/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3474 - (show annotations) (download)
Wed Feb 20 16:04:19 2019 UTC (5 years, 1 month ago) by schoenebeck
File size: 290793 byte(s)
* WIP: Introduced support for writing extension files (.gx01, .gx02, ...)
  (original patch by Ivan Maguidhir).
* Bumped version (4.1.0.svn11).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 pGroup = pFile->GetGroup(iSampleGroup);
417 } else { // '3gix' chunk missing
418 // by default assigned to that mandatory "Default Group"
419 pGroup = pFile->GetGroup(0);
420 }
421
422 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423 if (pCkSmpl) {
424 Manufacturer = pCkSmpl->ReadInt32();
425 Product = pCkSmpl->ReadInt32();
426 SamplePeriod = pCkSmpl->ReadInt32();
427 MIDIUnityNote = pCkSmpl->ReadInt32();
428 FineTune = pCkSmpl->ReadInt32();
429 pCkSmpl->Read(&SMPTEFormat, 1, 4);
430 SMPTEOffset = pCkSmpl->ReadInt32();
431 Loops = pCkSmpl->ReadInt32();
432 pCkSmpl->ReadInt32(); // manufByt
433 LoopID = pCkSmpl->ReadInt32();
434 pCkSmpl->Read(&LoopType, 1, 4);
435 LoopStart = pCkSmpl->ReadInt32();
436 LoopEnd = pCkSmpl->ReadInt32();
437 LoopFraction = pCkSmpl->ReadInt32();
438 LoopPlayCount = pCkSmpl->ReadInt32();
439 } else { // 'smpl' chunk missing
440 // use default values
441 Manufacturer = 0;
442 Product = 0;
443 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 MIDIUnityNote = 60;
445 FineTune = 0;
446 SMPTEFormat = smpte_format_no_offset;
447 SMPTEOffset = 0;
448 Loops = 0;
449 LoopID = 0;
450 LoopType = loop_type_normal;
451 LoopStart = 0;
452 LoopEnd = 0;
453 LoopFraction = 0;
454 LoopPlayCount = 0;
455 }
456
457 FrameTable = NULL;
458 SamplePos = 0;
459 RAMCache.Size = 0;
460 RAMCache.pStart = NULL;
461 RAMCache.NullExtensionSize = 0;
462
463 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464
465 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466 Compressed = ewav;
467 Dithered = false;
468 TruncatedBits = 0;
469 if (Compressed) {
470 uint32_t version = ewav->ReadInt32();
471 if (version > 2 && BitDepth == 24) {
472 Dithered = ewav->ReadInt32();
473 ewav->SetPos(Channels == 2 ? 84 : 64);
474 TruncatedBits = ewav->ReadInt32();
475 }
476 ScanCompressedSample();
477 }
478
479 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 }
484 FrameOffset = 0; // just for streaming compressed samples
485
486 LoopSize = LoopEnd - LoopStart + 1;
487 }
488
489 /**
490 * Make a (semi) deep copy of the Sample object given by @a orig (without
491 * the actual waveform data) and assign it to this object.
492 *
493 * Discussion: copying .gig samples is a bit tricky. It requires three
494 * steps:
495 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496 * its new sample waveform data size.
497 * 2. Saving the file (done by File::Save()) so that it gains correct size
498 * and layout for writing the actual wave form data directly to disc
499 * in next step.
500 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501 *
502 * @param orig - original Sample object to be copied from
503 */
504 void Sample::CopyAssignMeta(const Sample* orig) {
505 // handle base classes
506 DLS::Sample::CopyAssignCore(orig);
507
508 // handle actual own attributes of this class
509 Manufacturer = orig->Manufacturer;
510 Product = orig->Product;
511 SamplePeriod = orig->SamplePeriod;
512 MIDIUnityNote = orig->MIDIUnityNote;
513 FineTune = orig->FineTune;
514 SMPTEFormat = orig->SMPTEFormat;
515 SMPTEOffset = orig->SMPTEOffset;
516 Loops = orig->Loops;
517 LoopID = orig->LoopID;
518 LoopType = orig->LoopType;
519 LoopStart = orig->LoopStart;
520 LoopEnd = orig->LoopEnd;
521 LoopSize = orig->LoopSize;
522 LoopFraction = orig->LoopFraction;
523 LoopPlayCount = orig->LoopPlayCount;
524
525 // schedule resizing this sample to the given sample's size
526 Resize(orig->GetSize());
527 }
528
529 /**
530 * Should be called after CopyAssignMeta() and File::Save() sequence.
531 * Read more about it in the discussion of CopyAssignMeta(). This method
532 * copies the actual waveform data by disk streaming.
533 *
534 * @e CAUTION: this method is currently not thread safe! During this
535 * operation the sample must not be used for other purposes by other
536 * threads!
537 *
538 * @param orig - original Sample object to be copied from
539 */
540 void Sample::CopyAssignWave(const Sample* orig) {
541 const int iReadAtOnce = 32*1024;
542 char* buf = new char[iReadAtOnce * orig->FrameSize];
543 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 file_offset_t restorePos = pOrig->GetPos();
545 pOrig->SetPos(0);
546 SetPos(0);
547 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 n = pOrig->Read(buf, iReadAtOnce))
549 {
550 Write(buf, n);
551 }
552 pOrig->SetPos(restorePos);
553 delete [] buf;
554 }
555
556 /**
557 * Apply sample and its settings to the respective RIFF chunks. You have
558 * to call File::Save() to make changes persistent.
559 *
560 * Usually there is absolutely no need to call this method explicitly.
561 * It will be called automatically when File::Save() was called.
562 *
563 * @param pProgress - callback function for progress notification
564 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 * was provided yet
566 * @throws gig::Exception if there is any invalid sample setting
567 */
568 void Sample::UpdateChunks(progress_t* pProgress) {
569 // first update base class's chunks
570 DLS::Sample::UpdateChunks(pProgress);
571
572 // make sure 'smpl' chunk exists
573 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 if (!pCkSmpl) {
575 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576 memset(pCkSmpl->LoadChunkData(), 0, 60);
577 }
578 // update 'smpl' chunk
579 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 store32(&pData[0], Manufacturer);
582 store32(&pData[4], Product);
583 store32(&pData[8], SamplePeriod);
584 store32(&pData[12], MIDIUnityNote);
585 store32(&pData[16], FineTune);
586 store32(&pData[20], SMPTEFormat);
587 store32(&pData[24], SMPTEOffset);
588 store32(&pData[28], Loops);
589
590 // we skip 'manufByt' for now (4 bytes)
591
592 store32(&pData[36], LoopID);
593 store32(&pData[40], LoopType);
594 store32(&pData[44], LoopStart);
595 store32(&pData[48], LoopEnd);
596 store32(&pData[52], LoopFraction);
597 store32(&pData[56], LoopPlayCount);
598
599 // make sure '3gix' chunk exists
600 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 // determine appropriate sample group index (to be stored in chunk)
603 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 File* pFile = static_cast<File*>(pParent);
605 if (pFile->pGroups) {
606 std::list<Group*>::iterator iter = pFile->pGroups->begin();
607 std::list<Group*>::iterator end = pFile->pGroups->end();
608 for (int i = 0; iter != end; i++, iter++) {
609 if (*iter == pGroup) {
610 iSampleGroup = i;
611 break; // found
612 }
613 }
614 }
615 // update '3gix' chunk
616 pData = (uint8_t*) pCk3gix->LoadChunkData();
617 store16(&pData[0], iSampleGroup);
618
619 // if the library user toggled the "Compressed" attribute from true to
620 // false, then the EWAV chunk associated with compressed samples needs
621 // to be deleted
622 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623 if (ewav && !Compressed) {
624 pWaveList->DeleteSubChunk(ewav);
625 }
626 }
627
628 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629 void Sample::ScanCompressedSample() {
630 //TODO: we have to add some more scans here (e.g. determine compression rate)
631 this->SamplesTotal = 0;
632 std::list<file_offset_t> frameOffsets;
633
634 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636
637 // Scanning
638 pCkData->SetPos(0);
639 if (Channels == 2) { // Stereo
640 for (int i = 0 ; ; i++) {
641 // for 24 bit samples every 8:th frame offset is
642 // stored, to save some memory
643 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644
645 const int mode_l = pCkData->ReadUint8();
646 const int mode_r = pCkData->ReadUint8();
647 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649
650 if (pCkData->RemainingBytes() <= frameSize) {
651 SamplesInLastFrame =
652 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654 SamplesTotal += SamplesInLastFrame;
655 break;
656 }
657 SamplesTotal += SamplesPerFrame;
658 pCkData->SetPos(frameSize, RIFF::stream_curpos);
659 }
660 }
661 else { // Mono
662 for (int i = 0 ; ; i++) {
663 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664
665 const int mode = pCkData->ReadUint8();
666 if (mode > 5) throw gig::Exception("Unknown compression mode");
667 const file_offset_t frameSize = bytesPerFrame[mode];
668
669 if (pCkData->RemainingBytes() <= frameSize) {
670 SamplesInLastFrame =
671 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672 SamplesTotal += SamplesInLastFrame;
673 break;
674 }
675 SamplesTotal += SamplesPerFrame;
676 pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 }
678 }
679 pCkData->SetPos(0);
680
681 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682 if (FrameTable) delete[] FrameTable;
683 FrameTable = new file_offset_t[frameOffsets.size()];
684 std::list<file_offset_t>::iterator end = frameOffsets.end();
685 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 for (int i = 0; iter != end; i++, iter++) {
687 FrameTable[i] = *iter;
688 }
689 }
690
691 /**
692 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693 * ReleaseSampleData() to free the memory if you don't need the cached
694 * sample data anymore.
695 *
696 * @returns buffer_t structure with start address and size of the buffer
697 * in bytes
698 * @see ReleaseSampleData(), Read(), SetPos()
699 */
700 buffer_t Sample::LoadSampleData() {
701 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702 }
703
704 /**
705 * Reads (uncompresses if needed) and caches the first \a SampleCount
706 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707 * memory space if you don't need the cached samples anymore. There is no
708 * guarantee that exactly \a SampleCount samples will be cached; this is
709 * not an error. The size will be eventually truncated e.g. to the
710 * beginning of a frame of a compressed sample. This is done for
711 * efficiency reasons while streaming the wave by your sampler engine
712 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713 * that will be returned to determine the actual cached samples, but note
714 * that the size is given in bytes! You get the number of actually cached
715 * samples by dividing it by the frame size of the sample:
716 * @code
717 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718 * long cachedsamples = buf.Size / pSample->FrameSize;
719 * @endcode
720 *
721 * @param SampleCount - number of sample points to load into RAM
722 * @returns buffer_t structure with start address and size of
723 * the cached sample data in bytes
724 * @see ReleaseSampleData(), Read(), SetPos()
725 */
726 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728 }
729
730 /**
731 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732 * ReleaseSampleData() to free the memory if you don't need the cached
733 * sample data anymore.
734 * The method will add \a NullSamplesCount silence samples past the
735 * official buffer end (this won't affect the 'Size' member of the
736 * buffer_t structure, that means 'Size' always reflects the size of the
737 * actual sample data, the buffer might be bigger though). Silence
738 * samples past the official buffer are needed for differential
739 * algorithms that always have to take subsequent samples into account
740 * (resampling/interpolation would be an important example) and avoids
741 * memory access faults in such cases.
742 *
743 * @param NullSamplesCount - number of silence samples the buffer should
744 * be extended past it's data end
745 * @returns buffer_t structure with start address and
746 * size of the buffer in bytes
747 * @see ReleaseSampleData(), Read(), SetPos()
748 */
749 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751 }
752
753 /**
754 * Reads (uncompresses if needed) and caches the first \a SampleCount
755 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756 * memory space if you don't need the cached samples anymore. There is no
757 * guarantee that exactly \a SampleCount samples will be cached; this is
758 * not an error. The size will be eventually truncated e.g. to the
759 * beginning of a frame of a compressed sample. This is done for
760 * efficiency reasons while streaming the wave by your sampler engine
761 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762 * that will be returned to determine the actual cached samples, but note
763 * that the size is given in bytes! You get the number of actually cached
764 * samples by dividing it by the frame size of the sample:
765 * @code
766 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767 * long cachedsamples = buf.Size / pSample->FrameSize;
768 * @endcode
769 * The method will add \a NullSamplesCount silence samples past the
770 * official buffer end (this won't affect the 'Size' member of the
771 * buffer_t structure, that means 'Size' always reflects the size of the
772 * actual sample data, the buffer might be bigger though). Silence
773 * samples past the official buffer are needed for differential
774 * algorithms that always have to take subsequent samples into account
775 * (resampling/interpolation would be an important example) and avoids
776 * memory access faults in such cases.
777 *
778 * @param SampleCount - number of sample points to load into RAM
779 * @param NullSamplesCount - number of silence samples the buffer should
780 * be extended past it's data end
781 * @returns buffer_t structure with start address and
782 * size of the cached sample data in bytes
783 * @see ReleaseSampleData(), Read(), SetPos()
784 */
785 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 SetPos(0); // reset read position to begin of sample
790 RAMCache.pStart = new int8_t[allocationsize];
791 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793 // fill the remaining buffer space with silence samples
794 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795 return GetCache();
796 }
797
798 /**
799 * Returns current cached sample points. A buffer_t structure will be
800 * returned which contains address pointer to the begin of the cache and
801 * the size of the cached sample data in bytes. Use
802 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803 * RAM.
804 *
805 * @returns buffer_t structure with current cached sample points
806 * @see LoadSampleData();
807 */
808 buffer_t Sample::GetCache() {
809 // return a copy of the buffer_t structure
810 buffer_t result;
811 result.Size = this->RAMCache.Size;
812 result.pStart = this->RAMCache.pStart;
813 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814 return result;
815 }
816
817 /**
818 * Frees the cached sample from RAM if loaded with
819 * <i>LoadSampleData()</i> previously.
820 *
821 * @see LoadSampleData();
822 */
823 void Sample::ReleaseSampleData() {
824 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825 RAMCache.pStart = NULL;
826 RAMCache.Size = 0;
827 RAMCache.NullExtensionSize = 0;
828 }
829
830 /** @brief Resize sample.
831 *
832 * Resizes the sample's wave form data, that is the actual size of
833 * sample wave data possible to be written for this sample. This call
834 * will return immediately and just schedule the resize operation. You
835 * should call File::Save() to actually perform the resize operation(s)
836 * "physically" to the file. As this can take a while on large files, it
837 * is recommended to call Resize() first on all samples which have to be
838 * resized and finally to call File::Save() to perform all those resize
839 * operations in one rush.
840 *
841 * The actual size (in bytes) is dependant to the current FrameSize
842 * value. You may want to set FrameSize before calling Resize().
843 *
844 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845 * enlarged samples before calling File::Save() as this might exceed the
846 * current sample's boundary!
847 *
848 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 * other formats will fail!
851 *
852 * @param NewSize - new sample wave data size in sample points (must be
853 * greater than zero)
854 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 * @throws gig::Exception if existing sample is compressed
857 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858 * DLS::Sample::FormatTag, File::Save()
859 */
860 void Sample::Resize(file_offset_t NewSize) {
861 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 DLS::Sample::Resize(NewSize);
863 }
864
865 /**
866 * Sets the position within the sample (in sample points, not in
867 * bytes). Use this method and <i>Read()</i> if you don't want to load
868 * the sample into RAM, thus for disk streaming.
869 *
870 * Although the original Gigasampler engine doesn't allow positioning
871 * within compressed samples, I decided to implement it. Even though
872 * the Gigasampler format doesn't allow to define loops for compressed
873 * samples at the moment, positioning within compressed samples might be
874 * interesting for some sampler engines though. The only drawback about
875 * my decision is that it takes longer to load compressed gig Files on
876 * startup, because it's neccessary to scan the samples for some
877 * mandatory informations. But I think as it doesn't affect the runtime
878 * efficiency, nobody will have a problem with that.
879 *
880 * @param SampleCount number of sample points to jump
881 * @param Whence optional: to which relation \a SampleCount refers
882 * to, if omited <i>RIFF::stream_start</i> is assumed
883 * @returns the new sample position
884 * @see Read()
885 */
886 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 if (Compressed) {
888 switch (Whence) {
889 case RIFF::stream_curpos:
890 this->SamplePos += SampleCount;
891 break;
892 case RIFF::stream_end:
893 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894 break;
895 case RIFF::stream_backward:
896 this->SamplePos -= SampleCount;
897 break;
898 case RIFF::stream_start: default:
899 this->SamplePos = SampleCount;
900 break;
901 }
902 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903
904 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907 return this->SamplePos;
908 }
909 else { // not compressed
910 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 return (result == orderedBytes) ? SampleCount
913 : result / this->FrameSize;
914 }
915 }
916
917 /**
918 * Returns the current position in the sample (in sample points).
919 */
920 file_offset_t Sample::GetPos() const {
921 if (Compressed) return SamplePos;
922 else return pCkData->GetPos() / FrameSize;
923 }
924
925 /**
926 * Reads \a SampleCount number of sample points from the position stored
927 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928 * the position within the sample respectively, this method honors the
929 * looping informations of the sample (if any). The sample wave stream
930 * will be decompressed on the fly if using a compressed sample. Use this
931 * method if you don't want to load the sample into RAM, thus for disk
932 * streaming. All this methods needs to know to proceed with streaming
933 * for the next time you call this method is stored in \a pPlaybackState.
934 * You have to allocate and initialize the playback_state_t structure by
935 * yourself before you use it to stream a sample:
936 * @code
937 * gig::playback_state_t playbackstate;
938 * playbackstate.position = 0;
939 * playbackstate.reverse = false;
940 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941 * @endcode
942 * You don't have to take care of things like if there is actually a loop
943 * defined or if the current read position is located within a loop area.
944 * The method already handles such cases by itself.
945 *
946 * <b>Caution:</b> If you are using more than one streaming thread, you
947 * have to use an external decompression buffer for <b>EACH</b>
948 * streaming thread to avoid race conditions and crashes!
949 *
950 * @param pBuffer destination buffer
951 * @param SampleCount number of sample points to read
952 * @param pPlaybackState will be used to store and reload the playback
953 * state for the next ReadAndLoop() call
954 * @param pDimRgn dimension region with looping information
955 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 * @returns number of successfully read sample points
957 * @see CreateDecompressionBuffer()
958 */
959 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 uint8_t* pDst = (uint8_t*) pBuffer;
963
964 SetPos(pPlaybackState->position); // recover position from the last time
965
966 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967
968 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970
971 if (GetPos() <= loopEnd) {
972 switch (loop.LoopType) {
973
974 case loop_type_bidirectional: { //TODO: not tested yet!
975 do {
976 // if not endless loop check if max. number of loop cycles have been passed
977 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978
979 if (!pPlaybackState->reverse) { // forward playback
980 do {
981 samplestoloopend = loopEnd - GetPos();
982 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983 samplestoread -= readsamples;
984 totalreadsamples += readsamples;
985 if (readsamples == samplestoloopend) {
986 pPlaybackState->reverse = true;
987 break;
988 }
989 } while (samplestoread && readsamples);
990 }
991 else { // backward playback
992
993 // as we can only read forward from disk, we have to
994 // determine the end position within the loop first,
995 // read forward from that 'end' and finally after
996 // reading, swap all sample frames so it reflects
997 // backward playback
998
999 file_offset_t swapareastart = totalreadsamples;
1000 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003
1004 SetPos(reverseplaybackend);
1005
1006 // read samples for backward playback
1007 do {
1008 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009 samplestoreadinloop -= readsamples;
1010 samplestoread -= readsamples;
1011 totalreadsamples += readsamples;
1012 } while (samplestoreadinloop && readsamples);
1013
1014 SetPos(reverseplaybackend); // pretend we really read backwards
1015
1016 if (reverseplaybackend == loop.LoopStart) {
1017 pPlaybackState->loop_cycles_left--;
1018 pPlaybackState->reverse = false;
1019 }
1020
1021 // reverse the sample frames for backward playback
1022 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 }
1025 } while (samplestoread && readsamples);
1026 break;
1027 }
1028
1029 case loop_type_backward: { // TODO: not tested yet!
1030 // forward playback (not entered the loop yet)
1031 if (!pPlaybackState->reverse) do {
1032 samplestoloopend = loopEnd - GetPos();
1033 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034 samplestoread -= readsamples;
1035 totalreadsamples += readsamples;
1036 if (readsamples == samplestoloopend) {
1037 pPlaybackState->reverse = true;
1038 break;
1039 }
1040 } while (samplestoread && readsamples);
1041
1042 if (!samplestoread) break;
1043
1044 // as we can only read forward from disk, we have to
1045 // determine the end position within the loop first,
1046 // read forward from that 'end' and finally after
1047 // reading, swap all sample frames so it reflects
1048 // backward playback
1049
1050 file_offset_t swapareastart = totalreadsamples;
1051 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 : samplestoread;
1054 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055
1056 SetPos(reverseplaybackend);
1057
1058 // read samples for backward playback
1059 do {
1060 // if not endless loop check if max. number of loop cycles have been passed
1061 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062 samplestoloopend = loopEnd - GetPos();
1063 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064 samplestoreadinloop -= readsamples;
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoreadinloop && readsamples);
1072
1073 SetPos(reverseplaybackend); // pretend we really read backwards
1074
1075 // reverse the sample frames for backward playback
1076 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077 break;
1078 }
1079
1080 default: case loop_type_normal: {
1081 do {
1082 // if not endless loop check if max. number of loop cycles have been passed
1083 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084 samplestoloopend = loopEnd - GetPos();
1085 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086 samplestoread -= readsamples;
1087 totalreadsamples += readsamples;
1088 if (readsamples == samplestoloopend) {
1089 pPlaybackState->loop_cycles_left--;
1090 SetPos(loop.LoopStart);
1091 }
1092 } while (samplestoread && readsamples);
1093 break;
1094 }
1095 }
1096 }
1097 }
1098
1099 // read on without looping
1100 if (samplestoread) do {
1101 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 samplestoread -= readsamples;
1103 totalreadsamples += readsamples;
1104 } while (readsamples && samplestoread);
1105
1106 // store current position
1107 pPlaybackState->position = GetPos();
1108
1109 return totalreadsamples;
1110 }
1111
1112 /**
1113 * Reads \a SampleCount number of sample points from the current
1114 * position into the buffer pointed by \a pBuffer and increments the
1115 * position within the sample. The sample wave stream will be
1116 * decompressed on the fly if using a compressed sample. Use this method
1117 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118 * thus for disk streaming.
1119 *
1120 * <b>Caution:</b> If you are using more than one streaming thread, you
1121 * have to use an external decompression buffer for <b>EACH</b>
1122 * streaming thread to avoid race conditions and crashes!
1123 *
1124 * For 16 bit samples, the data in the buffer will be int16_t
1125 * (using native endianness). For 24 bit, the buffer will
1126 * contain three bytes per sample, little-endian.
1127 *
1128 * @param pBuffer destination buffer
1129 * @param SampleCount number of sample points to read
1130 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 * @returns number of successfully read sample points
1132 * @see SetPos(), CreateDecompressionBuffer()
1133 */
1134 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 if (SampleCount == 0) return 0;
1136 if (!Compressed) {
1137 if (BitDepth == 24) {
1138 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 }
1140 else { // 16 bit
1141 // (pCkData->Read does endian correction)
1142 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143 : pCkData->Read(pBuffer, SampleCount, 2);
1144 }
1145 }
1146 else {
1147 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 //TODO: efficiency: maybe we should test for an average compression rate
1149 file_offset_t assumedsize = GuessSize(SampleCount),
1150 remainingbytes = 0, // remaining bytes in the local buffer
1151 remainingsamples = SampleCount,
1152 copysamples, skipsamples,
1153 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 this->FrameOffset = 0;
1155
1156 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157
1158 // if decompression buffer too small, then reduce amount of samples to read
1159 if (pDecompressionBuffer->Size < assumedsize) {
1160 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162 remainingsamples = SampleCount;
1163 assumedsize = GuessSize(SampleCount);
1164 }
1165
1166 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170
1171 while (remainingsamples && remainingbytes) {
1172 file_offset_t framesamples = SamplesPerFrame;
1173 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174
1175 int mode_l = *pSrc++, mode_r = 0;
1176
1177 if (Channels == 2) {
1178 mode_r = *pSrc++;
1179 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182 if (remainingbytes < framebytes) { // last frame in sample
1183 framesamples = SamplesInLastFrame;
1184 if (mode_l == 4 && (framesamples & 1)) {
1185 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186 }
1187 else {
1188 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189 }
1190 }
1191 }
1192 else {
1193 framebytes = bytesPerFrame[mode_l] + 1;
1194 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195 if (remainingbytes < framebytes) {
1196 framesamples = SamplesInLastFrame;
1197 }
1198 }
1199
1200 // determine how many samples in this frame to skip and read
1201 if (currentframeoffset + remainingsamples >= framesamples) {
1202 if (currentframeoffset <= framesamples) {
1203 copysamples = framesamples - currentframeoffset;
1204 skipsamples = currentframeoffset;
1205 }
1206 else {
1207 copysamples = 0;
1208 skipsamples = framesamples;
1209 }
1210 }
1211 else {
1212 // This frame has enough data for pBuffer, but not
1213 // all of the frame is needed. Set file position
1214 // to start of this frame for next call to Read.
1215 copysamples = remainingsamples;
1216 skipsamples = currentframeoffset;
1217 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218 this->FrameOffset = currentframeoffset + copysamples;
1219 }
1220 remainingsamples -= copysamples;
1221
1222 if (remainingbytes > framebytes) {
1223 remainingbytes -= framebytes;
1224 if (remainingsamples == 0 &&
1225 currentframeoffset + copysamples == framesamples) {
1226 // This frame has enough data for pBuffer, and
1227 // all of the frame is needed. Set file
1228 // position to start of next frame for next
1229 // call to Read. FrameOffset is 0.
1230 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231 }
1232 }
1233 else remainingbytes = 0;
1234
1235 currentframeoffset -= skipsamples;
1236
1237 if (copysamples == 0) {
1238 // skip this frame
1239 pSrc += framebytes - Channels;
1240 }
1241 else {
1242 const unsigned char* const param_l = pSrc;
1243 if (BitDepth == 24) {
1244 if (mode_l != 2) pSrc += 12;
1245
1246 if (Channels == 2) { // Stereo
1247 const unsigned char* const param_r = pSrc;
1248 if (mode_r != 2) pSrc += 12;
1249
1250 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 skipsamples, copysamples, TruncatedBits);
1252 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 skipsamples, copysamples, TruncatedBits);
1254 pDst24 += copysamples * 6;
1255 }
1256 else { // Mono
1257 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 skipsamples, copysamples, TruncatedBits);
1259 pDst24 += copysamples * 3;
1260 }
1261 }
1262 else { // 16 bit
1263 if (mode_l) pSrc += 4;
1264
1265 int step;
1266 if (Channels == 2) { // Stereo
1267 const unsigned char* const param_r = pSrc;
1268 if (mode_r) pSrc += 4;
1269
1270 step = (2 - mode_l) + (2 - mode_r);
1271 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 skipsamples, copysamples);
1274 pDst += copysamples << 1;
1275 }
1276 else { // Mono
1277 step = 2 - mode_l;
1278 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 pDst += copysamples;
1280 }
1281 }
1282 pSrc += nextFrameOffset;
1283 }
1284
1285 // reload from disk to local buffer if needed
1286 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287 assumedsize = GuessSize(remainingsamples);
1288 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 }
1293 } // while
1294
1295 this->SamplePos += (SampleCount - remainingsamples);
1296 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 return (SampleCount - remainingsamples);
1298 }
1299 }
1300
1301 /** @brief Write sample wave data.
1302 *
1303 * Writes \a SampleCount number of sample points from the buffer pointed
1304 * by \a pBuffer and increments the position within the sample. Use this
1305 * method to directly write the sample data to disk, i.e. if you don't
1306 * want or cannot load the whole sample data into RAM.
1307 *
1308 * You have to Resize() the sample to the desired size and call
1309 * File::Save() <b>before</b> using Write().
1310 *
1311 * Note: there is currently no support for writing compressed samples.
1312 *
1313 * For 16 bit samples, the data in the source buffer should be
1314 * int16_t (using native endianness). For 24 bit, the buffer
1315 * should contain three bytes per sample, little-endian.
1316 *
1317 * @param pBuffer - source buffer
1318 * @param SampleCount - number of sample points to write
1319 * @throws DLS::Exception if current sample size is too small
1320 * @throws gig::Exception if sample is compressed
1321 * @see DLS::LoadSampleData()
1322 */
1323 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325
1326 // if this is the first write in this sample, reset the
1327 // checksum calculator
1328 if (pCkData->GetPos() == 0) {
1329 __resetCRC(crc);
1330 }
1331 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 file_offset_t res;
1333 if (BitDepth == 24) {
1334 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335 } else { // 16 bit
1336 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337 : pCkData->Write(pBuffer, SampleCount, 2);
1338 }
1339 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340
1341 // if this is the last write, update the checksum chunk in the
1342 // file
1343 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 __finalizeCRC(crc);
1345 File* pFile = static_cast<File*>(GetParent());
1346 pFile->SetSampleChecksum(this, crc);
1347 }
1348 return res;
1349 }
1350
1351 /**
1352 * Allocates a decompression buffer for streaming (compressed) samples
1353 * with Sample::Read(). If you are using more than one streaming thread
1354 * in your application you <b>HAVE</b> to create a decompression buffer
1355 * for <b>EACH</b> of your streaming threads and provide it with the
1356 * Sample::Read() call in order to avoid race conditions and crashes.
1357 *
1358 * You should free the memory occupied by the allocated buffer(s) once
1359 * you don't need one of your streaming threads anymore by calling
1360 * DestroyDecompressionBuffer().
1361 *
1362 * @param MaxReadSize - the maximum size (in sample points) you ever
1363 * expect to read with one Read() call
1364 * @returns allocated decompression buffer
1365 * @see DestroyDecompressionBuffer()
1366 */
1367 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 buffer_t result;
1369 const double worstCaseHeaderOverhead =
1370 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 result.pStart = new int8_t[result.Size];
1373 result.NullExtensionSize = 0;
1374 return result;
1375 }
1376
1377 /**
1378 * Free decompression buffer, previously created with
1379 * CreateDecompressionBuffer().
1380 *
1381 * @param DecompressionBuffer - previously allocated decompression
1382 * buffer to free
1383 */
1384 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386 delete[] (int8_t*) DecompressionBuffer.pStart;
1387 DecompressionBuffer.pStart = NULL;
1388 DecompressionBuffer.Size = 0;
1389 DecompressionBuffer.NullExtensionSize = 0;
1390 }
1391 }
1392
1393 /**
1394 * Returns pointer to the Group this Sample belongs to. In the .gig
1395 * format a sample always belongs to one group. If it wasn't explicitly
1396 * assigned to a certain group, it will be automatically assigned to a
1397 * default group.
1398 *
1399 * @returns Sample's Group (never NULL)
1400 */
1401 Group* Sample::GetGroup() const {
1402 return pGroup;
1403 }
1404
1405 /**
1406 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407 * time when this sample's wave form data was modified for the last time
1408 * by calling Write(). This checksum only covers the raw wave form data,
1409 * not any meta informations like i.e. bit depth or loop points. Since
1410 * this method just returns the checksum stored for this sample i.e. when
1411 * the gig file was loaded, this method returns immediately. So it does no
1412 * recalcuation of the checksum with the currently available sample wave
1413 * form data.
1414 *
1415 * @see VerifyWaveData()
1416 */
1417 uint32_t Sample::GetWaveDataCRC32Checksum() {
1418 return crc;
1419 }
1420
1421 /**
1422 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423 * Sample's raw wave data is intentionally modified (i.e. by calling
1424 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425 * is calculated and stored/updated for this sample, along to the sample's
1426 * meta informations.
1427 *
1428 * Now by calling this method the current raw audio wave data is checked
1429 * against the already stored CRC32 check sum in order to check whether the
1430 * sample data had been damaged unintentionally for some reason. Since by
1431 * calling this method always the entire raw audio wave data has to be
1432 * read, verifying all samples this way may take a long time accordingly.
1433 * And that's also the reason why the sample integrity is not checked by
1434 * default whenever a gig file is loaded. So this method must be called
1435 * explicitly to fulfill this task.
1436 *
1437 * @param pActually - (optional) if provided, will be set to the actually
1438 * calculated checksum of the current raw wave form data,
1439 * you can get the expected checksum instead by calling
1440 * GetWaveDataCRC32Checksum()
1441 * @returns true if sample is OK or false if the sample is damaged
1442 * @throws Exception if no checksum had been stored to disk for this
1443 * sample yet, or on I/O issues
1444 * @see GetWaveDataCRC32Checksum()
1445 */
1446 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 //File* pFile = static_cast<File*>(GetParent());
1448 uint32_t crc = CalculateWaveDataChecksum();
1449 if (pActually) *pActually = crc;
1450 return crc == this->crc;
1451 }
1452
1453 uint32_t Sample::CalculateWaveDataChecksum() {
1454 const size_t sz = 20*1024; // 20kB buffer size
1455 std::vector<uint8_t> buffer(sz);
1456 buffer.resize(sz);
1457
1458 const size_t n = sz / FrameSize;
1459 SetPos(0);
1460 uint32_t crc = 0;
1461 __resetCRC(crc);
1462 while (true) {
1463 file_offset_t nRead = Read(&buffer[0], n);
1464 if (nRead <= 0) break;
1465 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466 }
1467 __finalizeCRC(crc);
1468 return crc;
1469 }
1470
1471 Sample::~Sample() {
1472 Instances--;
1473 if (!Instances && InternalDecompressionBuffer.Size) {
1474 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475 InternalDecompressionBuffer.pStart = NULL;
1476 InternalDecompressionBuffer.Size = 0;
1477 }
1478 if (FrameTable) delete[] FrameTable;
1479 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480 }
1481
1482
1483
1484 // *************** DimensionRegion ***************
1485 // *
1486
1487 size_t DimensionRegion::Instances = 0;
1488 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489
1490 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 Instances++;
1492
1493 pSample = NULL;
1494 pRegion = pParent;
1495
1496 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497 else memset(&Crossfade, 0, 4);
1498
1499 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500
1501 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 if (_3ewa) { // if '3ewa' chunk exists
1503 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506 _3ewa->ReadInt16(); // unknown
1507 LFO1InternalDepth = _3ewa->ReadUint16();
1508 _3ewa->ReadInt16(); // unknown
1509 LFO3InternalDepth = _3ewa->ReadInt16();
1510 _3ewa->ReadInt16(); // unknown
1511 LFO1ControlDepth = _3ewa->ReadUint16();
1512 _3ewa->ReadInt16(); // unknown
1513 LFO3ControlDepth = _3ewa->ReadInt16();
1514 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 EG1Sustain = _3ewa->ReadUint16();
1518 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521 EG1ControllerInvert = eg1ctrloptions & 0x01;
1522 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527 EG2ControllerInvert = eg2ctrloptions & 0x01;
1528 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534 _3ewa->ReadInt16(); // unknown
1535 EG2Sustain = _3ewa->ReadUint16();
1536 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537 _3ewa->ReadInt16(); // unknown
1538 LFO2ControlDepth = _3ewa->ReadUint16();
1539 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 _3ewa->ReadInt16(); // unknown
1541 LFO2InternalDepth = _3ewa->ReadUint16();
1542 int32_t eg1decay2 = _3ewa->ReadInt32();
1543 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545 _3ewa->ReadInt16(); // unknown
1546 EG1PreAttack = _3ewa->ReadUint16();
1547 int32_t eg2decay2 = _3ewa->ReadInt32();
1548 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550 _3ewa->ReadInt16(); // unknown
1551 EG2PreAttack = _3ewa->ReadUint16();
1552 uint8_t velocityresponse = _3ewa->ReadUint8();
1553 if (velocityresponse < 5) {
1554 VelocityResponseCurve = curve_type_nonlinear;
1555 VelocityResponseDepth = velocityresponse;
1556 } else if (velocityresponse < 10) {
1557 VelocityResponseCurve = curve_type_linear;
1558 VelocityResponseDepth = velocityresponse - 5;
1559 } else if (velocityresponse < 15) {
1560 VelocityResponseCurve = curve_type_special;
1561 VelocityResponseDepth = velocityresponse - 10;
1562 } else {
1563 VelocityResponseCurve = curve_type_unknown;
1564 VelocityResponseDepth = 0;
1565 }
1566 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567 if (releasevelocityresponse < 5) {
1568 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569 ReleaseVelocityResponseDepth = releasevelocityresponse;
1570 } else if (releasevelocityresponse < 10) {
1571 ReleaseVelocityResponseCurve = curve_type_linear;
1572 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573 } else if (releasevelocityresponse < 15) {
1574 ReleaseVelocityResponseCurve = curve_type_special;
1575 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576 } else {
1577 ReleaseVelocityResponseCurve = curve_type_unknown;
1578 ReleaseVelocityResponseDepth = 0;
1579 }
1580 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581 AttenuationControllerThreshold = _3ewa->ReadInt8();
1582 _3ewa->ReadInt32(); // unknown
1583 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584 _3ewa->ReadInt16(); // unknown
1585 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589 else DimensionBypass = dim_bypass_ctrl_none;
1590 uint8_t pan = _3ewa->ReadUint8();
1591 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592 SelfMask = _3ewa->ReadInt8() & 0x01;
1593 _3ewa->ReadInt8(); // unknown
1594 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609 : vcf_res_ctrl_none;
1610 uint16_t eg3depth = _3ewa->ReadUint16();
1611 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 _3ewa->ReadInt16(); // unknown
1614 ChannelOffset = _3ewa->ReadUint8() / 4;
1615 uint8_t regoptions = _3ewa->ReadUint8();
1616 MSDecode = regoptions & 0x01; // bit 0
1617 SustainDefeat = regoptions & 0x02; // bit 1
1618 _3ewa->ReadInt16(); // unknown
1619 VelocityUpperLimit = _3ewa->ReadInt8();
1620 _3ewa->ReadInt8(); // unknown
1621 _3ewa->ReadInt16(); // unknown
1622 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623 _3ewa->ReadInt8(); // unknown
1624 _3ewa->ReadInt8(); // unknown
1625 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626 uint8_t vcfcutoff = _3ewa->ReadUint8();
1627 VCFEnabled = vcfcutoff & 0x80; // bit 7
1628 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630 uint8_t vcfvelscale = _3ewa->ReadUint8();
1631 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633 _3ewa->ReadInt8(); // unknown
1634 uint8_t vcfresonance = _3ewa->ReadUint8();
1635 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640 uint8_t vcfvelocity = _3ewa->ReadUint8();
1641 VCFVelocityDynamicRange = vcfvelocity % 5;
1642 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644 if (VCFType == vcf_type_lowpass) {
1645 if (lfo3ctrl & 0x40) // bit 6
1646 VCFType = vcf_type_lowpassturbo;
1647 }
1648 if (_3ewa->RemainingBytes() >= 8) {
1649 _3ewa->Read(DimensionUpperLimits, 1, 8);
1650 } else {
1651 memset(DimensionUpperLimits, 0, 8);
1652 }
1653 } else { // '3ewa' chunk does not exist yet
1654 // use default values
1655 LFO3Frequency = 1.0;
1656 EG3Attack = 0.0;
1657 LFO1InternalDepth = 0;
1658 LFO3InternalDepth = 0;
1659 LFO1ControlDepth = 0;
1660 LFO3ControlDepth = 0;
1661 EG1Attack = 0.0;
1662 EG1Decay1 = 0.005;
1663 EG1Sustain = 1000;
1664 EG1Release = 0.3;
1665 EG1Controller.type = eg1_ctrl_t::type_none;
1666 EG1Controller.controller_number = 0;
1667 EG1ControllerInvert = false;
1668 EG1ControllerAttackInfluence = 0;
1669 EG1ControllerDecayInfluence = 0;
1670 EG1ControllerReleaseInfluence = 0;
1671 EG2Controller.type = eg2_ctrl_t::type_none;
1672 EG2Controller.controller_number = 0;
1673 EG2ControllerInvert = false;
1674 EG2ControllerAttackInfluence = 0;
1675 EG2ControllerDecayInfluence = 0;
1676 EG2ControllerReleaseInfluence = 0;
1677 LFO1Frequency = 1.0;
1678 EG2Attack = 0.0;
1679 EG2Decay1 = 0.005;
1680 EG2Sustain = 1000;
1681 EG2Release = 60;
1682 LFO2ControlDepth = 0;
1683 LFO2Frequency = 1.0;
1684 LFO2InternalDepth = 0;
1685 EG1Decay2 = 0.0;
1686 EG1InfiniteSustain = true;
1687 EG1PreAttack = 0;
1688 EG2Decay2 = 0.0;
1689 EG2InfiniteSustain = true;
1690 EG2PreAttack = 0;
1691 VelocityResponseCurve = curve_type_nonlinear;
1692 VelocityResponseDepth = 3;
1693 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694 ReleaseVelocityResponseDepth = 3;
1695 VelocityResponseCurveScaling = 32;
1696 AttenuationControllerThreshold = 0;
1697 SampleStartOffset = 0;
1698 PitchTrack = true;
1699 DimensionBypass = dim_bypass_ctrl_none;
1700 Pan = 0;
1701 SelfMask = true;
1702 LFO3Controller = lfo3_ctrl_modwheel;
1703 LFO3Sync = false;
1704 InvertAttenuationController = false;
1705 AttenuationController.type = attenuation_ctrl_t::type_none;
1706 AttenuationController.controller_number = 0;
1707 LFO2Controller = lfo2_ctrl_internal;
1708 LFO2FlipPhase = false;
1709 LFO2Sync = false;
1710 LFO1Controller = lfo1_ctrl_internal;
1711 LFO1FlipPhase = false;
1712 LFO1Sync = false;
1713 VCFResonanceController = vcf_res_ctrl_none;
1714 EG3Depth = 0;
1715 ChannelOffset = 0;
1716 MSDecode = false;
1717 SustainDefeat = false;
1718 VelocityUpperLimit = 0;
1719 ReleaseTriggerDecay = 0;
1720 EG1Hold = false;
1721 VCFEnabled = false;
1722 VCFCutoff = 0;
1723 VCFCutoffController = vcf_cutoff_ctrl_none;
1724 VCFCutoffControllerInvert = false;
1725 VCFVelocityScale = 0;
1726 VCFResonance = 0;
1727 VCFResonanceDynamic = false;
1728 VCFKeyboardTracking = false;
1729 VCFKeyboardTrackingBreakpoint = 0;
1730 VCFVelocityDynamicRange = 0x04;
1731 VCFVelocityCurve = curve_type_linear;
1732 VCFType = vcf_type_lowpass;
1733 memset(DimensionUpperLimits, 127, 8);
1734 }
1735 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1736 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1737 if (lsde) { // format extension for EG behavior options
1738 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1739 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1740 unsigned char byte = lsde->ReadUint8();
1741 pEGOpts[i]->AttackCancel = byte & 1;
1742 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1743 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1744 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1745 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1746 }
1747 }
1748 // format extension for sustain pedal up effect on release trigger samples
1749 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1750 lsde->SetPos(3);
1751 uint8_t byte = lsde->ReadUint8();
1752 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1753 NoNoteOffReleaseTrigger = byte >> 7;
1754 } else {
1755 SustainReleaseTrigger = sust_rel_trg_none;
1756 NoNoteOffReleaseTrigger = false;
1757 }
1758
1759 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1760 VelocityResponseDepth,
1761 VelocityResponseCurveScaling);
1762
1763 pVelocityReleaseTable = GetReleaseVelocityTable(
1764 ReleaseVelocityResponseCurve,
1765 ReleaseVelocityResponseDepth
1766 );
1767
1768 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1769 VCFVelocityDynamicRange,
1770 VCFVelocityScale,
1771 VCFCutoffController);
1772
1773 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1774 VelocityTable = 0;
1775 }
1776
1777 /*
1778 * Constructs a DimensionRegion by copying all parameters from
1779 * another DimensionRegion
1780 */
1781 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1782 Instances++;
1783 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1784 *this = src; // default memberwise shallow copy of all parameters
1785 pParentList = _3ewl; // restore the chunk pointer
1786
1787 // deep copy of owned structures
1788 if (src.VelocityTable) {
1789 VelocityTable = new uint8_t[128];
1790 for (int k = 0 ; k < 128 ; k++)
1791 VelocityTable[k] = src.VelocityTable[k];
1792 }
1793 if (src.pSampleLoops) {
1794 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1795 for (int k = 0 ; k < src.SampleLoops ; k++)
1796 pSampleLoops[k] = src.pSampleLoops[k];
1797 }
1798 }
1799
1800 /**
1801 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1802 * and assign it to this object.
1803 *
1804 * Note that all sample pointers referenced by @a orig are simply copied as
1805 * memory address. Thus the respective samples are shared, not duplicated!
1806 *
1807 * @param orig - original DimensionRegion object to be copied from
1808 */
1809 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1810 CopyAssign(orig, NULL);
1811 }
1812
1813 /**
1814 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1815 * and assign it to this object.
1816 *
1817 * @param orig - original DimensionRegion object to be copied from
1818 * @param mSamples - crosslink map between the foreign file's samples and
1819 * this file's samples
1820 */
1821 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1822 // delete all allocated data first
1823 if (VelocityTable) delete [] VelocityTable;
1824 if (pSampleLoops) delete [] pSampleLoops;
1825
1826 // backup parent list pointer
1827 RIFF::List* p = pParentList;
1828
1829 gig::Sample* pOriginalSample = pSample;
1830 gig::Region* pOriginalRegion = pRegion;
1831
1832 //NOTE: copy code copied from assignment constructor above, see comment there as well
1833
1834 *this = *orig; // default memberwise shallow copy of all parameters
1835
1836 // restore members that shall not be altered
1837 pParentList = p; // restore the chunk pointer
1838 pRegion = pOriginalRegion;
1839
1840 // only take the raw sample reference reference if the
1841 // two DimensionRegion objects are part of the same file
1842 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1843 pSample = pOriginalSample;
1844 }
1845
1846 if (mSamples && mSamples->count(orig->pSample)) {
1847 pSample = mSamples->find(orig->pSample)->second;
1848 }
1849
1850 // deep copy of owned structures
1851 if (orig->VelocityTable) {
1852 VelocityTable = new uint8_t[128];
1853 for (int k = 0 ; k < 128 ; k++)
1854 VelocityTable[k] = orig->VelocityTable[k];
1855 }
1856 if (orig->pSampleLoops) {
1857 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1858 for (int k = 0 ; k < orig->SampleLoops ; k++)
1859 pSampleLoops[k] = orig->pSampleLoops[k];
1860 }
1861 }
1862
1863 void DimensionRegion::serialize(Serialization::Archive* archive) {
1864 // in case this class will become backward incompatible one day,
1865 // then set a version and minimum version for this class like:
1866 //archive->setVersion(*this, 2);
1867 //archive->setMinVersion(*this, 1);
1868
1869 SRLZ(VelocityUpperLimit);
1870 SRLZ(EG1PreAttack);
1871 SRLZ(EG1Attack);
1872 SRLZ(EG1Decay1);
1873 SRLZ(EG1Decay2);
1874 SRLZ(EG1InfiniteSustain);
1875 SRLZ(EG1Sustain);
1876 SRLZ(EG1Release);
1877 SRLZ(EG1Hold);
1878 SRLZ(EG1Controller);
1879 SRLZ(EG1ControllerInvert);
1880 SRLZ(EG1ControllerAttackInfluence);
1881 SRLZ(EG1ControllerDecayInfluence);
1882 SRLZ(EG1ControllerReleaseInfluence);
1883 SRLZ(LFO1Frequency);
1884 SRLZ(LFO1InternalDepth);
1885 SRLZ(LFO1ControlDepth);
1886 SRLZ(LFO1Controller);
1887 SRLZ(LFO1FlipPhase);
1888 SRLZ(LFO1Sync);
1889 SRLZ(EG2PreAttack);
1890 SRLZ(EG2Attack);
1891 SRLZ(EG2Decay1);
1892 SRLZ(EG2Decay2);
1893 SRLZ(EG2InfiniteSustain);
1894 SRLZ(EG2Sustain);
1895 SRLZ(EG2Release);
1896 SRLZ(EG2Controller);
1897 SRLZ(EG2ControllerInvert);
1898 SRLZ(EG2ControllerAttackInfluence);
1899 SRLZ(EG2ControllerDecayInfluence);
1900 SRLZ(EG2ControllerReleaseInfluence);
1901 SRLZ(LFO2Frequency);
1902 SRLZ(LFO2InternalDepth);
1903 SRLZ(LFO2ControlDepth);
1904 SRLZ(LFO2Controller);
1905 SRLZ(LFO2FlipPhase);
1906 SRLZ(LFO2Sync);
1907 SRLZ(EG3Attack);
1908 SRLZ(EG3Depth);
1909 SRLZ(LFO3Frequency);
1910 SRLZ(LFO3InternalDepth);
1911 SRLZ(LFO3ControlDepth);
1912 SRLZ(LFO3Controller);
1913 SRLZ(LFO3Sync);
1914 SRLZ(VCFEnabled);
1915 SRLZ(VCFType);
1916 SRLZ(VCFCutoffController);
1917 SRLZ(VCFCutoffControllerInvert);
1918 SRLZ(VCFCutoff);
1919 SRLZ(VCFVelocityCurve);
1920 SRLZ(VCFVelocityScale);
1921 SRLZ(VCFVelocityDynamicRange);
1922 SRLZ(VCFResonance);
1923 SRLZ(VCFResonanceDynamic);
1924 SRLZ(VCFResonanceController);
1925 SRLZ(VCFKeyboardTracking);
1926 SRLZ(VCFKeyboardTrackingBreakpoint);
1927 SRLZ(VelocityResponseCurve);
1928 SRLZ(VelocityResponseDepth);
1929 SRLZ(VelocityResponseCurveScaling);
1930 SRLZ(ReleaseVelocityResponseCurve);
1931 SRLZ(ReleaseVelocityResponseDepth);
1932 SRLZ(ReleaseTriggerDecay);
1933 SRLZ(Crossfade);
1934 SRLZ(PitchTrack);
1935 SRLZ(DimensionBypass);
1936 SRLZ(Pan);
1937 SRLZ(SelfMask);
1938 SRLZ(AttenuationController);
1939 SRLZ(InvertAttenuationController);
1940 SRLZ(AttenuationControllerThreshold);
1941 SRLZ(ChannelOffset);
1942 SRLZ(SustainDefeat);
1943 SRLZ(MSDecode);
1944 //SRLZ(SampleStartOffset);
1945 SRLZ(SampleAttenuation);
1946 SRLZ(EG1Options);
1947 SRLZ(EG2Options);
1948 SRLZ(SustainReleaseTrigger);
1949 SRLZ(NoNoteOffReleaseTrigger);
1950
1951 // derived attributes from DLS::Sampler
1952 SRLZ(FineTune);
1953 SRLZ(Gain);
1954 }
1955
1956 /**
1957 * Updates the respective member variable and updates @c SampleAttenuation
1958 * which depends on this value.
1959 */
1960 void DimensionRegion::SetGain(int32_t gain) {
1961 DLS::Sampler::SetGain(gain);
1962 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1963 }
1964
1965 /**
1966 * Apply dimension region settings to the respective RIFF chunks. You
1967 * have to call File::Save() to make changes persistent.
1968 *
1969 * Usually there is absolutely no need to call this method explicitly.
1970 * It will be called automatically when File::Save() was called.
1971 *
1972 * @param pProgress - callback function for progress notification
1973 */
1974 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1975 // first update base class's chunk
1976 DLS::Sampler::UpdateChunks(pProgress);
1977
1978 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1979 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1980 pData[12] = Crossfade.in_start;
1981 pData[13] = Crossfade.in_end;
1982 pData[14] = Crossfade.out_start;
1983 pData[15] = Crossfade.out_end;
1984
1985 // make sure '3ewa' chunk exists
1986 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1987 if (!_3ewa) {
1988 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1989 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
1990 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
1991 }
1992 pData = (uint8_t*) _3ewa->LoadChunkData();
1993
1994 // update '3ewa' chunk with DimensionRegion's current settings
1995
1996 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1997 store32(&pData[0], chunksize); // unknown, always chunk size?
1998
1999 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2000 store32(&pData[4], lfo3freq);
2001
2002 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2003 store32(&pData[8], eg3attack);
2004
2005 // next 2 bytes unknown
2006
2007 store16(&pData[14], LFO1InternalDepth);
2008
2009 // next 2 bytes unknown
2010
2011 store16(&pData[18], LFO3InternalDepth);
2012
2013 // next 2 bytes unknown
2014
2015 store16(&pData[22], LFO1ControlDepth);
2016
2017 // next 2 bytes unknown
2018
2019 store16(&pData[26], LFO3ControlDepth);
2020
2021 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2022 store32(&pData[28], eg1attack);
2023
2024 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2025 store32(&pData[32], eg1decay1);
2026
2027 // next 2 bytes unknown
2028
2029 store16(&pData[38], EG1Sustain);
2030
2031 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2032 store32(&pData[40], eg1release);
2033
2034 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2035 pData[44] = eg1ctl;
2036
2037 const uint8_t eg1ctrloptions =
2038 (EG1ControllerInvert ? 0x01 : 0x00) |
2039 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2040 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2041 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2042 pData[45] = eg1ctrloptions;
2043
2044 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2045 pData[46] = eg2ctl;
2046
2047 const uint8_t eg2ctrloptions =
2048 (EG2ControllerInvert ? 0x01 : 0x00) |
2049 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2050 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2051 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2052 pData[47] = eg2ctrloptions;
2053
2054 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2055 store32(&pData[48], lfo1freq);
2056
2057 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2058 store32(&pData[52], eg2attack);
2059
2060 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2061 store32(&pData[56], eg2decay1);
2062
2063 // next 2 bytes unknown
2064
2065 store16(&pData[62], EG2Sustain);
2066
2067 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2068 store32(&pData[64], eg2release);
2069
2070 // next 2 bytes unknown
2071
2072 store16(&pData[70], LFO2ControlDepth);
2073
2074 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2075 store32(&pData[72], lfo2freq);
2076
2077 // next 2 bytes unknown
2078
2079 store16(&pData[78], LFO2InternalDepth);
2080
2081 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2082 store32(&pData[80], eg1decay2);
2083
2084 // next 2 bytes unknown
2085
2086 store16(&pData[86], EG1PreAttack);
2087
2088 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2089 store32(&pData[88], eg2decay2);
2090
2091 // next 2 bytes unknown
2092
2093 store16(&pData[94], EG2PreAttack);
2094
2095 {
2096 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2097 uint8_t velocityresponse = VelocityResponseDepth;
2098 switch (VelocityResponseCurve) {
2099 case curve_type_nonlinear:
2100 break;
2101 case curve_type_linear:
2102 velocityresponse += 5;
2103 break;
2104 case curve_type_special:
2105 velocityresponse += 10;
2106 break;
2107 case curve_type_unknown:
2108 default:
2109 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2110 }
2111 pData[96] = velocityresponse;
2112 }
2113
2114 {
2115 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2116 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2117 switch (ReleaseVelocityResponseCurve) {
2118 case curve_type_nonlinear:
2119 break;
2120 case curve_type_linear:
2121 releasevelocityresponse += 5;
2122 break;
2123 case curve_type_special:
2124 releasevelocityresponse += 10;
2125 break;
2126 case curve_type_unknown:
2127 default:
2128 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2129 }
2130 pData[97] = releasevelocityresponse;
2131 }
2132
2133 pData[98] = VelocityResponseCurveScaling;
2134
2135 pData[99] = AttenuationControllerThreshold;
2136
2137 // next 4 bytes unknown
2138
2139 store16(&pData[104], SampleStartOffset);
2140
2141 // next 2 bytes unknown
2142
2143 {
2144 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2145 switch (DimensionBypass) {
2146 case dim_bypass_ctrl_94:
2147 pitchTrackDimensionBypass |= 0x10;
2148 break;
2149 case dim_bypass_ctrl_95:
2150 pitchTrackDimensionBypass |= 0x20;
2151 break;
2152 case dim_bypass_ctrl_none:
2153 //FIXME: should we set anything here?
2154 break;
2155 default:
2156 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2157 }
2158 pData[108] = pitchTrackDimensionBypass;
2159 }
2160
2161 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2162 pData[109] = pan;
2163
2164 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2165 pData[110] = selfmask;
2166
2167 // next byte unknown
2168
2169 {
2170 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2171 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2172 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2173 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2174 pData[112] = lfo3ctrl;
2175 }
2176
2177 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2178 pData[113] = attenctl;
2179
2180 {
2181 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2182 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2183 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2184 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2185 pData[114] = lfo2ctrl;
2186 }
2187
2188 {
2189 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2190 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2191 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2192 if (VCFResonanceController != vcf_res_ctrl_none)
2193 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2194 pData[115] = lfo1ctrl;
2195 }
2196
2197 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2198 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2199 store16(&pData[116], eg3depth);
2200
2201 // next 2 bytes unknown
2202
2203 const uint8_t channeloffset = ChannelOffset * 4;
2204 pData[120] = channeloffset;
2205
2206 {
2207 uint8_t regoptions = 0;
2208 if (MSDecode) regoptions |= 0x01; // bit 0
2209 if (SustainDefeat) regoptions |= 0x02; // bit 1
2210 pData[121] = regoptions;
2211 }
2212
2213 // next 2 bytes unknown
2214
2215 pData[124] = VelocityUpperLimit;
2216
2217 // next 3 bytes unknown
2218
2219 pData[128] = ReleaseTriggerDecay;
2220
2221 // next 2 bytes unknown
2222
2223 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2224 pData[131] = eg1hold;
2225
2226 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2227 (VCFCutoff & 0x7f); /* lower 7 bits */
2228 pData[132] = vcfcutoff;
2229
2230 pData[133] = VCFCutoffController;
2231
2232 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2233 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2234 pData[134] = vcfvelscale;
2235
2236 // next byte unknown
2237
2238 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2239 (VCFResonance & 0x7f); /* lower 7 bits */
2240 pData[136] = vcfresonance;
2241
2242 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2243 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2244 pData[137] = vcfbreakpoint;
2245
2246 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2247 VCFVelocityCurve * 5;
2248 pData[138] = vcfvelocity;
2249
2250 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2251 pData[139] = vcftype;
2252
2253 if (chunksize >= 148) {
2254 memcpy(&pData[140], DimensionUpperLimits, 8);
2255 }
2256
2257 // chunk for own format extensions, these will *NOT* work with
2258 // Gigasampler/GigaStudio !
2259 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2260 const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2261 if (!lsde) {
2262 // only add this "LSDE" chunk if either EG options or release
2263 // trigger options deviate from their default behaviour
2264 eg_opt_t defaultOpt;
2265 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2266 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2267 SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2268 {
2269 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2270 // move LSDE chunk to the end of parent list
2271 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2272 }
2273 }
2274 if (lsde) {
2275 if (lsde->GetNewSize() < lsdeSize)
2276 lsde->Resize(lsdeSize);
2277 // format extension for EG behavior options
2278 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2279 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2280 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2281 pData[i] =
2282 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2283 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2284 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2285 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2286 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2287 }
2288 // format extension for release trigger options
2289 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2290 }
2291 }
2292
2293 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2294 curve_type_t curveType = releaseVelocityResponseCurve;
2295 uint8_t depth = releaseVelocityResponseDepth;
2296 // this models a strange behaviour or bug in GSt: two of the
2297 // velocity response curves for release time are not used even
2298 // if specified, instead another curve is chosen.
2299 if ((curveType == curve_type_nonlinear && depth == 0) ||
2300 (curveType == curve_type_special && depth == 4)) {
2301 curveType = curve_type_nonlinear;
2302 depth = 3;
2303 }
2304 return GetVelocityTable(curveType, depth, 0);
2305 }
2306
2307 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2308 uint8_t vcfVelocityDynamicRange,
2309 uint8_t vcfVelocityScale,
2310 vcf_cutoff_ctrl_t vcfCutoffController)
2311 {
2312 curve_type_t curveType = vcfVelocityCurve;
2313 uint8_t depth = vcfVelocityDynamicRange;
2314 // even stranger GSt: two of the velocity response curves for
2315 // filter cutoff are not used, instead another special curve
2316 // is chosen. This curve is not used anywhere else.
2317 if ((curveType == curve_type_nonlinear && depth == 0) ||
2318 (curveType == curve_type_special && depth == 4)) {
2319 curveType = curve_type_special;
2320 depth = 5;
2321 }
2322 return GetVelocityTable(curveType, depth,
2323 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2324 ? vcfVelocityScale : 0);
2325 }
2326
2327 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2328 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2329 {
2330 // sanity check input parameters
2331 // (fallback to some default parameters on ill input)
2332 switch (curveType) {
2333 case curve_type_nonlinear:
2334 case curve_type_linear:
2335 if (depth > 4) {
2336 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2337 depth = 0;
2338 scaling = 0;
2339 }
2340 break;
2341 case curve_type_special:
2342 if (depth > 5) {
2343 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2344 depth = 0;
2345 scaling = 0;
2346 }
2347 break;
2348 case curve_type_unknown:
2349 default:
2350 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2351 curveType = curve_type_linear;
2352 depth = 0;
2353 scaling = 0;
2354 break;
2355 }
2356
2357 double* table;
2358 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2359 if (pVelocityTables->count(tableKey)) { // if key exists
2360 table = (*pVelocityTables)[tableKey];
2361 }
2362 else {
2363 table = CreateVelocityTable(curveType, depth, scaling);
2364 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2365 }
2366 return table;
2367 }
2368
2369 Region* DimensionRegion::GetParent() const {
2370 return pRegion;
2371 }
2372
2373 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2374 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2375 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2376 //#pragma GCC diagnostic push
2377 //#pragma GCC diagnostic error "-Wswitch"
2378
2379 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2380 leverage_ctrl_t decodedcontroller;
2381 switch (EncodedController) {
2382 // special controller
2383 case _lev_ctrl_none:
2384 decodedcontroller.type = leverage_ctrl_t::type_none;
2385 decodedcontroller.controller_number = 0;
2386 break;
2387 case _lev_ctrl_velocity:
2388 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2389 decodedcontroller.controller_number = 0;
2390 break;
2391 case _lev_ctrl_channelaftertouch:
2392 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2393 decodedcontroller.controller_number = 0;
2394 break;
2395
2396 // ordinary MIDI control change controller
2397 case _lev_ctrl_modwheel:
2398 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399 decodedcontroller.controller_number = 1;
2400 break;
2401 case _lev_ctrl_breath:
2402 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403 decodedcontroller.controller_number = 2;
2404 break;
2405 case _lev_ctrl_foot:
2406 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407 decodedcontroller.controller_number = 4;
2408 break;
2409 case _lev_ctrl_effect1:
2410 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411 decodedcontroller.controller_number = 12;
2412 break;
2413 case _lev_ctrl_effect2:
2414 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415 decodedcontroller.controller_number = 13;
2416 break;
2417 case _lev_ctrl_genpurpose1:
2418 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419 decodedcontroller.controller_number = 16;
2420 break;
2421 case _lev_ctrl_genpurpose2:
2422 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423 decodedcontroller.controller_number = 17;
2424 break;
2425 case _lev_ctrl_genpurpose3:
2426 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427 decodedcontroller.controller_number = 18;
2428 break;
2429 case _lev_ctrl_genpurpose4:
2430 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431 decodedcontroller.controller_number = 19;
2432 break;
2433 case _lev_ctrl_portamentotime:
2434 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435 decodedcontroller.controller_number = 5;
2436 break;
2437 case _lev_ctrl_sustainpedal:
2438 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439 decodedcontroller.controller_number = 64;
2440 break;
2441 case _lev_ctrl_portamento:
2442 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443 decodedcontroller.controller_number = 65;
2444 break;
2445 case _lev_ctrl_sostenutopedal:
2446 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447 decodedcontroller.controller_number = 66;
2448 break;
2449 case _lev_ctrl_softpedal:
2450 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2451 decodedcontroller.controller_number = 67;
2452 break;
2453 case _lev_ctrl_genpurpose5:
2454 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2455 decodedcontroller.controller_number = 80;
2456 break;
2457 case _lev_ctrl_genpurpose6:
2458 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2459 decodedcontroller.controller_number = 81;
2460 break;
2461 case _lev_ctrl_genpurpose7:
2462 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2463 decodedcontroller.controller_number = 82;
2464 break;
2465 case _lev_ctrl_genpurpose8:
2466 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2467 decodedcontroller.controller_number = 83;
2468 break;
2469 case _lev_ctrl_effect1depth:
2470 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2471 decodedcontroller.controller_number = 91;
2472 break;
2473 case _lev_ctrl_effect2depth:
2474 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2475 decodedcontroller.controller_number = 92;
2476 break;
2477 case _lev_ctrl_effect3depth:
2478 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2479 decodedcontroller.controller_number = 93;
2480 break;
2481 case _lev_ctrl_effect4depth:
2482 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2483 decodedcontroller.controller_number = 94;
2484 break;
2485 case _lev_ctrl_effect5depth:
2486 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2487 decodedcontroller.controller_number = 95;
2488 break;
2489
2490 // format extension (these controllers are so far only supported by
2491 // LinuxSampler & gigedit) they will *NOT* work with
2492 // Gigasampler/GigaStudio !
2493 case _lev_ctrl_CC3_EXT:
2494 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2495 decodedcontroller.controller_number = 3;
2496 break;
2497 case _lev_ctrl_CC6_EXT:
2498 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2499 decodedcontroller.controller_number = 6;
2500 break;
2501 case _lev_ctrl_CC7_EXT:
2502 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2503 decodedcontroller.controller_number = 7;
2504 break;
2505 case _lev_ctrl_CC8_EXT:
2506 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2507 decodedcontroller.controller_number = 8;
2508 break;
2509 case _lev_ctrl_CC9_EXT:
2510 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2511 decodedcontroller.controller_number = 9;
2512 break;
2513 case _lev_ctrl_CC10_EXT:
2514 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2515 decodedcontroller.controller_number = 10;
2516 break;
2517 case _lev_ctrl_CC11_EXT:
2518 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2519 decodedcontroller.controller_number = 11;
2520 break;
2521 case _lev_ctrl_CC14_EXT:
2522 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2523 decodedcontroller.controller_number = 14;
2524 break;
2525 case _lev_ctrl_CC15_EXT:
2526 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2527 decodedcontroller.controller_number = 15;
2528 break;
2529 case _lev_ctrl_CC20_EXT:
2530 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2531 decodedcontroller.controller_number = 20;
2532 break;
2533 case _lev_ctrl_CC21_EXT:
2534 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2535 decodedcontroller.controller_number = 21;
2536 break;
2537 case _lev_ctrl_CC22_EXT:
2538 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2539 decodedcontroller.controller_number = 22;
2540 break;
2541 case _lev_ctrl_CC23_EXT:
2542 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2543 decodedcontroller.controller_number = 23;
2544 break;
2545 case _lev_ctrl_CC24_EXT:
2546 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2547 decodedcontroller.controller_number = 24;
2548 break;
2549 case _lev_ctrl_CC25_EXT:
2550 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2551 decodedcontroller.controller_number = 25;
2552 break;
2553 case _lev_ctrl_CC26_EXT:
2554 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2555 decodedcontroller.controller_number = 26;
2556 break;
2557 case _lev_ctrl_CC27_EXT:
2558 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2559 decodedcontroller.controller_number = 27;
2560 break;
2561 case _lev_ctrl_CC28_EXT:
2562 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2563 decodedcontroller.controller_number = 28;
2564 break;
2565 case _lev_ctrl_CC29_EXT:
2566 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2567 decodedcontroller.controller_number = 29;
2568 break;
2569 case _lev_ctrl_CC30_EXT:
2570 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2571 decodedcontroller.controller_number = 30;
2572 break;
2573 case _lev_ctrl_CC31_EXT:
2574 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2575 decodedcontroller.controller_number = 31;
2576 break;
2577 case _lev_ctrl_CC68_EXT:
2578 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2579 decodedcontroller.controller_number = 68;
2580 break;
2581 case _lev_ctrl_CC69_EXT:
2582 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2583 decodedcontroller.controller_number = 69;
2584 break;
2585 case _lev_ctrl_CC70_EXT:
2586 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2587 decodedcontroller.controller_number = 70;
2588 break;
2589 case _lev_ctrl_CC71_EXT:
2590 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2591 decodedcontroller.controller_number = 71;
2592 break;
2593 case _lev_ctrl_CC72_EXT:
2594 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2595 decodedcontroller.controller_number = 72;
2596 break;
2597 case _lev_ctrl_CC73_EXT:
2598 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2599 decodedcontroller.controller_number = 73;
2600 break;
2601 case _lev_ctrl_CC74_EXT:
2602 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2603 decodedcontroller.controller_number = 74;
2604 break;
2605 case _lev_ctrl_CC75_EXT:
2606 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2607 decodedcontroller.controller_number = 75;
2608 break;
2609 case _lev_ctrl_CC76_EXT:
2610 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2611 decodedcontroller.controller_number = 76;
2612 break;
2613 case _lev_ctrl_CC77_EXT:
2614 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2615 decodedcontroller.controller_number = 77;
2616 break;
2617 case _lev_ctrl_CC78_EXT:
2618 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2619 decodedcontroller.controller_number = 78;
2620 break;
2621 case _lev_ctrl_CC79_EXT:
2622 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2623 decodedcontroller.controller_number = 79;
2624 break;
2625 case _lev_ctrl_CC84_EXT:
2626 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2627 decodedcontroller.controller_number = 84;
2628 break;
2629 case _lev_ctrl_CC85_EXT:
2630 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2631 decodedcontroller.controller_number = 85;
2632 break;
2633 case _lev_ctrl_CC86_EXT:
2634 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2635 decodedcontroller.controller_number = 86;
2636 break;
2637 case _lev_ctrl_CC87_EXT:
2638 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2639 decodedcontroller.controller_number = 87;
2640 break;
2641 case _lev_ctrl_CC89_EXT:
2642 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2643 decodedcontroller.controller_number = 89;
2644 break;
2645 case _lev_ctrl_CC90_EXT:
2646 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2647 decodedcontroller.controller_number = 90;
2648 break;
2649 case _lev_ctrl_CC96_EXT:
2650 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2651 decodedcontroller.controller_number = 96;
2652 break;
2653 case _lev_ctrl_CC97_EXT:
2654 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2655 decodedcontroller.controller_number = 97;
2656 break;
2657 case _lev_ctrl_CC102_EXT:
2658 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2659 decodedcontroller.controller_number = 102;
2660 break;
2661 case _lev_ctrl_CC103_EXT:
2662 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2663 decodedcontroller.controller_number = 103;
2664 break;
2665 case _lev_ctrl_CC104_EXT:
2666 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2667 decodedcontroller.controller_number = 104;
2668 break;
2669 case _lev_ctrl_CC105_EXT:
2670 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2671 decodedcontroller.controller_number = 105;
2672 break;
2673 case _lev_ctrl_CC106_EXT:
2674 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2675 decodedcontroller.controller_number = 106;
2676 break;
2677 case _lev_ctrl_CC107_EXT:
2678 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2679 decodedcontroller.controller_number = 107;
2680 break;
2681 case _lev_ctrl_CC108_EXT:
2682 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2683 decodedcontroller.controller_number = 108;
2684 break;
2685 case _lev_ctrl_CC109_EXT:
2686 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2687 decodedcontroller.controller_number = 109;
2688 break;
2689 case _lev_ctrl_CC110_EXT:
2690 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2691 decodedcontroller.controller_number = 110;
2692 break;
2693 case _lev_ctrl_CC111_EXT:
2694 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2695 decodedcontroller.controller_number = 111;
2696 break;
2697 case _lev_ctrl_CC112_EXT:
2698 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2699 decodedcontroller.controller_number = 112;
2700 break;
2701 case _lev_ctrl_CC113_EXT:
2702 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2703 decodedcontroller.controller_number = 113;
2704 break;
2705 case _lev_ctrl_CC114_EXT:
2706 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2707 decodedcontroller.controller_number = 114;
2708 break;
2709 case _lev_ctrl_CC115_EXT:
2710 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2711 decodedcontroller.controller_number = 115;
2712 break;
2713 case _lev_ctrl_CC116_EXT:
2714 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2715 decodedcontroller.controller_number = 116;
2716 break;
2717 case _lev_ctrl_CC117_EXT:
2718 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2719 decodedcontroller.controller_number = 117;
2720 break;
2721 case _lev_ctrl_CC118_EXT:
2722 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2723 decodedcontroller.controller_number = 118;
2724 break;
2725 case _lev_ctrl_CC119_EXT:
2726 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2727 decodedcontroller.controller_number = 119;
2728 break;
2729
2730 // unknown controller type
2731 default:
2732 decodedcontroller.type = leverage_ctrl_t::type_none;
2733 decodedcontroller.controller_number = 0;
2734 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2735 break;
2736 }
2737 return decodedcontroller;
2738 }
2739
2740 // see above (diagnostic push not supported prior GCC 4.6)
2741 //#pragma GCC diagnostic pop
2742
2743 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2744 _lev_ctrl_t encodedcontroller;
2745 switch (DecodedController.type) {
2746 // special controller
2747 case leverage_ctrl_t::type_none:
2748 encodedcontroller = _lev_ctrl_none;
2749 break;
2750 case leverage_ctrl_t::type_velocity:
2751 encodedcontroller = _lev_ctrl_velocity;
2752 break;
2753 case leverage_ctrl_t::type_channelaftertouch:
2754 encodedcontroller = _lev_ctrl_channelaftertouch;
2755 break;
2756
2757 // ordinary MIDI control change controller
2758 case leverage_ctrl_t::type_controlchange:
2759 switch (DecodedController.controller_number) {
2760 case 1:
2761 encodedcontroller = _lev_ctrl_modwheel;
2762 break;
2763 case 2:
2764 encodedcontroller = _lev_ctrl_breath;
2765 break;
2766 case 4:
2767 encodedcontroller = _lev_ctrl_foot;
2768 break;
2769 case 12:
2770 encodedcontroller = _lev_ctrl_effect1;
2771 break;
2772 case 13:
2773 encodedcontroller = _lev_ctrl_effect2;
2774 break;
2775 case 16:
2776 encodedcontroller = _lev_ctrl_genpurpose1;
2777 break;
2778 case 17:
2779 encodedcontroller = _lev_ctrl_genpurpose2;
2780 break;
2781 case 18:
2782 encodedcontroller = _lev_ctrl_genpurpose3;
2783 break;
2784 case 19:
2785 encodedcontroller = _lev_ctrl_genpurpose4;
2786 break;
2787 case 5:
2788 encodedcontroller = _lev_ctrl_portamentotime;
2789 break;
2790 case 64:
2791 encodedcontroller = _lev_ctrl_sustainpedal;
2792 break;
2793 case 65:
2794 encodedcontroller = _lev_ctrl_portamento;
2795 break;
2796 case 66:
2797 encodedcontroller = _lev_ctrl_sostenutopedal;
2798 break;
2799 case 67:
2800 encodedcontroller = _lev_ctrl_softpedal;
2801 break;
2802 case 80:
2803 encodedcontroller = _lev_ctrl_genpurpose5;
2804 break;
2805 case 81:
2806 encodedcontroller = _lev_ctrl_genpurpose6;
2807 break;
2808 case 82:
2809 encodedcontroller = _lev_ctrl_genpurpose7;
2810 break;
2811 case 83:
2812 encodedcontroller = _lev_ctrl_genpurpose8;
2813 break;
2814 case 91:
2815 encodedcontroller = _lev_ctrl_effect1depth;
2816 break;
2817 case 92:
2818 encodedcontroller = _lev_ctrl_effect2depth;
2819 break;
2820 case 93:
2821 encodedcontroller = _lev_ctrl_effect3depth;
2822 break;
2823 case 94:
2824 encodedcontroller = _lev_ctrl_effect4depth;
2825 break;
2826 case 95:
2827 encodedcontroller = _lev_ctrl_effect5depth;
2828 break;
2829
2830 // format extension (these controllers are so far only
2831 // supported by LinuxSampler & gigedit) they will *NOT*
2832 // work with Gigasampler/GigaStudio !
2833 case 3:
2834 encodedcontroller = _lev_ctrl_CC3_EXT;
2835 break;
2836 case 6:
2837 encodedcontroller = _lev_ctrl_CC6_EXT;
2838 break;
2839 case 7:
2840 encodedcontroller = _lev_ctrl_CC7_EXT;
2841 break;
2842 case 8:
2843 encodedcontroller = _lev_ctrl_CC8_EXT;
2844 break;
2845 case 9:
2846 encodedcontroller = _lev_ctrl_CC9_EXT;
2847 break;
2848 case 10:
2849 encodedcontroller = _lev_ctrl_CC10_EXT;
2850 break;
2851 case 11:
2852 encodedcontroller = _lev_ctrl_CC11_EXT;
2853 break;
2854 case 14:
2855 encodedcontroller = _lev_ctrl_CC14_EXT;
2856 break;
2857 case 15:
2858 encodedcontroller = _lev_ctrl_CC15_EXT;
2859 break;
2860 case 20:
2861 encodedcontroller = _lev_ctrl_CC20_EXT;
2862 break;
2863 case 21:
2864 encodedcontroller = _lev_ctrl_CC21_EXT;
2865 break;
2866 case 22:
2867 encodedcontroller = _lev_ctrl_CC22_EXT;
2868 break;
2869 case 23:
2870 encodedcontroller = _lev_ctrl_CC23_EXT;
2871 break;
2872 case 24:
2873 encodedcontroller = _lev_ctrl_CC24_EXT;
2874 break;
2875 case 25:
2876 encodedcontroller = _lev_ctrl_CC25_EXT;
2877 break;
2878 case 26:
2879 encodedcontroller = _lev_ctrl_CC26_EXT;
2880 break;
2881 case 27:
2882 encodedcontroller = _lev_ctrl_CC27_EXT;
2883 break;
2884 case 28:
2885 encodedcontroller = _lev_ctrl_CC28_EXT;
2886 break;
2887 case 29:
2888 encodedcontroller = _lev_ctrl_CC29_EXT;
2889 break;
2890 case 30:
2891 encodedcontroller = _lev_ctrl_CC30_EXT;
2892 break;
2893 case 31:
2894 encodedcontroller = _lev_ctrl_CC31_EXT;
2895 break;
2896 case 68:
2897 encodedcontroller = _lev_ctrl_CC68_EXT;
2898 break;
2899 case 69:
2900 encodedcontroller = _lev_ctrl_CC69_EXT;
2901 break;
2902 case 70:
2903 encodedcontroller = _lev_ctrl_CC70_EXT;
2904 break;
2905 case 71:
2906 encodedcontroller = _lev_ctrl_CC71_EXT;
2907 break;
2908 case 72:
2909 encodedcontroller = _lev_ctrl_CC72_EXT;
2910 break;
2911 case 73:
2912 encodedcontroller = _lev_ctrl_CC73_EXT;
2913 break;
2914 case 74:
2915 encodedcontroller = _lev_ctrl_CC74_EXT;
2916 break;
2917 case 75:
2918 encodedcontroller = _lev_ctrl_CC75_EXT;
2919 break;
2920 case 76:
2921 encodedcontroller = _lev_ctrl_CC76_EXT;
2922 break;
2923 case 77:
2924 encodedcontroller = _lev_ctrl_CC77_EXT;
2925 break;
2926 case 78:
2927 encodedcontroller = _lev_ctrl_CC78_EXT;
2928 break;
2929 case 79:
2930 encodedcontroller = _lev_ctrl_CC79_EXT;
2931 break;
2932 case 84:
2933 encodedcontroller = _lev_ctrl_CC84_EXT;
2934 break;
2935 case 85:
2936 encodedcontroller = _lev_ctrl_CC85_EXT;
2937 break;
2938 case 86:
2939 encodedcontroller = _lev_ctrl_CC86_EXT;
2940 break;
2941 case 87:
2942 encodedcontroller = _lev_ctrl_CC87_EXT;
2943 break;
2944 case 89:
2945 encodedcontroller = _lev_ctrl_CC89_EXT;
2946 break;
2947 case 90:
2948 encodedcontroller = _lev_ctrl_CC90_EXT;
2949 break;
2950 case 96:
2951 encodedcontroller = _lev_ctrl_CC96_EXT;
2952 break;
2953 case 97:
2954 encodedcontroller = _lev_ctrl_CC97_EXT;
2955 break;
2956 case 102:
2957 encodedcontroller = _lev_ctrl_CC102_EXT;
2958 break;
2959 case 103:
2960 encodedcontroller = _lev_ctrl_CC103_EXT;
2961 break;
2962 case 104:
2963 encodedcontroller = _lev_ctrl_CC104_EXT;
2964 break;
2965 case 105:
2966 encodedcontroller = _lev_ctrl_CC105_EXT;
2967 break;
2968 case 106:
2969 encodedcontroller = _lev_ctrl_CC106_EXT;
2970 break;
2971 case 107:
2972 encodedcontroller = _lev_ctrl_CC107_EXT;
2973 break;
2974 case 108:
2975 encodedcontroller = _lev_ctrl_CC108_EXT;
2976 break;
2977 case 109:
2978 encodedcontroller = _lev_ctrl_CC109_EXT;
2979 break;
2980 case 110:
2981 encodedcontroller = _lev_ctrl_CC110_EXT;
2982 break;
2983 case 111:
2984 encodedcontroller = _lev_ctrl_CC111_EXT;
2985 break;
2986 case 112:
2987 encodedcontroller = _lev_ctrl_CC112_EXT;
2988 break;
2989 case 113:
2990 encodedcontroller = _lev_ctrl_CC113_EXT;
2991 break;
2992 case 114:
2993 encodedcontroller = _lev_ctrl_CC114_EXT;
2994 break;
2995 case 115:
2996 encodedcontroller = _lev_ctrl_CC115_EXT;
2997 break;
2998 case 116:
2999 encodedcontroller = _lev_ctrl_CC116_EXT;
3000 break;
3001 case 117:
3002 encodedcontroller = _lev_ctrl_CC117_EXT;
3003 break;
3004 case 118:
3005 encodedcontroller = _lev_ctrl_CC118_EXT;
3006 break;
3007 case 119:
3008 encodedcontroller = _lev_ctrl_CC119_EXT;
3009 break;
3010
3011 default:
3012 throw gig::Exception("leverage controller number is not supported by the gig format");
3013 }
3014 break;
3015 default:
3016 throw gig::Exception("Unknown leverage controller type.");
3017 }
3018 return encodedcontroller;
3019 }
3020
3021 DimensionRegion::~DimensionRegion() {
3022 Instances--;
3023 if (!Instances) {
3024 // delete the velocity->volume tables
3025 VelocityTableMap::iterator iter;
3026 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3027 double* pTable = iter->second;
3028 if (pTable) delete[] pTable;
3029 }
3030 pVelocityTables->clear();
3031 delete pVelocityTables;
3032 pVelocityTables = NULL;
3033 }
3034 if (VelocityTable) delete[] VelocityTable;
3035 }
3036
3037 /**
3038 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3039 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3040 * and VelocityResponseCurveScaling) involved are taken into account to
3041 * calculate the amplitude factor. Use this method when a key was
3042 * triggered to get the volume with which the sample should be played
3043 * back.
3044 *
3045 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3046 * @returns amplitude factor (between 0.0 and 1.0)
3047 */
3048 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3049 return pVelocityAttenuationTable[MIDIKeyVelocity];
3050 }
3051
3052 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3053 return pVelocityReleaseTable[MIDIKeyVelocity];
3054 }
3055
3056 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3057 return pVelocityCutoffTable[MIDIKeyVelocity];
3058 }
3059
3060 /**
3061 * Updates the respective member variable and the lookup table / cache
3062 * that depends on this value.
3063 */
3064 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3065 pVelocityAttenuationTable =
3066 GetVelocityTable(
3067 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3068 );
3069 VelocityResponseCurve = curve;
3070 }
3071
3072 /**
3073 * Updates the respective member variable and the lookup table / cache
3074 * that depends on this value.
3075 */
3076 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3077 pVelocityAttenuationTable =
3078 GetVelocityTable(
3079 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3080 );
3081 VelocityResponseDepth = depth;
3082 }
3083
3084 /**
3085 * Updates the respective member variable and the lookup table / cache
3086 * that depends on this value.
3087 */
3088 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3089 pVelocityAttenuationTable =
3090 GetVelocityTable(
3091 VelocityResponseCurve, VelocityResponseDepth, scaling
3092 );
3093 VelocityResponseCurveScaling = scaling;
3094 }
3095
3096 /**
3097 * Updates the respective member variable and the lookup table / cache
3098 * that depends on this value.
3099 */
3100 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3101 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3102 ReleaseVelocityResponseCurve = curve;
3103 }
3104
3105 /**
3106 * Updates the respective member variable and the lookup table / cache
3107 * that depends on this value.
3108 */
3109 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3110 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3111 ReleaseVelocityResponseDepth = depth;
3112 }
3113
3114 /**
3115 * Updates the respective member variable and the lookup table / cache
3116 * that depends on this value.
3117 */
3118 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3119 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3120 VCFCutoffController = controller;
3121 }
3122
3123 /**
3124 * Updates the respective member variable and the lookup table / cache
3125 * that depends on this value.
3126 */
3127 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3128 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3129 VCFVelocityCurve = curve;
3130 }
3131
3132 /**
3133 * Updates the respective member variable and the lookup table / cache
3134 * that depends on this value.
3135 */
3136 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3137 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3138 VCFVelocityDynamicRange = range;
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3146 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3147 VCFVelocityScale = scaling;
3148 }
3149
3150 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3151
3152 // line-segment approximations of the 15 velocity curves
3153
3154 // linear
3155 const int lin0[] = { 1, 1, 127, 127 };
3156 const int lin1[] = { 1, 21, 127, 127 };
3157 const int lin2[] = { 1, 45, 127, 127 };
3158 const int lin3[] = { 1, 74, 127, 127 };
3159 const int lin4[] = { 1, 127, 127, 127 };
3160
3161 // non-linear
3162 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3163 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3164 127, 127 };
3165 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3166 127, 127 };
3167 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3168 127, 127 };
3169 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3170
3171 // special
3172 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3173 113, 127, 127, 127 };
3174 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3175 118, 127, 127, 127 };
3176 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3177 85, 90, 91, 127, 127, 127 };
3178 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3179 117, 127, 127, 127 };
3180 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3181 127, 127 };
3182
3183 // this is only used by the VCF velocity curve
3184 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3185 91, 127, 127, 127 };
3186
3187 const int* const curves[] = { non0, non1, non2, non3, non4,
3188 lin0, lin1, lin2, lin3, lin4,
3189 spe0, spe1, spe2, spe3, spe4, spe5 };
3190
3191 double* const table = new double[128];
3192
3193 const int* curve = curves[curveType * 5 + depth];
3194 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3195
3196 table[0] = 0;
3197 for (int x = 1 ; x < 128 ; x++) {
3198
3199 if (x > curve[2]) curve += 2;
3200 double y = curve[1] + (x - curve[0]) *
3201 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3202 y = y / 127;
3203
3204 // Scale up for s > 20, down for s < 20. When
3205 // down-scaling, the curve still ends at 1.0.
3206 if (s < 20 && y >= 0.5)
3207 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3208 else
3209 y = y * (s / 20.0);
3210 if (y > 1) y = 1;
3211
3212 table[x] = y;
3213 }
3214 return table;
3215 }
3216
3217
3218 // *************** Region ***************
3219 // *
3220
3221 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3222 // Initialization
3223 Dimensions = 0;
3224 for (int i = 0; i < 256; i++) {
3225 pDimensionRegions[i] = NULL;
3226 }
3227 Layers = 1;
3228 File* file = (File*) GetParent()->GetParent();
3229 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3230
3231 // Actual Loading
3232
3233 if (!file->GetAutoLoad()) return;
3234
3235 LoadDimensionRegions(rgnList);
3236
3237 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3238 if (_3lnk) {
3239 DimensionRegions = _3lnk->ReadUint32();
3240 for (int i = 0; i < dimensionBits; i++) {
3241 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3242 uint8_t bits = _3lnk->ReadUint8();
3243 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3244 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3245 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3246 if (dimension == dimension_none) { // inactive dimension
3247 pDimensionDefinitions[i].dimension = dimension_none;
3248 pDimensionDefinitions[i].bits = 0;
3249 pDimensionDefinitions[i].zones = 0;
3250 pDimensionDefinitions[i].split_type = split_type_bit;
3251 pDimensionDefinitions[i].zone_size = 0;
3252 }
3253 else { // active dimension
3254 pDimensionDefinitions[i].dimension = dimension;
3255 pDimensionDefinitions[i].bits = bits;
3256 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3257 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3258 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3259 Dimensions++;
3260
3261 // if this is a layer dimension, remember the amount of layers
3262 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3263 }
3264 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3265 }
3266 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3267
3268 // if there's a velocity dimension and custom velocity zone splits are used,
3269 // update the VelocityTables in the dimension regions
3270 UpdateVelocityTable();
3271
3272 // jump to start of the wave pool indices (if not already there)
3273 if (file->pVersion && file->pVersion->major > 2)
3274 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3275 else
3276 _3lnk->SetPos(44);
3277
3278 // load sample references (if auto loading is enabled)
3279 if (file->GetAutoLoad()) {
3280 for (uint i = 0; i < DimensionRegions; i++) {
3281 uint32_t wavepoolindex = _3lnk->ReadUint32();
3282 if (file->pWavePoolTable && pDimensionRegions[i])
3283 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3284 }
3285 GetSample(); // load global region sample reference
3286 }
3287 } else {
3288 DimensionRegions = 0;
3289 for (int i = 0 ; i < 8 ; i++) {
3290 pDimensionDefinitions[i].dimension = dimension_none;
3291 pDimensionDefinitions[i].bits = 0;
3292 pDimensionDefinitions[i].zones = 0;
3293 }
3294 }
3295
3296 // make sure there is at least one dimension region
3297 if (!DimensionRegions) {
3298 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3299 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3300 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3301 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3302 DimensionRegions = 1;
3303 }
3304 }
3305
3306 /**
3307 * Apply Region settings and all its DimensionRegions to the respective
3308 * RIFF chunks. You have to call File::Save() to make changes persistent.
3309 *
3310 * Usually there is absolutely no need to call this method explicitly.
3311 * It will be called automatically when File::Save() was called.
3312 *
3313 * @param pProgress - callback function for progress notification
3314 * @throws gig::Exception if samples cannot be dereferenced
3315 */
3316 void Region::UpdateChunks(progress_t* pProgress) {
3317 // in the gig format we don't care about the Region's sample reference
3318 // but we still have to provide some existing one to not corrupt the
3319 // file, so to avoid the latter we simply always assign the sample of
3320 // the first dimension region of this region
3321 pSample = pDimensionRegions[0]->pSample;
3322
3323 // first update base class's chunks
3324 DLS::Region::UpdateChunks(pProgress);
3325
3326 // update dimension region's chunks
3327 for (int i = 0; i < DimensionRegions; i++) {
3328 pDimensionRegions[i]->UpdateChunks(pProgress);
3329 }
3330
3331 File* pFile = (File*) GetParent()->GetParent();
3332 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3333 const int iMaxDimensions = versiongt2 ? 8 : 5;
3334 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3335
3336 // make sure '3lnk' chunk exists
3337 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3338 if (!_3lnk) {
3339 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3340 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3341 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3342
3343 // move 3prg to last position
3344 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3345 }
3346
3347 // update dimension definitions in '3lnk' chunk
3348 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3349 store32(&pData[0], DimensionRegions);
3350 int shift = 0;
3351 for (int i = 0; i < iMaxDimensions; i++) {
3352 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3353 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3354 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3355 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3356 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3357 // next 3 bytes unknown, always zero?
3358
3359 shift += pDimensionDefinitions[i].bits;
3360 }
3361
3362 // update wave pool table in '3lnk' chunk
3363 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3364 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3365 int iWaveIndex = -1;
3366 if (i < DimensionRegions) {
3367 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3368 File::SampleList::iterator iter = pFile->pSamples->begin();
3369 File::SampleList::iterator end = pFile->pSamples->end();
3370 for (int index = 0; iter != end; ++iter, ++index) {
3371 if (*iter == pDimensionRegions[i]->pSample) {
3372 iWaveIndex = index;
3373 break;
3374 }
3375 }
3376 }
3377 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3378 }
3379 }
3380
3381 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3382 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3383 if (_3prg) {
3384 int dimensionRegionNr = 0;
3385 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3386 while (_3ewl) {
3387 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3388 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3389 dimensionRegionNr++;
3390 }
3391 _3ewl = _3prg->GetNextSubList();
3392 }
3393 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3394 }
3395 }
3396
3397 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3398 // update KeyRange struct and make sure regions are in correct order
3399 DLS::Region::SetKeyRange(Low, High);
3400 // update Region key table for fast lookup
3401 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3402 }
3403
3404 void Region::UpdateVelocityTable() {
3405 // get velocity dimension's index
3406 int veldim = -1;
3407 for (int i = 0 ; i < Dimensions ; i++) {
3408 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3409 veldim = i;
3410 break;
3411 }
3412 }
3413 if (veldim == -1) return;
3414
3415 int step = 1;
3416 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3417 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3418
3419 // loop through all dimension regions for all dimensions except the velocity dimension
3420 int dim[8] = { 0 };
3421 for (int i = 0 ; i < DimensionRegions ; i++) {
3422 const int end = i + step * pDimensionDefinitions[veldim].zones;
3423
3424 // create a velocity table for all cases where the velocity zone is zero
3425 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3426 pDimensionRegions[i]->VelocityUpperLimit) {
3427 // create the velocity table
3428 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3429 if (!table) {
3430 table = new uint8_t[128];
3431 pDimensionRegions[i]->VelocityTable = table;
3432 }
3433 int tableidx = 0;
3434 int velocityZone = 0;
3435 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3436 for (int k = i ; k < end ; k += step) {
3437 DimensionRegion *d = pDimensionRegions[k];
3438 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3439 velocityZone++;
3440 }
3441 } else { // gig2
3442 for (int k = i ; k < end ; k += step) {
3443 DimensionRegion *d = pDimensionRegions[k];
3444 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3445 velocityZone++;
3446 }
3447 }
3448 } else {
3449 if (pDimensionRegions[i]->VelocityTable) {
3450 delete[] pDimensionRegions[i]->VelocityTable;
3451 pDimensionRegions[i]->VelocityTable = 0;
3452 }
3453 }
3454
3455 // jump to the next case where the velocity zone is zero
3456 int j;
3457 int shift = 0;
3458 for (j = 0 ; j < Dimensions ; j++) {
3459 if (j == veldim) i += skipveldim; // skip velocity dimension
3460 else {
3461 dim[j]++;
3462 if (dim[j] < pDimensionDefinitions[j].zones) break;
3463 else {
3464 // skip unused dimension regions
3465 dim[j] = 0;
3466 i += ((1 << pDimensionDefinitions[j].bits) -
3467 pDimensionDefinitions[j].zones) << shift;
3468 }
3469 }
3470 shift += pDimensionDefinitions[j].bits;
3471 }
3472 if (j == Dimensions) break;
3473 }
3474 }
3475
3476 /** @brief Einstein would have dreamed of it - create a new dimension.
3477 *
3478 * Creates a new dimension with the dimension definition given by
3479 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3480 * There is a hard limit of dimensions and total amount of "bits" all
3481 * dimensions can have. This limit is dependant to what gig file format
3482 * version this file refers to. The gig v2 (and lower) format has a
3483 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3484 * format has a limit of 8.
3485 *
3486 * @param pDimDef - defintion of the new dimension
3487 * @throws gig::Exception if dimension of the same type exists already
3488 * @throws gig::Exception if amount of dimensions or total amount of
3489 * dimension bits limit is violated
3490 */
3491 void Region::AddDimension(dimension_def_t* pDimDef) {
3492 // some initial sanity checks of the given dimension definition
3493 if (pDimDef->zones < 2)
3494 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3495 if (pDimDef->bits < 1)
3496 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3497 if (pDimDef->dimension == dimension_samplechannel) {
3498 if (pDimDef->zones != 2)
3499 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3500 if (pDimDef->bits != 1)
3501 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3502 }
3503
3504 // check if max. amount of dimensions reached
3505 File* file = (File*) GetParent()->GetParent();
3506 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3507 if (Dimensions >= iMaxDimensions)
3508 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3509 // check if max. amount of dimension bits reached
3510 int iCurrentBits = 0;
3511 for (int i = 0; i < Dimensions; i++)
3512 iCurrentBits += pDimensionDefinitions[i].bits;
3513 if (iCurrentBits >= iMaxDimensions)
3514 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3515 const int iNewBits = iCurrentBits + pDimDef->bits;
3516 if (iNewBits > iMaxDimensions)
3517 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3518 // check if there's already a dimensions of the same type
3519 for (int i = 0; i < Dimensions; i++)
3520 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3521 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3522
3523 // pos is where the new dimension should be placed, normally
3524 // last in list, except for the samplechannel dimension which
3525 // has to be first in list
3526 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3527 int bitpos = 0;
3528 for (int i = 0 ; i < pos ; i++)
3529 bitpos += pDimensionDefinitions[i].bits;
3530
3531 // make room for the new dimension
3532 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3533 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3534 for (int j = Dimensions ; j > pos ; j--) {
3535 pDimensionRegions[i]->DimensionUpperLimits[j] =
3536 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3537 }
3538 }
3539
3540 // assign definition of new dimension
3541 pDimensionDefinitions[pos] = *pDimDef;
3542
3543 // auto correct certain dimension definition fields (where possible)
3544 pDimensionDefinitions[pos].split_type =
3545 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3546 pDimensionDefinitions[pos].zone_size =
3547 __resolveZoneSize(pDimensionDefinitions[pos]);
3548
3549 // create new dimension region(s) for this new dimension, and make
3550 // sure that the dimension regions are placed correctly in both the
3551 // RIFF list and the pDimensionRegions array
3552 RIFF::Chunk* moveTo = NULL;
3553 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3554 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3555 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3556 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3557 }
3558 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3559 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3560 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3561 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3562 // create a new dimension region and copy all parameter values from
3563 // an existing dimension region
3564 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3565 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3566
3567 DimensionRegions++;
3568 }
3569 }
3570 moveTo = pDimensionRegions[i]->pParentList;
3571 }
3572
3573 // initialize the upper limits for this dimension
3574 int mask = (1 << bitpos) - 1;
3575 for (int z = 0 ; z < pDimDef->zones ; z++) {
3576 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3577 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3578 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3579 (z << bitpos) |
3580 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3581 }
3582 }
3583
3584 Dimensions++;
3585
3586 // if this is a layer dimension, update 'Layers' attribute
3587 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3588
3589 UpdateVelocityTable();
3590 }
3591
3592 /** @brief Delete an existing dimension.
3593 *
3594 * Deletes the dimension given by \a pDimDef and deletes all respective
3595 * dimension regions, that is all dimension regions where the dimension's
3596 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3597 * for example this would delete all dimension regions for the case(s)
3598 * where the sustain pedal is pressed down.
3599 *
3600 * @param pDimDef - dimension to delete
3601 * @throws gig::Exception if given dimension cannot be found
3602 */
3603 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3604 // get dimension's index
3605 int iDimensionNr = -1;
3606 for (int i = 0; i < Dimensions; i++) {
3607 if (&pDimensionDefinitions[i] == pDimDef) {
3608 iDimensionNr = i;
3609 break;
3610 }
3611 }
3612 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3613
3614 // get amount of bits below the dimension to delete
3615 int iLowerBits = 0;
3616 for (int i = 0; i < iDimensionNr; i++)
3617 iLowerBits += pDimensionDefinitions[i].bits;
3618
3619 // get amount ot bits above the dimension to delete
3620 int iUpperBits = 0;
3621 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3622 iUpperBits += pDimensionDefinitions[i].bits;
3623
3624 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3625
3626 // delete dimension regions which belong to the given dimension
3627 // (that is where the dimension's bit > 0)
3628 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3629 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3630 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3631 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3632 iObsoleteBit << iLowerBits |
3633 iLowerBit;
3634
3635 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3636 delete pDimensionRegions[iToDelete];
3637 pDimensionRegions[iToDelete] = NULL;
3638 DimensionRegions--;
3639 }
3640 }
3641 }
3642
3643 // defrag pDimensionRegions array
3644 // (that is remove the NULL spaces within the pDimensionRegions array)
3645 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3646 if (!pDimensionRegions[iTo]) {
3647 if (iFrom <= iTo) iFrom = iTo + 1;
3648 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3649 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3650 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3651 pDimensionRegions[iFrom] = NULL;
3652 }
3653 }
3654 }
3655
3656 // remove the this dimension from the upper limits arrays
3657 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3658 DimensionRegion* d = pDimensionRegions[j];
3659 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3660 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3661 }
3662 d->DimensionUpperLimits[Dimensions - 1] = 127;
3663 }
3664
3665 // 'remove' dimension definition
3666 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3667 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3668 }
3669 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3670 pDimensionDefinitions[Dimensions - 1].bits = 0;
3671 pDimensionDefinitions[Dimensions - 1].zones = 0;
3672
3673 Dimensions--;
3674
3675 // if this was a layer dimension, update 'Layers' attribute
3676 if (pDimDef->dimension == dimension_layer) Layers = 1;
3677 }
3678
3679 /** @brief Delete one split zone of a dimension (decrement zone amount).
3680 *
3681 * Instead of deleting an entire dimensions, this method will only delete
3682 * one particular split zone given by @a zone of the Region's dimension
3683 * given by @a type. So this method will simply decrement the amount of
3684 * zones by one of the dimension in question. To be able to do that, the
3685 * respective dimension must exist on this Region and it must have at least
3686 * 3 zones. All DimensionRegion objects associated with the zone will be
3687 * deleted.
3688 *
3689 * @param type - identifies the dimension where a zone shall be deleted
3690 * @param zone - index of the dimension split zone that shall be deleted
3691 * @throws gig::Exception if requested zone could not be deleted
3692 */
3693 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3694 dimension_def_t* oldDef = GetDimensionDefinition(type);
3695 if (!oldDef)
3696 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3697 if (oldDef->zones <= 2)
3698 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3699 if (zone < 0 || zone >= oldDef->zones)
3700 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3701
3702 const int newZoneSize = oldDef->zones - 1;
3703
3704 // create a temporary Region which just acts as a temporary copy
3705 // container and will be deleted at the end of this function and will
3706 // also not be visible through the API during this process
3707 gig::Region* tempRgn = NULL;
3708 {
3709 // adding these temporary chunks is probably not even necessary
3710 Instrument* instr = static_cast<Instrument*>(GetParent());
3711 RIFF::List* pCkInstrument = instr->pCkInstrument;
3712 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3713 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3714 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3715 tempRgn = new Region(instr, rgn);
3716 }
3717
3718 // copy this region's dimensions (with already the dimension split size
3719 // requested by the arguments of this method call) to the temporary
3720 // region, and don't use Region::CopyAssign() here for this task, since
3721 // it would also alter fast lookup helper variables here and there
3722 dimension_def_t newDef;
3723 for (int i = 0; i < Dimensions; ++i) {
3724 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3725 // is this the dimension requested by the method arguments? ...
3726 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3727 def.zones = newZoneSize;
3728 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3729 newDef = def;
3730 }
3731 tempRgn->AddDimension(&def);
3732 }
3733
3734 // find the dimension index in the tempRegion which is the dimension
3735 // type passed to this method (paranoidly expecting different order)
3736 int tempReducedDimensionIndex = -1;
3737 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3738 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3739 tempReducedDimensionIndex = d;
3740 break;
3741 }
3742 }
3743
3744 // copy dimension regions from this region to the temporary region
3745 for (int iDst = 0; iDst < 256; ++iDst) {
3746 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3747 if (!dstDimRgn) continue;
3748 std::map<dimension_t,int> dimCase;
3749 bool isValidZone = true;
3750 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3751 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3752 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3753 (iDst >> baseBits) & ((1 << dstBits) - 1);
3754 baseBits += dstBits;
3755 // there are also DimensionRegion objects of unused zones, skip them
3756 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3757 isValidZone = false;
3758 break;
3759 }
3760 }
3761 if (!isValidZone) continue;
3762 // a bit paranoid: cope with the chance that the dimensions would
3763 // have different order in source and destination regions
3764 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3765 if (dimCase[type] >= zone) dimCase[type]++;
3766 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3767 dstDimRgn->CopyAssign(srcDimRgn);
3768 // if this is the upper most zone of the dimension passed to this
3769 // method, then correct (raise) its upper limit to 127
3770 if (newDef.split_type == split_type_normal && isLastZone)
3771 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3772 }
3773
3774 // now tempRegion's dimensions and DimensionRegions basically reflect
3775 // what we wanted to get for this actual Region here, so we now just
3776 // delete and recreate the dimension in question with the new amount
3777 // zones and then copy back from tempRegion
3778 DeleteDimension(oldDef);
3779 AddDimension(&newDef);
3780 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3781 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3782 if (!srcDimRgn) continue;
3783 std::map<dimension_t,int> dimCase;
3784 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3785 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3786 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3787 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3788 baseBits += srcBits;
3789 }
3790 // a bit paranoid: cope with the chance that the dimensions would
3791 // have different order in source and destination regions
3792 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3793 if (!dstDimRgn) continue;
3794 dstDimRgn->CopyAssign(srcDimRgn);
3795 }
3796
3797 // delete temporary region
3798 delete tempRgn;
3799
3800 UpdateVelocityTable();
3801 }
3802
3803 /** @brief Divide split zone of a dimension in two (increment zone amount).
3804 *
3805 * This will increment the amount of zones for the dimension (given by
3806 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3807 * in the middle of its zone range in two. So the two zones resulting from
3808 * the zone being splitted, will be an equivalent copy regarding all their
3809 * articulation informations and sample reference. The two zones will only
3810 * differ in their zone's upper limit
3811 * (DimensionRegion::DimensionUpperLimits).
3812 *
3813 * @param type - identifies the dimension where a zone shall be splitted
3814 * @param zone - index of the dimension split zone that shall be splitted
3815 * @throws gig::Exception if requested zone could not be splitted
3816 */
3817 void Region::SplitDimensionZone(dimension_t type, int zone) {
3818 dimension_def_t* oldDef = GetDimensionDefinition(type);
3819 if (!oldDef)
3820 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3821 if (zone < 0 || zone >= oldDef->zones)
3822 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3823
3824 const int newZoneSize = oldDef->zones + 1;
3825
3826 // create a temporary Region which just acts as a temporary copy
3827 // container and will be deleted at the end of this function and will
3828 // also not be visible through the API during this process
3829 gig::Region* tempRgn = NULL;
3830 {
3831 // adding these temporary chunks is probably not even necessary
3832 Instrument* instr = static_cast<Instrument*>(GetParent());
3833 RIFF::List* pCkInstrument = instr->pCkInstrument;
3834 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3835 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3836 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3837 tempRgn = new Region(instr, rgn);
3838 }
3839
3840 // copy this region's dimensions (with already the dimension split size
3841 // requested by the arguments of this method call) to the temporary
3842 // region, and don't use Region::CopyAssign() here for this task, since
3843 // it would also alter fast lookup helper variables here and there
3844 dimension_def_t newDef;
3845 for (int i = 0; i < Dimensions; ++i) {
3846 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3847 // is this the dimension requested by the method arguments? ...
3848 if (def.dimension == type) { // ... if yes, increment zone amount by one
3849 def.zones = newZoneSize;
3850 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3851 newDef = def;
3852 }
3853 tempRgn->AddDimension(&def);
3854 }
3855
3856 // find the dimension index in the tempRegion which is the dimension
3857 // type passed to this method (paranoidly expecting different order)
3858 int tempIncreasedDimensionIndex = -1;
3859 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861 tempIncreasedDimensionIndex = d;
3862 break;
3863 }
3864 }
3865
3866 // copy dimension regions from this region to the temporary region
3867 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3868 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3869 if (!srcDimRgn) continue;
3870 std::map<dimension_t,int> dimCase;
3871 bool isValidZone = true;
3872 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3873 const int srcBits = pDimensionDefinitions[d].bits;
3874 dimCase[pDimensionDefinitions[d].dimension] =
3875 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3876 // there are also DimensionRegion objects for unused zones, skip them
3877 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3878 isValidZone = false;
3879 break;
3880 }
3881 baseBits += srcBits;
3882 }
3883 if (!isValidZone) continue;
3884 // a bit paranoid: cope with the chance that the dimensions would
3885 // have different order in source and destination regions
3886 if (dimCase[type] > zone) dimCase[type]++;
3887 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3888 dstDimRgn->CopyAssign(srcDimRgn);
3889 // if this is the requested zone to be splitted, then also copy
3890 // the source DimensionRegion to the newly created target zone
3891 // and set the old zones upper limit lower
3892 if (dimCase[type] == zone) {
3893 // lower old zones upper limit
3894 if (newDef.split_type == split_type_normal) {
3895 const int high =
3896 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3897 int low = 0;
3898 if (zone > 0) {
3899 std::map<dimension_t,int> lowerCase = dimCase;
3900 lowerCase[type]--;
3901 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3902 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3903 }
3904 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3905 }
3906 // fill the newly created zone of the divided zone as well
3907 dimCase[type]++;
3908 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3909 dstDimRgn->CopyAssign(srcDimRgn);
3910 }
3911 }
3912
3913 // now tempRegion's dimensions and DimensionRegions basically reflect
3914 // what we wanted to get for this actual Region here, so we now just
3915 // delete and recreate the dimension in question with the new amount
3916 // zones and then copy back from tempRegion
3917 DeleteDimension(oldDef);
3918 AddDimension(&newDef);
3919 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3920 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3921 if (!srcDimRgn) continue;
3922 std::map<dimension_t,int> dimCase;
3923 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3924 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3925 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3926 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3927 baseBits += srcBits;
3928 }
3929 // a bit paranoid: cope with the chance that the dimensions would
3930 // have different order in source and destination regions
3931 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3932 if (!dstDimRgn) continue;
3933 dstDimRgn->CopyAssign(srcDimRgn);
3934 }
3935
3936 // delete temporary region
3937 delete tempRgn;
3938
3939 UpdateVelocityTable();
3940 }
3941
3942 /** @brief Change type of an existing dimension.
3943 *
3944 * Alters the dimension type of a dimension already existing on this
3945 * region. If there is currently no dimension on this Region with type
3946 * @a oldType, then this call with throw an Exception. Likewise there are
3947 * cases where the requested dimension type cannot be performed. For example
3948 * if the new dimension type shall be gig::dimension_samplechannel, and the
3949 * current dimension has more than 2 zones. In such cases an Exception is
3950 * thrown as well.
3951 *
3952 * @param oldType - identifies the existing dimension to be changed
3953 * @param newType - to which dimension type it should be changed to
3954 * @throws gig::Exception if requested change cannot be performed
3955 */
3956 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3957 if (oldType == newType) return;
3958 dimension_def_t* def = GetDimensionDefinition(oldType);
3959 if (!def)
3960 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3961 if (newType == dimension_samplechannel && def->zones != 2)
3962 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3963 if (GetDimensionDefinition(newType))
3964 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3965 def->dimension = newType;
3966 def->split_type = __resolveSplitType(newType);
3967 }
3968
3969 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3970 uint8_t bits[8] = {};
3971 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3972 it != DimCase.end(); ++it)
3973 {
3974 for (int d = 0; d < Dimensions; ++d) {
3975 if (pDimensionDefinitions[d].dimension == it->first) {
3976 bits[d] = it->second;
3977 goto nextDimCaseSlice;
3978 }
3979 }
3980 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3981 nextDimCaseSlice:
3982 ; // noop
3983 }
3984 return GetDimensionRegionByBit(bits);
3985 }
3986
3987 /**
3988 * Searches in the current Region for a dimension of the given dimension
3989 * type and returns the precise configuration of that dimension in this
3990 * Region.
3991 *
3992 * @param type - dimension type of the sought dimension
3993 * @returns dimension definition or NULL if there is no dimension with
3994 * sought type in this Region.
3995 */
3996 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3997 for (int i = 0; i < Dimensions; ++i)
3998 if (pDimensionDefinitions[i].dimension == type)
3999 return &pDimensionDefinitions[i];
4000 return NULL;
4001 }
4002
4003 Region::~Region() {
4004 for (int i = 0; i < 256; i++) {
4005 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4006 }
4007 }
4008
4009 /**
4010 * Use this method in your audio engine to get the appropriate dimension
4011 * region with it's articulation data for the current situation. Just
4012 * call the method with the current MIDI controller values and you'll get
4013 * the DimensionRegion with the appropriate articulation data for the
4014 * current situation (for this Region of course only). To do that you'll
4015 * first have to look which dimensions with which controllers and in
4016 * which order are defined for this Region when you load the .gig file.
4017 * Special cases are e.g. layer or channel dimensions where you just put
4018 * in the index numbers instead of a MIDI controller value (means 0 for
4019 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4020 * etc.).
4021 *
4022 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4023 * @returns adress to the DimensionRegion for the given situation
4024 * @see pDimensionDefinitions
4025 * @see Dimensions
4026 */
4027 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4028 uint8_t bits;
4029 int veldim = -1;
4030 int velbitpos = 0;
4031 int bitpos = 0;
4032 int dimregidx = 0;
4033 for (uint i = 0; i < Dimensions; i++) {
4034 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4035 // the velocity dimension must be handled after the other dimensions
4036 veldim = i;
4037 velbitpos = bitpos;
4038 } else {
4039 switch (pDimensionDefinitions[i].split_type) {
4040 case split_type_normal:
4041 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4042 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4043 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4044 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4045 }
4046 } else {
4047 // gig2: evenly sized zones
4048 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4049 }
4050 break;
4051 case split_type_bit: // the value is already the sought dimension bit number
4052 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4053 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4054 break;
4055 }
4056 dimregidx |= bits << bitpos;
4057 }
4058 bitpos += pDimensionDefinitions[i].bits;
4059 }
4060 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4061 if (!dimreg) return NULL;
4062 if (veldim != -1) {
4063 // (dimreg is now the dimension region for the lowest velocity)
4064 if (dimreg->VelocityTable) // custom defined zone ranges
4065 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4066 else // normal split type
4067 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4068
4069 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4070 dimregidx |= (bits & limiter_mask) << velbitpos;
4071 dimreg = pDimensionRegions[dimregidx & 255];
4072 }
4073 return dimreg;
4074 }
4075
4076 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4077 uint8_t bits;
4078 int veldim = -1;
4079 int velbitpos = 0;
4080 int bitpos = 0;
4081 int dimregidx = 0;
4082 for (uint i = 0; i < Dimensions; i++) {
4083 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4084 // the velocity dimension must be handled after the other dimensions
4085 veldim = i;
4086 velbitpos = bitpos;
4087 } else {
4088 switch (pDimensionDefinitions[i].split_type) {
4089 case split_type_normal:
4090 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4091 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4092 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4093 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4094 }
4095 } else {
4096 // gig2: evenly sized zones
4097 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4098 }
4099 break;
4100 case split_type_bit: // the value is already the sought dimension bit number
4101 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4102 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4103 break;
4104 }
4105 dimregidx |= bits << bitpos;
4106 }
4107 bitpos += pDimensionDefinitions[i].bits;
4108 }
4109 dimregidx &= 255;
4110 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4111 if (!dimreg) return -1;
4112 if (veldim != -1) {
4113 // (dimreg is now the dimension region for the lowest velocity)
4114 if (dimreg->VelocityTable) // custom defined zone ranges
4115 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4116 else // normal split type
4117 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4118
4119 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4120 dimregidx |= (bits & limiter_mask) << velbitpos;
4121 dimregidx &= 255;
4122 }
4123 return dimregidx;
4124 }
4125
4126 /**
4127 * Returns the appropriate DimensionRegion for the given dimension bit
4128 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4129 * instead of calling this method directly!
4130 *
4131 * @param DimBits Bit numbers for dimension 0 to 7
4132 * @returns adress to the DimensionRegion for the given dimension
4133 * bit numbers
4134 * @see GetDimensionRegionByValue()
4135 */
4136 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4137 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4138 << pDimensionDefinitions[5].bits | DimBits[5])
4139 << pDimensionDefinitions[4].bits | DimBits[4])
4140 << pDimensionDefinitions[3].bits | DimBits[3])
4141 << pDimensionDefinitions[2].bits | DimBits[2])
4142 << pDimensionDefinitions[1].bits | DimBits[1])
4143 << pDimensionDefinitions[0].bits | DimBits[0]];
4144 }
4145
4146 /**
4147 * Returns pointer address to the Sample referenced with this region.
4148 * This is the global Sample for the entire Region (not sure if this is
4149 * actually used by the Gigasampler engine - I would only use the Sample
4150 * referenced by the appropriate DimensionRegion instead of this sample).
4151 *
4152 * @returns address to Sample or NULL if there is no reference to a
4153 * sample saved in the .gig file
4154 */
4155 Sample* Region::GetSample() {
4156 if (pSample) return static_cast<gig::Sample*>(pSample);
4157 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4158 }
4159
4160 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4161 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4162 File* file = (File*) GetParent()->GetParent();
4163 if (!file->pWavePoolTable) return NULL;
4164 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4165 // for new files or files >= 2 GB use 64 bit wave pool offsets
4166 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4167 // use 64 bit wave pool offsets (treating this as large file)
4168 uint64_t soughtoffset =
4169 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4170 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4171 Sample* sample = file->GetFirstSample(pProgress);
4172 while (sample) {
4173 if (sample->ullWavePoolOffset == soughtoffset)
4174 return static_cast<gig::Sample*>(sample);
4175 sample = file->GetNextSample();
4176 }
4177 } else {
4178 // use extension files and 32 bit wave pool offsets
4179 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4180 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4181 Sample* sample = file->GetFirstSample(pProgress);
4182 while (sample) {
4183 if (sample->ullWavePoolOffset == soughtoffset &&
4184 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4185 sample = file->GetNextSample();
4186 }
4187 }
4188 return NULL;
4189 }
4190
4191 /**
4192 * Make a (semi) deep copy of the Region object given by @a orig
4193 * and assign it to this object.
4194 *
4195 * Note that all sample pointers referenced by @a orig are simply copied as
4196 * memory address. Thus the respective samples are shared, not duplicated!
4197 *
4198 * @param orig - original Region object to be copied from
4199 */
4200 void Region::CopyAssign(const Region* orig) {
4201 CopyAssign(orig, NULL);
4202 }
4203
4204 /**
4205 * Make a (semi) deep copy of the Region object given by @a orig and
4206 * assign it to this object
4207 *
4208 * @param mSamples - crosslink map between the foreign file's samples and
4209 * this file's samples
4210 */
4211 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4212 // handle base classes
4213 DLS::Region::CopyAssign(orig);
4214
4215 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4216 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4217 }
4218
4219 // handle own member variables
4220 for (int i = Dimensions - 1; i >= 0; --i) {
4221 DeleteDimension(&pDimensionDefinitions[i]);
4222 }
4223 Layers = 0; // just to be sure
4224 for (int i = 0; i < orig->Dimensions; i++) {
4225 // we need to copy the dim definition here, to avoid the compiler
4226 // complaining about const-ness issue
4227 dimension_def_t def = orig->pDimensionDefinitions[i];
4228 AddDimension(&def);
4229 }
4230 for (int i = 0; i < 256; i++) {
4231 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4232 pDimensionRegions[i]->CopyAssign(
4233 orig->pDimensionRegions[i],
4234 mSamples
4235 );
4236 }
4237 }
4238 Layers = orig->Layers;
4239 }
4240
4241
4242 // *************** MidiRule ***************
4243 // *
4244
4245 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4246 _3ewg->SetPos(36);
4247 Triggers = _3ewg->ReadUint8();
4248 _3ewg->SetPos(40);
4249 ControllerNumber = _3ewg->ReadUint8();
4250 _3ewg->SetPos(46);
4251 for (int i = 0 ; i < Triggers ; i++) {
4252 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4253 pTriggers[i].Descending = _3ewg->ReadUint8();
4254 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4255 pTriggers[i].Key = _3ewg->ReadUint8();
4256 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4257 pTriggers[i].Velocity = _3ewg->ReadUint8();
4258 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4259 _3ewg->ReadUint8();
4260 }
4261 }
4262
4263 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4264 ControllerNumber(0),
4265 Triggers(0) {
4266 }
4267
4268 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4269 pData[32] = 4;
4270 pData[33] = 16;
4271 pData[36] = Triggers;
4272 pData[40] = ControllerNumber;
4273 for (int i = 0 ; i < Triggers ; i++) {
4274 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4275 pData[47 + i * 8] = pTriggers[i].Descending;
4276 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4277 pData[49 + i * 8] = pTriggers[i].Key;
4278 pData[50 + i * 8] = pTriggers[i].NoteOff;
4279 pData[51 + i * 8] = pTriggers[i].Velocity;
4280 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4281 }
4282 }
4283
4284 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4285 _3ewg->SetPos(36);
4286 LegatoSamples = _3ewg->ReadUint8(); // always 12
4287 _3ewg->SetPos(40);
4288 BypassUseController = _3ewg->ReadUint8();
4289 BypassKey = _3ewg->ReadUint8();
4290 BypassController = _3ewg->ReadUint8();
4291 ThresholdTime = _3ewg->ReadUint16();
4292 _3ewg->ReadInt16();
4293 ReleaseTime = _3ewg->ReadUint16();
4294 _3ewg->ReadInt16();
4295 KeyRange.low = _3ewg->ReadUint8();
4296 KeyRange.high = _3ewg->ReadUint8();
4297 _3ewg->SetPos(64);
4298 ReleaseTriggerKey = _3ewg->ReadUint8();
4299 AltSustain1Key = _3ewg->ReadUint8();
4300 AltSustain2Key = _3ewg->ReadUint8();
4301 }
4302
4303 MidiRuleLegato::MidiRuleLegato() :
4304 LegatoSamples(12),
4305 BypassUseController(false),
4306 BypassKey(0),
4307 BypassController(1),
4308 ThresholdTime(20),
4309 ReleaseTime(20),
4310 ReleaseTriggerKey(0),
4311 AltSustain1Key(0),
4312 AltSustain2Key(0)
4313 {
4314 KeyRange.low = KeyRange.high = 0;
4315 }
4316
4317 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4318 pData[32] = 0;
4319 pData[33] = 16;
4320 pData[36] = LegatoSamples;
4321 pData[40] = BypassUseController;
4322 pData[41] = BypassKey;
4323 pData[42] = BypassController;
4324 store16(&pData[43], ThresholdTime);
4325 store16(&pData[47], ReleaseTime);
4326 pData[51] = KeyRange.low;
4327 pData[52] = KeyRange.high;
4328 pData[64] = ReleaseTriggerKey;
4329 pData[65] = AltSustain1Key;
4330 pData[66] = AltSustain2Key;
4331 }
4332
4333 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4334 _3ewg->SetPos(36);
4335 Articulations = _3ewg->ReadUint8();
4336 int flags = _3ewg->ReadUint8();
4337 Polyphonic = flags & 8;
4338 Chained = flags & 4;
4339 Selector = (flags & 2) ? selector_controller :
4340 (flags & 1) ? selector_key_switch : selector_none;
4341 Patterns = _3ewg->ReadUint8();
4342 _3ewg->ReadUint8(); // chosen row
4343 _3ewg->ReadUint8(); // unknown
4344 _3ewg->ReadUint8(); // unknown
4345 _3ewg->ReadUint8(); // unknown
4346 KeySwitchRange.low = _3ewg->ReadUint8();
4347 KeySwitchRange.high = _3ewg->ReadUint8();
4348 Controller = _3ewg->ReadUint8();
4349 PlayRange.low = _3ewg->ReadUint8();
4350 PlayRange.high = _3ewg->ReadUint8();
4351
4352 int n = std::min(int(Articulations), 32);
4353 for (int i = 0 ; i < n ; i++) {
4354 _3ewg->ReadString(pArticulations[i], 32);
4355 }
4356 _3ewg->SetPos(1072);
4357 n = std::min(int(Patterns), 32);
4358 for (int i = 0 ; i < n ; i++) {
4359 _3ewg->ReadString(pPatterns[i].Name, 16);
4360 pPatterns[i].Size = _3ewg->ReadUint8();
4361 _3ewg->Read(&pPatterns[i][0], 1, 32);
4362 }
4363 }
4364
4365 MidiRuleAlternator::MidiRuleAlternator() :
4366 Articulations(0),
4367 Patterns(0),
4368 Selector(selector_none),
4369 Controller(0),
4370 Polyphonic(false),
4371 Chained(false)
4372 {
4373 PlayRange.low = PlayRange.high = 0;
4374 KeySwitchRange.low = KeySwitchRange.high = 0;
4375 }
4376
4377 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4378 pData[32] = 3;
4379 pData[33] = 16;
4380 pData[36] = Articulations;
4381 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4382 (Selector == selector_controller ? 2 :
4383 (Selector == selector_key_switch ? 1 : 0));
4384 pData[38] = Patterns;
4385
4386 pData[43] = KeySwitchRange.low;
4387 pData[44] = KeySwitchRange.high;
4388 pData[45] = Controller;
4389 pData[46] = PlayRange.low;
4390 pData[47] = PlayRange.high;
4391
4392 char* str = reinterpret_cast<char*>(pData);
4393 int pos = 48;
4394 int n = std::min(int(Articulations), 32);
4395 for (int i = 0 ; i < n ; i++, pos += 32) {
4396 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4397 }
4398
4399 pos = 1072;
4400 n = std::min(int(Patterns), 32);
4401 for (int i = 0 ; i < n ; i++, pos += 49) {
4402 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4403 pData[pos + 16] = pPatterns[i].Size;
4404 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4405 }
4406 }
4407
4408 // *************** Script ***************
4409 // *
4410
4411 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4412 pGroup = group;
4413 pChunk = ckScri;
4414 if (ckScri) { // object is loaded from file ...
4415 // read header
4416 uint32_t headerSize = ckScri->ReadUint32();
4417 Compression = (Compression_t) ckScri->ReadUint32();
4418 Encoding = (Encoding_t) ckScri->ReadUint32();
4419 Language = (Language_t) ckScri->ReadUint32();
4420 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4421 crc = ckScri->ReadUint32();
4422 uint32_t nameSize = ckScri->ReadUint32();
4423 Name.resize(nameSize, ' ');
4424 for (int i = 0; i < nameSize; ++i)
4425 Name[i] = ckScri->ReadUint8();
4426 // to handle potential future extensions of the header
4427 ckScri->SetPos(sizeof(int32_t) + headerSize);
4428 // read actual script data
4429 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4430 data.resize(scriptSize);
4431 for (int i = 0; i < scriptSize; ++i)
4432 data[i] = ckScri->ReadUint8();
4433 } else { // this is a new script object, so just initialize it as such ...
4434 Compression = COMPRESSION_NONE;
4435 Encoding = ENCODING_ASCII;
4436 Language = LANGUAGE_NKSP;
4437 Bypass = false;
4438 crc = 0;
4439 Name = "Unnamed Script";
4440 }
4441 }
4442
4443 Script::~Script() {
4444 }
4445
4446 /**
4447 * Returns the current script (i.e. as source code) in text format.
4448 */
4449 String Script::GetScriptAsText() {
4450 String s;
4451 s.resize(data.size(), ' ');
4452 memcpy(&s[0], &data[0], data.size());
4453 return s;
4454 }
4455
4456 /**
4457 * Replaces the current script with the new script source code text given
4458 * by @a text.
4459 *
4460 * @param text - new script source code
4461 */
4462 void Script::SetScriptAsText(const String& text) {
4463 data.resize(text.size());
4464 memcpy(&data[0], &text[0], text.size());
4465 }
4466
4467 /**
4468 * Apply this script to the respective RIFF chunks. You have to call
4469 * File::Save() to make changes persistent.
4470 *
4471 * Usually there is absolutely no need to call this method explicitly.
4472 * It will be called automatically when File::Save() was called.
4473 *
4474 * @param pProgress - callback function for progress notification
4475 */
4476 void Script::UpdateChunks(progress_t* pProgress) {
4477 // recalculate CRC32 check sum
4478 __resetCRC(crc);
4479 __calculateCRC(&data[0], data.size(), crc);
4480 __finalizeCRC(crc);
4481 // make sure chunk exists and has the required size
4482 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4483 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4484 else pChunk->Resize(chunkSize);
4485 // fill the chunk data to be written to disk
4486 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4487 int pos = 0;
4488 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4489 pos += sizeof(int32_t);
4490 store32(&pData[pos], Compression);
4491 pos += sizeof(int32_t);
4492 store32(&pData[pos], Encoding);
4493 pos += sizeof(int32_t);
4494 store32(&pData[pos], Language);
4495 pos += sizeof(int32_t);
4496 store32(&pData[pos], Bypass ? 1 : 0);
4497 pos += sizeof(int32_t);
4498 store32(&pData[pos], crc);
4499 pos += sizeof(int32_t);
4500 store32(&pData[pos], (uint32_t) Name.size());
4501 pos += sizeof(int32_t);
4502 for (int i = 0; i < Name.size(); ++i, ++pos)
4503 pData[pos] = Name[i];
4504 for (int i = 0; i < data.size(); ++i, ++pos)
4505 pData[pos] = data[i];
4506 }
4507
4508 /**
4509 * Move this script from its current ScriptGroup to another ScriptGroup
4510 * given by @a pGroup.
4511 *
4512 * @param pGroup - script's new group
4513 */
4514 void Script::SetGroup(ScriptGroup* pGroup) {
4515 if (this->pGroup == pGroup) return;
4516 if (pChunk)
4517 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4518 this->pGroup = pGroup;
4519 }
4520
4521 /**
4522 * Returns the script group this script currently belongs to. Each script
4523 * is a member of exactly one ScriptGroup.
4524 *
4525 * @returns current script group
4526 */
4527 ScriptGroup* Script::GetGroup() const {
4528 return pGroup;
4529 }
4530
4531 /**
4532 * Make a (semi) deep copy of the Script object given by @a orig
4533 * and assign it to this object. Note: the ScriptGroup this Script
4534 * object belongs to remains untouched by this call.
4535 *
4536 * @param orig - original Script object to be copied from
4537 */
4538 void Script::CopyAssign(const Script* orig) {
4539 Name = orig->Name;
4540 Compression = orig->Compression;
4541 Encoding = orig->Encoding;
4542 Language = orig->Language;
4543 Bypass = orig->Bypass;
4544 data = orig->data;
4545 }
4546
4547 void Script::RemoveAllScriptReferences() {
4548 File* pFile = pGroup->pFile;
4549 for (int i = 0; pFile->GetInstrument(i); ++i) {
4550 Instrument* instr = pFile->GetInstrument(i);
4551 instr->RemoveScript(this);
4552 }
4553 }
4554
4555 // *************** ScriptGroup ***************
4556 // *
4557
4558 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4559 pFile = file;
4560 pList = lstRTIS;
4561 pScripts = NULL;
4562 if (lstRTIS) {
4563 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4564 ::LoadString(ckName, Name);
4565 } else {
4566 Name = "Default Group";
4567 }
4568 }
4569
4570 ScriptGroup::~ScriptGroup() {
4571 if (pScripts) {
4572 std::list<Script*>::iterator iter = pScripts->begin();
4573 std::list<Script*>::iterator end = pScripts->end();
4574 while (iter != end) {
4575 delete *iter;
4576 ++iter;
4577 }
4578 delete pScripts;
4579 }
4580 }
4581
4582 /**
4583 * Apply this script group to the respective RIFF chunks. You have to call
4584 * File::Save() to make changes persistent.
4585 *
4586 * Usually there is absolutely no need to call this method explicitly.
4587 * It will be called automatically when File::Save() was called.
4588 *
4589 * @param pProgress - callback function for progress notification
4590 */
4591 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4592 if (pScripts) {
4593 if (!pList)
4594 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4595
4596 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4597 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4598
4599 for (std::list<Script*>::iterator it = pScripts->begin();
4600 it != pScripts->end(); ++it)
4601 {
4602 (*it)->UpdateChunks(pProgress);
4603 }
4604 }
4605 }
4606
4607 /** @brief Get instrument script.
4608 *
4609 * Returns the real-time instrument script with the given index.
4610 *
4611 * @param index - number of the sought script (0..n)
4612 * @returns sought script or NULL if there's no such script
4613 */
4614 Script* ScriptGroup::GetScript(uint index) {
4615 if (!pScripts) LoadScripts();
4616 std::list<Script*>::iterator it = pScripts->begin();
4617 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4618 if (i == index) return *it;
4619 return NULL;
4620 }
4621
4622 /** @brief Add new instrument script.
4623 *
4624 * Adds a new real-time instrument script to the file. The script is not
4625 * actually used / executed unless it is referenced by an instrument to be
4626 * used. This is similar to samples, which you can add to a file, without
4627 * an instrument necessarily actually using it.
4628 *
4629 * You have to call Save() to make this persistent to the file.
4630 *
4631 * @return new empty script object
4632 */
4633 Script* ScriptGroup::AddScript() {
4634 if (!pScripts) LoadScripts();
4635 Script* pScript = new Script(this, NULL);
4636 pScripts->push_back(pScript);
4637 return pScript;
4638 }
4639
4640 /** @brief Delete an instrument script.
4641 *
4642 * This will delete the given real-time instrument script. References of
4643 * instruments that are using that script will be removed accordingly.
4644 *
4645 * You have to call Save() to make this persistent to the file.
4646 *
4647 * @param pScript - script to delete
4648 * @throws gig::Exception if given script could not be found
4649 */
4650 void ScriptGroup::DeleteScript(Script* pScript) {
4651 if (!pScripts) LoadScripts();
4652 std::list<Script*>::iterator iter =
4653 find(pScripts->begin(), pScripts->end(), pScript);
4654 if (iter == pScripts->end())
4655 throw gig::Exception("Could not delete script, could not find given script");
4656 pScripts->erase(iter);
4657 pScript->RemoveAllScriptReferences();
4658 if (pScript->pChunk)
4659 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4660 delete pScript;
4661 }
4662
4663 void ScriptGroup::LoadScripts() {
4664 if (pScripts) return;
4665 pScripts = new std::list<Script*>;
4666 if (!pList) return;
4667
4668 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4669 ck = pList->GetNextSubChunk())
4670 {
4671 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4672 pScripts->push_back(new Script(this, ck));
4673 }
4674 }
4675 }
4676
4677 // *************** Instrument ***************
4678 // *
4679
4680 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4681 static const DLS::Info::string_length_t fixedStringLengths[] = {
4682 { CHUNK_ID_INAM, 64 },
4683 { CHUNK_ID_ISFT, 12 },
4684 { 0, 0 }
4685 };
4686 pInfo->SetFixedStringLengths(fixedStringLengths);
4687
4688 // Initialization
4689 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4690 EffectSend = 0;
4691 Attenuation = 0;
4692 FineTune = 0;
4693 PitchbendRange = 2;
4694 PianoReleaseMode = false;
4695 DimensionKeyRange.low = 0;
4696 DimensionKeyRange.high = 0;
4697 pMidiRules = new MidiRule*[3];
4698 pMidiRules[0] = NULL;
4699 pScriptRefs = NULL;
4700
4701 // Loading
4702 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4703 if (lart) {
4704 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4705 if (_3ewg) {
4706 EffectSend = _3ewg->ReadUint16();
4707 Attenuation = _3ewg->ReadInt32();
4708 FineTune = _3ewg->ReadInt16();
4709 PitchbendRange = _3ewg->ReadInt16();
4710 uint8_t dimkeystart = _3ewg->ReadUint8();
4711 PianoReleaseMode = dimkeystart & 0x01;
4712 DimensionKeyRange.low = dimkeystart >> 1;
4713 DimensionKeyRange.high = _3ewg->ReadUint8();
4714
4715 if (_3ewg->GetSize() > 32) {
4716 // read MIDI rules
4717 int i = 0;
4718 _3ewg->SetPos(32);
4719 uint8_t id1 = _3ewg->ReadUint8();
4720 uint8_t id2 = _3ewg->ReadUint8();
4721
4722 if (id2 == 16) {
4723 if (id1 == 4) {
4724 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4725 } else if (id1 == 0) {
4726 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4727 } else if (id1 == 3) {
4728 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4729 } else {
4730 pMidiRules[i++] = new MidiRuleUnknown;
4731 }
4732 }
4733 else if (id1 != 0 || id2 != 0) {
4734 pMidiRules[i++] = new MidiRuleUnknown;
4735 }
4736 //TODO: all the other types of rules
4737
4738 pMidiRules[i] = NULL;
4739 }
4740 }
4741 }
4742
4743 if (pFile->GetAutoLoad()) {
4744 if (!pRegions) pRegions = new RegionList;
4745 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4746 if (lrgn) {
4747 RIFF::List* rgn = lrgn->GetFirstSubList();
4748 while (rgn) {
4749 if (rgn->GetListType() == LIST_TYPE_RGN) {
4750 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4751 pRegions->push_back(new Region(this, rgn));
4752 }
4753 rgn = lrgn->GetNextSubList();
4754 }
4755 // Creating Region Key Table for fast lookup
4756 UpdateRegionKeyTable();
4757 }
4758 }
4759
4760 // own gig format extensions
4761 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4762 if (lst3LS) {
4763 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4764 if (ckSCSL) {
4765 int headerSize = ckSCSL->ReadUint32();
4766 int slotCount = ckSCSL->ReadUint32();
4767 if (slotCount) {
4768 int slotSize = ckSCSL->ReadUint32();
4769 ckSCSL->SetPos(headerSize); // in case of future header extensions
4770 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4771 for (int i = 0; i < slotCount; ++i) {
4772 _ScriptPooolEntry e;
4773 e.fileOffset = ckSCSL->ReadUint32();
4774 e.bypass = ckSCSL->ReadUint32() & 1;
4775 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4776 scriptPoolFileOffsets.push_back(e);
4777 }
4778 }
4779 }
4780 }
4781
4782 __notify_progress(pProgress, 1.0f); // notify done
4783 }
4784
4785 void Instrument::UpdateRegionKeyTable() {
4786 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4787 RegionList::iterator iter = pRegions->begin();
4788 RegionList::iterator end = pRegions->end();
4789 for (; iter != end; ++iter) {
4790 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4791 const int low = std::max(int(pRegion->KeyRange.low), 0);
4792 const int high = std::min(int(pRegion->KeyRange.high), 127);
4793 for (int iKey = low; iKey <= high; iKey++) {
4794 RegionKeyTable[iKey] = pRegion;
4795 }
4796 }
4797 }
4798
4799 Instrument::~Instrument() {
4800 for (int i = 0 ; pMidiRules[i] ; i++) {
4801 delete pMidiRules[i];
4802 }
4803 delete[] pMidiRules;
4804 if (pScriptRefs) delete pScriptRefs;
4805 }
4806
4807 /**
4808 * Apply Instrument with all its Regions to the respective RIFF chunks.
4809 * You have to call File::Save() to make changes persistent.
4810 *
4811 * Usually there is absolutely no need to call this method explicitly.
4812 * It will be called automatically when File::Save() was called.
4813 *
4814 * @param pProgress - callback function for progress notification
4815 * @throws gig::Exception if samples cannot be dereferenced
4816 */
4817 void Instrument::UpdateChunks(progress_t* pProgress) {
4818 // first update base classes' chunks
4819 DLS::Instrument::UpdateChunks(pProgress);
4820
4821 // update Regions' chunks
4822 {
4823 RegionList::iterator iter = pRegions->begin();
4824 RegionList::iterator end = pRegions->end();
4825 for (; iter != end; ++iter)
4826 (*iter)->UpdateChunks(pProgress);
4827 }
4828
4829 // make sure 'lart' RIFF list chunk exists
4830 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4831 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4832 // make sure '3ewg' RIFF chunk exists
4833 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4834 if (!_3ewg) {
4835 File* pFile = (File*) GetParent();
4836
4837 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4838 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4839 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4840 memset(_3ewg->LoadChunkData(), 0, size);
4841 }
4842 // update '3ewg' RIFF chunk
4843 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4844 store16(&pData[0], EffectSend);
4845 store32(&pData[2], Attenuation);
4846 store16(&pData[6], FineTune);
4847 store16(&pData[8], PitchbendRange);
4848 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4849 DimensionKeyRange.low << 1;
4850 pData[10] = dimkeystart;
4851 pData[11] = DimensionKeyRange.high;
4852
4853 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4854 pData[32] = 0;
4855 pData[33] = 0;
4856 } else {
4857 for (int i = 0 ; pMidiRules[i] ; i++) {
4858 pMidiRules[i]->UpdateChunks(pData);
4859 }
4860 }
4861
4862 // own gig format extensions
4863 if (ScriptSlotCount()) {
4864 // make sure we have converted the original loaded script file
4865 // offsets into valid Script object pointers
4866 LoadScripts();
4867
4868 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4869 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4870 const int slotCount = (int) pScriptRefs->size();
4871 const int headerSize = 3 * sizeof(uint32_t);
4872 const int slotSize = 2 * sizeof(uint32_t);
4873 const int totalChunkSize = headerSize + slotCount * slotSize;
4874 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4875 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4876 else ckSCSL->Resize(totalChunkSize);
4877 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4878 int pos = 0;
4879 store32(&pData[pos], headerSize);
4880 pos += sizeof(uint32_t);
4881 store32(&pData[pos], slotCount);
4882 pos += sizeof(uint32_t);
4883 store32(&pData[pos], slotSize);
4884 pos += sizeof(uint32_t);
4885 for (int i = 0; i < slotCount; ++i) {
4886 // arbitrary value, the actual file offset will be updated in
4887 // UpdateScriptFileOffsets() after the file has been resized
4888 int bogusFileOffset = 0;
4889 store32(&pData[pos], bogusFileOffset);
4890 pos += sizeof(uint32_t);
4891 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4892 pos += sizeof(uint32_t);
4893 }
4894 } else {
4895 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4896 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4897 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4898 }
4899 }
4900
4901 void Instrument::UpdateScriptFileOffsets() {
4902 // own gig format extensions
4903 if (pScriptRefs && pScriptRefs->size() > 0) {
4904 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4905 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4906 const int slotCount = (int) pScriptRefs->size();
4907 const int headerSize = 3 * sizeof(uint32_t);
4908 ckSCSL->SetPos(headerSize);
4909 for (int i = 0; i < slotCount; ++i) {
4910 uint32_t fileOffset = uint32_t(
4911 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4912 (*pScriptRefs)[i].script->pChunk->GetPos() -
4913 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4914 );
4915 ckSCSL->WriteUint32(&fileOffset);
4916 // jump over flags entry (containing the bypass flag)
4917 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4918 }
4919 }
4920 }
4921
4922 /**
4923 * Returns the appropriate Region for a triggered note.
4924 *
4925 * @param Key MIDI Key number of triggered note / key (0 - 127)
4926 * @returns pointer adress to the appropriate Region or NULL if there
4927 * there is no Region defined for the given \a Key
4928 */
4929 Region* Instrument::GetRegion(unsigned int Key) {
4930 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4931 return RegionKeyTable[Key];
4932
4933 /*for (int i = 0; i < Regions; i++) {
4934 if (Key <= pRegions[i]->KeyRange.high &&
4935 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4936 }
4937 return NULL;*/
4938 }
4939
4940 /**
4941 * Returns the first Region of the instrument. You have to call this
4942 * method once before you use GetNextRegion().
4943 *
4944 * @returns pointer address to first region or NULL if there is none
4945 * @see GetNextRegion()
4946 */
4947 Region* Instrument::GetFirstRegion() {
4948 if (!pRegions) return NULL;
4949 RegionsIterator = pRegions->begin();
4950 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4951 }
4952
4953 /**
4954 * Returns the next Region of the instrument. You have to call
4955 * GetFirstRegion() once before you can use this method. By calling this
4956 * method multiple times it iterates through the available Regions.
4957 *
4958 * @returns pointer address to the next region or NULL if end reached
4959 * @see GetFirstRegion()
4960 */
4961 Region* Instrument::GetNextRegion() {
4962 if (!pRegions) return NULL;
4963 RegionsIterator++;
4964 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4965 }
4966
4967 Region* Instrument::AddRegion() {
4968 // create new Region object (and its RIFF chunks)
4969 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4970 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4971 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4972 Region* pNewRegion = new Region(this, rgn);
4973 pRegions->push_back(pNewRegion);
4974 Regions = (uint32_t) pRegions->size();
4975 // update Region key table for fast lookup
4976 UpdateRegionKeyTable();
4977 // done
4978 return pNewRegion;
4979 }
4980
4981 void Instrument::DeleteRegion(Region* pRegion) {
4982 if (!pRegions) return;
4983 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4984 // update Region key table for fast lookup
4985 UpdateRegionKeyTable();
4986 }
4987
4988 /**
4989 * Move this instrument at the position before @arg dst.
4990 *
4991 * This method can be used to reorder the sequence of instruments in a
4992 * .gig file. This might be helpful especially on large .gig files which
4993 * contain a large number of instruments within the same .gig file. So
4994 * grouping such instruments to similar ones, can help to keep track of them
4995 * when working with such complex .gig files.
4996 *
4997 * When calling this method, this instrument will be removed from in its
4998 * current position in the instruments list and moved to the requested
4999 * target position provided by @param dst. You may also pass NULL as
5000 * argument to this method, in that case this intrument will be moved to the
5001 * very end of the .gig file's instrument list.
5002 *
5003 * You have to call Save() to make the order change persistent to the .gig
5004 * file.
5005 *
5006 * Currently this method is limited to moving the instrument within the same
5007 * .gig file. Trying to move it to another .gig file by calling this method
5008 * will throw an exception.
5009 *
5010 * @param dst - destination instrument at which this instrument will be
5011 * moved to, or pass NULL for moving to end of list
5012 * @throw gig::Exception if this instrument and target instrument are not
5013 * part of the same file
5014 */
5015 void Instrument::MoveTo(Instrument* dst) {
5016 if (dst && GetParent() != dst->GetParent())
5017 throw Exception(
5018 "gig::Instrument::MoveTo() can only be used for moving within "
5019 "the same gig file."
5020 );
5021
5022 File* pFile = (File*) GetParent();
5023
5024 // move this instrument within the instrument list
5025 {
5026 File::InstrumentList& list = *pFile->pInstruments;
5027
5028 File::InstrumentList::iterator itFrom =
5029 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5030
5031 File::InstrumentList::iterator itTo =
5032 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5033
5034 list.splice(itTo, list, itFrom);
5035 }
5036
5037 // move the instrument's actual list RIFF chunk appropriately
5038 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5039 lstCkInstruments->MoveSubChunk(
5040 this->pCkInstrument,
5041 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5042 );
5043 }
5044
5045 /**
5046 * Returns a MIDI rule of the instrument.
5047 *
5048 * The list of MIDI rules, at least in gig v3, always contains at
5049 * most two rules. The second rule can only be the DEF filter
5050 * (which currently isn't supported by libgig).
5051 *
5052 * @param i - MIDI rule number
5053 * @returns pointer address to MIDI rule number i or NULL if there is none
5054 */
5055 MidiRule* Instrument::GetMidiRule(int i) {
5056 return pMidiRules[i];
5057 }
5058
5059 /**
5060 * Adds the "controller trigger" MIDI rule to the instrument.
5061 *
5062 * @returns the new MIDI rule
5063 */
5064 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5065 delete pMidiRules[0];
5066 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5067 pMidiRules[0] = r;
5068 pMidiRules[1] = 0;
5069 return r;
5070 }
5071
5072 /**
5073 * Adds the legato MIDI rule to the instrument.
5074 *
5075 * @returns the new MIDI rule
5076 */
5077 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5078 delete pMidiRules[0];
5079 MidiRuleLegato* r = new MidiRuleLegato;
5080 pMidiRules[0] = r;
5081 pMidiRules[1] = 0;
5082 return r;
5083 }
5084
5085 /**
5086 * Adds the alternator MIDI rule to the instrument.
5087 *
5088 * @returns the new MIDI rule
5089 */
5090 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5091 delete pMidiRules[0];
5092 MidiRuleAlternator* r = new MidiRuleAlternator;
5093 pMidiRules[0] = r;
5094 pMidiRules[1] = 0;
5095 return r;
5096 }
5097
5098 /**
5099 * Deletes a MIDI rule from the instrument.
5100 *
5101 * @param i - MIDI rule number
5102 */
5103 void Instrument::DeleteMidiRule(int i) {
5104 delete pMidiRules[i];
5105 pMidiRules[i] = 0;
5106 }
5107
5108 void Instrument::LoadScripts() {
5109 if (pScriptRefs) return;
5110 pScriptRefs = new std::vector<_ScriptPooolRef>;
5111 if (scriptPoolFileOffsets.empty()) return;
5112 File* pFile = (File*) GetParent();
5113 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5114 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5115 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5116 ScriptGroup* group = pFile->GetScriptGroup(i);
5117 for (uint s = 0; group->GetScript(s); ++s) {
5118 Script* script = group->GetScript(s);
5119 if (script->pChunk) {
5120 uint32_t offset = uint32_t(
5121 script->pChunk->GetFilePos() -
5122 script->pChunk->GetPos() -
5123 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5124 );
5125 if (offset == soughtOffset)
5126 {
5127 _ScriptPooolRef ref;
5128 ref.script = script;
5129 ref.bypass = scriptPoolFileOffsets[k].bypass;
5130 pScriptRefs->push_back(ref);
5131 break;
5132 }
5133 }
5134 }
5135 }
5136 }
5137 // we don't need that anymore
5138 scriptPoolFileOffsets.clear();
5139 }
5140
5141 /** @brief Get instrument script (gig format extension).
5142 *
5143 * Returns the real-time instrument script of instrument script slot
5144 * @a index.
5145 *
5146 * @note This is an own format extension which did not exist i.e. in the
5147 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5148 * gigedit.
5149 *
5150 * @param index - instrument script slot index
5151 * @returns script or NULL if index is out of bounds
5152 */
5153 Script* Instrument::GetScriptOfSlot(uint index) {
5154 LoadScripts();
5155 if (index >= pScriptRefs->size()) return NULL;
5156 return pScriptRefs->at(index).script;
5157 }
5158
5159 /** @brief Add new instrument script slot (gig format extension).
5160 *
5161 * Add the given real-time instrument script reference to this instrument,
5162 * which shall be executed by the sampler for for this instrument. The
5163 * script will be added to the end of the script list of this instrument.
5164 * The positions of the scripts in the Instrument's Script list are
5165 * relevant, because they define in which order they shall be executed by
5166 * the sampler. For this reason it is also legal to add the same script
5167 * twice to an instrument, for example you might have a script called
5168 * "MyFilter" which performs an event filter task, and you might have
5169 * another script called "MyNoteTrigger" which triggers new notes, then you
5170 * might for example have the following list of scripts on the instrument:
5171 *
5172 * 1. Script "MyFilter"
5173 * 2. Script "MyNoteTrigger"
5174 * 3. Script "MyFilter"
5175 *
5176 * Which would make sense, because the 2nd script launched new events, which
5177 * you might need to filter as well.
5178 *
5179 * There are two ways to disable / "bypass" scripts. You can either disable
5180 * a script locally for the respective script slot on an instrument (i.e. by
5181 * passing @c false to the 2nd argument of this method, or by calling
5182 * SetScriptBypassed()). Or you can disable a script globally for all slots
5183 * and all instruments by setting Script::Bypass.
5184 *
5185 * @note This is an own format extension which did not exist i.e. in the
5186 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5187 * gigedit.
5188 *
5189 * @param pScript - script that shall be executed for this instrument
5190 * @param bypass - if enabled, the sampler shall skip executing this
5191 * script (in the respective list position)
5192 * @see SetScriptBypassed()
5193 */
5194 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5195 LoadScripts();
5196 _ScriptPooolRef ref = { pScript, bypass };
5197 pScriptRefs->push_back(ref);
5198 }
5199
5200 /** @brief Flip two script slots with each other (gig format extension).
5201 *
5202 * Swaps the position of the two given scripts in the Instrument's Script
5203 * list. The positions of the scripts in the Instrument's Script list are
5204 * relevant, because they define in which order they shall be executed by
5205 * the sampler.
5206 *
5207 * @note This is an own format extension which did not exist i.e. in the
5208 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5209 * gigedit.
5210 *
5211 * @param index1 - index of the first script slot to swap
5212 * @param index2 - index of the second script slot to swap
5213 */
5214 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5215 LoadScripts();
5216 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5217 return;
5218 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5219 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5220 (*pScriptRefs)[index2] = tmp;
5221 }
5222
5223 /** @brief Remove script slot.
5224 *
5225 * Removes the script slot with the given slot index.
5226 *
5227 * @param index - index of script slot to remove
5228 */
5229 void Instrument::RemoveScriptSlot(uint index) {
5230 LoadScripts();
5231 if (index >= pScriptRefs->size()) return;
5232 pScriptRefs->erase( pScriptRefs->begin() + index );
5233 }
5234
5235 /** @brief Remove reference to given Script (gig format extension).
5236 *
5237 * This will remove all script slots on the instrument which are referencing
5238 * the given script.
5239 *
5240 * @note This is an own format extension which did not exist i.e. in the
5241 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5242 * gigedit.
5243 *
5244 * @param pScript - script reference to remove from this instrument
5245 * @see RemoveScriptSlot()
5246 */
5247 void Instrument::RemoveScript(Script* pScript) {
5248 LoadScripts();
5249 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5250 if ((*pScriptRefs)[i].script == pScript) {
5251 pScriptRefs->erase( pScriptRefs->begin() + i );
5252 }
5253 }
5254 }
5255
5256 /** @brief Instrument's amount of script slots.
5257 *
5258 * This method returns the amount of script slots this instrument currently
5259 * uses.
5260 *
5261 * A script slot is a reference of a real-time instrument script to be
5262 * executed by the sampler. The scripts will be executed by the sampler in
5263 * sequence of the slots. One (same) script may be referenced multiple
5264 * times in different slots.
5265 *
5266 * @note This is an own format extension which did not exist i.e. in the
5267 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5268 * gigedit.
5269 */
5270 uint Instrument::ScriptSlotCount() const {
5271 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5272 }
5273
5274 /** @brief Whether script execution shall be skipped.
5275 *
5276 * Defines locally for the Script reference slot in the Instrument's Script
5277 * list, whether the script shall be skipped by the sampler regarding
5278 * execution.
5279 *
5280 * It is also possible to ignore exeuction of the script globally, for all
5281 * slots and for all instruments by setting Script::Bypass.
5282 *
5283 * @note This is an own format extension which did not exist i.e. in the
5284 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5285 * gigedit.
5286 *
5287 * @param index - index of the script slot on this instrument
5288 * @see Script::Bypass
5289 */
5290 bool Instrument::IsScriptSlotBypassed(uint index) {
5291 if (index >= ScriptSlotCount()) return false;
5292 return pScriptRefs ? pScriptRefs->at(index).bypass
5293 : scriptPoolFileOffsets.at(index).bypass;
5294
5295 }
5296
5297 /** @brief Defines whether execution shall be skipped.
5298 *
5299 * You can call this method to define locally whether or whether not the
5300 * given script slot shall be executed by the sampler.
5301 *
5302 * @note This is an own format extension which did not exist i.e. in the
5303 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5304 * gigedit.
5305 *
5306 * @param index - script slot index on this instrument
5307 * @param bBypass - if true, the script slot will be skipped by the sampler
5308 * @see Script::Bypass
5309 */
5310 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5311 if (index >= ScriptSlotCount()) return;
5312 if (pScriptRefs)
5313 pScriptRefs->at(index).bypass = bBypass;
5314 else
5315 scriptPoolFileOffsets.at(index).bypass = bBypass;
5316 }
5317
5318 /**
5319 * Make a (semi) deep copy of the Instrument object given by @a orig
5320 * and assign it to this object.
5321 *
5322 * Note that all sample pointers referenced by @a orig are simply copied as
5323 * memory address. Thus the respective samples are shared, not duplicated!
5324 *
5325 * @param orig - original Instrument object to be copied from
5326 */
5327 void Instrument::CopyAssign(const Instrument* orig) {
5328 CopyAssign(orig, NULL);
5329 }
5330
5331 /**
5332 * Make a (semi) deep copy of the Instrument object given by @a orig
5333 * and assign it to this object.
5334 *
5335 * @param orig - original Instrument object to be copied from
5336 * @param mSamples - crosslink map between the foreign file's samples and
5337 * this file's samples
5338 */
5339 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5340 // handle base class
5341 // (without copying DLS region stuff)
5342 DLS::Instrument::CopyAssignCore(orig);
5343
5344 // handle own member variables
5345 Attenuation = orig->Attenuation;
5346 EffectSend = orig->EffectSend;
5347 FineTune = orig->FineTune;
5348 PitchbendRange = orig->PitchbendRange;
5349 PianoReleaseMode = orig->PianoReleaseMode;
5350 DimensionKeyRange = orig->DimensionKeyRange;
5351 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5352 pScriptRefs = orig->pScriptRefs;
5353
5354 // free old midi rules
5355 for (int i = 0 ; pMidiRules[i] ; i++) {
5356 delete pMidiRules[i];
5357 }
5358 //TODO: MIDI rule copying
5359 pMidiRules[0] = NULL;
5360
5361 // delete all old regions
5362 while (Regions) DeleteRegion(GetFirstRegion());
5363 // create new regions and copy them from original
5364 {
5365 RegionList::const_iterator it = orig->pRegions->begin();
5366 for (int i = 0; i < orig->Regions; ++i, ++it) {
5367 Region* dstRgn = AddRegion();
5368 //NOTE: Region does semi-deep copy !
5369 dstRgn->CopyAssign(
5370 static_cast<gig::Region*>(*it),
5371 mSamples
5372 );
5373 }
5374 }
5375
5376 UpdateRegionKeyTable();
5377 }
5378
5379
5380 // *************** Group ***************
5381 // *
5382
5383 /** @brief Constructor.
5384 *
5385 * @param file - pointer to the gig::File object
5386 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5387 * NULL if this is a new Group
5388 */
5389 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5390 pFile = file;
5391 pNameChunk = ck3gnm;
5392 ::LoadString(pNameChunk, Name);
5393 }
5394
5395 Group::~Group() {
5396 // remove the chunk associated with this group (if any)
5397 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5398 }
5399
5400 /** @brief Update chunks with current group settings.
5401 *
5402 * Apply current Group field values to the respective chunks. You have
5403 * to call File::Save() to make changes persistent.
5404 *
5405 * Usually there is absolutely no need to call this method explicitly.
5406 * It will be called automatically when File::Save() was called.
5407 *
5408 * @param pProgress - callback function for progress notification
5409 */
5410 void Group::UpdateChunks(progress_t* pProgress) {
5411 // make sure <3gri> and <3gnl> list chunks exist
5412 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5413 if (!_3gri) {
5414 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5415 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5416 }
5417 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5418 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5419
5420 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5421 // v3 has a fixed list of 128 strings, find a free one
5422 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5423 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5424 pNameChunk = ck;
5425 break;
5426 }
5427 }
5428 }
5429
5430 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5431 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5432 }
5433
5434 /**
5435 * Returns the first Sample of this Group. You have to call this method
5436 * once before you use GetNextSample().
5437 *
5438 * <b>Notice:</b> this method might block for a long time, in case the
5439 * samples of this .gig file were not scanned yet
5440 *
5441 * @returns pointer address to first Sample or NULL if there is none
5442 * applied to this Group
5443 * @see GetNextSample()
5444 */
5445 Sample* Group::GetFirstSample() {
5446 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5447 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5448 if (pSample->GetGroup() == this) return pSample;
5449 }
5450 return NULL;
5451 }
5452
5453 /**
5454 * Returns the next Sample of the Group. You have to call
5455 * GetFirstSample() once before you can use this method. By calling this
5456 * method multiple times it iterates through the Samples assigned to
5457 * this Group.
5458 *
5459 * @returns pointer address to the next Sample of this Group or NULL if
5460 * end reached
5461 * @see GetFirstSample()
5462 */
5463 Sample* Group::GetNextSample() {
5464 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5465 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5466 if (pSample->GetGroup() == this) return pSample;
5467 }
5468 return NULL;
5469 }
5470
5471 /**
5472 * Move Sample given by \a pSample from another Group to this Group.
5473 */
5474 void Group::AddSample(Sample* pSample) {
5475 pSample->pGroup = this;
5476 }
5477
5478 /**
5479 * Move all members of this group to another group (preferably the 1st
5480 * one except this). This method is called explicitly by
5481 * File::DeleteGroup() thus when a Group was deleted. This code was
5482 * intentionally not placed in the destructor!
5483 */
5484 void Group::MoveAll() {
5485 // get "that" other group first
5486 Group* pOtherGroup = NULL;
5487 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5488 if (pOtherGroup != this) break;
5489 }
5490 if (!pOtherGroup) throw Exception(
5491 "Could not move samples to another group, since there is no "
5492 "other Group. This is a bug, report it!"
5493 );
5494 // now move all samples of this group to the other group
5495 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5496 pOtherGroup->AddSample(pSample);
5497 }
5498 }
5499
5500
5501
5502 // *************** File ***************
5503 // *
5504
5505 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5506 const DLS::version_t File::VERSION_2 = {
5507 0, 2, 19980628 & 0xffff, 19980628 >> 16
5508 };
5509
5510 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5511 const DLS::version_t File::VERSION_3 = {
5512 0, 3, 20030331 & 0xffff, 20030331 >> 16
5513 };
5514
5515 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5516 const DLS::version_t File::VERSION_4 = {
5517 0, 4, 20071012 & 0xffff, 20071012 >> 16
5518 };
5519
5520 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5521 { CHUNK_ID_IARL, 256 },
5522 { CHUNK_ID_IART, 128 },
5523 { CHUNK_ID_ICMS, 128 },
5524 { CHUNK_ID_ICMT, 1024 },
5525 { CHUNK_ID_ICOP, 128 },
5526 { CHUNK_ID_ICRD, 128 },
5527 { CHUNK_ID_IENG, 128 },
5528 { CHUNK_ID_IGNR, 128 },
5529 { CHUNK_ID_IKEY, 128 },
5530 { CHUNK_ID_IMED, 128 },
5531 { CHUNK_ID_INAM, 128 },
5532 { CHUNK_ID_IPRD, 128 },
5533 { CHUNK_ID_ISBJ, 128 },
5534 { CHUNK_ID_ISFT, 128 },
5535 { CHUNK_ID_ISRC, 128 },
5536 { CHUNK_ID_ISRF, 128 },
5537 { CHUNK_ID_ITCH, 128 },
5538 { 0, 0 }
5539 };
5540
5541 File::File() : DLS::File() {
5542 bAutoLoad = true;
5543 *pVersion = VERSION_3;
5544 pGroups = NULL;
5545 pScriptGroups = NULL;
5546 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5547 pInfo->ArchivalLocation = String(256, ' ');
5548
5549 // add some mandatory chunks to get the file chunks in right
5550 // order (INFO chunk will be moved to first position later)
5551 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5552 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5553 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5554
5555 GenerateDLSID();
5556 }
5557
5558 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5559 bAutoLoad = true;
5560 pGroups = NULL;
5561 pScriptGroups = NULL;
5562 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5563 }
5564
5565 File::~File() {
5566 if (pGroups) {
5567 std::list<Group*>::iterator iter = pGroups->begin();
5568 std::list<Group*>::iterator end = pGroups->end();
5569 while (iter != end) {
5570 delete *iter;
5571 ++iter;
5572 }
5573 delete pGroups;
5574 }
5575 if (pScriptGroups) {
5576 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5577 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5578 while (iter != end) {
5579 delete *iter;
5580 ++iter;
5581 }
5582 delete pScriptGroups;
5583 }
5584 }
5585
5586 Sample* File::GetFirstSample(progress_t* pProgress) {
5587 if (!pSamples) LoadSamples(pProgress);
5588 if (!pSamples) return NULL;
5589 SamplesIterator = pSamples->begin();
5590 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5591 }
5592
5593 Sample* File::GetNextSample() {
5594 if (!pSamples) return NULL;
5595 SamplesIterator++;
5596 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5597 }
5598
5599 /**
5600 * Returns Sample object of @a index.
5601 *
5602 * @returns sample object or NULL if index is out of bounds
5603 */
5604 Sample* File::GetSample(uint index) {
5605 if (!pSamples) LoadSamples();
5606 if (!pSamples) return NULL;
5607 DLS::File::SampleList::iterator it = pSamples->begin();
5608 for (int i = 0; i < index; ++i) {
5609 ++it;
5610 if (it == pSamples->end()) return NULL;
5611 }
5612 if (it == pSamples->end()) return NULL;
5613 return static_cast<gig::Sample*>( *it );
5614 }
5615
5616 /**
5617 * Returns the total amount of samples of this gig file.
5618 *
5619 * Note that this method might block for a long time in case it is required
5620 * to load the sample info for the first time.
5621 *
5622 * @returns total amount of samples
5623 */
5624 size_t File::CountSamples() {
5625 if (!pSamples) LoadSamples();
5626 if (!pSamples) return 0;
5627 return pSamples->size();
5628 }
5629
5630 /** @brief Add a new sample.
5631 *
5632 * This will create a new Sample object for the gig file. You have to
5633 * call Save() to make this persistent to the file.
5634 *
5635 * @returns pointer to new Sample object
5636 */
5637 Sample* File::AddSample() {
5638 if (!pSamples) LoadSamples();
5639 __ensureMandatoryChunksExist();
5640 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5641 // create new Sample object and its respective 'wave' list chunk
5642 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5643 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5644
5645 // add mandatory chunks to get the chunks in right order
5646 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5647 wave->AddSubList(LIST_TYPE_INFO);
5648
5649 pSamples->push_back(pSample);
5650 return pSample;
5651 }
5652
5653 /** @brief Delete a sample.
5654 *
5655 * This will delete the given Sample object from the gig file. Any
5656 * references to this sample from Regions and DimensionRegions will be
5657 * removed. You have to call Save() to make this persistent to the file.
5658 *
5659 * @param pSample - sample to delete
5660 * @throws gig::Exception if given sample could not be found
5661 */
5662 void File::DeleteSample(Sample* pSample) {
5663 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5664 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5665 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5666 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5667 pSamples->erase(iter);
5668 delete pSample;
5669
5670 SampleList::iterator tmp = SamplesIterator;
5671 // remove all references to the sample
5672 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5673 instrument = GetNextInstrument()) {
5674 for (Region* region = instrument->GetFirstRegion() ; region ;
5675 region = instrument->GetNextRegion()) {
5676
5677 if (region->GetSample() == pSample) region->SetSample(NULL);
5678
5679 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5680 gig::DimensionRegion *d = region->pDimensionRegions[i];
5681 if (d->pSample == pSample) d->pSample = NULL;
5682 }
5683 }
5684 }
5685 SamplesIterator = tmp; // restore iterator
5686 }
5687
5688 void File::LoadSamples() {
5689 LoadSamples(NULL);
5690 }
5691
5692 void File::LoadSamples(progress_t* pProgress) {
5693 // Groups must be loaded before samples, because samples will try
5694 // to resolve the group they belong to
5695 if (!pGroups) LoadGroups();
5696
5697 if (!pSamples) pSamples = new SampleList;
5698
5699 RIFF::File* file = pRIFF;
5700
5701 // just for progress calculation
5702 int iSampleIndex = 0;
5703 int iTotalSamples = WavePoolCount;
5704
5705 // just for assembling path of optional extension files to be read
5706 const std::string folder = parentPath(pRIFF->GetFileName());
5707 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5708
5709 // the main gig file and the extension files (.gx01, ... , .gx98) may
5710 // contain wave data (wave pool)
5711 std::vector<RIFF::File*> poolFiles;
5712 poolFiles.push_back(pRIFF);
5713
5714 // get info about all extension files
5715 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5716 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5717 const uint32_t n = ckXfil->ReadInt32();
5718 for (int i = 0; i < n; i++) {
5719 // read the filename and load the extension file
5720 std::string name;
5721 ckXfil->ReadString(name, 128);
5722 std::string path = concatPath(folder, name);
5723 RIFF::File* pExtFile = new RIFF::File(path);
5724 // check that the dlsids match
5725 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5726 if (ckDLSID) {
5727 ::DLS::dlsid_t idExpected;
5728 idExpected.ulData1 = ckXfil->ReadInt32();
5729 idExpected.usData2 = ckXfil->ReadInt16();
5730 idExpected.usData3 = ckXfil->ReadInt16();
5731 ckXfil->Read(idExpected.abData, 8, 1);
5732 ::DLS::dlsid_t idFound;
5733 ckDLSID->Read(&idFound.ulData1, 1, 4);
5734 ckDLSID->Read(&idFound.usData2, 1, 2);
5735 ckDLSID->Read(&idFound.usData3, 1, 2);
5736 ckDLSID->Read(idFound.abData, 8, 1);
5737 if (memcmp(&idExpected, &idFound, 16) != 0)
5738 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5739 }
5740 poolFiles.push_back(pExtFile);
5741 ExtensionFiles.push_back(pExtFile);
5742 }
5743 }
5744
5745 // check if a .gx99 (GigaPulse) file exists
5746 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5747 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5748 std::string path = baseName + ".gx99";
5749 RIFF::File* pExtFile = new RIFF::File(path);
5750
5751 // skip unused int and filename
5752 ckDoxf->SetPos(132, RIFF::stream_whence_t::stream_curpos);
5753
5754 // check that the dlsids match
5755 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5756 if (ckDLSID) {
5757 ::DLS::dlsid_t idExpected;
5758 idExpected.ulData1 = ckDoxf->ReadInt32();
5759 idExpected.usData2 = ckDoxf->ReadInt16();
5760 idExpected.usData3 = ckDoxf->ReadInt16();
5761 ckDoxf->Read(idExpected.abData, 8, 1);
5762 ::DLS::dlsid_t idFound;
5763 ckDLSID->Read(&idFound.ulData1, 1, 4);
5764 ckDLSID->Read(&idFound.usData2, 1, 2);
5765 ckDLSID->Read(&idFound.usData3, 1, 2);
5766 ckDLSID->Read(idFound.abData, 8, 1);
5767 if (memcmp(&idExpected, &idFound, 16) != 0)
5768 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5769 }
5770 poolFiles.push_back(pExtFile);
5771 ExtensionFiles.push_back(pExtFile);
5772 }
5773
5774 // load samples from extension files (if required)
5775 for (int i = 0; i < poolFiles.size(); i++) {
5776 RIFF::File* file = poolFiles[i];
5777 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5778 if (wvpl) {
5779 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5780 RIFF::List* wave = wvpl->GetFirstSubList();
5781 while (wave) {
5782 if (wave->GetListType() == LIST_TYPE_WAVE) {
5783 // notify current progress
5784 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5785 __notify_progress(pProgress, subprogress);
5786
5787 file_offset_t waveFileOffset = wave->GetFilePos();
5788 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5789
5790 iSampleIndex++;
5791 }
5792 wave = wvpl->GetNextSubList();
5793 }
5794 }
5795 }
5796
5797 __notify_progress(pProgress, 1.0); // notify done
5798 }
5799
5800 Instrument* File::GetFirstInstrument() {
5801 if (!pInstruments) LoadInstruments();
5802 if (!pInstruments) return NULL;
5803 InstrumentsIterator = pInstruments->begin();
5804 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5805 }
5806
5807 Instrument* File::GetNextInstrument() {
5808 if (!pInstruments) return NULL;
5809 InstrumentsIterator++;
5810 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5811 }
5812
5813 /**
5814 * Returns the total amount of instruments of this gig file.
5815 *
5816 * Note that this method might block for a long time in case it is required
5817 * to load the instruments info for the first time.
5818 *
5819 * @returns total amount of instruments
5820 */
5821 size_t File::CountInstruments() {
5822 if (!pInstruments) LoadInstruments();
5823 if (!pInstruments) return 0;
5824 return pInstruments->size();
5825 }
5826
5827 /**
5828 * Returns the instrument with the given index.
5829 *
5830 * @param index - number of the sought instrument (0..n)
5831 * @param pProgress - optional: callback function for progress notification
5832 * @returns sought instrument or NULL if there's no such instrument
5833 */
5834 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5835 if (!pInstruments) {
5836 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5837
5838 // sample loading subtask
5839 progress_t subprogress;
5840 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5841 __notify_progress(&subprogress, 0.0f);
5842 if (GetAutoLoad())
5843 GetFirstSample(&subprogress); // now force all samples to be loaded
5844 __notify_progress(&subprogress, 1.0f);
5845
5846 // instrument loading subtask
5847 if (pProgress && pProgress->callback) {
5848 subprogress.__range_min = subprogress.__range_max;
5849 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5850 }
5851 __notify_progress(&subprogress, 0.0f);
5852 LoadInstruments(&subprogress);
5853 __notify_progress(&subprogress, 1.0f);
5854 }
5855 if (!pInstruments) return NULL;
5856 InstrumentsIterator = pInstruments->begin();
5857 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5858 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5859 InstrumentsIterator++;
5860 }
5861 return NULL;
5862 }
5863
5864 /** @brief Add a new instrument definition.
5865 *
5866 * This will create a new Instrument object for the gig file. You have
5867 * to call Save() to make this persistent to the file.
5868 *
5869 * @returns pointer to new Instrument object
5870 */
5871 Instrument* File::AddInstrument() {
5872 if (!pInstruments) LoadInstruments();
5873 __ensureMandatoryChunksExist();
5874 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5875 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5876
5877 // add mandatory chunks to get the chunks in right order
5878 lstInstr->AddSubList(LIST_TYPE_INFO);
5879 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5880
5881 Instrument* pInstrument = new Instrument(this, lstInstr);
5882 pInstrument->GenerateDLSID();
5883
5884 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5885
5886 // this string is needed for the gig to be loadable in GSt:
5887 pInstrument->pInfo->Software = "Endless Wave";
5888
5889 pInstruments->push_back(pInstrument);
5890 return pInstrument;
5891 }
5892
5893 /** @brief Add a duplicate of an existing instrument.
5894 *
5895 * Duplicates the instrument definition given by @a orig and adds it
5896 * to this file. This allows in an instrument editor application to
5897 * easily create variations of an instrument, which will be stored in
5898 * the same .gig file, sharing i.e. the same samples.
5899 *
5900 * Note that all sample pointers referenced by @a orig are simply copied as
5901 * memory address. Thus the respective samples are shared, not duplicated!
5902 *
5903 * You have to call Save() to make this persistent to the file.
5904 *
5905 * @param orig - original instrument to be copied
5906 * @returns duplicated copy of the given instrument
5907 */
5908 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5909 Instrument* instr = AddInstrument();
5910 instr->CopyAssign(orig);
5911 return instr;
5912 }
5913
5914 /** @brief Add content of another existing file.
5915 *
5916 * Duplicates the samples, groups and instruments of the original file
5917 * given by @a pFile and adds them to @c this File. In case @c this File is
5918 * a new one that you haven't saved before, then you have to call
5919 * SetFileName() before calling AddContentOf(), because this method will
5920 * automatically save this file during operation, which is required for
5921 * writing the sample waveform data by disk streaming.
5922 *
5923 * @param pFile - original file whose's content shall be copied from
5924 */
5925 void File::AddContentOf(File* pFile) {
5926 static int iCallCount = -1;
5927 iCallCount++;
5928 std::map<Group*,Group*> mGroups;
5929 std::map<Sample*,Sample*> mSamples;
5930
5931 // clone sample groups
5932 for (int i = 0; pFile->GetGroup(i); ++i) {
5933 Group* g = AddGroup();
5934 g->Name =
5935 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5936 mGroups[pFile->GetGroup(i)] = g;
5937 }
5938
5939 // clone samples (not waveform data here yet)
5940 for (int i = 0; pFile->GetSample(i); ++i) {
5941 Sample* s = AddSample();
5942 s->CopyAssignMeta(pFile->GetSample(i));
5943 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5944 mSamples[pFile->GetSample(i)] = s;
5945 }
5946
5947 // clone script groups and their scripts
5948 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5949 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5950 ScriptGroup* dg = AddScriptGroup();
5951 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5952 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5953 Script* ss = sg->GetScript(iScript);
5954 Script* ds = dg->AddScript();
5955 ds->CopyAssign(ss);
5956 }
5957 }
5958
5959 //BUG: For some reason this method only works with this additional
5960 // Save() call in between here.
5961 //
5962 // Important: The correct one of the 2 Save() methods has to be called
5963 // here, depending on whether the file is completely new or has been
5964 // saved to disk already, otherwise it will result in data corruption.
5965 if (pRIFF->IsNew())
5966 Save(GetFileName());
5967 else
5968 Save();
5969
5970 // clone instruments
5971 // (passing the crosslink table here for the cloned samples)
5972 for (int i = 0; pFile->GetInstrument(i); ++i) {
5973 Instrument* instr = AddInstrument();
5974 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5975 }
5976
5977 // Mandatory: file needs to be saved to disk at this point, so this
5978 // file has the correct size and data layout for writing the samples'
5979 // waveform data to disk.
5980 Save();
5981
5982 // clone samples' waveform data
5983 // (using direct read & write disk streaming)
5984 for (int i = 0; pFile->GetSample(i); ++i) {
5985 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5986 }
5987 }
5988
5989 /** @brief Delete an instrument.
5990 *
5991 * This will delete the given Instrument object from the gig file. You
5992 * have to call Save() to make this persistent to the file.
5993 *
5994 * @param pInstrument - instrument to delete
5995 * @throws gig::Exception if given instrument could not be found
5996 */
5997 void File::DeleteInstrument(Instrument* pInstrument) {
5998 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5999 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6000 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6001 pInstruments->erase(iter);
6002 delete pInstrument;
6003 }
6004
6005 void File::LoadInstruments() {
6006 LoadInstruments(NULL);
6007 }
6008
6009 void File::LoadInstruments(progress_t* pProgress) {
6010 if (!pInstruments) pInstruments = new InstrumentList;
6011 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6012 if (lstInstruments) {
6013 int iInstrumentIndex = 0;
6014 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6015 while (lstInstr) {
6016 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6017 // notify current progress
6018 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6019 __notify_progress(pProgress, localProgress);
6020
6021 // divide local progress into subprogress for loading current Instrument
6022 progress_t subprogress;
6023 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6024
6025 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6026
6027 iInstrumentIndex++;
6028 }
6029 lstInstr = lstInstruments->GetNextSubList();
6030 }
6031 __notify_progress(pProgress, 1.0); // notify done
6032 }
6033 }
6034
6035 /// Updates the 3crc chunk with the checksum of a sample. The
6036 /// update is done directly to disk, as this method is called
6037 /// after File::Save()
6038 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6039 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6040 if (!_3crc) return;
6041
6042 // get the index of the sample
6043 int iWaveIndex = GetWaveTableIndexOf(pSample);
6044 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6045
6046 // write the CRC-32 checksum to disk
6047 _3crc->SetPos(iWaveIndex * 8);
6048 uint32_t one = 1;
6049 _3crc->WriteUint32(&one); // always 1
6050 _3crc->WriteUint32(&crc);
6051 }
6052
6053 uint32_t File::GetSampleChecksum(Sample* pSample) {
6054 // get the index of the sample
6055 int iWaveIndex = GetWaveTableIndexOf(pSample);
6056 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6057
6058 return GetSampleChecksumByIndex(iWaveIndex);
6059 }
6060
6061 uint32_t File::GetSampleChecksumByIndex(int index) {
6062 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6063
6064 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6065 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6066 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6067 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6068
6069 // read the CRC-32 checksum directly from disk
6070 size_t pos = index * 8;
6071 if (pos + 8 > _3crc->GetNewSize())
6072 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6073
6074 uint32_t one = load32(&pData[pos]); // always 1
6075 if (one != 1)
6076 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6077
6078 return load32(&pData[pos+4]);
6079 }
6080
6081 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6082 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6083 File::SampleList::iterator iter = pSamples->begin();
6084 File::SampleList::iterator end = pSamples->end();
6085 for (int index = 0; iter != end; ++iter, ++index)
6086 if (*iter == pSample)
6087 return index;
6088 return -1;
6089 }
6090
6091 /**
6092 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6093 * the CRC32 check sums of all samples' raw wave data.
6094 *
6095 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6096 */
6097 bool File::VerifySampleChecksumTable() {
6098 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6099 if (!_3crc) return false;
6100 if (_3crc->GetNewSize() <= 0) return false;
6101 if (_3crc->GetNewSize() % 8) return false;
6102 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6103 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6104
6105 const file_offset_t n = _3crc->GetNewSize() / 8;
6106
6107 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6108 if (!pData) return false;
6109
6110 for (file_offset_t i = 0; i < n; ++i) {
6111 uint32_t one = pData[i*2];
6112 if (one != 1) return false;
6113 }
6114
6115 return true;
6116 }
6117
6118 /**
6119 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6120 * file's checksum table with those new checksums. This might usually
6121 * just be necessary if the checksum table was damaged.
6122 *
6123 * @e IMPORTANT: The current implementation of this method only works
6124 * with files that have not been modified since it was loaded, because
6125 * it expects that no externally caused file structure changes are
6126 * required!
6127 *
6128 * Due to the expectation above, this method is currently protected
6129 * and actually only used by the command line tool "gigdump" yet.
6130 *
6131 * @returns true if Save() is required to be called after this call,
6132 * false if no further action is required
6133 */
6134 bool File::RebuildSampleChecksumTable() {
6135 // make sure sample chunks were scanned
6136 if (!pSamples) GetFirstSample();
6137
6138 bool bRequiresSave = false;
6139
6140 // make sure "3CRC" chunk exists with required size
6141 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6142 if (!_3crc) {
6143 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6144 // the order of einf and 3crc is not the same in v2 and v3
6145 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6146 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6147 bRequiresSave = true;
6148 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6149 _3crc->Resize(pSamples->size() * 8);
6150 bRequiresSave = true;
6151 }
6152
6153 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6154 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6155 {
6156 File::SampleList::iterator iter = pSamples->begin();
6157 File::SampleList::iterator end = pSamples->end();
6158 for (; iter != end; ++iter) {
6159 gig::Sample* pSample = (gig::Sample*) *iter;
6160 int index = GetWaveTableIndexOf(pSample);
6161 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6162 pData[index*2] = 1; // always 1
6163 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6164 }
6165 }
6166 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6167 // make sure file is in write mode
6168 pRIFF->SetMode(RIFF::stream_mode_read_write);
6169 {
6170 File::SampleList::iterator iter = pSamples->begin();
6171 File::SampleList::iterator end = pSamples->end();
6172 for (; iter != end; ++iter) {
6173 gig::Sample* pSample = (gig::Sample*) *iter;
6174 int index = GetWaveTableIndexOf(pSample);
6175 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6176 pSample->crc = pSample->CalculateWaveDataChecksum();
6177 SetSampleChecksum(pSample, pSample->crc);
6178 }
6179 }
6180 }
6181
6182 return bRequiresSave;
6183 }
6184
6185 Group* File::GetFirstGroup() {
6186 if (!pGroups) LoadGroups();
6187 // there must always be at least one group
6188 GroupsIterator = pGroups->begin();
6189 return *GroupsIterator;
6190 }
6191
6192 Group* File::GetNextGroup() {
6193 if (!pGroups) return NULL;
6194 ++GroupsIterator;
6195 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6196 }
6197
6198 /**
6199 * Returns the group with the given index.
6200 *
6201 * @param index - number of the sought group (0..n)
6202 * @returns sought group or NULL if there's no such group
6203 */
6204 Group* File::GetGroup(uint index) {
6205 if (!pGroups) LoadGroups();
6206 GroupsIterator = pGroups->begin();
6207 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6208 if (i == index) return *GroupsIterator;
6209 ++GroupsIterator;
6210 }
6211 return NULL;
6212 }
6213
6214 /**
6215 * Returns the group with the given group name.
6216 *
6217 * Note: group names don't have to be unique in the gig format! So there
6218 * can be multiple groups with the same name. This method will simply
6219 * return the first group found with the given name.
6220 *
6221 * @param name - name of the sought group
6222 * @returns sought group or NULL if there's no group with that name
6223 */
6224 Group* File::GetGroup(String name) {
6225 if (!pGroups) LoadGroups();
6226 GroupsIterator = pGroups->begin();
6227 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6228 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6229 return NULL;
6230 }
6231
6232 Group* File::AddGroup() {
6233 if (!pGroups) LoadGroups();
6234 // there must always be at least one group
6235 __ensureMandatoryChunksExist();
6236 Group* pGroup = new Group(this, NULL);
6237 pGroups->push_back(pGroup);
6238 return pGroup;
6239 }
6240
6241 /** @brief Delete a group and its samples.
6242 *
6243 * This will delete the given Group object and all the samples that
6244 * belong to this group from the gig file. You have to call Save() to
6245 * make this persistent to the file.
6246 *
6247 * @param pGroup - group to delete
6248 * @throws gig::Exception if given group could not be found
6249 */
6250 void File::DeleteGroup(Group* pGroup) {
6251 if (!pGroups) LoadGroups();
6252 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6253 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6254 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6255 // delete all members of this group
6256 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6257 DeleteSample(pSample);
6258 }
6259 // now delete this group object
6260 pGroups->erase(iter);
6261 delete pGroup;
6262 }
6263
6264 /** @brief Delete a group.
6265 *
6266 * This will delete the given Group object from the gig file. All the
6267 * samples that belong to this group will not be deleted, but instead
6268 * be moved to another group. You have to call Save() to make this
6269 * persistent to the file.
6270 *
6271 * @param pGroup - group to delete
6272 * @throws gig::Exception if given group could not be found
6273 */
6274 void File::DeleteGroupOnly(Group* pGroup) {
6275 if (!pGroups) LoadGroups();
6276 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6277 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6278 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6279 // move all members of this group to another group
6280 pGroup->MoveAll();
6281 pGroups->erase(iter);
6282 delete pGroup;
6283 }
6284
6285 void File::LoadGroups() {
6286 if (!pGroups) pGroups = new std::list<Group*>;
6287 // try to read defined groups from file
6288 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6289 if (lst3gri) {
6290 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6291 if (lst3gnl) {
6292 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6293 while (ck) {
6294 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6295 if (pVersion && pVersion->major > 2 &&
6296 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6297
6298 pGroups->push_back(new Group(this, ck));
6299 }
6300 ck = lst3gnl->GetNextSubChunk();
6301 }
6302 }
6303 }
6304 // if there were no group(s), create at least the mandatory default group
6305 if (!pGroups->size()) {
6306 Group* pGroup = new Group(this, NULL);
6307 pGroup->Name = "Default Group";
6308 pGroups->push_back(pGroup);
6309 }
6310 }
6311
6312 /** @brief Get instrument script group (by index).
6313 *
6314 * Returns the real-time instrument script group with the given index.
6315 *
6316 * @param index - number of the sought group (0..n)
6317 * @returns sought script group or NULL if there's no such group
6318 */
6319 ScriptGroup* File::GetScriptGroup(uint index) {
6320 if (!pScriptGroups) LoadScriptGroups();
6321 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6322 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6323 if (i == index) return *it;
6324 return NULL;
6325 }
6326
6327 /** @brief Get instrument script group (by name).
6328 *
6329 * Returns the first real-time instrument script group found with the given
6330 * group name. Note that group names may not necessarily be unique.
6331 *
6332 * @param name - name of the sought script group
6333 * @returns sought script group or NULL if there's no such group
6334 */
6335 ScriptGroup* File::GetScriptGroup(const String& name) {
6336 if (!pScriptGroups) LoadScriptGroups();
6337 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6338 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6339 if ((*it)->Name == name) return *it;
6340 return NULL;
6341 }
6342
6343 /** @brief Add new instrument script group.
6344 *
6345 * Adds a new, empty real-time instrument script group to the file.
6346 *
6347 * You have to call Save() to make this persistent to the file.
6348 *
6349 * @return new empty script group
6350 */
6351 ScriptGroup* File::AddScriptGroup() {
6352 if (!pScriptGroups) LoadScriptGroups();
6353 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6354 pScriptGroups->push_back(pScriptGroup);
6355 return pScriptGroup;
6356 }
6357
6358 /** @brief Delete an instrument script group.
6359 *
6360 * This will delete the given real-time instrument script group and all its
6361 * instrument scripts it contains. References inside instruments that are
6362 * using the deleted scripts will be removed from the respective instruments
6363 * accordingly.
6364 *
6365 * You have to call Save() to make this persistent to the file.
6366 *
6367 * @param pScriptGroup - script group to delete
6368 * @throws gig::Exception if given script group could not be found
6369 */
6370 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6371 if (!pScriptGroups) LoadScriptGroups();
6372 std::list<ScriptGroup*>::iterator iter =
6373 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6374 if (iter == pScriptGroups->end())
6375 throw gig::Exception("Could not delete script group, could not find given script group");
6376 pScriptGroups->erase(iter);
6377 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6378 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6379 if (pScriptGroup->pList)
6380 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6381 delete pScriptGroup;
6382 }
6383
6384 void File::LoadScriptGroups() {
6385 if (pScriptGroups) return;
6386 pScriptGroups = new std::list<ScriptGroup*>;
6387 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6388 if (lstLS) {
6389 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6390 lst = lstLS->GetNextSubList())
6391 {
6392 if (lst->GetListType() == LIST_TYPE_RTIS) {
6393 pScriptGroups->push_back(new ScriptGroup(this, lst));
6394 }
6395 }
6396 }
6397 }
6398
6399 /**
6400 * Apply all the gig file's current instruments, samples, groups and settings
6401 * to the respective RIFF chunks. You have to call Save() to make changes
6402 * persistent.
6403 *
6404 * Usually there is absolutely no need to call this method explicitly.
6405 * It will be called automatically when File::Save() was called.
6406 *
6407 * @param pProgress - callback function for progress notification
6408 * @throws Exception - on errors
6409 */
6410 void File::UpdateChunks(progress_t* pProgress) {
6411 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6412
6413 // update own gig format extension chunks
6414 // (not part of the GigaStudio 4 format)
6415 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6416 if (!lst3LS) {
6417 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6418 }
6419 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6420 // location of <3LS > is irrelevant, however it should be located
6421 // before the actual wave data
6422 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6423 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6424
6425 // This must be performed before writing the chunks for instruments,
6426 // because the instruments' script slots will write the file offsets
6427 // of the respective instrument script chunk as reference.
6428 if (pScriptGroups) {
6429 // Update instrument script (group) chunks.
6430 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6431 it != pScriptGroups->end(); ++it)
6432 {
6433 (*it)->UpdateChunks(pProgress);
6434 }
6435 }
6436
6437 // in case no libgig custom format data was added, then remove the
6438 // custom "3LS " chunk again
6439 if (!lst3LS->CountSubChunks()) {
6440 pRIFF->DeleteSubChunk(lst3LS);
6441 lst3LS = NULL;
6442 }
6443
6444 // first update base class's chunks
6445 DLS::File::UpdateChunks(pProgress);
6446
6447 if (newFile) {
6448 // INFO was added by Resource::UpdateChunks - make sure it
6449 // is placed first in file
6450 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6451 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6452 if (first != info) {
6453 pRIFF->MoveSubChunk(info, first);
6454 }
6455 }
6456
6457 // update group's chunks
6458 if (pGroups) {
6459 // make sure '3gri' and '3gnl' list chunks exist
6460 // (before updating the Group chunks)
6461 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6462 if (!_3gri) {
6463 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6464 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6465 }
6466 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6467 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6468
6469 // v3: make sure the file has 128 3gnm chunks
6470 // (before updating the Group chunks)
6471 if (pVersion && pVersion->major > 2) {
6472 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6473 for (int i = 0 ; i < 128 ; i++) {
6474 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6475 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6476 }
6477 }
6478
6479 std::list<Group*>::iterator iter = pGroups->begin();
6480 std::list<Group*>::iterator end = pGroups->end();
6481 for (; iter != end; ++iter) {
6482 (*iter)->UpdateChunks(pProgress);
6483 }
6484 }
6485
6486 // update einf chunk
6487
6488 // The einf chunk contains statistics about the gig file, such
6489 // as the number of regions and samples used by each
6490 // instrument. It is divided in equally sized parts, where the
6491 // first part contains information about the whole gig file,
6492 // and the rest of the parts map to each instrument in the
6493 // file.
6494 //
6495 // At the end of each part there is a bit map of each sample
6496 // in the file, where a set bit means that the sample is used
6497 // by the file/instrument.
6498 //
6499 // Note that there are several fields with unknown use. These
6500 // are set to zero.
6501
6502 int sublen = int(pSamples->size() / 8 + 49);
6503 int einfSize = (Instruments + 1) * sublen;
6504
6505 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6506 if (einf) {
6507 if (einf->GetSize() != einfSize) {
6508 einf->Resize(einfSize);
6509 memset(einf->LoadChunkData(), 0, einfSize);
6510 }
6511 } else if (newFile) {
6512 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6513 }
6514 if (einf) {
6515 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6516
6517 std::map<gig::Sample*,int> sampleMap;
6518 int sampleIdx = 0;
6519 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6520 sampleMap[pSample] = sampleIdx++;
6521 }
6522
6523 int totnbusedsamples = 0;
6524 int totnbusedchannels = 0;
6525 int totnbregions = 0;
6526 int totnbdimregions = 0;
6527 int totnbloops = 0;
6528 int instrumentIdx = 0;
6529
6530 memset(&pData[48], 0, sublen - 48);
6531
6532 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6533 instrument = GetNextInstrument()) {
6534 int nbusedsamples = 0;
6535 int nbusedchannels = 0;
6536 int nbdimregions = 0;
6537 int nbloops = 0;
6538
6539 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6540
6541 for (Region* region = instrument->GetFirstRegion() ; region ;
6542 region = instrument->GetNextRegion()) {
6543 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6544 gig::DimensionRegion *d = region->pDimensionRegions[i];
6545 if (d->pSample) {
6546 int sampleIdx = sampleMap[d->pSample];
6547 int byte = 48 + sampleIdx / 8;
6548 int bit = 1 << (sampleIdx & 7);
6549 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6550 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6551 nbusedsamples++;
6552 nbusedchannels += d->pSample->Channels;
6553
6554 if ((pData[byte] & bit) == 0) {
6555 pData[byte] |= bit;
6556 totnbusedsamples++;
6557 totnbusedchannels += d->pSample->Channels;
6558 }
6559 }
6560 }
6561 if (d->SampleLoops) nbloops++;
6562 }
6563 nbdimregions += region->DimensionRegions;
6564 }
6565 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6566 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6567 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6568 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6569 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6570 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6571 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6572 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6573 // next 8 bytes unknown
6574 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6575 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6576 // next 4 bytes unknown
6577
6578 totnbregions += instrument->Regions;
6579 totnbdimregions += nbdimregions;
6580 totnbloops += nbloops;
6581 instrumentIdx++;
6582 }
6583 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6584 // store32(&pData[0], sublen);
6585 store32(&pData[4], totnbusedchannels);
6586 store32(&pData[8], totnbusedsamples);
6587 store32(&pData[12], Instruments);
6588 store32(&pData[16], totnbregions);
6589 store32(&pData[20], totnbdimregions);
6590 store32(&pData[24], totnbloops);
6591 // next 8 bytes unknown
6592 // next 4 bytes unknown, not always 0
6593 store32(&pData[40], (uint32_t) pSamples->size());
6594 // next 4 bytes unknown
6595 }
6596
6597 // update 3crc chunk
6598
6599 // The 3crc chunk contains CRC-32 checksums for the
6600 // samples. When saving a gig file to disk, we first update the 3CRC
6601 // chunk here (in RAM) with the old crc values which we read from the
6602 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6603 // member variable). This step is required, because samples might have
6604 // been deleted by the user since the file was opened, which in turn
6605 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6606 // If a sample was conciously modified by the user (that is if
6607 // Sample::Write() was called later on) then Sample::Write() will just
6608 // update the respective individual checksum(s) directly on disk and
6609 // leaves all other sample checksums untouched.
6610
6611 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6612 if (_3crc) {
6613 _3crc->Resize(pSamples->size() * 8);
6614 } else /*if (newFile)*/ {
6615 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6616 // the order of einf and 3crc is not the same in v2 and v3
6617 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6618 }
6619 { // must be performed in RAM here ...
6620 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6621 if (pData) {
6622 File::SampleList::iterator iter = pSamples->begin();
6623 File::SampleList::iterator end = pSamples->end();
6624 for (int index = 0; iter != end; ++iter, ++index) {
6625 gig::Sample* pSample = (gig::Sample*) *iter;
6626 pData[index*2] = 1; // always 1
6627 pData[index*2+1] = pSample->crc;
6628 }
6629 }
6630 }
6631 }
6632
6633 void File::UpdateFileOffsets() {
6634 DLS::File::UpdateFileOffsets();
6635
6636 for (Instrument* instrument = GetFirstInstrument(); instrument;
6637 instrument = GetNextInstrument())
6638 {
6639 instrument->UpdateScriptFileOffsets();
6640 }
6641 }
6642
6643 /**
6644 * Enable / disable automatic loading. By default this properyt is
6645 * enabled and all informations are loaded automatically. However
6646 * loading all Regions, DimensionRegions and especially samples might
6647 * take a long time for large .gig files, and sometimes one might only
6648 * be interested in retrieving very superficial informations like the
6649 * amount of instruments and their names. In this case one might disable
6650 * automatic loading to avoid very slow response times.
6651 *
6652 * @e CAUTION: by disabling this property many pointers (i.e. sample
6653 * references) and informations will have invalid or even undefined
6654 * data! This feature is currently only intended for retrieving very
6655 * superficial informations in a very fast way. Don't use it to retrieve
6656 * details like synthesis informations or even to modify .gig files!
6657 */
6658 void File::SetAutoLoad(bool b) {
6659 bAutoLoad = b;
6660 }
6661
6662 /**
6663 * Returns whether automatic loading is enabled.
6664 * @see SetAutoLoad()
6665 */
6666 bool File::GetAutoLoad() {
6667 return bAutoLoad;
6668 }
6669
6670
6671
6672 // *************** Exception ***************
6673 // *
6674
6675 Exception::Exception() : DLS::Exception() {
6676 }
6677
6678 Exception::Exception(String format, ...) : DLS::Exception() {
6679 va_list arg;
6680 va_start(arg, format);
6681 Message = assemble(format, arg);
6682 va_end(arg);
6683 }
6684
6685 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6686 Message = assemble(format, arg);
6687 }
6688
6689 void Exception::PrintMessage() {
6690 std::cout << "gig::Exception: " << Message << std::endl;
6691 }
6692
6693
6694 // *************** functions ***************
6695 // *
6696
6697 /**
6698 * Returns the name of this C++ library. This is usually "libgig" of
6699 * course. This call is equivalent to RIFF::libraryName() and
6700 * DLS::libraryName().
6701 */
6702 String libraryName() {
6703 return PACKAGE;
6704 }
6705
6706 /**
6707 * Returns version of this C++ library. This call is equivalent to
6708 * RIFF::libraryVersion() and DLS::libraryVersion().
6709 */
6710 String libraryVersion() {
6711 return VERSION;
6712 }
6713
6714 } // namespace gig

  ViewVC Help
Powered by ViewVC