknown
1552 uint8_t vcfresonance = _3ewa->ReadUint8();
1553 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1554 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1555 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1556 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1557 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1558 uint8_t vcfvelocity = _3ewa->ReadUint8();
1559 VCFVelocityDynamicRange = vcfvelocity % 5;
1560 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1561 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1562 if (VCFType == vcf_type_lowpass) {
1563 if (lfo3ctrl & 0x40) // bit 6
1564 VCFType = vcf_type_lowpassturbo;
1565 }
1566 if (_3ewa->RemainingBytes() >= 8) {
1567 _3ewa->Read(DimensionUpperLimits, 1, 8);
1568 } else {
1569 memset(DimensionUpperLimits, 0, 8);
1570 }
1571 } else { // '3ewa' chunk does not exist yet
1572 // use default values
1573 LFO3Frequency = 1.0;
1574 EG3Attack = 0.0;
1575 LFO1InternalDepth = 0;
1576 LFO3InternalDepth = 0;
1577 LFO1ControlDepth = 0;
1578 LFO3ControlDepth = 0;
1579 EG1Attack = 0.0;
1580 EG1Decay1 = 0.005;
1581 EG1Sustain = 1000;
1582 EG1Release = 0.3;
1583 EG1Controller.type = eg1_ctrl_t::type_none;
1584 EG1Controller.controller_number = 0;
1585 EG1ControllerInvert = false;
1586 EG1ControllerAttackInfluence = 0;
1587 EG1ControllerDecayInfluence = 0;
1588 EG1ControllerReleaseInfluence = 0;
1589 EG2Controller.type = eg2_ctrl_t::type_none;
1590 EG2Controller.controller_number = 0;
1591 EG2ControllerInvert = false;
1592 EG2ControllerAttackInfluence = 0;
1593 EG2ControllerDecayInfluence = 0;
1594 EG2ControllerReleaseInfluence = 0;
1595 LFO1Frequency = 1.0;
1596 EG2Attack = 0.0;
1597 EG2Decay1 = 0.005;
1598 EG2Sustain = 1000;
1599 EG2Release = 0.3;
1600 LFO2ControlDepth = 0;
1601 LFO2Frequency = 1.0;
1602 LFO2InternalDepth = 0;
1603 EG1Decay2 = 0.0;
1604 EG1InfiniteSustain = true;
1605 EG1PreAttack = 0;
1606 EG2Decay2 = 0.0;
1607 EG2InfiniteSustain = true;
1608 EG2PreAttack = 0;
1609 VelocityResponseCurve = curve_type_nonlinear;
1610 VelocityResponseDepth = 3;
1611 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1612 ReleaseVelocityResponseDepth = 3;
1613 VelocityResponseCurveScaling = 32;
1614 AttenuationControllerThreshold = 0;
1615 SampleStartOffset = 0;
1616 PitchTrack = true;
1617 DimensionBypass = dim_bypass_ctrl_none;
1618 Pan = 0;
1619 SelfMask = true;
1620 LFO3Controller = lfo3_ctrl_modwheel;
1621 LFO3Sync = false;
1622 InvertAttenuationController = false;
1623 AttenuationController.type = attenuation_ctrl_t::type_none;
1624 AttenuationController.controller_number = 0;
1625 LFO2Controller = lfo2_ctrl_internal;
1626 LFO2FlipPhase = false;
1627 LFO2Sync = false;
1628 LFO1Controller = lfo1_ctrl_internal;
1629 LFO1FlipPhase = false;
1630 LFO1Sync = false;
1631 VCFResonanceController = vcf_res_ctrl_none;
1632 EG3Depth = 0;
1633 ChannelOffset = 0;
1634 MSDecode = false;
1635 SustainDefeat = false;
1636 VelocityUpperLimit = 0;
1637 ReleaseTriggerDecay = 0;
1638 EG1Hold = false;
1639 VCFEnabled = false;
1640 VCFCutoff = 0;
1641 VCFCutoffController = vcf_cutoff_ctrl_none;
1642 VCFCutoffControllerInvert = false;
1643 VCFVelocityScale = 0;
1644 VCFResonance = 0;
1645 VCFResonanceDynamic = false;
1646 VCFKeyboardTracking = false;
1647 VCFKeyboardTrackingBreakpoint = 0;
1648 VCFVelocityDynamicRange = 0x04;
1649 VCFVelocityCurve = curve_type_linear;
1650 VCFType = vcf_type_lowpass;
1651 memset(DimensionUpperLimits, 127, 8);
1652 }
1653
1654 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1655 VelocityResponseDepth,
1656 VelocityResponseCurveScaling);
1657
1658 pVelocityReleaseTable = GetReleaseVelocityTable(
1659 ReleaseVelocityResponseCurve,
1660 ReleaseVelocityResponseDepth
1661 );
1662
1663 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1664 VCFVelocityDynamicRange,
1665 VCFVelocityScale,
1666 VCFCutoffController);
1667
1668 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1669 VelocityTable = 0;
1670 }
1671
1672 /*
1673 * Constructs a DimensionRegion by copying all parameters from
1674 * another DimensionRegion
1675 */
1676 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1677 Instances++;
1678 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1679 *this = src; // default memberwise shallow copy of all parameters
1680 pParentList = _3ewl; // restore the chunk pointer
1681
1682 // deep copy of owned structures
1683 if (src.VelocityTable) {
1684 VelocityTable = new uint8_t[128];
1685 for (int k = 0 ; k < 128 ; k++)
1686 VelocityTable[k] = src.VelocityTable[k];
1687 }
1688 if (src.pSampleLoops) {
1689 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1690 for (int k = 0 ; k < src.SampleLoops ; k++)
1691 pSampleLoops[k] = src.pSampleLoops[k];
1692 }
1693 }
1694
1695 /**
1696 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1697 * and assign it to this object.
1698 *
1699 * Note that all sample pointers referenced by @a orig are simply copied as
1700 * memory address. Thus the respective samples are shared, not duplicated!
1701 *
1702 * @param orig - original DimensionRegion object to be copied from
1703 */
1704 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1705 CopyAssign(orig, NULL);
1706 }
1707
1708 /**
1709 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1710 * and assign it to this object.
1711 *
1712 * @param orig - original DimensionRegion object to be copied from
1713 * @param mSamples - crosslink map between the foreign file's samples and
1714 * this file's samples
1715 */
1716 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1717 // delete all allocated data first
1718 if (VelocityTable) delete [] VelocityTable;
1719 if (pSampleLoops) delete [] pSampleLoops;
1720
1721 // backup parent list pointer
1722 RIFF::List* p = pParentList;
1723
1724 gig::Sample* pOriginalSample = pSample;
1725 gig::Region* pOriginalRegion = pRegion;
1726
1727 //NOTE: copy code copied from assignment constructor above, see comment there as well
1728
1729 *this = *orig; // default memberwise shallow copy of all parameters
1730
1731 // restore members that shall not be altered
1732 pParentList = p; // restore the chunk pointer
1733 pRegion = pOriginalRegion;
1734
1735 // only take the raw sample reference reference if the
1736 // two DimensionRegion objects are part of the same file
1737 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1738 pSample = pOriginalSample;
1739 }
1740
1741 if (mSamples && mSamples->count(orig->pSample)) {
1742 pSample = mSamples->find(orig->pSample)->second;
1743 }
1744
1745 // deep copy of owned structures
1746 if (orig->VelocityTable) {
1747 VelocityTable = new uint8_t[128];
1748 for (int k = 0 ; k < 128 ; k++)
1749 VelocityTable[k] = orig->VelocityTable[k];
1750 }
1751 if (orig->pSampleLoops) {
1752 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1753 for (int k = 0 ; k < orig->SampleLoops ; k++)
1754 pSampleLoops[k] = orig->pSampleLoops[k];
1755 }
1756 }
1757
1758 /**
1759 * Updates the respective member variable and updates @c SampleAttenuation
1760 * which depends on this value.
1761 */
1762 void DimensionRegion::SetGain(int32_t gain) {
1763 DLS::Sampler::SetGain(gain);
1764 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765 }
1766
1767 /**
1768 * Apply dimension region settings to the respective RIFF chunks. You
1769 * have to call File::Save() to make changes persistent.
1770 *
1771 * Usually there is absolutely no need to call this method explicitly.
1772 * It will be called automatically when File::Save() was called.
1773 *
1774 * @param pProgress - callback function for progress notification
1775 */
1776 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1777 // first update base class's chunk
1778 DLS::Sampler::UpdateChunks(pProgress);
1779
1780 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1781 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1782 pData[12] = Crossfade.in_start;
1783 pData[13] = Crossfade.in_end;
1784 pData[14] = Crossfade.out_start;
1785 pData[15] = Crossfade.out_end;
1786
1787 // make sure '3ewa' chunk exists
1788 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1789 if (!_3ewa) {
1790 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1791 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1792 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1793 }
1794 pData = (uint8_t*) _3ewa->LoadChunkData();
1795
1796 // update '3ewa' chunk with DimensionRegion's current settings
1797
1798 const uint32_t chunksize = _3ewa->GetNewSize();
1799 store32(&pData[0], chunksize); // unknown, always chunk size?
1800
1801 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1802 store32(&pData[4], lfo3freq);
1803
1804 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1805 store32(&pData[8], eg3attack);
1806
1807 // next 2 bytes unknown
1808
1809 store16(&pData[14], LFO1InternalDepth);
1810
1811 // next 2 bytes unknown
1812
1813 store16(&pData[18], LFO3InternalDepth);
1814
1815 // next 2 bytes unknown
1816
1817 store16(&pData[22], LFO1ControlDepth);
1818
1819 // next 2 bytes unknown
1820
1821 store16(&pData[26], LFO3ControlDepth);
1822
1823 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1824 store32(&pData[28], eg1attack);
1825
1826 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1827 store32(&pData[32], eg1decay1);
1828
1829 // next 2 bytes unknown
1830
1831 store16(&pData[38], EG1Sustain);
1832
1833 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1834 store32(&pData[40], eg1release);
1835
1836 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1837 pData[44] = eg1ctl;
1838
1839 const uint8_t eg1ctrloptions =
1840 (EG1ControllerInvert ? 0x01 : 0x00) |
1841 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1842 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1843 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1844 pData[45] = eg1ctrloptions;
1845
1846 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1847 pData[46] = eg2ctl;
1848
1849 const uint8_t eg2ctrloptions =
1850 (EG2ControllerInvert ? 0x01 : 0x00) |
1851 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1852 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1853 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1854 pData[47] = eg2ctrloptions;
1855
1856 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1857 store32(&pData[48], lfo1freq);
1858
1859 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1860 store32(&pData[52], eg2attack);
1861
1862 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1863 store32(&pData[56], eg2decay1);
1864
1865 // next 2 bytes unknown
1866
1867 store16(&pData[62], EG2Sustain);
1868
1869 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1870 store32(&pData[64], eg2release);
1871
1872 // next 2 bytes unknown
1873
1874 store16(&pData[70], LFO2ControlDepth);
1875
1876 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1877 store32(&pData[72], lfo2freq);
1878
1879 // next 2 bytes unknown
1880
1881 store16(&pData[78], LFO2InternalDepth);
1882
1883 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1884 store32(&pData[80], eg1decay2);
1885
1886 // next 2 bytes unknown
1887
1888 store16(&pData[86], EG1PreAttack);
1889
1890 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1891 store32(&pData[88], eg2decay2);
1892
1893 // next 2 bytes unknown
1894
1895 store16(&pData[94], EG2PreAttack);
1896
1897 {
1898 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1899 uint8_t velocityresponse = VelocityResponseDepth;
1900 switch (VelocityResponseCurve) {
1901 case curve_type_nonlinear:
1902 break;
1903 case curve_type_linear:
1904 velocityresponse += 5;
1905 break;
1906 case curve_type_special:
1907 velocityresponse += 10;
1908 break;
1909 case curve_type_unknown:
1910 default:
1911 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1912 }
1913 pData[96] = velocityresponse;
1914 }
1915
1916 {
1917 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1918 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1919 switch (ReleaseVelocityResponseCurve) {
1920 case curve_type_nonlinear:
1921 break;
1922 case curve_type_linear:
1923 releasevelocityresponse += 5;
1924 break;
1925 case curve_type_special:
1926 releasevelocityresponse += 10;
1927 break;
1928 case curve_type_unknown:
1929 default:
1930 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1931 }
1932 pData[97] = releasevelocityresponse;
1933 }
1934
1935 pData[98] = VelocityResponseCurveScaling;
1936
1937 pData[99] = AttenuationControllerThreshold;
1938
1939 // next 4 bytes unknown
1940
1941 store16(&pData[104], SampleStartOffset);
1942
1943 // next 2 bytes unknown
1944
1945 {
1946 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1947 switch (DimensionBypass) {
1948 case dim_bypass_ctrl_94:
1949 pitchTrackDimensionBypass |= 0x10;
1950 break;
1951 case dim_bypass_ctrl_95:
1952 pitchTrackDimensionBypass |= 0x20;
1953 break;
1954 case dim_bypass_ctrl_none:
1955 //FIXME: should we set anything here?
1956 break;
1957 default:
1958 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1959 }
1960 pData[108] = pitchTrackDimensionBypass;
1961 }
1962
1963 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1964 pData[109] = pan;
1965
1966 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1967 pData[110] = selfmask;
1968
1969 // next byte unknown
1970
1971 {
1972 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1973 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1974 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1975 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1976 pData[112] = lfo3ctrl;
1977 }
1978
1979 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1980 pData[113] = attenctl;
1981
1982 {
1983 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1984 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1985 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1986 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1987 pData[114] = lfo2ctrl;
1988 }
1989
1990 {
1991 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1992 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1993 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1994 if (VCFResonanceController != vcf_res_ctrl_none)
1995 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1996 pData[115] = lfo1ctrl;
1997 }
1998
1999 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2000 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2001 store16(&pData[116], eg3depth);
2002
2003 // next 2 bytes unknown
2004
2005 const uint8_t channeloffset = ChannelOffset * 4;
2006 pData[120] = channeloffset;
2007
2008 {
2009 uint8_t regoptions = 0;
2010 if (MSDecode) regoptions |= 0x01; // bit 0
2011 if (SustainDefeat) regoptions |= 0x02; // bit 1
2012 pData[121] = regoptions;
2013 }
2014
2015 // next 2 bytes unknown
2016
2017 pData[124] = VelocityUpperLimit;
2018
2019 // next 3 bytes unknown
2020
2021 pData[128] = ReleaseTriggerDecay;
2022
2023 // next 2 bytes unknown
2024
2025 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2026 pData[131] = eg1hold;
2027
2028 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2029 (VCFCutoff & 0x7f); /* lower 7 bits */
2030 pData[132] = vcfcutoff;
2031
2032 pData[133] = VCFCutoffController;
2033
2034 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2035 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2036 pData[134] = vcfvelscale;
2037
2038 // next byte unknown
2039
2040 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2041 (VCFResonance & 0x7f); /* lower 7 bits */
2042 pData[136] = vcfresonance;
2043
2044 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2045 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2046 pData[137] = vcfbreakpoint;
2047
2048 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2049 VCFVelocityCurve * 5;
2050 pData[138] = vcfvelocity;
2051
2052 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2053 pData[139] = vcftype;
2054
2055 if (chunksize >= 148) {
2056 memcpy(&pData[140], DimensionUpperLimits, 8);
2057 }
2058 }
2059
2060 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2061 curve_type_t curveType = releaseVelocityResponseCurve;
2062 uint8_t depth = releaseVelocityResponseDepth;
2063 // this models a strange behaviour or bug in GSt: two of the
2064 // velocity response curves for release time are not used even
2065 // if specified, instead another curve is chosen.
2066 if ((curveType == curve_type_nonlinear && depth == 0) ||
2067 (curveType == curve_type_special && depth == 4)) {
2068 curveType = curve_type_nonlinear;
2069 depth = 3;
2070 }
2071 return GetVelocityTable(curveType, depth, 0);
2072 }
2073
2074 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2075 uint8_t vcfVelocityDynamicRange,
2076 uint8_t vcfVelocityScale,
2077 vcf_cutoff_ctrl_t vcfCutoffController)
2078 {
2079 curve_type_t curveType = vcfVelocityCurve;
2080 uint8_t depth = vcfVelocityDynamicRange;
2081 // even stranger GSt: two of the velocity response curves for
2082 // filter cutoff are not used, instead another special curve
2083 // is chosen. This curve is not used anywhere else.
2084 if ((curveType == curve_type_nonlinear && depth == 0) ||
2085 (curveType == curve_type_special && depth == 4)) {
2086 curveType = curve_type_special;
2087 depth = 5;
2088 }
2089 return GetVelocityTable(curveType, depth,
2090 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2091 ? vcfVelocityScale : 0);
2092 }
2093
2094 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2095 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2096 {
2097 double* table;
2098 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2099 if (pVelocityTables->count(tableKey)) { // if key exists
2100 table = (*pVelocityTables)[tableKey];
2101 }
2102 else {
2103 table = CreateVelocityTable(curveType, depth, scaling);
2104 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2105 }
2106 return table;
2107 }
2108
2109 Region* DimensionRegion::GetParent() const {
2110 return pRegion;
2111 }
2112
2113 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2114 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2115 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2116 //#pragma GCC diagnostic push
2117 //#pragma GCC diagnostic error "-Wswitch"
2118
2119 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2120 leverage_ctrl_t decodedcontroller;
2121 switch (EncodedController) {
2122 // special controller
2123 case _lev_ctrl_none:
2124 decodedcontroller.type = leverage_ctrl_t::type_none;
2125 decodedcontroller.controller_number = 0;
2126 break;
2127 case _lev_ctrl_velocity:
2128 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2129 decodedcontroller.controller_number = 0;
2130 break;
2131 case _lev_ctrl_channelaftertouch:
2132 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2133 decodedcontroller.controller_number = 0;
2134 break;
2135
2136 // ordinary MIDI control change controller
2137 case _lev_ctrl_modwheel:
2138 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2139 decodedcontroller.controller_number = 1;
2140 break;
2141 case _lev_ctrl_breath:
2142 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2143 decodedcontroller.controller_number = 2;
2144 break;
2145 case _lev_ctrl_foot:
2146 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2147 decodedcontroller.controller_number = 4;
2148 break;
2149 case _lev_ctrl_effect1:
2150 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2151 decodedcontroller.controller_number = 12;
2152 break;
2153 case _lev_ctrl_effect2:
2154 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2155 decodedcontroller.controller_number = 13;
2156 break;
2157 case _lev_ctrl_genpurpose1:
2158 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2159 decodedcontroller.controller_number = 16;
2160 break;
2161 case _lev_ctrl_genpurpose2:
2162 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2163 decodedcontroller.controller_number = 17;
2164 break;
2165 case _lev_ctrl_genpurpose3:
2166 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2167 decodedcontroller.controller_number = 18;
2168 break;
2169 case _lev_ctrl_genpurpose4:
2170 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2171 decodedcontroller.controller_number = 19;
2172 break;
2173 case _lev_ctrl_portamentotime:
2174 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2175 decodedcontroller.controller_number = 5;
2176 break;
2177 case _lev_ctrl_sustainpedal:
2178 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2179 decodedcontroller.controller_number = 64;
2180 break;
2181 case _lev_ctrl_portamento:
2182 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2183 decodedcontroller.controller_number = 65;
2184 break;
2185 case _lev_ctrl_sostenutopedal:
2186 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2187 decodedcontroller.controller_number = 66;
2188 break;
2189 case _lev_ctrl_softpedal:
2190 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2191 decodedcontroller.controller_number = 67;
2192 break;
2193 case _lev_ctrl_genpurpose5:
2194 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2195 decodedcontroller.controller_number = 80;
2196 break;
2197 case _lev_ctrl_genpurpose6:
2198 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2199 decodedcontroller.controller_number = 81;
2200 break;
2201 case _lev_ctrl_genpurpose7:
2202 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2203 decodedcontroller.controller_number = 82;
2204 break;
2205 case _lev_ctrl_genpurpose8:
2206 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2207 decodedcontroller.controller_number = 83;
2208 break;
2209 case _lev_ctrl_effect1depth:
2210 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2211 decodedcontroller.controller_number = 91;
2212 break;
2213 case _lev_ctrl_effect2depth:
2214 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215 decodedcontroller.controller_number = 92;
2216 break;
2217 case _lev_ctrl_effect3depth:
2218 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219 decodedcontroller.controller_number = 93;
2220 break;
2221 case _lev_ctrl_effect4depth:
2222 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223 decodedcontroller.controller_number = 94;
2224 break;
2225 case _lev_ctrl_effect5depth:
2226 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227 decodedcontroller.controller_number = 95;
2228 break;
2229
2230 // format extension (these controllers are so far only supported by
2231 // LinuxSampler & gigedit) they will *NOT* work with
2232 // Gigasampler/GigaStudio !
2233 case _lev_ctrl_CC3_EXT:
2234 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235 decodedcontroller.controller_number = 3;
2236 break;
2237 case _lev_ctrl_CC6_EXT:
2238 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239 decodedcontroller.controller_number = 6;
2240 break;
2241 case _lev_ctrl_CC7_EXT:
2242 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243 decodedcontroller.controller_number = 7;
2244 break;
2245 case _lev_ctrl_CC8_EXT:
2246 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247 decodedcontroller.controller_number = 8;
2248 break;
2249 case _lev_ctrl_CC9_EXT:
2250 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251 decodedcontroller.controller_number = 9;
2252 break;
2253 case _lev_ctrl_CC10_EXT:
2254 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255 decodedcontroller.controller_number = 10;
2256 break;
2257 case _lev_ctrl_CC11_EXT:
2258 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259 decodedcontroller.controller_number = 11;
2260 break;
2261 case _lev_ctrl_CC14_EXT:
2262 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263 decodedcontroller.controller_number = 14;
2264 break;
2265 case _lev_ctrl_CC15_EXT:
2266 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267 decodedcontroller.controller_number = 15;
2268 break;
2269 case _lev_ctrl_CC20_EXT:
2270 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271 decodedcontroller.controller_number = 20;
2272 break;
2273 case _lev_ctrl_CC21_EXT:
2274 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275 decodedcontroller.controller_number = 21;
2276 break;
2277 case _lev_ctrl_CC22_EXT:
2278 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279 decodedcontroller.controller_number = 22;
2280 break;
2281 case _lev_ctrl_CC23_EXT:
2282 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283 decodedcontroller.controller_number = 23;
2284 break;
2285 case _lev_ctrl_CC24_EXT:
2286 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287 decodedcontroller.controller_number = 24;
2288 break;
2289 case _lev_ctrl_CC25_EXT:
2290 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291 decodedcontroller.controller_number = 25;
2292 break;
2293 case _lev_ctrl_CC26_EXT:
2294 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295 decodedcontroller.controller_number = 26;
2296 break;
2297 case _lev_ctrl_CC27_EXT:
2298 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299 decodedcontroller.controller_number = 27;
2300 break;
2301 case _lev_ctrl_CC28_EXT:
2302 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303 decodedcontroller.controller_number = 28;
2304 break;
2305 case _lev_ctrl_CC29_EXT:
2306 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307 decodedcontroller.controller_number = 29;
2308 break;
2309 case _lev_ctrl_CC30_EXT:
2310 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311 decodedcontroller.controller_number = 30;
2312 break;
2313 case _lev_ctrl_CC31_EXT:
2314 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315 decodedcontroller.controller_number = 31;
2316 break;
2317 case _lev_ctrl_CC68_EXT:
2318 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319 decodedcontroller.controller_number = 68;
2320 break;
2321 case _lev_ctrl_CC69_EXT:
2322 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323 decodedcontroller.controller_number = 69;
2324 break;
2325 case _lev_ctrl_CC70_EXT:
2326 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327 decodedcontroller.controller_number = 70;
2328 break;
2329 case _lev_ctrl_CC71_EXT:
2330 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331 decodedcontroller.controller_number = 71;
2332 break;
2333 case _lev_ctrl_CC72_EXT:
2334 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335 decodedcontroller.controller_number = 72;
2336 break;
2337 case _lev_ctrl_CC73_EXT:
2338 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339 decodedcontroller.controller_number = 73;
2340 break;
2341 case _lev_ctrl_CC74_EXT:
2342 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343 decodedcontroller.controller_number = 74;
2344 break;
2345 case _lev_ctrl_CC75_EXT:
2346 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347 decodedcontroller.controller_number = 75;
2348 break;
2349 case _lev_ctrl_CC76_EXT:
2350 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351 decodedcontroller.controller_number = 76;
2352 break;
2353 case _lev_ctrl_CC77_EXT:
2354 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355 decodedcontroller.controller_number = 77;
2356 break;
2357 case _lev_ctrl_CC78_EXT:
2358 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359 decodedcontroller.controller_number = 78;
2360 break;
2361 case _lev_ctrl_CC79_EXT:
2362 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363 decodedcontroller.controller_number = 79;
2364 break;
2365 case _lev_ctrl_CC84_EXT:
2366 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367 decodedcontroller.controller_number = 84;
2368 break;
2369 case _lev_ctrl_CC85_EXT:
2370 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371 decodedcontroller.controller_number = 85;
2372 break;
2373 case _lev_ctrl_CC86_EXT:
2374 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375 decodedcontroller.controller_number = 86;
2376 break;
2377 case _lev_ctrl_CC87_EXT:
2378 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379 decodedcontroller.controller_number = 87;
2380 break;
2381 case _lev_ctrl_CC89_EXT:
2382 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383 decodedcontroller.controller_number = 89;
2384 break;
2385 case _lev_ctrl_CC90_EXT:
2386 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387 decodedcontroller.controller_number = 90;
2388 break;
2389 case _lev_ctrl_CC96_EXT:
2390 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391 decodedcontroller.controller_number = 96;
2392 break;
2393 case _lev_ctrl_CC97_EXT:
2394 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395 decodedcontroller.controller_number = 97;
2396 break;
2397 case _lev_ctrl_CC102_EXT:
2398 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399 decodedcontroller.controller_number = 102;
2400 break;
2401 case _lev_ctrl_CC103_EXT:
2402 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403 decodedcontroller.controller_number = 103;
2404 break;
2405 case _lev_ctrl_CC104_EXT:
2406 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407 decodedcontroller.controller_number = 104;
2408 break;
2409 case _lev_ctrl_CC105_EXT:
2410 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411 decodedcontroller.controller_number = 105;
2412 break;
2413 case _lev_ctrl_CC106_EXT:
2414 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415 decodedcontroller.controller_number = 106;
2416 break;
2417 case _lev_ctrl_CC107_EXT:
2418 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419 decodedcontroller.controller_number = 107;
2420 break;
2421 case _lev_ctrl_CC108_EXT:
2422 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423 decodedcontroller.controller_number = 108;
2424 break;
2425 case _lev_ctrl_CC109_EXT:
2426 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427 decodedcontroller.controller_number = 109;
2428 break;
2429 case _lev_ctrl_CC110_EXT:
2430 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431 decodedcontroller.controller_number = 110;
2432 break;
2433 case _lev_ctrl_CC111_EXT:
2434 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435 decodedcontroller.controller_number = 111;
2436 break;
2437 case _lev_ctrl_CC112_EXT:
2438 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439 decodedcontroller.controller_number = 112;
2440 break;
2441 case _lev_ctrl_CC113_EXT:
2442 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443 decodedcontroller.controller_number = 113;
2444 break;
2445 case _lev_ctrl_CC114_EXT:
2446 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447 decodedcontroller.controller_number = 114;
2448 break;
2449 case _lev_ctrl_CC115_EXT:
2450 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451 decodedcontroller.controller_number = 115;
2452 break;
2453 case _lev_ctrl_CC116_EXT:
2454 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455 decodedcontroller.controller_number = 116;
2456 break;
2457 case _lev_ctrl_CC117_EXT:
2458 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459 decodedcontroller.controller_number = 117;
2460 break;
2461 case _lev_ctrl_CC118_EXT:
2462 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463 decodedcontroller.controller_number = 118;
2464 break;
2465 case _lev_ctrl_CC119_EXT:
2466 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467 decodedcontroller.controller_number = 119;
2468 break;
2469
2470 // unknown controller type
2471 default:
2472 throw gig::Exception("Unknown leverage controller type.");
2473 }
2474 return decodedcontroller;
2475 }
2476
2477 // see above (diagnostic push not supported prior GCC 4.6)
2478 //#pragma GCC diagnostic pop
2479
2480 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2481 _lev_ctrl_t encodedcontroller;
2482 switch (DecodedController.type) {
2483 // special controller
2484 case leverage_ctrl_t::type_none:
2485 encodedcontroller = _lev_ctrl_none;
2486 break;
2487 case leverage_ctrl_t::type_velocity:
2488 encodedcontroller = _lev_ctrl_velocity;
2489 break;
2490 case leverage_ctrl_t::type_channelaftertouch:
2491 encodedcontroller = _lev_ctrl_channelaftertouch;
2492 break;
2493
2494 // ordinary MIDI control change controller
2495 case leverage_ctrl_t::type_controlchange:
2496 switch (DecodedController.controller_number) {
2497 case 1:
2498 encodedcontroller = _lev_ctrl_modwheel;
2499 break;
2500 case 2:
2501 encodedcontroller = _lev_ctrl_breath;
2502 break;
2503 case 4:
2504 encodedcontroller = _lev_ctrl_foot;
2505 break;
2506 case 12:
2507 encodedcontroller = _lev_ctrl_effect1;
2508 break;
2509 case 13:
2510 encodedcontroller = _lev_ctrl_effect2;
2511 break;
2512 case 16:
2513 encodedcontroller = _lev_ctrl_genpurpose1;
2514 break;
2515 case 17:
2516 encodedcontroller = _lev_ctrl_genpurpose2;
2517 break;
2518 case 18:
2519 encodedcontroller = _lev_ctrl_genpurpose3;
2520 break;
2521 case 19:
2522 encodedcontroller = _lev_ctrl_genpurpose4;
2523 break;
2524 case 5:
2525 encodedcontroller = _lev_ctrl_portamentotime;
2526 break;
2527 case 64:
2528 encodedcontroller = _lev_ctrl_sustainpedal;
2529 break;
2530 case 65:
2531 encodedcontroller = _lev_ctrl_portamento;
2532 break;
2533 case 66:
2534 encodedcontroller = _lev_ctrl_sostenutopedal;
2535 break;
2536 case 67:
2537 encodedcontroller = _lev_ctrl_softpedal;
2538 break;
2539 case 80:
2540 encodedcontroller = _lev_ctrl_genpurpose5;
2541 break;
2542 case 81:
2543 encodedcontroller = _lev_ctrl_genpurpose6;
2544 break;
2545 case 82:
2546 encodedcontroller = _lev_ctrl_genpurpose7;
2547 break;
2548 case 83:
2549 encodedcontroller = _lev_ctrl_genpurpose8;
2550 break;
2551 case 91:
2552 encodedcontroller = _lev_ctrl_effect1depth;
2553 break;
2554 case 92:
2555 encodedcontroller = _lev_ctrl_effect2depth;
2556 break;
2557 case 93:
2558 encodedcontroller = _lev_ctrl_effect3depth;
2559 break;
2560 case 94:
2561 encodedcontroller = _lev_ctrl_effect4depth;
2562 break;
2563 case 95:
2564 encodedcontroller = _lev_ctrl_effect5depth;
2565 break;
2566
2567 // format extension (these controllers are so far only
2568 // supported by LinuxSampler & gigedit) they will *NOT*
2569 // work with Gigasampler/GigaStudio !
2570 case 3:
2571 encodedcontroller = _lev_ctrl_CC3_EXT;
2572 break;
2573 case 6:
2574 encodedcontroller = _lev_ctrl_CC6_EXT;
2575 break;
2576 case 7:
2577 encodedcontroller = _lev_ctrl_CC7_EXT;
2578 break;
2579 case 8:
2580 encodedcontroller = _lev_ctrl_CC8_EXT;
2581 break;
2582 case 9:
2583 encodedcontroller = _lev_ctrl_CC9_EXT;
2584 break;
2585 case 10:
2586 encodedcontroller = _lev_ctrl_CC10_EXT;
2587 break;
2588 case 11:
2589 encodedcontroller = _lev_ctrl_CC11_EXT;
2590 break;
2591 case 14:
2592 encodedcontroller = _lev_ctrl_CC14_EXT;
2593 break;
2594 case 15:
2595 encodedcontroller = _lev_ctrl_CC15_EXT;
2596 break;
2597 case 20:
2598 encodedcontroller = _lev_ctrl_CC20_EXT;
2599 break;
2600 case 21:
2601 encodedcontroller = _lev_ctrl_CC21_EXT;
2602 break;
2603 case 22:
2604 encodedcontroller = _lev_ctrl_CC22_EXT;
2605 break;
2606 case 23:
2607 encodedcontroller = _lev_ctrl_CC23_EXT;
2608 break;
2609 case 24:
2610 encodedcontroller = _lev_ctrl_CC24_EXT;
2611 break;
2612 case 25:
2613 encodedcontroller = _lev_ctrl_CC25_EXT;
2614 break;
2615 case 26:
2616 encodedcontroller = _lev_ctrl_CC26_EXT;
2617 break;
2618 case 27:
2619 encodedcontroller = _lev_ctrl_CC27_EXT;
2620 break;
2621 case 28:
2622 encodedcontroller = _lev_ctrl_CC28_EXT;
2623 break;
2624 case 29:
2625 encodedcontroller = _lev_ctrl_CC29_EXT;
2626 break;
2627 case 30:
2628 encodedcontroller = _lev_ctrl_CC30_EXT;
2629 break;
2630 case 31:
2631 encodedcontroller = _lev_ctrl_CC31_EXT;
2632 break;
2633 case 68:
2634 encodedcontroller = _lev_ctrl_CC68_EXT;
2635 break;
2636 case 69:
2637 encodedcontroller = _lev_ctrl_CC69_EXT;
2638 break;
2639 case 70:
2640 encodedcontroller = _lev_ctrl_CC70_EXT;
2641 break;
2642 case 71:
2643 encodedcontroller = _lev_ctrl_CC71_EXT;
2644 break;
2645 case 72:
2646 encodedcontroller = _lev_ctrl_CC72_EXT;
2647 break;
2648 case 73:
2649 encodedcontroller = _lev_ctrl_CC73_EXT;
2650 break;
2651 case 74:
2652 encodedcontroller = _lev_ctrl_CC74_EXT;
2653 break;
2654 case 75:
2655 encodedcontroller = _lev_ctrl_CC75_EXT;
2656 break;
2657 case 76:
2658 encodedcontroller = _lev_ctrl_CC76_EXT;
2659 break;
2660 case 77:
2661 encodedcontroller = _lev_ctrl_CC77_EXT;
2662 break;
2663 case 78:
2664 encodedcontroller = _lev_ctrl_CC78_EXT;
2665 break;
2666 case 79:
2667 encodedcontroller = _lev_ctrl_CC79_EXT;
2668 break;
2669 case 84:
2670 encodedcontroller = _lev_ctrl_CC84_EXT;
2671 break;
2672 case 85:
2673 encodedcontroller = _lev_ctrl_CC85_EXT;
2674 break;
2675 case 86:
2676 encodedcontroller = _lev_ctrl_CC86_EXT;
2677 break;
2678 case 87:
2679 encodedcontroller = _lev_ctrl_CC87_EXT;
2680 break;
2681 case 89:
2682 encodedcontroller = _lev_ctrl_CC89_EXT;
2683 break;
2684 case 90:
2685 encodedcontroller = _lev_ctrl_CC90_EXT;
2686 break;
2687 case 96:
2688 encodedcontroller = _lev_ctrl_CC96_EXT;
2689 break;
2690 case 97:
2691 encodedcontroller = _lev_ctrl_CC97_EXT;
2692 break;
2693 case 102:
2694 encodedcontroller = _lev_ctrl_CC102_EXT;
2695 break;
2696 case 103:
2697 encodedcontroller = _lev_ctrl_CC103_EXT;
2698 break;
2699 case 104:
2700 encodedcontroller = _lev_ctrl_CC104_EXT;
2701 break;
2702 case 105:
2703 encodedcontroller = _lev_ctrl_CC105_EXT;
2704 break;
2705 case 106:
2706 encodedcontroller = _lev_ctrl_CC106_EXT;
2707 break;
2708 case 107:
2709 encodedcontroller = _lev_ctrl_CC107_EXT;
2710 break;
2711 case 108:
2712 encodedcontroller = _lev_ctrl_CC108_EXT;
2713 break;
2714 case 109:
2715 encodedcontroller = _lev_ctrl_CC109_EXT;
2716 break;
2717 case 110:
2718 encodedcontroller = _lev_ctrl_CC110_EXT;
2719 break;
2720 case 111:
2721 encodedcontroller = _lev_ctrl_CC111_EXT;
2722 break;
2723 case 112:
2724 encodedcontroller = _lev_ctrl_CC112_EXT;
2725 break;
2726 case 113:
2727 encodedcontroller = _lev_ctrl_CC113_EXT;
2728 break;
2729 case 114:
2730 encodedcontroller = _lev_ctrl_CC114_EXT;
2731 break;
2732 case 115:
2733 encodedcontroller = _lev_ctrl_CC115_EXT;
2734 break;
2735 case 116:
2736 encodedcontroller = _lev_ctrl_CC116_EXT;
2737 break;
2738 case 117:
2739 encodedcontroller = _lev_ctrl_CC117_EXT;
2740 break;
2741 case 118:
2742 encodedcontroller = _lev_ctrl_CC118_EXT;
2743 break;
2744 case 119:
2745 encodedcontroller = _lev_ctrl_CC119_EXT;
2746 break;
2747
2748 default:
2749 throw gig::Exception("leverage controller number is not supported by the gig format");
2750 }
2751 break;
2752 default:
2753 throw gig::Exception("Unknown leverage controller type.");
2754 }
2755 return encodedcontroller;
2756 }
2757
2758 DimensionRegion::~DimensionRegion() {
2759 Instances--;
2760 if (!Instances) {
2761 // delete the velocity->volume tables
2762 VelocityTableMap::iterator iter;
2763 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2764 double* pTable = iter->second;
2765 if (pTable) delete[] pTable;
2766 }
2767 pVelocityTables->clear();
2768 delete pVelocityTables;
2769 pVelocityTables = NULL;
2770 }
2771 if (VelocityTable) delete[] VelocityTable;
2772 }
2773
2774 /**
2775 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2776 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2777 * and VelocityResponseCurveScaling) involved are taken into account to
2778 * calculate the amplitude factor. Use this method when a key was
2779 * triggered to get the volume with which the sample should be played
2780 * back.
2781 *
2782 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2783 * @returns amplitude factor (between 0.0 and 1.0)
2784 */
2785 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2786 return pVelocityAttenuationTable[MIDIKeyVelocity];
2787 }
2788
2789 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2790 return pVelocityReleaseTable[MIDIKeyVelocity];
2791 }
2792
2793 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2794 return pVelocityCutoffTable[MIDIKeyVelocity];
2795 }
2796
2797 /**
2798 * Updates the respective member variable and the lookup table / cache
2799 * that depends on this value.
2800 */
2801 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2802 pVelocityAttenuationTable =
2803 GetVelocityTable(
2804 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2805 );
2806 VelocityResponseCurve = curve;
2807 }
2808
2809 /**
2810 * Updates the respective member variable and the lookup table / cache
2811 * that depends on this value.
2812 */
2813 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2814 pVelocityAttenuationTable =
2815 GetVelocityTable(
2816 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2817 );
2818 VelocityResponseDepth = depth;
2819 }
2820
2821 /**
2822 * Updates the respective member variable and the lookup table / cache
2823 * that depends on this value.
2824 */
2825 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2826 pVelocityAttenuationTable =
2827 GetVelocityTable(
2828 VelocityResponseCurve, VelocityResponseDepth, scaling
2829 );
2830 VelocityResponseCurveScaling = scaling;
2831 }
2832
2833 /**
2834 * Updates the respective member variable and the lookup table / cache
2835 * that depends on this value.
2836 */
2837 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2838 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2839 ReleaseVelocityResponseCurve = curve;
2840 }
2841
2842 /**
2843 * Updates the respective member variable and the lookup table / cache
2844 * that depends on this value.
2845 */
2846 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2847 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2848 ReleaseVelocityResponseDepth = depth;
2849 }
2850
2851 /**
2852 * Updates the respective member variable and the lookup table / cache
2853 * that depends on this value.
2854 */
2855 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2856 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2857 VCFCutoffController = controller;
2858 }
2859
2860 /**
2861 * Updates the respective member variable and the lookup table / cache
2862 * that depends on this value.
2863 */
2864 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2865 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2866 VCFVelocityCurve = curve;
2867 }
2868
2869 /**
2870 * Updates the respective member variable and the lookup table / cache
2871 * that depends on this value.
2872 */
2873 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2874 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2875 VCFVelocityDynamicRange = range;
2876 }
2877
2878 /**
2879 * Updates the respective member variable and the lookup table / cache
2880 * that depends on this value.
2881 */
2882 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2883 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2884 VCFVelocityScale = scaling;
2885 }
2886
2887 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2888
2889 // line-segment approximations of the 15 velocity curves
2890
2891 // linear
2892 const int lin0[] = { 1, 1, 127, 127 };
2893 const int lin1[] = { 1, 21, 127, 127 };
2894 const int lin2[] = { 1, 45, 127, 127 };
2895 const int lin3[] = { 1, 74, 127, 127 };
2896 const int lin4[] = { 1, 127, 127, 127 };
2897
2898 // non-linear
2899 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2900 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2901 127, 127 };
2902 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2903 127, 127 };
2904 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2905 127, 127 };
2906 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2907
2908 // special
2909 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2910 113, 127, 127, 127 };
2911 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2912 118, 127, 127, 127 };
2913 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2914 85, 90, 91, 127, 127, 127 };
2915 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2916 117, 127, 127, 127 };
2917 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2918 127, 127 };
2919
2920 // this is only used by the VCF velocity curve
2921 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2922 91, 127, 127, 127 };
2923
2924 const int* const curves[] = { non0, non1, non2, non3, non4,
2925 lin0, lin1, lin2, lin3, lin4,
2926 spe0, spe1, spe2, spe3, spe4, spe5 };
2927
2928 double* const table = new double[128];
2929
2930 const int* curve = curves[curveType * 5 + depth];
2931 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2932
2933 table[0] = 0;
2934 for (int x = 1 ; x < 128 ; x++) {
2935
2936 if (x > curve[2]) curve += 2;
2937 double y = curve[1] + (x - curve[0]) *
2938 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2939 y = y / 127;
2940
2941 // Scale up for s > 20, down for s < 20. When
2942 // down-scaling, the curve still ends at 1.0.
2943 if (s < 20 && y >= 0.5)
2944 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2945 else
2946 y = y * (s / 20.0);
2947 if (y > 1) y = 1;
2948
2949 table[x] = y;
2950 }
2951 return table;
2952 }
2953
2954
2955 // *************** Region ***************
2956 // *
2957
2958 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2959 // Initialization
2960 Dimensions = 0;
2961 for (int i = 0; i < 256; i++) {
2962 pDimensionRegions[i] = NULL;
2963 }
2964 Layers = 1;
2965 File* file = (File*) GetParent()->GetParent();
2966 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2967
2968 // Actual Loading
2969
2970 if (!file->GetAutoLoad()) return;
2971
2972 LoadDimensionRegions(rgnList);
2973
2974 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2975 if (_3lnk) {
2976 DimensionRegions = _3lnk->ReadUint32();
2977 for (int i = 0; i < dimensionBits; i++) {
2978 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2979 uint8_t bits = _3lnk->ReadUint8();
2980 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2981 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2982 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2983 if (dimension == dimension_none) { // inactive dimension
2984 pDimensionDefinitions[i].dimension = dimension_none;
2985 pDimensionDefinitions[i].bits = 0;
2986 pDimensionDefinitions[i].zones = 0;
2987 pDimensionDefinitions[i].split_type = split_type_bit;
2988 pDimensionDefinitions[i].zone_size = 0;
2989 }
2990 else { // active dimension
2991 pDimensionDefinitions[i].dimension = dimension;
2992 pDimensionDefinitions[i].bits = bits;
2993 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2994 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2995 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2996 Dimensions++;
2997
2998 // if this is a layer dimension, remember the amount of layers
2999 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3000 }
3001 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3002 }
3003 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3004
3005 // if there's a velocity dimension and custom velocity zone splits are used,
3006 // update the VelocityTables in the dimension regions
3007 UpdateVelocityTable();
3008
3009 // jump to start of the wave pool indices (if not already there)
3010 if (file->pVersion && file->pVersion->major == 3)
3011 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3012 else
3013 _3lnk->SetPos(44);
3014
3015 // load sample references (if auto loading is enabled)
3016 if (file->GetAutoLoad()) {
3017 for (uint i = 0; i < DimensionRegions; i++) {
3018 uint32_t wavepoolindex = _3lnk->ReadUint32();
3019 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3020 }
3021 GetSample(); // load global region sample reference
3022 }
3023 } else {
3024 DimensionRegions = 0;
3025 for (int i = 0 ; i < 8 ; i++) {
3026 pDimensionDefinitions[i].dimension = dimension_none;
3027 pDimensionDefinitions[i].bits = 0;
3028 pDimensionDefinitions[i].zones = 0;
3029 }
3030 }
3031
3032 // make sure there is at least one dimension region
3033 if (!DimensionRegions) {
3034 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3035 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3036 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3037 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3038 DimensionRegions = 1;
3039 }
3040 }
3041
3042 /**
3043 * Apply Region settings and all its DimensionRegions to the respective
3044 * RIFF chunks. You have to call File::Save() to make changes persistent.
3045 *
3046 * Usually there is absolutely no need to call this method explicitly.
3047 * It will be called automatically when File::Save() was called.
3048 *
3049 * @param pProgress - callback function for progress notification
3050 * @throws gig::Exception if samples cannot be dereferenced
3051 */
3052 void Region::UpdateChunks(progress_t* pProgress) {
3053 // in the gig format we don't care about the Region's sample reference
3054 // but we still have to provide some existing one to not corrupt the
3055 // file, so to avoid the latter we simply always assign the sample of
3056 // the first dimension region of this region
3057 pSample = pDimensionRegions[0]->pSample;
3058
3059 // first update base class's chunks
3060 DLS::Region::UpdateChunks(pProgress);
3061
3062 // update dimension region's chunks
3063 for (int i = 0; i < DimensionRegions; i++) {
3064 pDimensionRegions[i]->UpdateChunks(pProgress);
3065 }
3066
3067 File* pFile = (File*) GetParent()->GetParent();
3068 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3069 const int iMaxDimensions = version3 ? 8 : 5;
3070 const int iMaxDimensionRegions = version3 ? 256 : 32;
3071
3072 // make sure '3lnk' chunk exists
3073 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3074 if (!_3lnk) {
3075 const int _3lnkChunkSize = version3 ? 1092 : 172;
3076 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3077 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3078
3079 // move 3prg to last position
3080 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3081 }
3082
3083 // update dimension definitions in '3lnk' chunk
3084 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3085 store32(&pData[0], DimensionRegions);
3086 int shift = 0;
3087 for (int i = 0; i < iMaxDimensions; i++) {
3088 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3089 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3090 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3091 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3092 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3093 // next 3 bytes unknown, always zero?
3094
3095 shift += pDimensionDefinitions[i].bits;
3096 }
3097
3098 // update wave pool table in '3lnk' chunk
3099 const int iWavePoolOffset = version3 ? 68 : 44;
3100 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3101 int iWaveIndex = -1;
3102 if (i < DimensionRegions) {
3103 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3104 File::SampleList::iterator iter = pFile->pSamples->begin();
3105 File::SampleList::iterator end = pFile->pSamples->end();
3106 for (int index = 0; iter != end; ++iter, ++index) {
3107 if (*iter == pDimensionRegions[i]->pSample) {
3108 iWaveIndex = index;
3109 break;
3110 }
3111 }
3112 }
3113 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3114 }
3115 }
3116
3117 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3118 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3119 if (_3prg) {
3120 int dimensionRegionNr = 0;
3121 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3122 while (_3ewl) {
3123 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3124 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3125 dimensionRegionNr++;
3126 }
3127 _3ewl = _3prg->GetNextSubList();
3128 }
3129 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3130 }
3131 }
3132
3133 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3134 // update KeyRange struct and make sure regions are in correct order
3135 DLS::Region::SetKeyRange(Low, High);
3136 // update Region key table for fast lookup
3137 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3138 }
3139
3140 void Region::UpdateVelocityTable() {
3141 // get velocity dimension's index
3142 int veldim = -1;
3143 for (int i = 0 ; i < Dimensions ; i++) {
3144 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3145 veldim = i;
3146 break;
3147 }
3148 }
3149 if (veldim == -1) return;
3150
3151 int step = 1;
3152 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3153 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3154
3155 // loop through all dimension regions for all dimensions except the velocity dimension
3156 int dim[8] = { 0 };
3157 for (int i = 0 ; i < DimensionRegions ; i++) {
3158 const int end = i + step * pDimensionDefinitions[veldim].zones;
3159
3160 // create a velocity table for all cases where the velocity zone is zero
3161 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3162 pDimensionRegions[i]->VelocityUpperLimit) {
3163 // create the velocity table
3164 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3165 if (!table) {
3166 table = new uint8_t[128];
3167 pDimensionRegions[i]->VelocityTable = table;
3168 }
3169 int tableidx = 0;
3170 int velocityZone = 0;
3171 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3172 for (int k = i ; k < end ; k += step) {
3173 DimensionRegion *d = pDimensionRegions[k];
3174 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3175 velocityZone++;
3176 }
3177 } else { // gig2
3178 for (int k = i ; k < end ; k += step) {
3179 DimensionRegion *d = pDimensionRegions[k];
3180 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3181 velocityZone++;
3182 }
3183 }
3184 } else {
3185 if (pDimensionRegions[i]->VelocityTable) {
3186 delete[] pDimensionRegions[i]->VelocityTable;
3187 pDimensionRegions[i]->VelocityTable = 0;
3188 }
3189 }
3190
3191 // jump to the next case where the velocity zone is zero
3192 int j;
3193 int shift = 0;
3194 for (j = 0 ; j < Dimensions ; j++) {
3195 if (j == veldim) i += skipveldim; // skip velocity dimension
3196 else {
3197 dim[j]++;
3198 if (dim[j] < pDimensionDefinitions[j].zones) break;
3199 else {
3200 // skip unused dimension regions
3201 dim[j] = 0;
3202 i += ((1 << pDimensionDefinitions[j].bits) -
3203 pDimensionDefinitions[j].zones) << shift;
3204 }
3205 }
3206 shift += pDimensionDefinitions[j].bits;
3207 }
3208 if (j == Dimensions) break;
3209 }
3210 }
3211
3212 /** @brief Einstein would have dreamed of it - create a new dimension.
3213 *
3214 * Creates a new dimension with the dimension definition given by
3215 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3216 * There is a hard limit of dimensions and total amount of "bits" all
3217 * dimensions can have. This limit is dependant to what gig file format
3218 * version this file refers to. The gig v2 (and lower) format has a
3219 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3220 * format has a limit of 8.
3221 *
3222 * @param pDimDef - defintion of the new dimension
3223 * @throws gig::Exception if dimension of the same type exists already
3224 * @throws gig::Exception if amount of dimensions or total amount of
3225 * dimension bits limit is violated
3226 */
3227 void Region::AddDimension(dimension_def_t* pDimDef) {
3228 // some initial sanity checks of the given dimension definition
3229 if (pDimDef->zones < 2)
3230 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3231 if (pDimDef->bits < 1)
3232 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3233 if (pDimDef->dimension == dimension_samplechannel) {
3234 if (pDimDef->zones != 2)
3235 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3236 if (pDimDef->bits != 1)
3237 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3238 }
3239
3240 // check if max. amount of dimensions reached
3241 File* file = (File*) GetParent()->GetParent();
3242 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3243 if (Dimensions >= iMaxDimensions)
3244 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3245 // check if max. amount of dimension bits reached
3246 int iCurrentBits = 0;
3247 for (int i = 0; i < Dimensions; i++)
3248 iCurrentBits += pDimensionDefinitions[i].bits;
3249 if (iCurrentBits >= iMaxDimensions)
3250 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3251 const int iNewBits = iCurrentBits + pDimDef->bits;
3252 if (iNewBits > iMaxDimensions)
3253 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3254 // check if there's already a dimensions of the same type
3255 for (int i = 0; i < Dimensions; i++)
3256 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3257 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3258
3259 // pos is where the new dimension should be placed, normally
3260 // last in list, except for the samplechannel dimension which
3261 // has to be first in list
3262 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3263 int bitpos = 0;
3264 for (int i = 0 ; i < pos ; i++)
3265 bitpos += pDimensionDefinitions[i].bits;
3266
3267 // make room for the new dimension
3268 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3269 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3270 for (int j = Dimensions ; j > pos ; j--) {
3271 pDimensionRegions[i]->DimensionUpperLimits[j] =
3272 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3273 }
3274 }
3275
3276 // assign definition of new dimension
3277 pDimensionDefinitions[pos] = *pDimDef;
3278
3279 // auto correct certain dimension definition fields (where possible)
3280 pDimensionDefinitions[pos].split_type =
3281 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3282 pDimensionDefinitions[pos].zone_size =
3283 __resolveZoneSize(pDimensionDefinitions[pos]);
3284
3285 // create new dimension region(s) for this new dimension, and make
3286 // sure that the dimension regions are placed correctly in both the
3287 // RIFF list and the pDimensionRegions array
3288 RIFF::Chunk* moveTo = NULL;
3289 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3290 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3291 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3292 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3293 }
3294 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3295 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3296 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3297 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3298 // create a new dimension region and copy all parameter values from
3299 // an existing dimension region
3300 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3301 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3302
3303 DimensionRegions++;
3304 }
3305 }
3306 moveTo = pDimensionRegions[i]->pParentList;
3307 }
3308
3309 // initialize the upper limits for this dimension
3310 int mask = (1 << bitpos) - 1;
3311 for (int z = 0 ; z < pDimDef->zones ; z++) {
3312 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3313 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3314 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3315 (z << bitpos) |
3316 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3317 }
3318 }
3319
3320 Dimensions++;
3321
3322 // if this is a layer dimension, update 'Layers' attribute
3323 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3324
3325 UpdateVelocityTable();
3326 }
3327
3328 /** @brief Delete an existing dimension.
3329 *
3330 * Deletes the dimension given by \a pDimDef and deletes all respective
3331 * dimension regions, that is all dimension regions where the dimension's
3332 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3333 * for example this would delete all dimension regions for the case(s)
3334 * where the sustain pedal is pressed down.
3335 *
3336 * @param pDimDef - dimension to delete
3337 * @throws gig::Exception if given dimension cannot be found
3338 */
3339 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3340 // get dimension's index
3341 int iDimensionNr = -1;
3342 for (int i = 0; i < Dimensions; i++) {
3343 if (&pDimensionDefinitions[i] == pDimDef) {
3344 iDimensionNr = i;
3345 break;
3346 }
3347 }
3348 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3349
3350 // get amount of bits below the dimension to delete
3351 int iLowerBits = 0;
3352 for (int i = 0; i < iDimensionNr; i++)
3353 iLowerBits += pDimensionDefinitions[i].bits;
3354
3355 // get amount ot bits above the dimension to delete
3356 int iUpperBits = 0;
3357 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3358 iUpperBits += pDimensionDefinitions[i].bits;
3359
3360 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3361
3362 // delete dimension regions which belong to the given dimension
3363 // (that is where the dimension's bit > 0)
3364 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3365 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3366 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3367 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3368 iObsoleteBit << iLowerBits |
3369 iLowerBit;
3370
3371 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3372 delete pDimensionRegions[iToDelete];
3373 pDimensionRegions[iToDelete] = NULL;
3374 DimensionRegions--;
3375 }
3376 }
3377 }
3378
3379 // defrag pDimensionRegions array
3380 // (that is remove the NULL spaces within the pDimensionRegions array)
3381 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3382 if (!pDimensionRegions[iTo]) {
3383 if (iFrom <= iTo) iFrom = iTo + 1;
3384 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3385 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3386 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3387 pDimensionRegions[iFrom] = NULL;
3388 }
3389 }
3390 }
3391
3392 // remove the this dimension from the upper limits arrays
3393 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3394 DimensionRegion* d = pDimensionRegions[j];
3395 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3396 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3397 }
3398 d->DimensionUpperLimits[Dimensions - 1] = 127;
3399 }
3400
3401 // 'remove' dimension definition
3402 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3403 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3404 }
3405 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3406 pDimensionDefinitions[Dimensions - 1].bits = 0;
3407 pDimensionDefinitions[Dimensions - 1].zones = 0;
3408
3409 Dimensions--;
3410
3411 // if this was a layer dimension, update 'Layers' attribute
3412 if (pDimDef->dimension == dimension_layer) Layers = 1;
3413 }
3414
3415 /** @brief Delete one split zone of a dimension (decrement zone amount).
3416 *
3417 * Instead of deleting an entire dimensions, this method will only delete
3418 * one particular split zone given by @a zone of the Region's dimension
3419 * given by @a type. So this method will simply decrement the amount of
3420 * zones by one of the dimension in question. To be able to do that, the
3421 * respective dimension must exist on this Region and it must have at least
3422 * 3 zones. All DimensionRegion objects associated with the zone will be
3423 * deleted.
3424 *
3425 * @param type - identifies the dimension where a zone shall be deleted
3426 * @param zone - index of the dimension split zone that shall be deleted
3427 * @throws gig::Exception if requested zone could not be deleted
3428 */
3429 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3430 dimension_def_t* oldDef = GetDimensionDefinition(type);
3431 if (!oldDef)
3432 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3433 if (oldDef->zones <= 2)
3434 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3435 if (zone < 0 || zone >= oldDef->zones)
3436 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3437
3438 const int newZoneSize = oldDef->zones - 1;
3439
3440 // create a temporary Region which just acts as a temporary copy
3441 // container and will be deleted at the end of this function and will
3442 // also not be visible through the API during this process
3443 gig::Region* tempRgn = NULL;
3444 {
3445 // adding these temporary chunks is probably not even necessary
3446 Instrument* instr = static_cast<Instrument*>(GetParent());
3447 RIFF::List* pCkInstrument = instr->pCkInstrument;
3448 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3449 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3450 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3451 tempRgn = new Region(instr, rgn);
3452 }
3453
3454 // copy this region's dimensions (with already the dimension split size
3455 // requested by the arguments of this method call) to the temporary
3456 // region, and don't use Region::CopyAssign() here for this task, since
3457 // it would also alter fast lookup helper variables here and there
3458 dimension_def_t newDef;
3459 for (int i = 0; i < Dimensions; ++i) {
3460 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3461 // is this the dimension requested by the method arguments? ...
3462 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3463 def.zones = newZoneSize;
3464 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3465 newDef = def;
3466 }
3467 tempRgn->AddDimension(&def);
3468 }
3469
3470 // find the dimension index in the tempRegion which is the dimension
3471 // type passed to this method (paranoidly expecting different order)
3472 int tempReducedDimensionIndex = -1;
3473 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3474 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3475 tempReducedDimensionIndex = d;
3476 break;
3477 }
3478 }
3479
3480 // copy dimension regions from this region to the temporary region
3481 for (int iDst = 0; iDst < 256; ++iDst) {
3482 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3483 if (!dstDimRgn) continue;
3484 std::map<dimension_t,int> dimCase;
3485 bool isValidZone = true;
3486 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3487 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3488 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3489 (iDst >> baseBits) & ((1 << dstBits) - 1);
3490 baseBits += dstBits;
3491 // there are also DimensionRegion objects of unused zones, skip them
3492 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3493 isValidZone = false;
3494 break;
3495 }
3496 }
3497 if (!isValidZone) continue;
3498 // a bit paranoid: cope with the chance that the dimensions would
3499 // have different order in source and destination regions
3500 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3501 if (dimCase[type] >= zone) dimCase[type]++;
3502 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3503 dstDimRgn->CopyAssign(srcDimRgn);
3504 // if this is the upper most zone of the dimension passed to this
3505 // method, then correct (raise) its upper limit to 127
3506 if (newDef.split_type == split_type_normal && isLastZone)
3507 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3508 }
3509
3510 // now tempRegion's dimensions and DimensionRegions basically reflect
3511 // what we wanted to get for this actual Region here, so we now just
3512 // delete and recreate the dimension in question with the new amount
3513 // zones and then copy back from tempRegion
3514 DeleteDimension(oldDef);
3515 AddDimension(&newDef);
3516 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3517 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3518 if (!srcDimRgn) continue;
3519 std::map<dimension_t,int> dimCase;
3520 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3521 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3522 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3523 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3524 baseBits += srcBits;
3525 }
3526 // a bit paranoid: cope with the chance that the dimensions would
3527 // have different order in source and destination regions
3528 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3529 if (!dstDimRgn) continue;
3530 dstDimRgn->CopyAssign(srcDimRgn);
3531 }
3532
3533 // delete temporary region
3534 delete tempRgn;
3535
3536 UpdateVelocityTable();
3537 }
3538
3539 /** @brief Divide split zone of a dimension in two (increment zone amount).
3540 *
3541 * This will increment the amount of zones for the dimension (given by
3542 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3543 * in the middle of its zone range in two. So the two zones resulting from
3544 * the zone being splitted, will be an equivalent copy regarding all their
3545 * articulation informations and sample reference. The two zones will only
3546 * differ in their zone's upper limit
3547 * (DimensionRegion::DimensionUpperLimits).
3548 *
3549 * @param type - identifies the dimension where a zone shall be splitted
3550 * @param zone - index of the dimension split zone that shall be splitted
3551 * @throws gig::Exception if requested zone could not be splitted
3552 */
3553 void Region::SplitDimensionZone(dimension_t type, int zone) {
3554 dimension_def_t* oldDef = GetDimensionDefinition(type);
3555 if (!oldDef)
3556 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3557 if (zone < 0 || zone >= oldDef->zones)
3558 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3559
3560 const int newZoneSize = oldDef->zones + 1;
3561
3562 // create a temporary Region which just acts as a temporary copy
3563 // container and will be deleted at the end of this function and will
3564 // also not be visible through the API during this process
3565 gig::Region* tempRgn = NULL;
3566 {
3567 // adding these temporary chunks is probably not even necessary
3568 Instrument* instr = static_cast<Instrument*>(GetParent());
3569 RIFF::List* pCkInstrument = instr->pCkInstrument;
3570 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3571 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3572 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3573 tempRgn = new Region(instr, rgn);
3574 }
3575
3576 // copy this region's dimensions (with already the dimension split size
3577 // requested by the arguments of this method call) to the temporary
3578 // region, and don't use Region::CopyAssign() here for this task, since
3579 // it would also alter fast lookup helper variables here and there
3580 dimension_def_t newDef;
3581 for (int i = 0; i < Dimensions; ++i) {
3582 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3583 // is this the dimension requested by the method arguments? ...
3584 if (def.dimension == type) { // ... if yes, increment zone amount by one
3585 def.zones = newZoneSize;
3586 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3587 newDef = def;
3588 }
3589 tempRgn->AddDimension(&def);
3590 }
3591
3592 // find the dimension index in the tempRegion which is the dimension
3593 // type passed to this method (paranoidly expecting different order)
3594 int tempIncreasedDimensionIndex = -1;
3595 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3596 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3597 tempIncreasedDimensionIndex = d;
3598 break;
3599 }
3600 }
3601
3602 // copy dimension regions from this region to the temporary region
3603 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3604 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3605 if (!srcDimRgn) continue;
3606 std::map<dimension_t,int> dimCase;
3607 bool isValidZone = true;
3608 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3609 const int srcBits = pDimensionDefinitions[d].bits;
3610 dimCase[pDimensionDefinitions[d].dimension] =
3611 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3612 // there are also DimensionRegion objects for unused zones, skip them
3613 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3614 isValidZone = false;
3615 break;
3616 }
3617 baseBits += srcBits;
3618 }
3619 if (!isValidZone) continue;
3620 // a bit paranoid: cope with the chance that the dimensions would
3621 // have different order in source and destination regions
3622 if (dimCase[type] > zone) dimCase[type]++;
3623 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3624 dstDimRgn->CopyAssign(srcDimRgn);
3625 // if this is the requested zone to be splitted, then also copy
3626 // the source DimensionRegion to the newly created target zone
3627 // and set the old zones upper limit lower
3628 if (dimCase[type] == zone) {
3629 // lower old zones upper limit
3630 if (newDef.split_type == split_type_normal) {
3631 const int high =
3632 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3633 int low = 0;
3634 if (zone > 0) {
3635 std::map<dimension_t,int> lowerCase = dimCase;
3636 lowerCase[type]--;
3637 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3638 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3639 }
3640 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3641 }
3642 // fill the newly created zone of the divided zone as well
3643 dimCase[type]++;
3644 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3645 dstDimRgn->CopyAssign(srcDimRgn);
3646 }
3647 }
3648
3649 // now tempRegion's dimensions and DimensionRegions basically reflect
3650 // what we wanted to get for this actual Region here, so we now just
3651 // delete and recreate the dimension in question with the new amount
3652 // zones and then copy back from tempRegion
3653 DeleteDimension(oldDef);
3654 AddDimension(&newDef);
3655 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3656 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3657 if (!srcDimRgn) continue;
3658 std::map<dimension_t,int> dimCase;
3659 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3660 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3661 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3662 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3663 baseBits += srcBits;
3664 }
3665 // a bit paranoid: cope with the chance that the dimensions would
3666 // have different order in source and destination regions
3667 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3668 if (!dstDimRgn) continue;
3669 dstDimRgn->CopyAssign(srcDimRgn);
3670 }
3671
3672 // delete temporary region
3673 delete tempRgn;
3674
3675 UpdateVelocityTable();
3676 }
3677
3678 /** @brief Change type of an existing dimension.
3679 *
3680 * Alters the dimension type of a dimension already existing on this
3681 * region. If there is currently no dimension on this Region with type
3682 * @a oldType, then this call with throw an Exception. Likewise there are
3683 * cases where the requested dimension type cannot be performed. For example
3684 * if the new dimension type shall be gig::dimension_samplechannel, and the
3685 * current dimension has more than 2 zones. In such cases an Exception is
3686 * thrown as well.
3687 *
3688 * @param oldType - identifies the existing dimension to be changed
3689 * @param newType - to which dimension type it should be changed to
3690 * @throws gig::Exception if requested change cannot be performed
3691 */
3692 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3693 if (oldType == newType) return;
3694 dimension_def_t* def = GetDimensionDefinition(oldType);
3695 if (!def)
3696 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3697 if (newType == dimension_samplechannel && def->zones != 2)
3698 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3699 if (GetDimensionDefinition(newType))
3700 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3701 def->dimension = newType;
3702 def->split_type = __resolveSplitType(newType);
3703 }
3704
3705 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3706 uint8_t bits[8] = {};
3707 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3708 it != DimCase.end(); ++it)
3709 {
3710 for (int d = 0; d < Dimensions; ++d) {
3711 if (pDimensionDefinitions[d].dimension == it->first) {
3712 bits[d] = it->second;
3713 goto nextDimCaseSlice;
3714 }
3715 }
3716 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3717 nextDimCaseSlice:
3718 ; // noop
3719 }
3720 return GetDimensionRegionByBit(bits);
3721 }
3722
3723 /**
3724 * Searches in the current Region for a dimension of the given dimension
3725 * type and returns the precise configuration of that dimension in this
3726 * Region.
3727 *
3728 * @param type - dimension type of the sought dimension
3729 * @returns dimension definition or NULL if there is no dimension with
3730 * sought type in this Region.
3731 */
3732 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3733 for (int i = 0; i < Dimensions; ++i)
3734 if (pDimensionDefinitions[i].dimension == type)
3735 return &pDimensionDefinitions[i];
3736 return NULL;
3737 }
3738
3739 Region::~Region() {
3740 for (int i = 0; i < 256; i++) {
3741 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3742 }
3743 }
3744
3745 /**
3746 * Use this method in your audio engine to get the appropriate dimension
3747 * region with it's articulation data for the current situation. Just
3748 * call the method with the current MIDI controller values and you'll get
3749 * the DimensionRegion with the appropriate articulation data for the
3750 * current situation (for this Region of course only). To do that you'll
3751 * first have to look which dimensions with which controllers and in
3752 * which order are defined for this Region when you load the .gig file.
3753 * Special cases are e.g. layer or channel dimensions where you just put
3754 * in the index numbers instead of a MIDI controller value (means 0 for
3755 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3756 * etc.).
3757 *
3758 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3759 * @returns adress to the DimensionRegion for the given situation
3760 * @see pDimensionDefinitions
3761 * @see Dimensions
3762 */
3763 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3764 uint8_t bits;
3765 int veldim = -1;
3766 int velbitpos;
3767 int bitpos = 0;
3768 int dimregidx = 0;
3769 for (uint i = 0; i < Dimensions; i++) {
3770 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3771 // the velocity dimension must be handled after the other dimensions
3772 veldim = i;
3773 velbitpos = bitpos;
3774 } else {
3775 switch (pDimensionDefinitions[i].split_type) {
3776 case split_type_normal:
3777 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3778 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3779 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3780 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3781 }
3782 } else {
3783 // gig2: evenly sized zones
3784 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3785 }
3786 break;
3787 case split_type_bit: // the value is already the sought dimension bit number
3788 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3789 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3790 break;
3791 }
3792 dimregidx |= bits << bitpos;
3793 }
3794 bitpos += pDimensionDefinitions[i].bits;
3795 }
3796 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3797 if (!dimreg) return NULL;
3798 if (veldim != -1) {
3799 // (dimreg is now the dimension region for the lowest velocity)
3800 if (dimreg->VelocityTable) // custom defined zone ranges
3801 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3802 else // normal split type
3803 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3804
3805 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3806 dimregidx |= (bits & limiter_mask) << velbitpos;
3807 dimreg = pDimensionRegions[dimregidx & 255];
3808 }
3809 return dimreg;
3810 }
3811
3812 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3813 uint8_t bits;
3814 int veldim = -1;
3815 int velbitpos;
3816 int bitpos = 0;
3817 int dimregidx = 0;
3818 for (uint i = 0; i < Dimensions; i++) {
3819 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3820 // the velocity dimension must be handled after the other dimensions
3821 veldim = i;
3822 velbitpos = bitpos;
3823 } else {
3824 switch (pDimensionDefinitions[i].split_type) {
3825 case split_type_normal:
3826 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3827 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3828 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3829 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3830 }
3831 } else {
3832 // gig2: evenly sized zones
3833 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3834 }
3835 break;
3836 case split_type_bit: // the value is already the sought dimension bit number
3837 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3838 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3839 break;
3840 }
3841 dimregidx |= bits << bitpos;
3842 }
3843 bitpos += pDimensionDefinitions[i].bits;
3844 }
3845 dimregidx &= 255;
3846 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3847 if (!dimreg) return -1;
3848 if (veldim != -1) {
3849 // (dimreg is now the dimension region for the lowest velocity)
3850 if (dimreg->VelocityTable) // custom defined zone ranges
3851 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3852 else // normal split type
3853 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3854
3855 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3856 dimregidx |= (bits & limiter_mask) << velbitpos;
3857 dimregidx &= 255;
3858 }
3859 return dimregidx;
3860 }
3861
3862 /**
3863 * Returns the appropriate DimensionRegion for the given dimension bit
3864 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3865 * instead of calling this method directly!
3866 *
3867 * @param DimBits Bit numbers for dimension 0 to 7
3868 * @returns adress to the DimensionRegion for the given dimension
3869 * bit numbers
3870 * @see GetDimensionRegionByValue()
3871 */
3872 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3873 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3874 << pDimensionDefinitions[5].bits | DimBits[5])
3875 << pDimensionDefinitions[4].bits | DimBits[4])
3876 << pDimensionDefinitions[3].bits | DimBits[3])
3877 << pDimensionDefinitions[2].bits | DimBits[2])
3878 << pDimensionDefinitions[1].bits | DimBits[1])
3879 << pDimensionDefinitions[0].bits | DimBits[0]];
3880 }
3881
3882 /**
3883 * Returns pointer address to the Sample referenced with this region.
3884 * This is the global Sample for the entire Region (not sure if this is
3885 * actually used by the Gigasampler engine - I would only use the Sample
3886 * referenced by the appropriate DimensionRegion instead of this sample).
3887 *
3888 * @returns address to Sample or NULL if there is no reference to a
3889 * sample saved in the .gig file
3890 */
3891 Sample* Region::GetSample() {
3892 if (pSample) return static_cast<gig::Sample*>(pSample);
3893 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3894 }
3895
3896 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3897 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3898 File* file = (File*) GetParent()->GetParent();
3899 if (!file->pWavePoolTable) return NULL;
3900 // for new files or files >= 2 GB use 64 bit wave pool offsets
3901 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3902 // use 64 bit wave pool offsets (treating this as large file)
3903 uint64_t soughtoffset =
3904 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3905 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3906 Sample* sample = file->GetFirstSample(pProgress);
3907 while (sample) {
3908 if (sample->ullWavePoolOffset == soughtoffset)
3909 return static_cast<gig::Sample*>(sample);
3910 sample = file->GetNextSample();
3911 }
3912 } else {
3913 // use extension files and 32 bit wave pool offsets
3914 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3915 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3916 Sample* sample = file->GetFirstSample(pProgress);
3917 while (sample) {
3918 if (sample->ullWavePoolOffset == soughtoffset &&
3919 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3920 sample = file->GetNextSample();
3921 }
3922 }
3923 return NULL;
3924 }
3925
3926 /**
3927 * Make a (semi) deep copy of the Region object given by @a orig
3928 * and assign it to this object.
3929 *
3930 * Note that all sample pointers referenced by @a orig are simply copied as
3931 * memory address. Thus the respective samples are shared, not duplicated!
3932 *
3933 * @param orig - original Region object to be copied from
3934 */
3935 void Region::CopyAssign(const Region* orig) {
3936 CopyAssign(orig, NULL);
3937 }
3938
3939 /**
3940 * Make a (semi) deep copy of the Region object given by @a orig and
3941 * assign it to this object
3942 *
3943 * @param mSamples - crosslink map between the foreign file's samples and
3944 * this file's samples
3945 */
3946 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3947 // handle base classes
3948 DLS::Region::CopyAssign(orig);
3949
3950 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3951 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3952 }
3953
3954 // handle own member variables
3955 for (int i = Dimensions - 1; i >= 0; --i) {
3956 DeleteDimension(&pDimensionDefinitions[i]);
3957 }
3958 Layers = 0; // just to be sure
3959 for (int i = 0; i < orig->Dimensions; i++) {
3960 // we need to copy the dim definition here, to avoid the compiler
3961 // complaining about const-ness issue
3962 dimension_def_t def = orig->pDimensionDefinitions[i];
3963 AddDimension(&def);
3964 }
3965 for (int i = 0; i < 256; i++) {
3966 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3967 pDimensionRegions[i]->CopyAssign(
3968 orig->pDimensionRegions[i],
3969 mSamples
3970 );
3971 }
3972 }
3973 Layers = orig->Layers;
3974 }
3975
3976
3977 // *************** MidiRule ***************
3978 // *
3979
3980 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3981 _3ewg->SetPos(36);
3982 Triggers = _3ewg->ReadUint8();
3983 _3ewg->SetPos(40);
3984 ControllerNumber = _3ewg->ReadUint8();
3985 _3ewg->SetPos(46);
3986 for (int i = 0 ; i < Triggers ; i++) {
3987 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3988 pTriggers[i].Descending = _3ewg->ReadUint8();
3989 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3990 pTriggers[i].Key = _3ewg->ReadUint8();
3991 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3992 pTriggers[i].Velocity = _3ewg->ReadUint8();
3993 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3994 _3ewg->ReadUint8();
3995 }
3996 }
3997
3998 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3999 ControllerNumber(0),
4000 Triggers(0) {
4001 }
4002
4003 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4004 pData[32] = 4;
4005 pData[33] = 16;
4006 pData[36] = Triggers;
4007 pData[40] = ControllerNumber;
4008 for (int i = 0 ; i < Triggers ; i++) {
4009 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4010 pData[47 + i * 8] = pTriggers[i].Descending;
4011 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4012 pData[49 + i * 8] = pTriggers[i].Key;
4013 pData[50 + i * 8] = pTriggers[i].NoteOff;
4014 pData[51 + i * 8] = pTriggers[i].Velocity;
4015 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4016 }
4017 }
4018
4019 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4020 _3ewg->SetPos(36);
4021 LegatoSamples = _3ewg->ReadUint8(); // always 12
4022 _3ewg->SetPos(40);
4023 BypassUseController = _3ewg->ReadUint8();
4024 BypassKey = _3ewg->ReadUint8();
4025 BypassController = _3ewg->ReadUint8();
4026 ThresholdTime = _3ewg->ReadUint16();
4027 _3ewg->ReadInt16();
4028 ReleaseTime = _3ewg->ReadUint16();
4029 _3ewg->ReadInt16();
4030 KeyRange.low = _3ewg->ReadUint8();
4031 KeyRange.high = _3ewg->ReadUint8();
4032 _3ewg->SetPos(64);
4033 ReleaseTriggerKey = _3ewg->ReadUint8();
4034 AltSustain1Key = _3ewg->ReadUint8();
4035 AltSustain2Key = _3ewg->ReadUint8();
4036 }
4037
4038 MidiRuleLegato::MidiRuleLegato() :
4039 LegatoSamples(12),
4040 BypassUseController(false),
4041 BypassKey(0),
4042 BypassController(1),
4043 ThresholdTime(20),
4044 ReleaseTime(20),
4045 ReleaseTriggerKey(0),
4046 AltSustain1Key(0),
4047 AltSustain2Key(0)
4048 {
4049 KeyRange.low = KeyRange.high = 0;
4050 }
4051
4052 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4053 pData[32] = 0;
4054 pData[33] = 16;
4055 pData[36] = LegatoSamples;
4056 pData[40] = BypassUseController;
4057 pData[41] = BypassKey;
4058 pData[42] = BypassController;
4059 store16(&pData[43], ThresholdTime);
4060 store16(&pData[47], ReleaseTime);
4061 pData[51] = KeyRange.low;
4062 pData[52] = KeyRange.high;
4063 pData[64] = ReleaseTriggerKey;
4064 pData[65] = AltSustain1Key;
4065 pData[66] = AltSustain2Key;
4066 }
4067
4068 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4069 _3ewg->SetPos(36);
4070 Articulations = _3ewg->ReadUint8();
4071 int flags = _3ewg->ReadUint8();
4072 Polyphonic = flags & 8;
4073 Chained = flags & 4;
4074 Selector = (flags & 2) ? selector_controller :
4075 (flags & 1) ? selector_key_switch : selector_none;
4076 Patterns = _3ewg->ReadUint8();
4077 _3ewg->ReadUint8(); // chosen row
4078 _3ewg->ReadUint8(); // unknown
4079 _3ewg->ReadUint8(); // unknown
4080 _3ewg->ReadUint8(); // unknown
4081 KeySwitchRange.low = _3ewg->ReadUint8();
4082 KeySwitchRange.high = _3ewg->ReadUint8();
4083 Controller = _3ewg->ReadUint8();
4084 PlayRange.low = _3ewg->ReadUint8();
4085 PlayRange.high = _3ewg->ReadUint8();
4086
4087 int n = std::min(int(Articulations), 32);
4088 for (int i = 0 ; i < n ; i++) {
4089 _3ewg->ReadString(pArticulations[i], 32);
4090 }
4091 _3ewg->SetPos(1072);
4092 n = std::min(int(Patterns), 32);
4093 for (int i = 0 ; i < n ; i++) {
4094 _3ewg->ReadString(pPatterns[i].Name, 16);
4095 pPatterns[i].Size = _3ewg->ReadUint8();
4096 _3ewg->Read(&pPatterns[i][0], 1, 32);
4097 }
4098 }
4099
4100 MidiRuleAlternator::MidiRuleAlternator() :
4101 Articulations(0),
4102 Patterns(0),
4103 Selector(selector_none),
4104 Controller(0),
4105 Polyphonic(false),
4106 Chained(false)
4107 {
4108 PlayRange.low = PlayRange.high = 0;
4109 KeySwitchRange.low = KeySwitchRange.high = 0;
4110 }
4111
4112 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4113 pData[32] = 3;
4114 pData[33] = 16;
4115 pData[36] = Articulations;
4116 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4117 (Selector == selector_controller ? 2 :
4118 (Selector == selector_key_switch ? 1 : 0));
4119 pData[38] = Patterns;
4120
4121 pData[43] = KeySwitchRange.low;
4122 pData[44] = KeySwitchRange.high;
4123 pData[45] = Controller;
4124 pData[46] = PlayRange.low;
4125 pData[47] = PlayRange.high;
4126
4127 char* str = reinterpret_cast<char*>(pData);
4128 int pos = 48;
4129 int n = std::min(int(Articulations), 32);
4130 for (int i = 0 ; i < n ; i++, pos += 32) {
4131 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4132 }
4133
4134 pos = 1072;
4135 n = std::min(int(Patterns), 32);
4136 for (int i = 0 ; i < n ; i++, pos += 49) {
4137 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4138 pData[pos + 16] = pPatterns[i].Size;
4139 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4140 }
4141 }
4142
4143 // *************** Script ***************
4144 // *
4145
4146 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4147 pGroup = group;
4148 pChunk = ckScri;
4149 if (ckScri) { // object is loaded from file ...
4150 // read header
4151 uint32_t headerSize = ckScri->ReadUint32();
4152 Compression = (Compression_t) ckScri->ReadUint32();
4153 Encoding = (Encoding_t) ckScri->ReadUint32();
4154 Language = (Language_t) ckScri->ReadUint32();
4155 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4156 crc = ckScri->ReadUint32();
4157 uint32_t nameSize = ckScri->ReadUint32();
4158 Name.resize(nameSize, ' ');
4159 for (int i = 0; i < nameSize; ++i)
4160 Name[i] = ckScri->ReadUint8();
4161 // to handle potential future extensions of the header
4162 ckScri->SetPos(sizeof(int32_t) + headerSize);
4163 // read actual script data
4164 uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4165 data.resize(scriptSize);
4166 for (int i = 0; i < scriptSize; ++i)
4167 data[i] = ckScri->ReadUint8();
4168 } else { // this is a new script object, so just initialize it as such ...
4169 Compression = COMPRESSION_NONE;
4170 Encoding = ENCODING_ASCII;
4171 Language = LANGUAGE_NKSP;
4172 Bypass = false;
4173 crc = 0;
4174 Name = "Unnamed Script";
4175 }
4176 }
4177
4178 Script::~Script() {
4179 }
4180
4181 /**
4182 * Returns the current script (i.e. as source code) in text format.
4183 */
4184 String Script::GetScriptAsText() {
4185 String s;
4186 s.resize(data.size(), ' ');
4187 memcpy(&s[0], &data[0], data.size());
4188 return s;
4189 }
4190
4191 /**
4192 * Replaces the current script with the new script source code text given
4193 * by @a text.
4194 *
4195 * @param text - new script source code
4196 */
4197 void Script::SetScriptAsText(const String& text) {
4198 data.resize(text.size());
4199 memcpy(&data[0], &text[0], text.size());
4200 }
4201
4202 /**
4203 * Apply this script to the respective RIFF chunks. You have to call
4204 * File::Save() to make changes persistent.
4205 *
4206 * Usually there is absolutely no need to call this method explicitly.
4207 * It will be called automatically when File::Save() was called.
4208 *
4209 * @param pProgress - callback function for progress notification
4210 */
4211 void Script::UpdateChunks(progress_t* pProgress) {
4212 // recalculate CRC32 check sum
4213 __resetCRC(crc);
4214 __calculateCRC(&data[0], data.size(), crc);
4215 __encodeCRC(crc);
4216 // make sure chunk exists and has the required size
4217 const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4218 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4219 else pChunk->Resize(chunkSize);
4220 // fill the chunk data to be written to disk
4221 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4222 int pos = 0;
4223 store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4224 pos += sizeof(int32_t);
4225 store32(&pData[pos], Compression);
4226 pos += sizeof(int32_t);
4227 store32(&pData[pos], Encoding);
4228 pos += sizeof(int32_t);
4229 store32(&pData[pos], Language);
4230 pos += sizeof(int32_t);
4231 store32(&pData[pos], Bypass ? 1 : 0);
4232 pos += sizeof(int32_t);
4233 store32(&pData[pos], crc);
4234 pos += sizeof(int32_t);
4235 store32(&pData[pos], Name.size());
4236 pos += sizeof(int32_t);
4237 for (int i = 0; i < Name.size(); ++i, ++pos)
4238 pData[pos] = Name[i];
4239 for (int i = 0; i < data.size(); ++i, ++pos)
4240 pData[pos] = data[i];
4241 }
4242
4243 /**
4244 * Move this script from its current ScriptGroup to another ScriptGroup
4245 * given by @a pGroup.
4246 *
4247 * @param pGroup - script's new group
4248 */
4249 void Script::SetGroup(ScriptGroup* pGroup) {
4250 if (this->pGroup == pGroup) return;
4251 if (pChunk)
4252 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4253 this->pGroup = pGroup;
4254 }
4255
4256 /**
4257 * Returns the script group this script currently belongs to. Each script
4258 * is a member of exactly one ScriptGroup.
4259 *
4260 * @returns current script group
4261 */
4262 ScriptGroup* Script::GetGroup() const {
4263 return pGroup;
4264 }
4265
4266 void Script::RemoveAllScriptReferences() {
4267 File* pFile = pGroup->pFile;
4268 for (int i = 0; pFile->GetInstrument(i); ++i) {
4269 Instrument* instr = pFile->GetInstrument(i);
4270 instr->RemoveScript(this);
4271 }
4272 }
4273
4274 // *************** ScriptGroup ***************
4275 // *
4276
4277 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4278 pFile = file;
4279 pList = lstRTIS;
4280 pScripts = NULL;
4281 if (lstRTIS) {
4282 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4283 ::LoadString(ckName, Name);
4284 } else {
4285 Name = "Default Group";
4286 }
4287 }
4288
4289 ScriptGroup::~ScriptGroup() {
4290 if (pScripts) {
4291 std::list<Script*>::iterator iter = pScripts->begin();
4292 std::list<Script*>::iterator end = pScripts->end();
4293 while (iter != end) {
4294 delete *iter;
4295 ++iter;
4296 }
4297 delete pScripts;
4298 }
4299 }
4300
4301 /**
4302 * Apply this script group to the respective RIFF chunks. You have to call
4303 * File::Save() to make changes persistent.
4304 *
4305 * Usually there is absolutely no need to call this method explicitly.
4306 * It will be called automatically when File::Save() was called.
4307 *
4308 * @param pProgress - callback function for progress notification
4309 */
4310 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4311 if (pScripts) {
4312 if (!pList)
4313 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4314
4315 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4316 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4317
4318 for (std::list<Script*>::iterator it = pScripts->begin();
4319 it != pScripts->end(); ++it)
4320 {
4321 (*it)->UpdateChunks(pProgress);
4322 }
4323 }
4324 }
4325
4326 /** @brief Get instrument script.
4327 *
4328 * Returns the real-time instrument script with the given index.
4329 *
4330 * @param index - number of the sought script (0..n)
4331 * @returns sought script or NULL if there's no such script
4332 */
4333 Script* ScriptGroup::GetScript(uint index) {
4334 if (!pScripts) LoadScripts();
4335 std::list<Script*>::iterator it = pScripts->begin();
4336 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4337 if (i == index) return *it;
4338 return NULL;
4339 }
4340
4341 /** @brief Add new instrument script.
4342 *
4343 * Adds a new real-time instrument script to the file. The script is not
4344 * actually used / executed unless it is referenced by an instrument to be
4345 * used. This is similar to samples, which you can add to a file, without
4346 * an instrument necessarily actually using it.
4347 *
4348 * You have to call Save() to make this persistent to the file.
4349 *
4350 * @return new empty script object
4351 */
4352 Script* ScriptGroup::AddScript() {
4353 if (!pScripts) LoadScripts();
4354 Script* pScript = new Script(this, NULL);
4355 pScripts->push_back(pScript);
4356 return pScript;
4357 }
4358
4359 /** @brief Delete an instrument script.
4360 *
4361 * This will delete the given real-time instrument script. References of
4362 * instruments that are using that script will be removed accordingly.
4363 *
4364 * You have to call Save() to make this persistent to the file.
4365 *
4366 * @param pScript - script to delete
4367 * @throws gig::Exception if given script could not be found
4368 */
4369 void ScriptGroup::DeleteScript(Script* pScript) {
4370 if (!pScripts) LoadScripts();
4371 std::list<Script*>::iterator iter =
4372 find(pScripts->begin(), pScripts->end(), pScript);
4373 if (iter == pScripts->end())
4374 throw gig::Exception("Could not delete script, could not find given script");
4375 pScripts->erase(iter);
4376 pScript->RemoveAllScriptReferences();
4377 if (pScript->pChunk)
4378 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4379 delete pScript;
4380 }
4381
4382 void ScriptGroup::LoadScripts() {
4383 if (pScripts) return;
4384 pScripts = new std::list<Script*>;
4385 if (!pList) return;
4386
4387 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4388 ck = pList->GetNextSubChunk())
4389 {
4390 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4391 pScripts->push_back(new Script(this, ck));
4392 }
4393 }
4394 }
4395
4396 // *************** Instrument ***************
4397 // *
4398
4399 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4400 static const DLS::Info::string_length_t fixedStringLengths[] = {
4401 { CHUNK_ID_INAM, 64 },
4402 { CHUNK_ID_ISFT, 12 },
4403 { 0, 0 }
4404 };
4405 pInfo->SetFixedStringLengths(fixedStringLengths);
4406
4407 // Initialization
4408 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4409 EffectSend = 0;
4410 Attenuation = 0;
4411 FineTune = 0;
4412 PitchbendRange = 0;
4413 PianoReleaseMode = false;
4414 DimensionKeyRange.low = 0;
4415 DimensionKeyRange.high = 0;
4416 pMidiRules = new MidiRule*[3];
4417 pMidiRules[0] = NULL;
4418 pScriptRefs = NULL;
4419
4420 // Loading
4421 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4422 if (lart) {
4423 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4424 if (_3ewg) {
4425 EffectSend = _3ewg->ReadUint16();
4426 Attenuation = _3ewg->ReadInt32();
4427 FineTune = _3ewg->ReadInt16();
4428 PitchbendRange = _3ewg->ReadInt16();
4429 uint8_t dimkeystart = _3ewg->ReadUint8();
4430 PianoReleaseMode = dimkeystart & 0x01;
4431 DimensionKeyRange.low = dimkeystart >> 1;
4432 DimensionKeyRange.high = _3ewg->ReadUint8();
4433
4434 if (_3ewg->GetSize() > 32) {
4435 // read MIDI rules
4436 int i = 0;
4437 _3ewg->SetPos(32);
4438 uint8_t id1 = _3ewg->ReadUint8();
4439 uint8_t id2 = _3ewg->ReadUint8();
4440
4441 if (id2 == 16) {
4442 if (id1 == 4) {
4443 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4444 } else if (id1 == 0) {
4445 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4446 } else if (id1 == 3) {
4447 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4448 } else {
4449 pMidiRules[i++] = new MidiRuleUnknown;
4450 }
4451 }
4452 else if (id1 != 0 || id2 != 0) {
4453 pMidiRules[i++] = new MidiRuleUnknown;
4454 }
4455 //TODO: all the other types of rules
4456
4457 pMidiRules[i] = NULL;
4458 }
4459 }
4460 }
4461
4462 if (pFile->GetAutoLoad()) {
4463 if (!pRegions) pRegions = new RegionList;
4464 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4465 if (lrgn) {
4466 RIFF::List* rgn = lrgn->GetFirstSubList();
4467 while (rgn) {
4468 if (rgn->GetListType() == LIST_TYPE_RGN) {
4469 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4470 pRegions->push_back(new Region(this, rgn));
4471 }
4472 rgn = lrgn->GetNextSubList();
4473 }
4474 // Creating Region Key Table for fast lookup
4475 UpdateRegionKeyTable();
4476 }
4477 }
4478
4479 // own gig format extensions
4480 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4481 if (lst3LS) {
4482 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4483 if (ckSCSL) {
4484 int headerSize = ckSCSL->ReadUint32();
4485 int slotCount = ckSCSL->ReadUint32();
4486 if (slotCount) {
4487 int slotSize = ckSCSL->ReadUint32();
4488 ckSCSL->SetPos(headerSize); // in case of future header extensions
4489 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4490 for (int i = 0; i < slotCount; ++i) {
4491 _ScriptPooolEntry e;
4492 e.fileOffset = ckSCSL->ReadUint32();
4493 e.bypass = ckSCSL->ReadUint32() & 1;
4494 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4495 scriptPoolFileOffsets.push_back(e);
4496 }
4497 }
4498 }
4499 }
4500
4501 __notify_progress(pProgress, 1.0f); // notify done
4502 }
4503
4504 void Instrument::UpdateRegionKeyTable() {
4505 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4506 RegionList::iterator iter = pRegions->begin();
4507 RegionList::iterator end = pRegions->end();
4508 for (; iter != end; ++iter) {
4509 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4510 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4511 RegionKeyTable[iKey] = pRegion;
4512 }
4513 }
4514 }
4515
4516 Instrument::~Instrument() {
4517 for (int i = 0 ; pMidiRules[i] ; i++) {
4518 delete pMidiRules[i];
4519 }
4520 delete[] pMidiRules;
4521 if (pScriptRefs) delete pScriptRefs;
4522 }
4523
4524 /**
4525 * Apply Instrument with all its Regions to the respective RIFF chunks.
4526 * You have to call File::Save() to make changes persistent.
4527 *
4528 * Usually there is absolutely no need to call this method explicitly.
4529 * It will be called automatically when File::Save() was called.
4530 *
4531 * @param pProgress - callback function for progress notification
4532 * @throws gig::Exception if samples cannot be dereferenced
4533 */
4534 void Instrument::UpdateChunks(progress_t* pProgress) {
4535 // first update base classes' chunks
4536 DLS::Instrument::UpdateChunks(pProgress);
4537
4538 // update Regions' chunks
4539 {
4540 RegionList::iterator iter = pRegions->begin();
4541 RegionList::iterator end = pRegions->end();
4542 for (; iter != end; ++iter)
4543 (*iter)->UpdateChunks(pProgress);
4544 }
4545
4546 // make sure 'lart' RIFF list chunk exists
4547 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4548 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4549 // make sure '3ewg' RIFF chunk exists
4550 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4551 if (!_3ewg) {
4552 File* pFile = (File*) GetParent();
4553
4554 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4555 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4556 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4557 memset(_3ewg->LoadChunkData(), 0, size);
4558 }
4559 // update '3ewg' RIFF chunk
4560 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4561 store16(&pData[0], EffectSend);
4562 store32(&pData[2], Attenuation);
4563 store16(&pData[6], FineTune);
4564 store16(&pData[8], PitchbendRange);
4565 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4566 DimensionKeyRange.low << 1;
4567 pData[10] = dimkeystart;
4568 pData[11] = DimensionKeyRange.high;
4569
4570 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4571 pData[32] = 0;
4572 pData[33] = 0;
4573 } else {
4574 for (int i = 0 ; pMidiRules[i] ; i++) {
4575 pMidiRules[i]->UpdateChunks(pData);
4576 }
4577 }
4578
4579 // own gig format extensions
4580 if (ScriptSlotCount()) {
4581 // make sure we have converted the original loaded script file
4582 // offsets into valid Script object pointers
4583 LoadScripts();
4584
4585 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4586 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4587 const int slotCount = pScriptRefs->size();
4588 const int headerSize = 3 * sizeof(uint32_t);
4589 const int slotSize = 2 * sizeof(uint32_t);
4590 const int totalChunkSize = headerSize + slotCount * slotSize;
4591 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4592 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4593 else ckSCSL->Resize(totalChunkSize);
4594 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4595 int pos = 0;
4596 store32(&pData[pos], headerSize);
4597 pos += sizeof(uint32_t);
4598 store32(&pData[pos], slotCount);
4599 pos += sizeof(uint32_t);
4600 store32(&pData[pos], slotSize);
4601 pos += sizeof(uint32_t);
4602 for (int i = 0; i < slotCount; ++i) {
4603 // arbitrary value, the actual file offset will be updated in
4604 // UpdateScriptFileOffsets() after the file has been resized
4605 int bogusFileOffset = 0;
4606 store32(&pData[pos], bogusFileOffset);
4607 pos += sizeof(uint32_t);
4608 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4609 pos += sizeof(uint32_t);
4610 }
4611 } else {
4612 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4613 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4614 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4615 }
4616 }
4617
4618 void Instrument::UpdateScriptFileOffsets() {
4619 // own gig format extensions
4620 if (pScriptRefs && pScriptRefs->size() > 0) {
4621 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4622 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4623 const int slotCount = pScriptRefs->size();
4624 const int headerSize = 3 * sizeof(uint32_t);
4625 ckSCSL->SetPos(headerSize);
4626 for (int i = 0; i < slotCount; ++i) {
4627 uint32_t fileOffset =
4628 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4629 (*pScriptRefs)[i].script->pChunk->GetPos() -
4630 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4631 ckSCSL->WriteUint32(&fileOffset);
4632 // jump over flags entry (containing the bypass flag)
4633 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4634 }
4635 }
4636 }
4637
4638 /**
4639 * Returns the appropriate Region for a triggered note.
4640 *
4641 * @param Key MIDI Key number of triggered note / key (0 - 127)
4642 * @returns pointer adress to the appropriate Region or NULL if there
4643 * there is no Region defined for the given \a Key
4644 */
4645 Region* Instrument::GetRegion(unsigned int Key) {
4646 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4647 return RegionKeyTable[Key];
4648
4649 /*for (int i = 0; i < Regions; i++) {
4650 if (Key <= pRegions[i]->KeyRange.high &&
4651 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4652 }
4653 return NULL;*/
4654 }
4655
4656 /**
4657 * Returns the first Region of the instrument. You have to call this
4658 * method once before you use GetNextRegion().
4659 *
4660 * @returns pointer address to first region or NULL if there is none
4661 * @see GetNextRegion()
4662 */
4663 Region* Instrument::GetFirstRegion() {
4664 if (!pRegions) return NULL;
4665 RegionsIterator = pRegions->begin();
4666 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4667 }
4668
4669 /**
4670 * Returns the next Region of the instrument. You have to call
4671 * GetFirstRegion() once before you can use this method. By calling this
4672 * method multiple times it iterates through the available Regions.
4673 *
4674 * @returns pointer address to the next region or NULL if end reached
4675 * @see GetFirstRegion()
4676 */
4677 Region* Instrument::GetNextRegion() {
4678 if (!pRegions) return NULL;
4679 RegionsIterator++;
4680 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4681 }
4682
4683 Region* Instrument::AddRegion() {
4684 // create new Region object (and its RIFF chunks)
4685 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4686 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4687 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4688 Region* pNewRegion = new Region(this, rgn);
4689 pRegions->push_back(pNewRegion);
4690 Regions = pRegions->size();
4691 // update Region key table for fast lookup
4692 UpdateRegionKeyTable();
4693 // done
4694 return pNewRegion;
4695 }
4696
4697 void Instrument::DeleteRegion(Region* pRegion) {
4698 if (!pRegions) return;
4699 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4700 // update Region key table for fast lookup
4701 UpdateRegionKeyTable();
4702 }
4703
4704 /**
4705 * Move this instrument at the position before @arg dst.
4706 *
4707 * This method can be used to reorder the sequence of instruments in a
4708 * .gig file. This might be helpful especially on large .gig files which
4709 * contain a large number of instruments within the same .gig file. So
4710 * grouping such instruments to similar ones, can help to keep track of them
4711 * when working with such complex .gig files.
4712 *
4713 * When calling this method, this instrument will be removed from in its
4714 * current position in the instruments list and moved to the requested
4715 * target position provided by @param dst. You may also pass NULL as
4716 * argument to this method, in that case this intrument will be moved to the
4717 * very end of the .gig file's instrument list.
4718 *
4719 * You have to call Save() to make the order change persistent to the .gig
4720 * file.
4721 *
4722 * Currently this method is limited to moving the instrument within the same
4723 * .gig file. Trying to move it to another .gig file by calling this method
4724 * will throw an exception.
4725 *
4726 * @param dst - destination instrument at which this instrument will be
4727 * moved to, or pass NULL for moving to end of list
4728 * @throw gig::Exception if this instrument and target instrument are not
4729 * part of the same file
4730 */
4731 void Instrument::MoveTo(Instrument* dst) {
4732 if (dst && GetParent() != dst->GetParent())
4733 throw Exception(
4734 "gig::Instrument::MoveTo() can only be used for moving within "
4735 "the same gig file."
4736 );
4737
4738 File* pFile = (File*) GetParent();
4739
4740 // move this instrument within the instrument list
4741 {
4742 File::InstrumentList& list = *pFile->pInstruments;
4743
4744 File::InstrumentList::iterator itFrom =
4745 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4746
4747 File::InstrumentList::iterator itTo =
4748 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4749
4750 list.splice(itTo, list, itFrom);
4751 }
4752
4753 // move the instrument's actual list RIFF chunk appropriately
4754 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4755 lstCkInstruments->MoveSubChunk(
4756 this->pCkInstrument,
4757 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4758 );
4759 }
4760
4761 /**
4762 * Returns a MIDI rule of the instrument.
4763 *
4764 * The list of MIDI rules, at least in gig v3, always contains at
4765 * most two rules. The second rule can only be the DEF filter
4766 * (which currently isn't supported by libgig).
4767 *
4768 * @param i - MIDI rule number
4769 * @returns pointer address to MIDI rule number i or NULL if there is none
4770 */
4771 MidiRule* Instrument::GetMidiRule(int i) {
4772 return pMidiRules[i];
4773 }
4774
4775 /**
4776 * Adds the "controller trigger" MIDI rule to the instrument.
4777 *
4778 * @returns the new MIDI rule
4779 */
4780 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4781 delete pMidiRules[0];
4782 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4783 pMidiRules[0] = r;
4784 pMidiRules[1] = 0;
4785 return r;
4786 }
4787
4788 /**
4789 * Adds the legato MIDI rule to the instrument.
4790 *
4791 * @returns the new MIDI rule
4792 */
4793 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4794 delete pMidiRules[0];
4795 MidiRuleLegato* r = new MidiRuleLegato;
4796 pMidiRules[0] = r;
4797 pMidiRules[1] = 0;
4798 return r;
4799 }
4800
4801 /**
4802 * Adds the alternator MIDI rule to the instrument.
4803 *
4804 * @returns the new MIDI rule
4805 */
4806 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4807 delete pMidiRules[0];
4808 MidiRuleAlternator* r = new MidiRuleAlternator;
4809 pMidiRules[0] = r;
4810 pMidiRules[1] = 0;
4811 return r;
4812 }
4813
4814 /**
4815 * Deletes a MIDI rule from the instrument.
4816 *
4817 * @param i - MIDI rule number
4818 */
4819 void Instrument::DeleteMidiRule(int i) {
4820 delete pMidiRules[i];
4821 pMidiRules[i] = 0;
4822 }
4823
4824 void Instrument::LoadScripts() {
4825 if (pScriptRefs) return;
4826 pScriptRefs = new std::vector<_ScriptPooolRef>;
4827 if (scriptPoolFileOffsets.empty()) return;
4828 File* pFile = (File*) GetParent();
4829 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4830 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4831 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4832 ScriptGroup* group = pFile->GetScriptGroup(i);
4833 for (uint s = 0; group->GetScript(s); ++s) {
4834 Script* script = group->GetScript(s);
4835 if (script->pChunk) {
4836 uint32_t offset = script->pChunk->GetFilePos() -
4837 script->pChunk->GetPos() -
4838 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4839 if (offset == soughtOffset)
4840 {
4841 _ScriptPooolRef ref;
4842 ref.script = script;
4843 ref.bypass = scriptPoolFileOffsets[k].bypass;
4844 pScriptRefs->push_back(ref);
4845 break;
4846 }
4847 }
4848 }
4849 }
4850 }
4851 // we don't need that anymore
4852 scriptPoolFileOffsets.clear();
4853 }
4854
4855 /** @brief Get instrument script (gig format extension).
4856 *
4857 * Returns the real-time instrument script of instrument script slot
4858 * @a index.
4859 *
4860 * @note This is an own format extension which did not exist i.e. in the
4861 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4862 * gigedit.
4863 *
4864 * @param index - instrument script slot index
4865 * @returns script or NULL if index is out of bounds
4866 */
4867 Script* Instrument::GetScriptOfSlot(uint index) {
4868 LoadScripts();
4869 if (index >= pScriptRefs->size()) return NULL;
4870 return pScriptRefs->at(index).script;
4871 }
4872
4873 /** @brief Add new instrument script slot (gig format extension).
4874 *
4875 * Add the given real-time instrument script reference to this instrument,
4876 * which shall be executed by the sampler for for this instrument. The
4877 * script will be added to the end of the script list of this instrument.
4878 * The positions of the scripts in the Instrument's Script list are
4879 * relevant, because they define in which order they shall be executed by
4880 * the sampler. For this reason it is also legal to add the same script
4881 * twice to an instrument, for example you might have a script called
4882 * "MyFilter" which performs an event filter task, and you might have
4883 * another script called "MyNoteTrigger" which triggers new notes, then you
4884 * might for example have the following list of scripts on the instrument:
4885 *
4886 * 1. Script "MyFilter"
4887 * 2. Script "MyNoteTrigger"
4888 * 3. Script "MyFilter"
4889 *
4890 * Which would make sense, because the 2nd script launched new events, which
4891 * you might need to filter as well.
4892 *
4893 * There are two ways to disable / "bypass" scripts. You can either disable
4894 * a script locally for the respective script slot on an instrument (i.e. by
4895 * passing @c false to the 2nd argument of this method, or by calling
4896 * SetScriptBypassed()). Or you can disable a script globally for all slots
4897 * and all instruments by setting Script::Bypass.
4898 *
4899 * @note This is an own format extension which did not exist i.e. in the
4900 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4901 * gigedit.
4902 *
4903 * @param pScript - script that shall be executed for this instrument
4904 * @param bypass - if enabled, the sampler shall skip executing this
4905 * script (in the respective list position)
4906 * @see SetScriptBypassed()
4907 */
4908 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4909 LoadScripts();
4910 _ScriptPooolRef ref = { pScript, bypass };
4911 pScriptRefs->push_back(ref);
4912 }
4913
4914 /** @brief Flip two script slots with each other (gig format extension).
4915 *
4916 * Swaps the position of the two given scripts in the Instrument's Script
4917 * list. The positions of the scripts in the Instrument's Script list are
4918 * relevant, because they define in which order they shall be executed by
4919 * the sampler.
4920 *
4921 * @note This is an own format extension which did not exist i.e. in the
4922 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4923 * gigedit.
4924 *
4925 * @param index1 - index of the first script slot to swap
4926 * @param index2 - index of the second script slot to swap
4927 */
4928 void Instrument::SwapScriptSlots(uint index1, uint index2) {
4929 LoadScripts();
4930 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4931 return;
4932 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4933 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4934 (*pScriptRefs)[index2] = tmp;
4935 }
4936
4937 /** @brief Remove script slot.
4938 *
4939 * Removes the script slot with the given slot index.
4940 *
4941 * @param index - index of script slot to remove
4942 */
4943 void Instrument::RemoveScriptSlot(uint index) {
4944 LoadScripts();
4945 if (index >= pScriptRefs->size()) return;
4946 pScriptRefs->erase( pScriptRefs->begin() + index );
4947 }
4948
4949 /** @brief Remove reference to given Script (gig format extension).
4950 *
4951 * This will remove all script slots on the instrument which are referencing
4952 * the given script.
4953 *
4954 * @note This is an own format extension which did not exist i.e. in the
4955 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4956 * gigedit.
4957 *
4958 * @param pScript - script reference to remove from this instrument
4959 * @see RemoveScriptSlot()
4960 */
4961 void Instrument::RemoveScript(Script* pScript) {
4962 LoadScripts();
4963 for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4964 if ((*pScriptRefs)[i].script == pScript) {
4965 pScriptRefs->erase( pScriptRefs->begin() + i );
4966 }
4967 }
4968 }
4969
4970 /** @brief Instrument's amount of script slots.
4971 *
4972 * This method returns the amount of script slots this instrument currently
4973 * uses.
4974 *
4975 * A script slot is a reference of a real-time instrument script to be
4976 * executed by the sampler. The scripts will be executed by the sampler in
4977 * sequence of the slots. One (same) script may be referenced multiple
4978 * times in different slots.
4979 *
4980 * @note This is an own format extension which did not exist i.e. in the
4981 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4982 * gigedit.
4983 */
4984 uint Instrument::ScriptSlotCount() const {
4985 return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4986 }
4987
4988 /** @brief Whether script execution shall be skipped.
4989 *
4990 * Defines locally for the Script reference slot in the Instrument's Script
4991 * list, whether the script shall be skipped by the sampler regarding
4992 * execution.
4993 *
4994 * It is also possible to ignore exeuction of the script globally, for all
4995 * slots and for all instruments by setting Script::Bypass.
4996 *
4997 * @note This is an own format extension which did not exist i.e. in the
4998 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4999 * gigedit.
5000 *
5001 * @param index - index of the script slot on this instrument
5002 * @see Script::Bypass
5003 */
5004 bool Instrument::IsScriptSlotBypassed(uint index) {
5005 if (index >= ScriptSlotCount()) return false;
5006 return pScriptRefs ? pScriptRefs->at(index).bypass
5007 : scriptPoolFileOffsets.at(index).bypass;
5008
5009 }
5010
5011 /** @brief Defines whether execution shall be skipped.
5012 *
5013 * You can call this method to define locally whether or whether not the
5014 * given script slot shall be executed by the sampler.
5015 *
5016 * @note This is an own format extension which did not exist i.e. in the
5017 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5018 * gigedit.
5019 *
5020 * @param index - script slot index on this instrument
5021 * @param bBypass - if true, the script slot will be skipped by the sampler
5022 * @see Script::Bypass
5023 */
5024 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5025 if (index >= ScriptSlotCount()) return;
5026 if (pScriptRefs)
5027 pScriptRefs->at(index).bypass = bBypass;
5028 else
5029 scriptPoolFileOffsets.at(index).bypass = bBypass;
5030 }
5031
5032 /**
5033 * Make a (semi) deep copy of the Instrument object given by @a orig
5034 * and assign it to this object.
5035 *
5036 * Note that all sample pointers referenced by @a orig are simply copied as
5037 * memory address. Thus the respective samples are shared, not duplicated!
5038 *
5039 * @param orig - original Instrument object to be copied from
5040 */
5041 void Instrument::CopyAssign(const Instrument* orig) {
5042 CopyAssign(orig, NULL);
5043 }
5044
5045 /**
5046 * Make a (semi) deep copy of the Instrument object given by @a orig
5047 * and assign it to this object.
5048 *
5049 * @param orig - original Instrument object to be copied from
5050 * @param mSamples - crosslink map between the foreign file's samples and
5051 * this file's samples
5052 */
5053 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5054 // handle base class
5055 // (without copying DLS region stuff)
5056 DLS::Instrument::CopyAssignCore(orig);
5057
5058 // handle own member variables
5059 Attenuation = orig->Attenuation;
5060 EffectSend = orig->EffectSend;
5061 FineTune = orig->FineTune;
5062 PitchbendRange = orig->PitchbendRange;
5063 PianoReleaseMode = orig->PianoReleaseMode;
5064 DimensionKeyRange = orig->DimensionKeyRange;
5065 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5066 pScriptRefs = orig->pScriptRefs;
5067
5068 // free old midi rules
5069 for (int i = 0 ; pMidiRules[i] ; i++) {
5070 delete pMidiRules[i];
5071 }
5072 //TODO: MIDI rule copying
5073 pMidiRules[0] = NULL;
5074
5075 // delete all old regions
5076 while (Regions) DeleteRegion(GetFirstRegion());
5077 // create new regions and copy them from original
5078 {
5079 RegionList::const_iterator it = orig->pRegions->begin();
5080 for (int i = 0; i < orig->Regions; ++i, ++it) {
5081 Region* dstRgn = AddRegion();
5082 //NOTE: Region does semi-deep copy !
5083 dstRgn->CopyAssign(
5084 static_cast<gig::Region*>(*it),
5085 mSamples
5086 );
5087 }
5088 }
5089
5090 UpdateRegionKeyTable();
5091 }
5092
5093
5094 // *************** Group ***************
5095 // *
5096
5097 /** @brief Constructor.
5098 *
5099 * @param file - pointer to the gig::File object
5100 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5101 * NULL if this is a new Group
5102 */
5103 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5104 pFile = file;
5105 pNameChunk = ck3gnm;
5106 ::LoadString(pNameChunk, Name);
5107 }
5108
5109 Group::~Group() {
5110 // remove the chunk associated with this group (if any)
5111 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5112 }
5113
5114 /** @brief Update chunks with current group settings.
5115 *
5116 * Apply current Group field values to the respective chunks. You have
5117 * to call File::Save() to make changes persistent.
5118 *
5119 * Usually there is absolutely no need to call this method explicitly.
5120 * It will be called automatically when File::Save() was called.
5121 *
5122 * @param pProgress - callback function for progress notification
5123 */
5124 void Group::UpdateChunks(progress_t* pProgress) {
5125 // make sure <3gri> and <3gnl> list chunks exist
5126 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5127 if (!_3gri) {
5128 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5129 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5130 }
5131 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5132 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5133
5134 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5135 // v3 has a fixed list of 128 strings, find a free one
5136 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5137 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5138 pNameChunk = ck;
5139 break;
5140 }
5141 }
5142 }
5143
5144 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5145 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5146 }
5147
5148 /**
5149 * Returns the first Sample of this Group. You have to call this method
5150 * once before you use GetNextSample().
5151 *
5152 * <b>Notice:</b> this method might block for a long time, in case the
5153 * samples of this .gig file were not scanned yet
5154 *
5155 * @returns pointer address to first Sample or NULL if there is none
5156 * applied to this Group
5157 * @see GetNextSample()
5158 */
5159 Sample* Group::GetFirstSample() {
5160 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5161 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5162 if (pSample->GetGroup() == this) return pSample;
5163 }
5164 return NULL;
5165 }
5166
5167 /**
5168 * Returns the next Sample of the Group. You have to call
5169 * GetFirstSample() once before you can use this method. By calling this
5170 * method multiple times it iterates through the Samples assigned to
5171 * this Group.
5172 *
5173 * @returns pointer address to the next Sample of this Group or NULL if
5174 * end reached
5175 * @see GetFirstSample()
5176 */
5177 Sample* Group::GetNextSample() {
5178 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5179 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5180 if (pSample->GetGroup() == this) return pSample;
5181 }
5182 return NULL;
5183 }
5184
5185 /**
5186 * Move Sample given by \a pSample from another Group to this Group.
5187 */
5188 void Group::AddSample(Sample* pSample) {
5189 pSample->pGroup = this;
5190 }
5191
5192 /**
5193 * Move all members of this group to another group (preferably the 1st
5194 * one except this). This method is called explicitly by
5195 * File::DeleteGroup() thus when a Group was deleted. This code was
5196 * intentionally not placed in the destructor!
5197 */
5198 void Group::MoveAll() {
5199 // get "that" other group first
5200 Group* pOtherGroup = NULL;
5201 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5202 if (pOtherGroup != this) break;
5203 }
5204 if (!pOtherGroup) throw Exception(
5205 "Could not move samples to another group, since there is no "
5206 "other Group. This is a bug, report it!"
5207 );
5208 // now move all samples of this group to the other group
5209 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5210 pOtherGroup->AddSample(pSample);
5211 }
5212 }
5213
5214
5215
5216 // *************** File ***************
5217 // *
5218
5219 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5220 const DLS::version_t File::VERSION_2 = {
5221 0, 2, 19980628 & 0xffff, 19980628 >> 16
5222 };
5223
5224 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5225 const DLS::version_t File::VERSION_3 = {
5226 0, 3, 20030331 & 0xffff, 20030331 >> 16
5227 };
5228
5229 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5230 { CHUNK_ID_IARL, 256 },
5231 { CHUNK_ID_IART, 128 },
5232 { CHUNK_ID_ICMS, 128 },
5233 { CHUNK_ID_ICMT, 1024 },
5234 { CHUNK_ID_ICOP, 128 },
5235 { CHUNK_ID_ICRD, 128 },
5236 { CHUNK_ID_IENG, 128 },
5237 { CHUNK_ID_IGNR, 128 },
5238 { CHUNK_ID_IKEY, 128 },
5239 { CHUNK_ID_IMED, 128 },
5240 { CHUNK_ID_INAM, 128 },
5241 { CHUNK_ID_IPRD, 128 },
5242 { CHUNK_ID_ISBJ, 128 },
5243 { CHUNK_ID_ISFT, 128 },
5244 { CHUNK_ID_ISRC, 128 },
5245 { CHUNK_ID_ISRF, 128 },
5246 { CHUNK_ID_ITCH, 128 },
5247 { 0, 0 }
5248 };
5249
5250 File::File() : DLS::File() {
5251 bAutoLoad = true;
5252 *pVersion = VERSION_3;
5253 pGroups = NULL;
5254 pScriptGroups = NULL;
5255 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5256 pInfo->ArchivalLocation = String(256, ' ');
5257
5258 // add some mandatory chunks to get the file chunks in right
5259 // order (INFO chunk will be moved to first position later)
5260 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5261 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5262 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5263
5264 GenerateDLSID();
5265 }
5266
5267 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5268 bAutoLoad = true;
5269 pGroups = NULL;
5270 pScriptGroups = NULL;
5271 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5272 }
5273
5274 File::~File() {
5275 if (pGroups) {
5276 std::list<Group*>::iterator iter = pGroups->begin();
5277 std::list<Group*>::iterator end = pGroups->end();
5278 while (iter != end) {
5279 delete *iter;
5280 ++iter;
5281 }
5282 delete pGroups;
5283 }
5284 if (pScriptGroups) {
5285 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5286 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5287 while (iter != end) {
5288 delete *iter;
5289 ++iter;
5290 }
5291 delete pScriptGroups;
5292 }
5293 }
5294
5295 Sample* File::GetFirstSample(progress_t* pProgress) {
5296 if (!pSamples) LoadSamples(pProgress);
5297 if (!pSamples) return NULL;
5298 SamplesIterator = pSamples->begin();
5299 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5300 }
5301
5302 Sample* File::GetNextSample() {
5303 if (!pSamples) return NULL;
5304 SamplesIterator++;
5305 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5306 }
5307
5308 /**
5309 * Returns Sample object of @a index.
5310 *
5311 * @returns sample object or NULL if index is out of bounds
5312 */
5313 Sample* File::GetSample(uint index) {
5314 if (!pSamples) LoadSamples();
5315 if (!pSamples) return NULL;
5316 DLS::File::SampleList::iterator it = pSamples->begin();
5317 for (int i = 0; i < index; ++i) {
5318 ++it;
5319 if (it == pSamples->end()) return NULL;
5320 }
5321 if (it == pSamples->end()) return NULL;
5322 return static_cast<gig::Sample*>( *it );
5323 }
5324
5325 /** @brief Add a new sample.
5326 *
5327 * This will create a new Sample object for the gig file. You have to
5328 * call Save() to make this persistent to the file.
5329 *
5330 * @returns pointer to new Sample object
5331 */
5332 Sample* File::AddSample() {
5333 if (!pSamples) LoadSamples();
5334 __ensureMandatoryChunksExist();
5335 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5336 // create new Sample object and its respective 'wave' list chunk
5337 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5338 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5339
5340 // add mandatory chunks to get the chunks in right order
5341 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5342 wave->AddSubList(LIST_TYPE_INFO);
5343
5344 pSamples->push_back(pSample);
5345 return pSample;
5346 }
5347
5348 /** @brief Delete a sample.
5349 *
5350 * This will delete the given Sample object from the gig file. Any
5351 * references to this sample from Regions and DimensionRegions will be
5352 * removed. You have to call Save() to make this persistent to the file.
5353 *
5354 * @param pSample - sample to delete
5355 * @throws gig::Exception if given sample could not be found
5356 */
5357 void File::DeleteSample(Sample* pSample) {
5358 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5359 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5360 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5361 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5362 pSamples->erase(iter);
5363 delete pSample;
5364
5365 SampleList::iterator tmp = SamplesIterator;
5366 // remove all references to the sample
5367 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5368 instrument = GetNextInstrument()) {
5369 for (Region* region = instrument->GetFirstRegion() ; region ;
5370 region = instrument->GetNextRegion()) {
5371
5372 if (region->GetSample() == pSample) region->SetSample(NULL);
5373
5374 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5375 gig::DimensionRegion *d = region->pDimensionRegions[i];
5376 if (d->pSample == pSample) d->pSample = NULL;
5377 }
5378 }
5379 }
5380 SamplesIterator = tmp; // restore iterator
5381 }
5382
5383 void File::LoadSamples() {
5384 LoadSamples(NULL);
5385 }
5386
5387 void File::LoadSamples(progress_t* pProgress) {
5388 // Groups must be loaded before samples, because samples will try
5389 // to resolve the group they belong to
5390 if (!pGroups) LoadGroups();
5391
5392 if (!pSamples) pSamples = new SampleList;
5393
5394 RIFF::File* file = pRIFF;
5395
5396 // just for progress calculation
5397 int iSampleIndex = 0;
5398 int iTotalSamples = WavePoolCount;
5399
5400 // check if samples should be loaded from extension files
5401 // (only for old gig files < 2 GB)
5402 int lastFileNo = 0;
5403 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5404 for (int i = 0 ; i < WavePoolCount ; i++) {
5405 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5406 }
5407 }
5408 String name(pRIFF->GetFileName());
5409 int nameLen = name.length();
5410 char suffix[6];
5411 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5412
5413 for (int fileNo = 0 ; ; ) {
5414 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5415 if (wvpl) {
5416 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5417 RIFF::List* wave = wvpl->GetFirstSubList();
5418 while (wave) {
5419 if (wave->GetListType() == LIST_TYPE_WAVE) {
5420 // notify current progress
5421 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5422 __notify_progress(pProgress, subprogress);
5423
5424 file_offset_t waveFileOffset = wave->GetFilePos();
5425 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
5426
5427 iSampleIndex++;
5428 }
5429 wave = wvpl->GetNextSubList();
5430 }
5431
5432 if (fileNo == lastFileNo) break;
5433
5434 // open extension file (*.gx01, *.gx02, ...)
5435 fileNo++;
5436 sprintf(suffix, ".gx%02d", fileNo);
5437 name.replace(nameLen, 5, suffix);
5438 file = new RIFF::File(name);
5439 ExtensionFiles.push_back(file);
5440 } else break;
5441 }
5442
5443 __notify_progress(pProgress, 1.0); // notify done
5444 }
5445
5446 Instrument* File::GetFirstInstrument() {
5447 if (!pInstruments) LoadInstruments();
5448 if (!pInstruments) return NULL;
5449 InstrumentsIterator = pInstruments->begin();
5450 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5451 }
5452
5453 Instrument* File::GetNextInstrument() {
5454 if (!pInstruments) return NULL;
5455 InstrumentsIterator++;
5456 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5457 }
5458
5459 /**
5460 * Returns the instrument with the given index.
5461 *
5462 * @param index - number of the sought instrument (0..n)
5463 * @param pProgress - optional: callback function for progress notification
5464 * @returns sought instrument or NULL if there's no such instrument
5465 */
5466 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5467 if (!pInstruments) {
5468 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5469
5470 // sample loading subtask
5471 progress_t subprogress;
5472 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5473 __notify_progress(&subprogress, 0.0f);
5474 if (GetAutoLoad())
5475 GetFirstSample(&subprogress); // now force all samples to be loaded
5476 __notify_progress(&subprogress, 1.0f);
5477
5478 // instrument loading subtask
5479 if (pProgress && pProgress->callback) {
5480 subprogress.__range_min = subprogress.__range_max;
5481 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5482 }
5483 __notify_progress(&subprogress, 0.0f);
5484 LoadInstruments(&subprogress);
5485 __notify_progress(&subprogress, 1.0f);
5486 }
5487 if (!pInstruments) return NULL;
5488 InstrumentsIterator = pInstruments->begin();
5489 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5490 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5491 InstrumentsIterator++;
5492 }
5493 return NULL;
5494 }
5495
5496 /** @brief Add a new instrument definition.
5497 *
5498 * This will create a new Instrument object for the gig file. You have
5499 * to call Save() to make this persistent to the file.
5500 *
5501 * @returns pointer to new Instrument object
5502 */
5503 Instrument* File::AddInstrument() {
5504 if (!pInstruments) LoadInstruments();
5505 __ensureMandatoryChunksExist();
5506 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5507 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5508
5509 // add mandatory chunks to get the chunks in right order
5510 lstInstr->AddSubList(LIST_TYPE_INFO);
5511 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5512
5513 Instrument* pInstrument = new Instrument(this, lstInstr);
5514 pInstrument->GenerateDLSID();
5515
5516 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5517
5518 // this string is needed for the gig to be loadable in GSt:
5519 pInstrument->pInfo->Software = "Endless Wave";
5520
5521 pInstruments->push_back(pInstrument);
5522 return pInstrument;
5523 }
5524
5525 /** @brief Add a duplicate of an existing instrument.
5526 *
5527 * Duplicates the instrument definition given by @a orig and adds it
5528 * to this file. This allows in an instrument editor application to
5529 * easily create variations of an instrument, which will be stored in
5530 * the same .gig file, sharing i.e. the same samples.
5531 *
5532 * Note that all sample pointers referenced by @a orig are simply copied as
5533 * memory address. Thus the respective samples are shared, not duplicated!
5534 *
5535 * You have to call Save() to make this persistent to the file.
5536 *
5537 * @param orig - original instrument to be copied
5538 * @returns duplicated copy of the given instrument
5539 */
5540 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5541 Instrument* instr = AddInstrument();
5542 instr->CopyAssign(orig);
5543 return instr;
5544 }
5545
5546 /** @brief Add content of another existing file.
5547 *
5548 * Duplicates the samples, groups and instruments of the original file
5549 * given by @a pFile and adds them to @c this File. In case @c this File is
5550 * a new one that you haven't saved before, then you have to call
5551 * SetFileName() before calling AddContentOf(), because this method will
5552 * automatically save this file during operation, which is required for
5553 * writing the sample waveform data by disk streaming.
5554 *
5555 * @param pFile - original file whose's content shall be copied from
5556 */
5557 void File::AddContentOf(File* pFile) {
5558 static int iCallCount = -1;
5559 iCallCount++;
5560 std::map<Group*,Group*> mGroups;
5561 std::map<Sample*,Sample*> mSamples;
5562
5563 // clone sample groups
5564 for (int i = 0; pFile->GetGroup(i); ++i) {
5565 Group* g = AddGroup();
5566 g->Name =
5567 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5568 mGroups[pFile->GetGroup(i)] = g;
5569 }
5570
5571 // clone samples (not waveform data here yet)
5572 for (int i = 0; pFile->GetSample(i); ++i) {
5573 Sample* s = AddSample();
5574 s->CopyAssignMeta(pFile->GetSample(i));
5575 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5576 mSamples[pFile->GetSample(i)] = s;
5577 }
5578
5579 //BUG: For some reason this method only works with this additional
5580 // Save() call in between here.
5581 //
5582 // Important: The correct one of the 2 Save() methods has to be called
5583 // here, depending on whether the file is completely new or has been
5584 // saved to disk already, otherwise it will result in data corruption.
5585 if (pRIFF->IsNew())
5586 Save(GetFileName());
5587 else
5588 Save();
5589
5590 // clone instruments
5591 // (passing the crosslink table here for the cloned samples)
5592 for (int i = 0; pFile->GetInstrument(i); ++i) {
5593 Instrument* instr = AddInstrument();
5594 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5595 }
5596
5597 // Mandatory: file needs to be saved to disk at this point, so this
5598 // file has the correct size and data layout for writing the samples'
5599 // waveform data to disk.
5600 Save();
5601
5602 // clone samples' waveform data
5603 // (using direct read & write disk streaming)
5604 for (int i = 0; pFile->GetSample(i); ++i) {
5605 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5606 }
5607 }
5608
5609 /** @brief Delete an instrument.
5610 *
5611 * This will delete the given Instrument object from the gig file. You
5612 * have to call Save() to make this persistent to the file.
5613 *
5614 * @param pInstrument - instrument to delete
5615 * @throws gig::Exception if given instrument could not be found
5616 */
5617 void File::DeleteInstrument(Instrument* pInstrument) {
5618 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5619 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5620 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5621 pInstruments->erase(iter);
5622 delete pInstrument;
5623 }
5624
5625 void File::LoadInstruments() {
5626 LoadInstruments(NULL);
5627 }
5628
5629 void File::LoadInstruments(progress_t* pProgress) {
5630 if (!pInstruments) pInstruments = new InstrumentList;
5631 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5632 if (lstInstruments) {
5633 int iInstrumentIndex = 0;
5634 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5635 while (lstInstr) {
5636 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5637 // notify current progress
5638 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5639 __notify_progress(pProgress, localProgress);
5640
5641 // divide local progress into subprogress for loading current Instrument
5642 progress_t subprogress;
5643 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5644
5645 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5646
5647 iInstrumentIndex++;
5648 }
5649 lstInstr = lstInstruments->GetNextSubList();
5650 }
5651 __notify_progress(pProgress, 1.0); // notify done
5652 }
5653 }
5654
5655 /// Updates the 3crc chunk with the checksum of a sample. The
5656 /// update is done directly to disk, as this method is called
5657 /// after File::Save()
5658 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5659 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5660 if (!_3crc) return;
5661
5662 // get the index of the sample
5663 int iWaveIndex = GetWaveTableIndexOf(pSample);
5664 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5665
5666 // write the CRC-32 checksum to disk
5667 _3crc->SetPos(iWaveIndex * 8);
5668 uint32_t one = 1;
5669 _3crc->WriteUint32(&one); // always 1
5670 _3crc->WriteUint32(&crc);
5671
5672 // reload CRC table to RAM to keep it persistent over several subsequent save operations
5673 _3crc->ReleaseChunkData();
5674 _3crc->LoadChunkData();
5675 }
5676
5677 uint32_t File::GetSampleChecksum(Sample* pSample) {
5678 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5679 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5680 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5681 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5682
5683 // get the index of the sample
5684 int iWaveIndex = GetWaveTableIndexOf(pSample);
5685 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5686
5687 // read the CRC-32 checksum directly from disk
5688 size_t pos = iWaveIndex * 8;
5689 if (pos + 8 > _3crc->GetNewSize())
5690 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5691
5692 uint32_t one = load32(&pData[pos]); // always 1
5693 if (one != 1)
5694 throw gig::Exception("Could not verify sample, because reference checksum table is damaged");
5695
5696 return load32(&pData[pos+4]);
5697 }
5698
5699 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5700 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5701 File::SampleList::iterator iter = pSamples->begin();
5702 File::SampleList::iterator end = pSamples->end();
5703 for (int index = 0; iter != end; ++iter, ++index)
5704 if (*iter == pSample)
5705 return index;
5706 return -1;
5707 }
5708
5709 /**
5710 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5711 * the CRC32 check sums of all samples' raw wave data.
5712 *
5713 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5714 */
5715 bool File::VerifySampleChecksumTable() {
5716 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5717 if (!_3crc) return false;
5718 if (_3crc->GetNewSize() <= 0) return false;
5719 if (_3crc->GetNewSize() % 8) return false;
5720 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5721 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5722
5723 const int n = _3crc->GetNewSize() / 8;
5724
5725 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5726 if (!pData) return false;
5727
5728 for (int i = 0; i < n; ++i) {
5729 uint32_t one = pData[i*2];
5730 if (one != 1) return false;
5731 }
5732
5733 return true;
5734 }
5735
5736 /**
5737 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5738 * file's checksum table with those new checksums. This might usually
5739 * just be necessary if the checksum table was damaged.
5740 *
5741 * @e IMPORTANT: The current implementation of this method only works
5742 * with files that have not been modified since it was loaded, because
5743 * it expects that no externally caused file structure changes are
5744 * required!
5745 *
5746 * Due to the expectation above, this method is currently protected
5747 * and actually only used by the command line tool "gigdump" yet.
5748 *
5749 * @returns true if Save() is required to be called after this call,
5750 * false if no further action is required
5751 */
5752 bool File::RebuildSampleChecksumTable() {
5753 // make sure sample chunks were scanned
5754 if (!pSamples) GetFirstSample();
5755
5756 bool bRequiresSave = false;
5757
5758 // make sure "3CRC" chunk exists with required size
5759 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5760 if (!_3crc) {
5761 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5762 bRequiresSave = true;
5763 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5764 _3crc->Resize(pSamples->size() * 8);
5765 bRequiresSave = true;
5766 }
5767
5768 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5769 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5770 {
5771 File::SampleList::iterator iter = pSamples->begin();
5772 File::SampleList::iterator end = pSamples->end();
5773 for (; iter != end; ++iter) {
5774 gig::Sample* pSample = (gig::Sample*) *iter;
5775 int index = GetWaveTableIndexOf(pSample);
5776 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5777 pData[index*2] = 1; // always 1
5778 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5779 }
5780 }
5781 } else { // no file structure changes necessary, so directly write to disk and we are done ...
5782 // make sure file is in write mode
5783 pRIFF->SetMode(RIFF::stream_mode_read_write);
5784 {
5785 File::SampleList::iterator iter = pSamples->begin();
5786 File::SampleList::iterator end = pSamples->end();
5787 for (; iter != end; ++iter) {
5788 gig::Sample* pSample = (gig::Sample*) *iter;
5789 int index = GetWaveTableIndexOf(pSample);
5790 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5791 uint32_t crc = pSample->CalculateWaveDataChecksum();
5792 SetSampleChecksum(pSample, crc);
5793 }
5794 }
5795 }
5796
5797 return bRequiresSave;
5798 }
5799
5800 Group* File::GetFirstGroup() {
5801 if (!pGroups) LoadGroups();
5802 // there must always be at least one group
5803 GroupsIterator = pGroups->begin();
5804 return *GroupsIterator;
5805 }
5806
5807 Group* File::GetNextGroup() {
5808 if (!pGroups) return NULL;
5809 ++GroupsIterator;
5810 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5811 }
5812
5813 /**
5814 * Returns the group with the given index.
5815 *
5816 * @param index - number of the sought group (0..n)
5817 * @returns sought group or NULL if there's no such group
5818 */
5819 Group* File::GetGroup(uint index) {
5820 if (!pGroups) LoadGroups();
5821 GroupsIterator = pGroups->begin();
5822 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5823 if (i == index) return *GroupsIterator;
5824 ++GroupsIterator;
5825 }
5826 return NULL;
5827 }
5828
5829 /**
5830 * Returns the group with the given group name.
5831 *
5832 * Note: group names don't have to be unique in the gig format! So there
5833 * can be multiple groups with the same name. This method will simply
5834 * return the first group found with the given name.
5835 *
5836 * @param name - name of the sought group
5837 * @returns sought group or NULL if there's no group with that name
5838 */
5839 Group* File::GetGroup(String name) {
5840 if (!pGroups) LoadGroups();
5841 GroupsIterator = pGroups->begin();
5842 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5843 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5844 return NULL;
5845 }
5846
5847 Group* File::AddGroup() {
5848 if (!pGroups) LoadGroups();
5849 // there must always be at least one group
5850 __ensureMandatoryChunksExist();
5851 Group* pGroup = new Group(this, NULL);
5852 pGroups->push_back(pGroup);
5853 return pGroup;
5854 }
5855
5856 /** @brief Delete a group and its samples.
5857 *
5858 * This will delete the given Group object and all the samples that
5859 * belong to this group from the gig file. You have to call Save() to
5860 * make this persistent to the file.
5861 *
5862 * @param pGroup - group to delete
5863 * @throws gig::Exception if given group could not be found
5864 */
5865 void File::DeleteGroup(Group* pGroup) {
5866 if (!pGroups) LoadGroups();
5867 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5868 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5869 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5870 // delete all members of this group
5871 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5872 DeleteSample(pSample);
5873 }
5874 // now delete this group object
5875 pGroups->erase(iter);
5876 delete pGroup;
5877 }
5878
5879 /** @brief Delete a group.
5880 *
5881 * This will delete the given Group object from the gig file. All the
5882 * samples that belong to this group will not be deleted, but instead
5883 * be moved to another group. You have to call Save() to make this
5884 * persistent to the file.
5885 *
5886 * @param pGroup - group to delete
5887 * @throws gig::Exception if given group could not be found
5888 */
5889 void File::DeleteGroupOnly(Group* pGroup) {
5890 if (!pGroups) LoadGroups();
5891 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5892 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5893 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5894 // move all members of this group to another group
5895 pGroup->MoveAll();
5896 pGroups->erase(iter);
5897 delete pGroup;
5898 }
5899
5900 void File::LoadGroups() {
5901 if (!pGroups) pGroups = new std::list<Group*>;
5902 // try to read defined groups from file
5903 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5904 if (lst3gri) {
5905 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5906 if (lst3gnl) {
5907 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5908 while (ck) {
5909 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5910 if (pVersion && pVersion->major == 3 &&
5911 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5912
5913 pGroups->push_back(new Group(this, ck));
5914 }
5915 ck = lst3gnl->GetNextSubChunk();
5916 }
5917 }
5918 }
5919 // if there were no group(s), create at least the mandatory default group
5920 if (!pGroups->size()) {
5921 Group* pGroup = new Group(this, NULL);
5922 pGroup->Name = "Default Group";
5923 pGroups->push_back(pGroup);
5924 }
5925 }
5926
5927 /** @brief Get instrument script group (by index).
5928 *
5929 * Returns the real-time instrument script group with the given index.
5930 *
5931 * @param index - number of the sought group (0..n)
5932 * @returns sought script group or NULL if there's no such group
5933 */
5934 ScriptGroup* File::GetScriptGroup(uint index) {
5935 if (!pScriptGroups) LoadScriptGroups();
5936 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5937 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5938 if (i == index) return *it;
5939 return NULL;
5940 }
5941
5942 /** @brief Get instrument script group (by name).
5943 *
5944 * Returns the first real-time instrument script group found with the given
5945 * group name. Note that group names may not necessarily be unique.
5946 *
5947 * @param name - name of the sought script group
5948 * @returns sought script group or NULL if there's no such group
5949 */
5950 ScriptGroup* File::GetScriptGroup(const String& name) {
5951 if (!pScriptGroups) LoadScriptGroups();
5952 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5953 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5954 if ((*it)->Name == name) return *it;
5955 return NULL;
5956 }
5957
5958 /** @brief Add new instrument script group.
5959 *
5960 * Adds a new, empty real-time instrument script group to the file.
5961 *
5962 * You have to call Save() to make this persistent to the file.
5963 *
5964 * @return new empty script group
5965 */
5966 ScriptGroup* File::AddScriptGroup() {
5967 if (!pScriptGroups) LoadScriptGroups();
5968 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5969 pScriptGroups->push_back(pScriptGroup);
5970 return pScriptGroup;
5971 }
5972
5973 /** @brief Delete an instrument script group.
5974 *
5975 * This will delete the given real-time instrument script group and all its
5976 * instrument scripts it contains. References inside instruments that are
5977 * using the deleted scripts will be removed from the respective instruments
5978 * accordingly.
5979 *
5980 * You have to call Save() to make this persistent to the file.
5981 *
5982 * @param pScriptGroup - script group to delete
5983 * @throws gig::Exception if given script group could not be found
5984 */
5985 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5986 if (!pScriptGroups) LoadScriptGroups();
5987 std::list<ScriptGroup*>::iterator iter =
5988 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5989 if (iter == pScriptGroups->end())
5990 throw gig::Exception("Could not delete script group, could not find given script group");
5991 pScriptGroups->erase(iter);
5992 for (int i = 0; pScriptGroup->GetScript(i); ++i)
5993 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5994 if (pScriptGroup->pList)
5995 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5996 delete pScriptGroup;
5997 }
5998
5999 void File::LoadScriptGroups() {
6000 if (pScriptGroups) return;
6001 pScriptGroups = new std::list<ScriptGroup*>;
6002 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6003 if (lstLS) {
6004 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6005 lst = lstLS->GetNextSubList())
6006 {
6007 if (lst->GetListType() == LIST_TYPE_RTIS) {
6008 pScriptGroups->push_back(new ScriptGroup(this, lst));
6009 }
6010 }
6011 }
6012 }
6013
6014 /**
6015 * Apply all the gig file's current instruments, samples, groups and settings
6016 * to the respective RIFF chunks. You have to call Save() to make changes
6017 * persistent.
6018 *
6019 * Usually there is absolutely no need to call this method explicitly.
6020 * It will be called automatically when File::Save() was called.
6021 *
6022 * @param pProgress - callback function for progress notification
6023 * @throws Exception - on errors
6024 */
6025 void File::UpdateChunks(progress_t* pProgress) {
6026 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6027
6028 // update own gig format extension chunks
6029 // (not part of the GigaStudio 4 format)
6030 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6031 if (!lst3LS) {
6032 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6033 }
6034 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6035 // location of <3LS > is irrelevant, however it should be located
6036 // before the actual wave data
6037 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6038 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6039
6040 // This must be performed before writing the chunks for instruments,
6041 // because the instruments' script slots will write the file offsets
6042 // of the respective instrument script chunk as reference.
6043 if (pScriptGroups) {
6044 // Update instrument script (group) chunks.
6045 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6046 it != pScriptGroups->end(); ++it)
6047 {
6048 (*it)->UpdateChunks(pProgress);
6049 }
6050 }
6051
6052 // in case no libgig custom format data was added, then remove the
6053 // custom "3LS " chunk again
6054 if (!lst3LS->CountSubChunks()) {
6055 pRIFF->DeleteSubChunk(lst3LS);
6056 lst3LS = NULL;
6057 }
6058
6059 // if there is a 3CRC chunk, make sure it is loaded into RAM, otherwise
6060 // its data might get lost or damaged on file structure changes
6061 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6062 if (_3crc) _3crc->LoadChunkData();
6063
6064 // first update base class's chunks
6065 DLS::File::UpdateChunks(pProgress);
6066
6067 if (newFile) {
6068 // INFO was added by Resource::UpdateChunks - make sure it
6069 // is placed first in file
6070 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6071 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6072 if (first != info) {
6073 pRIFF->MoveSubChunk(info, first);
6074 }
6075 }
6076
6077 // update group's chunks
6078 if (pGroups) {
6079 // make sure '3gri' and '3gnl' list chunks exist
6080 // (before updating the Group chunks)
6081 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6082 if (!_3gri) {
6083 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6084 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6085 }
6086 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6087 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6088
6089 // v3: make sure the file has 128 3gnm chunks
6090 // (before updating the Group chunks)
6091 if (pVersion && pVersion->major == 3) {
6092 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6093 for (int i = 0 ; i < 128 ; i++) {
6094 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6095 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6096 }
6097 }
6098
6099 std::list<Group*>::iterator iter = pGroups->begin();
6100 std::list<Group*>::iterator end = pGroups->end();
6101 for (; iter != end; ++iter) {
6102 (*iter)->UpdateChunks(pProgress);
6103 }
6104 }
6105
6106 // update einf chunk
6107
6108 // The einf chunk contains statistics about the gig file, such
6109 // as the number of regions and samples used by each
6110 // instrument. It is divided in equally sized parts, where the
6111 // first part contains information about the whole gig file,
6112 // and the rest of the parts map to each instrument in the
6113 // file.
6114 //
6115 // At the end of each part there is a bit map of each sample
6116 // in the file, where a set bit means that the sample is used
6117 // by the file/instrument.
6118 //
6119 // Note that there are several fields with unknown use. These
6120 // are set to zero.
6121
6122 int sublen = pSamples->size() / 8 + 49;
6123 int einfSize = (Instruments + 1) * sublen;
6124
6125 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6126 if (einf) {
6127 if (einf->GetSize() != einfSize) {
6128 einf->Resize(einfSize);
6129 memset(einf->LoadChunkData(), 0, einfSize);
6130 }
6131 } else if (newFile) {
6132 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6133 }
6134 if (einf) {
6135 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6136
6137 std::map<gig::Sample*,int> sampleMap;
6138 int sampleIdx = 0;
6139 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6140 sampleMap[pSample] = sampleIdx++;
6141 }
6142
6143 int totnbusedsamples = 0;
6144 int totnbusedchannels = 0;
6145 int totnbregions = 0;
6146 int totnbdimregions = 0;
6147 int totnbloops = 0;
6148 int instrumentIdx = 0;
6149
6150 memset(&pData[48], 0, sublen - 48);
6151
6152 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6153 instrument = GetNextInstrument()) {
6154 int nbusedsamples = 0;
6155 int nbusedchannels = 0;
6156 int nbdimregions = 0;
6157 int nbloops = 0;
6158
6159 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6160
6161 for (Region* region = instrument->GetFirstRegion() ; region ;
6162 region = instrument->GetNextRegion()) {
6163 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6164 gig::DimensionRegion *d = region->pDimensionRegions[i];
6165 if (d->pSample) {
6166 int sampleIdx = sampleMap[d->pSample];
6167 int byte = 48 + sampleIdx / 8;
6168 int bit = 1 << (sampleIdx & 7);
6169 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6170 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6171 nbusedsamples++;
6172 nbusedchannels += d->pSample->Channels;
6173
6174 if ((pData[byte] & bit) == 0) {
6175 pData[byte] |= bit;
6176 totnbusedsamples++;
6177 totnbusedchannels += d->pSample->Channels;
6178 }
6179 }
6180 }
6181 if (d->SampleLoops) nbloops++;
6182 }
6183 nbdimregions += region->DimensionRegions;
6184 }
6185 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6186 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6187 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6188 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6189 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6190 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6191 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6192 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6193 // next 8 bytes unknown
6194 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6195 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6196 // next 4 bytes unknown
6197
6198 totnbregions += instrument->Regions;
6199 totnbdimregions += nbdimregions;
6200 totnbloops += nbloops;
6201 instrumentIdx++;
6202 }
6203 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6204 // store32(&pData[0], sublen);
6205 store32(&pData[4], totnbusedchannels);
6206 store32(&pData[8], totnbusedsamples);
6207 store32(&pData[12], Instruments);
6208 store32(&pData[16], totnbregions);
6209 store32(&pData[20], totnbdimregions);
6210 store32(&pData[24], totnbloops);
6211 // next 8 bytes unknown
6212 // next 4 bytes unknown, not always 0
6213 store32(&pData[40], pSamples->size());
6214 // next 4 bytes unknown
6215 }
6216
6217 // update 3crc chunk
6218
6219 // The 3crc chunk contains CRC-32 checksums for the
6220 // samples. The actual checksum values will be filled in
6221 // later, by Sample::Write.
6222
6223 if (_3crc) {
6224 _3crc->Resize(pSamples->size() * 8);
6225 } else if (newFile) {
6226 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6227 _3crc->LoadChunkData();
6228
6229 // the order of einf and 3crc is not the same in v2 and v3
6230 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6231 }
6232 }
6233
6234 void File::UpdateFileOffsets() {
6235 DLS::File::UpdateFileOffsets();
6236
6237 for (Instrument* instrument = GetFirstInstrument(); instrument;
6238 instrument = GetNextInstrument())
6239 {
6240 instrument->UpdateScriptFileOffsets();
6241 }
6242 }
6243
6244 /**
6245 * Enable / disable automatic loading. By default this properyt is
6246 * enabled and all informations are loaded automatically. However
6247 * loading all Regions, DimensionRegions and especially samples might
6248 * take a long time for large .gig files, and sometimes one might only
6249 * be interested in retrieving very superficial informations like the
6250 * amount of instruments and their names. In this case one might disable
6251 * automatic loading to avoid very slow response times.
6252 *
6253 * @e CAUTION: by disabling this property many pointers (i.e. sample
6254 * references) and informations will have invalid or even undefined
6255 * data! This feature is currently only intended for retrieving very
6256 * superficial informations in a very fast way. Don't use it to retrieve
6257 * details like synthesis informations or even to modify .gig files!
6258 */
6259 void File::SetAutoLoad(bool b) {
6260 bAutoLoad = b;
6261 }
6262
6263 /**
6264 * Returns whether automatic loading is enabled.
6265 * @see SetAutoLoad()
6266 */
6267 bool File::GetAutoLoad() {
6268 return bAutoLoad;
6269 }
6270
6271
6272
6273 // *************** Exception ***************
6274 // *
6275
6276 Exception::Exception(String Message) : DLS::Exception(Message) {
6277 }
6278
6279 void Exception::PrintMessage() {
6280 std::cout << "gig::Exception: " << Message << std::endl;
6281 }
6282
6283
6284 // *************** functions ***************
6285 // *
6286
6287 /**
6288 * Returns the name of this C++ library. This is usually "libgig" of
6289 * course. This call is equivalent to RIFF::libraryName() and
6290 * DLS::libraryName().
6291 */
6292 String libraryName() {
6293 return PACKAGE;
6294 }
6295
6296 /**
6297 * Returns version of this C++ library. This call is equivalent to
6298 * RIFF::libraryVersion() and DLS::libraryVersion().
6299 */
6300 String libraryVersion() {
6301 return VERSION;
6302 }
6303
6304 } // namespace gig

  ViewVC Help
Powered by ViewVC