/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3481 - (show annotations) (download)
Fri Feb 22 12:12:50 2019 UTC (5 years, 1 month ago) by schoenebeck
File size: 292611 byte(s)
* gig.h, gig.cpp: Added File::GetRiffFile() method.
* DLS.h, DLS.cpp: Added File::GetRiffFile() method.
* sf2.h, sf2.cpp: Added Sample::GetFile() and
  File::GetRiffFile() methods.
* RIFF.h, RIFF.cpp: Added a 2nd (overridden)
  progress_t::subdivide() method which allows a more
  fine graded control into which portions the subtasks
  are divided to.
* RIFF Fix: API doc comment for Chunk::GetFilePos() was
  completely wrong.
* Bumped version (4.1.0.svn14).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::list<Group*>::iterator iter = pFile->pGroups->begin();
613 std::list<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1744 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1745 if (lsde) { // format extension for EG behavior options
1746 lsde->SetPos(0);
1747
1748 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1749 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1750 unsigned char byte = lsde->ReadUint8();
1751 pEGOpts[i]->AttackCancel = byte & 1;
1752 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1753 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1754 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1755 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1756 }
1757 }
1758 // format extension for sustain pedal up effect on release trigger samples
1759 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1760 lsde->SetPos(3);
1761 uint8_t byte = lsde->ReadUint8();
1762 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1763 NoNoteOffReleaseTrigger = byte >> 7;
1764 } else {
1765 SustainReleaseTrigger = sust_rel_trg_none;
1766 NoNoteOffReleaseTrigger = false;
1767 }
1768
1769 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1770 VelocityResponseDepth,
1771 VelocityResponseCurveScaling);
1772
1773 pVelocityReleaseTable = GetReleaseVelocityTable(
1774 ReleaseVelocityResponseCurve,
1775 ReleaseVelocityResponseDepth
1776 );
1777
1778 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1779 VCFVelocityDynamicRange,
1780 VCFVelocityScale,
1781 VCFCutoffController);
1782
1783 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1784 VelocityTable = 0;
1785 }
1786
1787 /*
1788 * Constructs a DimensionRegion by copying all parameters from
1789 * another DimensionRegion
1790 */
1791 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1792 Instances++;
1793 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1794 *this = src; // default memberwise shallow copy of all parameters
1795 pParentList = _3ewl; // restore the chunk pointer
1796
1797 // deep copy of owned structures
1798 if (src.VelocityTable) {
1799 VelocityTable = new uint8_t[128];
1800 for (int k = 0 ; k < 128 ; k++)
1801 VelocityTable[k] = src.VelocityTable[k];
1802 }
1803 if (src.pSampleLoops) {
1804 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1805 for (int k = 0 ; k < src.SampleLoops ; k++)
1806 pSampleLoops[k] = src.pSampleLoops[k];
1807 }
1808 }
1809
1810 /**
1811 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1812 * and assign it to this object.
1813 *
1814 * Note that all sample pointers referenced by @a orig are simply copied as
1815 * memory address. Thus the respective samples are shared, not duplicated!
1816 *
1817 * @param orig - original DimensionRegion object to be copied from
1818 */
1819 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1820 CopyAssign(orig, NULL);
1821 }
1822
1823 /**
1824 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1825 * and assign it to this object.
1826 *
1827 * @param orig - original DimensionRegion object to be copied from
1828 * @param mSamples - crosslink map between the foreign file's samples and
1829 * this file's samples
1830 */
1831 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1832 // delete all allocated data first
1833 if (VelocityTable) delete [] VelocityTable;
1834 if (pSampleLoops) delete [] pSampleLoops;
1835
1836 // backup parent list pointer
1837 RIFF::List* p = pParentList;
1838
1839 gig::Sample* pOriginalSample = pSample;
1840 gig::Region* pOriginalRegion = pRegion;
1841
1842 //NOTE: copy code copied from assignment constructor above, see comment there as well
1843
1844 *this = *orig; // default memberwise shallow copy of all parameters
1845
1846 // restore members that shall not be altered
1847 pParentList = p; // restore the chunk pointer
1848 pRegion = pOriginalRegion;
1849
1850 // only take the raw sample reference reference if the
1851 // two DimensionRegion objects are part of the same file
1852 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1853 pSample = pOriginalSample;
1854 }
1855
1856 if (mSamples && mSamples->count(orig->pSample)) {
1857 pSample = mSamples->find(orig->pSample)->second;
1858 }
1859
1860 // deep copy of owned structures
1861 if (orig->VelocityTable) {
1862 VelocityTable = new uint8_t[128];
1863 for (int k = 0 ; k < 128 ; k++)
1864 VelocityTable[k] = orig->VelocityTable[k];
1865 }
1866 if (orig->pSampleLoops) {
1867 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1868 for (int k = 0 ; k < orig->SampleLoops ; k++)
1869 pSampleLoops[k] = orig->pSampleLoops[k];
1870 }
1871 }
1872
1873 void DimensionRegion::serialize(Serialization::Archive* archive) {
1874 // in case this class will become backward incompatible one day,
1875 // then set a version and minimum version for this class like:
1876 //archive->setVersion(*this, 2);
1877 //archive->setMinVersion(*this, 1);
1878
1879 SRLZ(VelocityUpperLimit);
1880 SRLZ(EG1PreAttack);
1881 SRLZ(EG1Attack);
1882 SRLZ(EG1Decay1);
1883 SRLZ(EG1Decay2);
1884 SRLZ(EG1InfiniteSustain);
1885 SRLZ(EG1Sustain);
1886 SRLZ(EG1Release);
1887 SRLZ(EG1Hold);
1888 SRLZ(EG1Controller);
1889 SRLZ(EG1ControllerInvert);
1890 SRLZ(EG1ControllerAttackInfluence);
1891 SRLZ(EG1ControllerDecayInfluence);
1892 SRLZ(EG1ControllerReleaseInfluence);
1893 SRLZ(LFO1Frequency);
1894 SRLZ(LFO1InternalDepth);
1895 SRLZ(LFO1ControlDepth);
1896 SRLZ(LFO1Controller);
1897 SRLZ(LFO1FlipPhase);
1898 SRLZ(LFO1Sync);
1899 SRLZ(EG2PreAttack);
1900 SRLZ(EG2Attack);
1901 SRLZ(EG2Decay1);
1902 SRLZ(EG2Decay2);
1903 SRLZ(EG2InfiniteSustain);
1904 SRLZ(EG2Sustain);
1905 SRLZ(EG2Release);
1906 SRLZ(EG2Controller);
1907 SRLZ(EG2ControllerInvert);
1908 SRLZ(EG2ControllerAttackInfluence);
1909 SRLZ(EG2ControllerDecayInfluence);
1910 SRLZ(EG2ControllerReleaseInfluence);
1911 SRLZ(LFO2Frequency);
1912 SRLZ(LFO2InternalDepth);
1913 SRLZ(LFO2ControlDepth);
1914 SRLZ(LFO2Controller);
1915 SRLZ(LFO2FlipPhase);
1916 SRLZ(LFO2Sync);
1917 SRLZ(EG3Attack);
1918 SRLZ(EG3Depth);
1919 SRLZ(LFO3Frequency);
1920 SRLZ(LFO3InternalDepth);
1921 SRLZ(LFO3ControlDepth);
1922 SRLZ(LFO3Controller);
1923 SRLZ(LFO3Sync);
1924 SRLZ(VCFEnabled);
1925 SRLZ(VCFType);
1926 SRLZ(VCFCutoffController);
1927 SRLZ(VCFCutoffControllerInvert);
1928 SRLZ(VCFCutoff);
1929 SRLZ(VCFVelocityCurve);
1930 SRLZ(VCFVelocityScale);
1931 SRLZ(VCFVelocityDynamicRange);
1932 SRLZ(VCFResonance);
1933 SRLZ(VCFResonanceDynamic);
1934 SRLZ(VCFResonanceController);
1935 SRLZ(VCFKeyboardTracking);
1936 SRLZ(VCFKeyboardTrackingBreakpoint);
1937 SRLZ(VelocityResponseCurve);
1938 SRLZ(VelocityResponseDepth);
1939 SRLZ(VelocityResponseCurveScaling);
1940 SRLZ(ReleaseVelocityResponseCurve);
1941 SRLZ(ReleaseVelocityResponseDepth);
1942 SRLZ(ReleaseTriggerDecay);
1943 SRLZ(Crossfade);
1944 SRLZ(PitchTrack);
1945 SRLZ(DimensionBypass);
1946 SRLZ(Pan);
1947 SRLZ(SelfMask);
1948 SRLZ(AttenuationController);
1949 SRLZ(InvertAttenuationController);
1950 SRLZ(AttenuationControllerThreshold);
1951 SRLZ(ChannelOffset);
1952 SRLZ(SustainDefeat);
1953 SRLZ(MSDecode);
1954 //SRLZ(SampleStartOffset);
1955 SRLZ(SampleAttenuation);
1956 SRLZ(EG1Options);
1957 SRLZ(EG2Options);
1958 SRLZ(SustainReleaseTrigger);
1959 SRLZ(NoNoteOffReleaseTrigger);
1960
1961 // derived attributes from DLS::Sampler
1962 SRLZ(FineTune);
1963 SRLZ(Gain);
1964 }
1965
1966 /**
1967 * Updates the respective member variable and updates @c SampleAttenuation
1968 * which depends on this value.
1969 */
1970 void DimensionRegion::SetGain(int32_t gain) {
1971 DLS::Sampler::SetGain(gain);
1972 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1973 }
1974
1975 /**
1976 * Apply dimension region settings to the respective RIFF chunks. You
1977 * have to call File::Save() to make changes persistent.
1978 *
1979 * Usually there is absolutely no need to call this method explicitly.
1980 * It will be called automatically when File::Save() was called.
1981 *
1982 * @param pProgress - callback function for progress notification
1983 */
1984 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1985 // first update base class's chunk
1986 DLS::Sampler::UpdateChunks(pProgress);
1987
1988 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1989 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1990 pData[12] = Crossfade.in_start;
1991 pData[13] = Crossfade.in_end;
1992 pData[14] = Crossfade.out_start;
1993 pData[15] = Crossfade.out_end;
1994
1995 // make sure '3ewa' chunk exists
1996 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1997 if (!_3ewa) {
1998 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1999 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2000 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2001 }
2002 pData = (uint8_t*) _3ewa->LoadChunkData();
2003
2004 // update '3ewa' chunk with DimensionRegion's current settings
2005
2006 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2007 store32(&pData[0], chunksize); // unknown, always chunk size?
2008
2009 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2010 store32(&pData[4], lfo3freq);
2011
2012 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2013 store32(&pData[8], eg3attack);
2014
2015 // next 2 bytes unknown
2016
2017 store16(&pData[14], LFO1InternalDepth);
2018
2019 // next 2 bytes unknown
2020
2021 store16(&pData[18], LFO3InternalDepth);
2022
2023 // next 2 bytes unknown
2024
2025 store16(&pData[22], LFO1ControlDepth);
2026
2027 // next 2 bytes unknown
2028
2029 store16(&pData[26], LFO3ControlDepth);
2030
2031 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2032 store32(&pData[28], eg1attack);
2033
2034 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2035 store32(&pData[32], eg1decay1);
2036
2037 // next 2 bytes unknown
2038
2039 store16(&pData[38], EG1Sustain);
2040
2041 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2042 store32(&pData[40], eg1release);
2043
2044 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2045 pData[44] = eg1ctl;
2046
2047 const uint8_t eg1ctrloptions =
2048 (EG1ControllerInvert ? 0x01 : 0x00) |
2049 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2050 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2051 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2052 pData[45] = eg1ctrloptions;
2053
2054 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2055 pData[46] = eg2ctl;
2056
2057 const uint8_t eg2ctrloptions =
2058 (EG2ControllerInvert ? 0x01 : 0x00) |
2059 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2060 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2061 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2062 pData[47] = eg2ctrloptions;
2063
2064 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2065 store32(&pData[48], lfo1freq);
2066
2067 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2068 store32(&pData[52], eg2attack);
2069
2070 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2071 store32(&pData[56], eg2decay1);
2072
2073 // next 2 bytes unknown
2074
2075 store16(&pData[62], EG2Sustain);
2076
2077 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2078 store32(&pData[64], eg2release);
2079
2080 // next 2 bytes unknown
2081
2082 store16(&pData[70], LFO2ControlDepth);
2083
2084 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2085 store32(&pData[72], lfo2freq);
2086
2087 // next 2 bytes unknown
2088
2089 store16(&pData[78], LFO2InternalDepth);
2090
2091 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2092 store32(&pData[80], eg1decay2);
2093
2094 // next 2 bytes unknown
2095
2096 store16(&pData[86], EG1PreAttack);
2097
2098 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2099 store32(&pData[88], eg2decay2);
2100
2101 // next 2 bytes unknown
2102
2103 store16(&pData[94], EG2PreAttack);
2104
2105 {
2106 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2107 uint8_t velocityresponse = VelocityResponseDepth;
2108 switch (VelocityResponseCurve) {
2109 case curve_type_nonlinear:
2110 break;
2111 case curve_type_linear:
2112 velocityresponse += 5;
2113 break;
2114 case curve_type_special:
2115 velocityresponse += 10;
2116 break;
2117 case curve_type_unknown:
2118 default:
2119 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2120 }
2121 pData[96] = velocityresponse;
2122 }
2123
2124 {
2125 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2126 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2127 switch (ReleaseVelocityResponseCurve) {
2128 case curve_type_nonlinear:
2129 break;
2130 case curve_type_linear:
2131 releasevelocityresponse += 5;
2132 break;
2133 case curve_type_special:
2134 releasevelocityresponse += 10;
2135 break;
2136 case curve_type_unknown:
2137 default:
2138 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2139 }
2140 pData[97] = releasevelocityresponse;
2141 }
2142
2143 pData[98] = VelocityResponseCurveScaling;
2144
2145 pData[99] = AttenuationControllerThreshold;
2146
2147 // next 4 bytes unknown
2148
2149 store16(&pData[104], SampleStartOffset);
2150
2151 // next 2 bytes unknown
2152
2153 {
2154 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2155 switch (DimensionBypass) {
2156 case dim_bypass_ctrl_94:
2157 pitchTrackDimensionBypass |= 0x10;
2158 break;
2159 case dim_bypass_ctrl_95:
2160 pitchTrackDimensionBypass |= 0x20;
2161 break;
2162 case dim_bypass_ctrl_none:
2163 //FIXME: should we set anything here?
2164 break;
2165 default:
2166 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2167 }
2168 pData[108] = pitchTrackDimensionBypass;
2169 }
2170
2171 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2172 pData[109] = pan;
2173
2174 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2175 pData[110] = selfmask;
2176
2177 // next byte unknown
2178
2179 {
2180 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2181 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2182 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2183 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2184 pData[112] = lfo3ctrl;
2185 }
2186
2187 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2188 pData[113] = attenctl;
2189
2190 {
2191 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2192 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2193 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2194 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2195 pData[114] = lfo2ctrl;
2196 }
2197
2198 {
2199 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2200 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2201 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2202 if (VCFResonanceController != vcf_res_ctrl_none)
2203 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2204 pData[115] = lfo1ctrl;
2205 }
2206
2207 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2208 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2209 store16(&pData[116], eg3depth);
2210
2211 // next 2 bytes unknown
2212
2213 const uint8_t channeloffset = ChannelOffset * 4;
2214 pData[120] = channeloffset;
2215
2216 {
2217 uint8_t regoptions = 0;
2218 if (MSDecode) regoptions |= 0x01; // bit 0
2219 if (SustainDefeat) regoptions |= 0x02; // bit 1
2220 pData[121] = regoptions;
2221 }
2222
2223 // next 2 bytes unknown
2224
2225 pData[124] = VelocityUpperLimit;
2226
2227 // next 3 bytes unknown
2228
2229 pData[128] = ReleaseTriggerDecay;
2230
2231 // next 2 bytes unknown
2232
2233 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2234 pData[131] = eg1hold;
2235
2236 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2237 (VCFCutoff & 0x7f); /* lower 7 bits */
2238 pData[132] = vcfcutoff;
2239
2240 pData[133] = VCFCutoffController;
2241
2242 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2243 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2244 pData[134] = vcfvelscale;
2245
2246 // next byte unknown
2247
2248 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2249 (VCFResonance & 0x7f); /* lower 7 bits */
2250 pData[136] = vcfresonance;
2251
2252 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2253 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2254 pData[137] = vcfbreakpoint;
2255
2256 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2257 VCFVelocityCurve * 5;
2258 pData[138] = vcfvelocity;
2259
2260 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2261 pData[139] = vcftype;
2262
2263 if (chunksize >= 148) {
2264 memcpy(&pData[140], DimensionUpperLimits, 8);
2265 }
2266
2267 // chunk for own format extensions, these will *NOT* work with
2268 // Gigasampler/GigaStudio !
2269 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2270 const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2271 if (!lsde) {
2272 // only add this "LSDE" chunk if either EG options or release
2273 // trigger options deviate from their default behaviour
2274 eg_opt_t defaultOpt;
2275 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2276 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2277 SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2278 {
2279 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2280 // move LSDE chunk to the end of parent list
2281 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2282 }
2283 }
2284 if (lsde) {
2285 if (lsde->GetNewSize() < lsdeSize)
2286 lsde->Resize(lsdeSize);
2287 // format extension for EG behavior options
2288 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2289 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2290 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2291 pData[i] =
2292 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2293 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2294 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2295 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2296 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2297 }
2298 // format extension for release trigger options
2299 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2300 }
2301 }
2302
2303 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2304 curve_type_t curveType = releaseVelocityResponseCurve;
2305 uint8_t depth = releaseVelocityResponseDepth;
2306 // this models a strange behaviour or bug in GSt: two of the
2307 // velocity response curves for release time are not used even
2308 // if specified, instead another curve is chosen.
2309 if ((curveType == curve_type_nonlinear && depth == 0) ||
2310 (curveType == curve_type_special && depth == 4)) {
2311 curveType = curve_type_nonlinear;
2312 depth = 3;
2313 }
2314 return GetVelocityTable(curveType, depth, 0);
2315 }
2316
2317 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2318 uint8_t vcfVelocityDynamicRange,
2319 uint8_t vcfVelocityScale,
2320 vcf_cutoff_ctrl_t vcfCutoffController)
2321 {
2322 curve_type_t curveType = vcfVelocityCurve;
2323 uint8_t depth = vcfVelocityDynamicRange;
2324 // even stranger GSt: two of the velocity response curves for
2325 // filter cutoff are not used, instead another special curve
2326 // is chosen. This curve is not used anywhere else.
2327 if ((curveType == curve_type_nonlinear && depth == 0) ||
2328 (curveType == curve_type_special && depth == 4)) {
2329 curveType = curve_type_special;
2330 depth = 5;
2331 }
2332 return GetVelocityTable(curveType, depth,
2333 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2334 ? vcfVelocityScale : 0);
2335 }
2336
2337 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2338 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2339 {
2340 // sanity check input parameters
2341 // (fallback to some default parameters on ill input)
2342 switch (curveType) {
2343 case curve_type_nonlinear:
2344 case curve_type_linear:
2345 if (depth > 4) {
2346 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2347 depth = 0;
2348 scaling = 0;
2349 }
2350 break;
2351 case curve_type_special:
2352 if (depth > 5) {
2353 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2354 depth = 0;
2355 scaling = 0;
2356 }
2357 break;
2358 case curve_type_unknown:
2359 default:
2360 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2361 curveType = curve_type_linear;
2362 depth = 0;
2363 scaling = 0;
2364 break;
2365 }
2366
2367 double* table;
2368 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2369 if (pVelocityTables->count(tableKey)) { // if key exists
2370 table = (*pVelocityTables)[tableKey];
2371 }
2372 else {
2373 table = CreateVelocityTable(curveType, depth, scaling);
2374 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2375 }
2376 return table;
2377 }
2378
2379 Region* DimensionRegion::GetParent() const {
2380 return pRegion;
2381 }
2382
2383 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2384 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2385 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2386 //#pragma GCC diagnostic push
2387 //#pragma GCC diagnostic error "-Wswitch"
2388
2389 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2390 leverage_ctrl_t decodedcontroller;
2391 switch (EncodedController) {
2392 // special controller
2393 case _lev_ctrl_none:
2394 decodedcontroller.type = leverage_ctrl_t::type_none;
2395 decodedcontroller.controller_number = 0;
2396 break;
2397 case _lev_ctrl_velocity:
2398 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2399 decodedcontroller.controller_number = 0;
2400 break;
2401 case _lev_ctrl_channelaftertouch:
2402 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2403 decodedcontroller.controller_number = 0;
2404 break;
2405
2406 // ordinary MIDI control change controller
2407 case _lev_ctrl_modwheel:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 1;
2410 break;
2411 case _lev_ctrl_breath:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 2;
2414 break;
2415 case _lev_ctrl_foot:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 4;
2418 break;
2419 case _lev_ctrl_effect1:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 12;
2422 break;
2423 case _lev_ctrl_effect2:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 13;
2426 break;
2427 case _lev_ctrl_genpurpose1:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 16;
2430 break;
2431 case _lev_ctrl_genpurpose2:
2432 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433 decodedcontroller.controller_number = 17;
2434 break;
2435 case _lev_ctrl_genpurpose3:
2436 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437 decodedcontroller.controller_number = 18;
2438 break;
2439 case _lev_ctrl_genpurpose4:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 19;
2442 break;
2443 case _lev_ctrl_portamentotime:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 5;
2446 break;
2447 case _lev_ctrl_sustainpedal:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 64;
2450 break;
2451 case _lev_ctrl_portamento:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 65;
2454 break;
2455 case _lev_ctrl_sostenutopedal:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 66;
2458 break;
2459 case _lev_ctrl_softpedal:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 67;
2462 break;
2463 case _lev_ctrl_genpurpose5:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 80;
2466 break;
2467 case _lev_ctrl_genpurpose6:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 81;
2470 break;
2471 case _lev_ctrl_genpurpose7:
2472 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473 decodedcontroller.controller_number = 82;
2474 break;
2475 case _lev_ctrl_genpurpose8:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 83;
2478 break;
2479 case _lev_ctrl_effect1depth:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 91;
2482 break;
2483 case _lev_ctrl_effect2depth:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 92;
2486 break;
2487 case _lev_ctrl_effect3depth:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 93;
2490 break;
2491 case _lev_ctrl_effect4depth:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 94;
2494 break;
2495 case _lev_ctrl_effect5depth:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 95;
2498 break;
2499
2500 // format extension (these controllers are so far only supported by
2501 // LinuxSampler & gigedit) they will *NOT* work with
2502 // Gigasampler/GigaStudio !
2503 case _lev_ctrl_CC3_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 3;
2506 break;
2507 case _lev_ctrl_CC6_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 6;
2510 break;
2511 case _lev_ctrl_CC7_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 7;
2514 break;
2515 case _lev_ctrl_CC8_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 8;
2518 break;
2519 case _lev_ctrl_CC9_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 9;
2522 break;
2523 case _lev_ctrl_CC10_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 10;
2526 break;
2527 case _lev_ctrl_CC11_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 11;
2530 break;
2531 case _lev_ctrl_CC14_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 14;
2534 break;
2535 case _lev_ctrl_CC15_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 15;
2538 break;
2539 case _lev_ctrl_CC20_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 20;
2542 break;
2543 case _lev_ctrl_CC21_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 21;
2546 break;
2547 case _lev_ctrl_CC22_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 22;
2550 break;
2551 case _lev_ctrl_CC23_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 23;
2554 break;
2555 case _lev_ctrl_CC24_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 24;
2558 break;
2559 case _lev_ctrl_CC25_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 25;
2562 break;
2563 case _lev_ctrl_CC26_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 26;
2566 break;
2567 case _lev_ctrl_CC27_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 27;
2570 break;
2571 case _lev_ctrl_CC28_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 28;
2574 break;
2575 case _lev_ctrl_CC29_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 29;
2578 break;
2579 case _lev_ctrl_CC30_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 30;
2582 break;
2583 case _lev_ctrl_CC31_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 31;
2586 break;
2587 case _lev_ctrl_CC68_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 68;
2590 break;
2591 case _lev_ctrl_CC69_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 69;
2594 break;
2595 case _lev_ctrl_CC70_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 70;
2598 break;
2599 case _lev_ctrl_CC71_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 71;
2602 break;
2603 case _lev_ctrl_CC72_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 72;
2606 break;
2607 case _lev_ctrl_CC73_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 73;
2610 break;
2611 case _lev_ctrl_CC74_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 74;
2614 break;
2615 case _lev_ctrl_CC75_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 75;
2618 break;
2619 case _lev_ctrl_CC76_EXT:
2620 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621 decodedcontroller.controller_number = 76;
2622 break;
2623 case _lev_ctrl_CC77_EXT:
2624 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625 decodedcontroller.controller_number = 77;
2626 break;
2627 case _lev_ctrl_CC78_EXT:
2628 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629 decodedcontroller.controller_number = 78;
2630 break;
2631 case _lev_ctrl_CC79_EXT:
2632 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633 decodedcontroller.controller_number = 79;
2634 break;
2635 case _lev_ctrl_CC84_EXT:
2636 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637 decodedcontroller.controller_number = 84;
2638 break;
2639 case _lev_ctrl_CC85_EXT:
2640 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641 decodedcontroller.controller_number = 85;
2642 break;
2643 case _lev_ctrl_CC86_EXT:
2644 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645 decodedcontroller.controller_number = 86;
2646 break;
2647 case _lev_ctrl_CC87_EXT:
2648 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649 decodedcontroller.controller_number = 87;
2650 break;
2651 case _lev_ctrl_CC89_EXT:
2652 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653 decodedcontroller.controller_number = 89;
2654 break;
2655 case _lev_ctrl_CC90_EXT:
2656 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657 decodedcontroller.controller_number = 90;
2658 break;
2659 case _lev_ctrl_CC96_EXT:
2660 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661 decodedcontroller.controller_number = 96;
2662 break;
2663 case _lev_ctrl_CC97_EXT:
2664 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665 decodedcontroller.controller_number = 97;
2666 break;
2667 case _lev_ctrl_CC102_EXT:
2668 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669 decodedcontroller.controller_number = 102;
2670 break;
2671 case _lev_ctrl_CC103_EXT:
2672 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673 decodedcontroller.controller_number = 103;
2674 break;
2675 case _lev_ctrl_CC104_EXT:
2676 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677 decodedcontroller.controller_number = 104;
2678 break;
2679 case _lev_ctrl_CC105_EXT:
2680 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681 decodedcontroller.controller_number = 105;
2682 break;
2683 case _lev_ctrl_CC106_EXT:
2684 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685 decodedcontroller.controller_number = 106;
2686 break;
2687 case _lev_ctrl_CC107_EXT:
2688 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689 decodedcontroller.controller_number = 107;
2690 break;
2691 case _lev_ctrl_CC108_EXT:
2692 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693 decodedcontroller.controller_number = 108;
2694 break;
2695 case _lev_ctrl_CC109_EXT:
2696 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697 decodedcontroller.controller_number = 109;
2698 break;
2699 case _lev_ctrl_CC110_EXT:
2700 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701 decodedcontroller.controller_number = 110;
2702 break;
2703 case _lev_ctrl_CC111_EXT:
2704 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705 decodedcontroller.controller_number = 111;
2706 break;
2707 case _lev_ctrl_CC112_EXT:
2708 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709 decodedcontroller.controller_number = 112;
2710 break;
2711 case _lev_ctrl_CC113_EXT:
2712 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713 decodedcontroller.controller_number = 113;
2714 break;
2715 case _lev_ctrl_CC114_EXT:
2716 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717 decodedcontroller.controller_number = 114;
2718 break;
2719 case _lev_ctrl_CC115_EXT:
2720 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721 decodedcontroller.controller_number = 115;
2722 break;
2723 case _lev_ctrl_CC116_EXT:
2724 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2725 decodedcontroller.controller_number = 116;
2726 break;
2727 case _lev_ctrl_CC117_EXT:
2728 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2729 decodedcontroller.controller_number = 117;
2730 break;
2731 case _lev_ctrl_CC118_EXT:
2732 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2733 decodedcontroller.controller_number = 118;
2734 break;
2735 case _lev_ctrl_CC119_EXT:
2736 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2737 decodedcontroller.controller_number = 119;
2738 break;
2739
2740 // unknown controller type
2741 default:
2742 decodedcontroller.type = leverage_ctrl_t::type_none;
2743 decodedcontroller.controller_number = 0;
2744 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2745 break;
2746 }
2747 return decodedcontroller;
2748 }
2749
2750 // see above (diagnostic push not supported prior GCC 4.6)
2751 //#pragma GCC diagnostic pop
2752
2753 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2754 _lev_ctrl_t encodedcontroller;
2755 switch (DecodedController.type) {
2756 // special controller
2757 case leverage_ctrl_t::type_none:
2758 encodedcontroller = _lev_ctrl_none;
2759 break;
2760 case leverage_ctrl_t::type_velocity:
2761 encodedcontroller = _lev_ctrl_velocity;
2762 break;
2763 case leverage_ctrl_t::type_channelaftertouch:
2764 encodedcontroller = _lev_ctrl_channelaftertouch;
2765 break;
2766
2767 // ordinary MIDI control change controller
2768 case leverage_ctrl_t::type_controlchange:
2769 switch (DecodedController.controller_number) {
2770 case 1:
2771 encodedcontroller = _lev_ctrl_modwheel;
2772 break;
2773 case 2:
2774 encodedcontroller = _lev_ctrl_breath;
2775 break;
2776 case 4:
2777 encodedcontroller = _lev_ctrl_foot;
2778 break;
2779 case 12:
2780 encodedcontroller = _lev_ctrl_effect1;
2781 break;
2782 case 13:
2783 encodedcontroller = _lev_ctrl_effect2;
2784 break;
2785 case 16:
2786 encodedcontroller = _lev_ctrl_genpurpose1;
2787 break;
2788 case 17:
2789 encodedcontroller = _lev_ctrl_genpurpose2;
2790 break;
2791 case 18:
2792 encodedcontroller = _lev_ctrl_genpurpose3;
2793 break;
2794 case 19:
2795 encodedcontroller = _lev_ctrl_genpurpose4;
2796 break;
2797 case 5:
2798 encodedcontroller = _lev_ctrl_portamentotime;
2799 break;
2800 case 64:
2801 encodedcontroller = _lev_ctrl_sustainpedal;
2802 break;
2803 case 65:
2804 encodedcontroller = _lev_ctrl_portamento;
2805 break;
2806 case 66:
2807 encodedcontroller = _lev_ctrl_sostenutopedal;
2808 break;
2809 case 67:
2810 encodedcontroller = _lev_ctrl_softpedal;
2811 break;
2812 case 80:
2813 encodedcontroller = _lev_ctrl_genpurpose5;
2814 break;
2815 case 81:
2816 encodedcontroller = _lev_ctrl_genpurpose6;
2817 break;
2818 case 82:
2819 encodedcontroller = _lev_ctrl_genpurpose7;
2820 break;
2821 case 83:
2822 encodedcontroller = _lev_ctrl_genpurpose8;
2823 break;
2824 case 91:
2825 encodedcontroller = _lev_ctrl_effect1depth;
2826 break;
2827 case 92:
2828 encodedcontroller = _lev_ctrl_effect2depth;
2829 break;
2830 case 93:
2831 encodedcontroller = _lev_ctrl_effect3depth;
2832 break;
2833 case 94:
2834 encodedcontroller = _lev_ctrl_effect4depth;
2835 break;
2836 case 95:
2837 encodedcontroller = _lev_ctrl_effect5depth;
2838 break;
2839
2840 // format extension (these controllers are so far only
2841 // supported by LinuxSampler & gigedit) they will *NOT*
2842 // work with Gigasampler/GigaStudio !
2843 case 3:
2844 encodedcontroller = _lev_ctrl_CC3_EXT;
2845 break;
2846 case 6:
2847 encodedcontroller = _lev_ctrl_CC6_EXT;
2848 break;
2849 case 7:
2850 encodedcontroller = _lev_ctrl_CC7_EXT;
2851 break;
2852 case 8:
2853 encodedcontroller = _lev_ctrl_CC8_EXT;
2854 break;
2855 case 9:
2856 encodedcontroller = _lev_ctrl_CC9_EXT;
2857 break;
2858 case 10:
2859 encodedcontroller = _lev_ctrl_CC10_EXT;
2860 break;
2861 case 11:
2862 encodedcontroller = _lev_ctrl_CC11_EXT;
2863 break;
2864 case 14:
2865 encodedcontroller = _lev_ctrl_CC14_EXT;
2866 break;
2867 case 15:
2868 encodedcontroller = _lev_ctrl_CC15_EXT;
2869 break;
2870 case 20:
2871 encodedcontroller = _lev_ctrl_CC20_EXT;
2872 break;
2873 case 21:
2874 encodedcontroller = _lev_ctrl_CC21_EXT;
2875 break;
2876 case 22:
2877 encodedcontroller = _lev_ctrl_CC22_EXT;
2878 break;
2879 case 23:
2880 encodedcontroller = _lev_ctrl_CC23_EXT;
2881 break;
2882 case 24:
2883 encodedcontroller = _lev_ctrl_CC24_EXT;
2884 break;
2885 case 25:
2886 encodedcontroller = _lev_ctrl_CC25_EXT;
2887 break;
2888 case 26:
2889 encodedcontroller = _lev_ctrl_CC26_EXT;
2890 break;
2891 case 27:
2892 encodedcontroller = _lev_ctrl_CC27_EXT;
2893 break;
2894 case 28:
2895 encodedcontroller = _lev_ctrl_CC28_EXT;
2896 break;
2897 case 29:
2898 encodedcontroller = _lev_ctrl_CC29_EXT;
2899 break;
2900 case 30:
2901 encodedcontroller = _lev_ctrl_CC30_EXT;
2902 break;
2903 case 31:
2904 encodedcontroller = _lev_ctrl_CC31_EXT;
2905 break;
2906 case 68:
2907 encodedcontroller = _lev_ctrl_CC68_EXT;
2908 break;
2909 case 69:
2910 encodedcontroller = _lev_ctrl_CC69_EXT;
2911 break;
2912 case 70:
2913 encodedcontroller = _lev_ctrl_CC70_EXT;
2914 break;
2915 case 71:
2916 encodedcontroller = _lev_ctrl_CC71_EXT;
2917 break;
2918 case 72:
2919 encodedcontroller = _lev_ctrl_CC72_EXT;
2920 break;
2921 case 73:
2922 encodedcontroller = _lev_ctrl_CC73_EXT;
2923 break;
2924 case 74:
2925 encodedcontroller = _lev_ctrl_CC74_EXT;
2926 break;
2927 case 75:
2928 encodedcontroller = _lev_ctrl_CC75_EXT;
2929 break;
2930 case 76:
2931 encodedcontroller = _lev_ctrl_CC76_EXT;
2932 break;
2933 case 77:
2934 encodedcontroller = _lev_ctrl_CC77_EXT;
2935 break;
2936 case 78:
2937 encodedcontroller = _lev_ctrl_CC78_EXT;
2938 break;
2939 case 79:
2940 encodedcontroller = _lev_ctrl_CC79_EXT;
2941 break;
2942 case 84:
2943 encodedcontroller = _lev_ctrl_CC84_EXT;
2944 break;
2945 case 85:
2946 encodedcontroller = _lev_ctrl_CC85_EXT;
2947 break;
2948 case 86:
2949 encodedcontroller = _lev_ctrl_CC86_EXT;
2950 break;
2951 case 87:
2952 encodedcontroller = _lev_ctrl_CC87_EXT;
2953 break;
2954 case 89:
2955 encodedcontroller = _lev_ctrl_CC89_EXT;
2956 break;
2957 case 90:
2958 encodedcontroller = _lev_ctrl_CC90_EXT;
2959 break;
2960 case 96:
2961 encodedcontroller = _lev_ctrl_CC96_EXT;
2962 break;
2963 case 97:
2964 encodedcontroller = _lev_ctrl_CC97_EXT;
2965 break;
2966 case 102:
2967 encodedcontroller = _lev_ctrl_CC102_EXT;
2968 break;
2969 case 103:
2970 encodedcontroller = _lev_ctrl_CC103_EXT;
2971 break;
2972 case 104:
2973 encodedcontroller = _lev_ctrl_CC104_EXT;
2974 break;
2975 case 105:
2976 encodedcontroller = _lev_ctrl_CC105_EXT;
2977 break;
2978 case 106:
2979 encodedcontroller = _lev_ctrl_CC106_EXT;
2980 break;
2981 case 107:
2982 encodedcontroller = _lev_ctrl_CC107_EXT;
2983 break;
2984 case 108:
2985 encodedcontroller = _lev_ctrl_CC108_EXT;
2986 break;
2987 case 109:
2988 encodedcontroller = _lev_ctrl_CC109_EXT;
2989 break;
2990 case 110:
2991 encodedcontroller = _lev_ctrl_CC110_EXT;
2992 break;
2993 case 111:
2994 encodedcontroller = _lev_ctrl_CC111_EXT;
2995 break;
2996 case 112:
2997 encodedcontroller = _lev_ctrl_CC112_EXT;
2998 break;
2999 case 113:
3000 encodedcontroller = _lev_ctrl_CC113_EXT;
3001 break;
3002 case 114:
3003 encodedcontroller = _lev_ctrl_CC114_EXT;
3004 break;
3005 case 115:
3006 encodedcontroller = _lev_ctrl_CC115_EXT;
3007 break;
3008 case 116:
3009 encodedcontroller = _lev_ctrl_CC116_EXT;
3010 break;
3011 case 117:
3012 encodedcontroller = _lev_ctrl_CC117_EXT;
3013 break;
3014 case 118:
3015 encodedcontroller = _lev_ctrl_CC118_EXT;
3016 break;
3017 case 119:
3018 encodedcontroller = _lev_ctrl_CC119_EXT;
3019 break;
3020
3021 default:
3022 throw gig::Exception("leverage controller number is not supported by the gig format");
3023 }
3024 break;
3025 default:
3026 throw gig::Exception("Unknown leverage controller type.");
3027 }
3028 return encodedcontroller;
3029 }
3030
3031 DimensionRegion::~DimensionRegion() {
3032 Instances--;
3033 if (!Instances) {
3034 // delete the velocity->volume tables
3035 VelocityTableMap::iterator iter;
3036 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3037 double* pTable = iter->second;
3038 if (pTable) delete[] pTable;
3039 }
3040 pVelocityTables->clear();
3041 delete pVelocityTables;
3042 pVelocityTables = NULL;
3043 }
3044 if (VelocityTable) delete[] VelocityTable;
3045 }
3046
3047 /**
3048 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3049 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3050 * and VelocityResponseCurveScaling) involved are taken into account to
3051 * calculate the amplitude factor. Use this method when a key was
3052 * triggered to get the volume with which the sample should be played
3053 * back.
3054 *
3055 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3056 * @returns amplitude factor (between 0.0 and 1.0)
3057 */
3058 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3059 return pVelocityAttenuationTable[MIDIKeyVelocity];
3060 }
3061
3062 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3063 return pVelocityReleaseTable[MIDIKeyVelocity];
3064 }
3065
3066 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3067 return pVelocityCutoffTable[MIDIKeyVelocity];
3068 }
3069
3070 /**
3071 * Updates the respective member variable and the lookup table / cache
3072 * that depends on this value.
3073 */
3074 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3075 pVelocityAttenuationTable =
3076 GetVelocityTable(
3077 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3078 );
3079 VelocityResponseCurve = curve;
3080 }
3081
3082 /**
3083 * Updates the respective member variable and the lookup table / cache
3084 * that depends on this value.
3085 */
3086 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3087 pVelocityAttenuationTable =
3088 GetVelocityTable(
3089 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3090 );
3091 VelocityResponseDepth = depth;
3092 }
3093
3094 /**
3095 * Updates the respective member variable and the lookup table / cache
3096 * that depends on this value.
3097 */
3098 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3099 pVelocityAttenuationTable =
3100 GetVelocityTable(
3101 VelocityResponseCurve, VelocityResponseDepth, scaling
3102 );
3103 VelocityResponseCurveScaling = scaling;
3104 }
3105
3106 /**
3107 * Updates the respective member variable and the lookup table / cache
3108 * that depends on this value.
3109 */
3110 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3111 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3112 ReleaseVelocityResponseCurve = curve;
3113 }
3114
3115 /**
3116 * Updates the respective member variable and the lookup table / cache
3117 * that depends on this value.
3118 */
3119 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3120 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3121 ReleaseVelocityResponseDepth = depth;
3122 }
3123
3124 /**
3125 * Updates the respective member variable and the lookup table / cache
3126 * that depends on this value.
3127 */
3128 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3129 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3130 VCFCutoffController = controller;
3131 }
3132
3133 /**
3134 * Updates the respective member variable and the lookup table / cache
3135 * that depends on this value.
3136 */
3137 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3138 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3139 VCFVelocityCurve = curve;
3140 }
3141
3142 /**
3143 * Updates the respective member variable and the lookup table / cache
3144 * that depends on this value.
3145 */
3146 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3147 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3148 VCFVelocityDynamicRange = range;
3149 }
3150
3151 /**
3152 * Updates the respective member variable and the lookup table / cache
3153 * that depends on this value.
3154 */
3155 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3156 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3157 VCFVelocityScale = scaling;
3158 }
3159
3160 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3161
3162 // line-segment approximations of the 15 velocity curves
3163
3164 // linear
3165 const int lin0[] = { 1, 1, 127, 127 };
3166 const int lin1[] = { 1, 21, 127, 127 };
3167 const int lin2[] = { 1, 45, 127, 127 };
3168 const int lin3[] = { 1, 74, 127, 127 };
3169 const int lin4[] = { 1, 127, 127, 127 };
3170
3171 // non-linear
3172 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3173 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3174 127, 127 };
3175 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3176 127, 127 };
3177 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3178 127, 127 };
3179 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3180
3181 // special
3182 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3183 113, 127, 127, 127 };
3184 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3185 118, 127, 127, 127 };
3186 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3187 85, 90, 91, 127, 127, 127 };
3188 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3189 117, 127, 127, 127 };
3190 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3191 127, 127 };
3192
3193 // this is only used by the VCF velocity curve
3194 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3195 91, 127, 127, 127 };
3196
3197 const int* const curves[] = { non0, non1, non2, non3, non4,
3198 lin0, lin1, lin2, lin3, lin4,
3199 spe0, spe1, spe2, spe3, spe4, spe5 };
3200
3201 double* const table = new double[128];
3202
3203 const int* curve = curves[curveType * 5 + depth];
3204 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3205
3206 table[0] = 0;
3207 for (int x = 1 ; x < 128 ; x++) {
3208
3209 if (x > curve[2]) curve += 2;
3210 double y = curve[1] + (x - curve[0]) *
3211 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3212 y = y / 127;
3213
3214 // Scale up for s > 20, down for s < 20. When
3215 // down-scaling, the curve still ends at 1.0.
3216 if (s < 20 && y >= 0.5)
3217 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3218 else
3219 y = y * (s / 20.0);
3220 if (y > 1) y = 1;
3221
3222 table[x] = y;
3223 }
3224 return table;
3225 }
3226
3227
3228 // *************** Region ***************
3229 // *
3230
3231 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3232 // Initialization
3233 Dimensions = 0;
3234 for (int i = 0; i < 256; i++) {
3235 pDimensionRegions[i] = NULL;
3236 }
3237 Layers = 1;
3238 File* file = (File*) GetParent()->GetParent();
3239 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3240
3241 // Actual Loading
3242
3243 if (!file->GetAutoLoad()) return;
3244
3245 LoadDimensionRegions(rgnList);
3246
3247 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3248 if (_3lnk) {
3249 _3lnk->SetPos(0);
3250
3251 DimensionRegions = _3lnk->ReadUint32();
3252 for (int i = 0; i < dimensionBits; i++) {
3253 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3254 uint8_t bits = _3lnk->ReadUint8();
3255 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3256 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3257 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3258 if (dimension == dimension_none) { // inactive dimension
3259 pDimensionDefinitions[i].dimension = dimension_none;
3260 pDimensionDefinitions[i].bits = 0;
3261 pDimensionDefinitions[i].zones = 0;
3262 pDimensionDefinitions[i].split_type = split_type_bit;
3263 pDimensionDefinitions[i].zone_size = 0;
3264 }
3265 else { // active dimension
3266 pDimensionDefinitions[i].dimension = dimension;
3267 pDimensionDefinitions[i].bits = bits;
3268 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3269 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3270 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3271 Dimensions++;
3272
3273 // if this is a layer dimension, remember the amount of layers
3274 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3275 }
3276 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3277 }
3278 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3279
3280 // if there's a velocity dimension and custom velocity zone splits are used,
3281 // update the VelocityTables in the dimension regions
3282 UpdateVelocityTable();
3283
3284 // jump to start of the wave pool indices (if not already there)
3285 if (file->pVersion && file->pVersion->major > 2)
3286 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3287 else
3288 _3lnk->SetPos(44);
3289
3290 // load sample references (if auto loading is enabled)
3291 if (file->GetAutoLoad()) {
3292 for (uint i = 0; i < DimensionRegions; i++) {
3293 uint32_t wavepoolindex = _3lnk->ReadUint32();
3294 if (file->pWavePoolTable && pDimensionRegions[i])
3295 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3296 }
3297 GetSample(); // load global region sample reference
3298 }
3299 } else {
3300 DimensionRegions = 0;
3301 for (int i = 0 ; i < 8 ; i++) {
3302 pDimensionDefinitions[i].dimension = dimension_none;
3303 pDimensionDefinitions[i].bits = 0;
3304 pDimensionDefinitions[i].zones = 0;
3305 }
3306 }
3307
3308 // make sure there is at least one dimension region
3309 if (!DimensionRegions) {
3310 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3311 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3312 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3313 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3314 DimensionRegions = 1;
3315 }
3316 }
3317
3318 /**
3319 * Apply Region settings and all its DimensionRegions to the respective
3320 * RIFF chunks. You have to call File::Save() to make changes persistent.
3321 *
3322 * Usually there is absolutely no need to call this method explicitly.
3323 * It will be called automatically when File::Save() was called.
3324 *
3325 * @param pProgress - callback function for progress notification
3326 * @throws gig::Exception if samples cannot be dereferenced
3327 */
3328 void Region::UpdateChunks(progress_t* pProgress) {
3329 // in the gig format we don't care about the Region's sample reference
3330 // but we still have to provide some existing one to not corrupt the
3331 // file, so to avoid the latter we simply always assign the sample of
3332 // the first dimension region of this region
3333 pSample = pDimensionRegions[0]->pSample;
3334
3335 // first update base class's chunks
3336 DLS::Region::UpdateChunks(pProgress);
3337
3338 // update dimension region's chunks
3339 for (int i = 0; i < DimensionRegions; i++) {
3340 pDimensionRegions[i]->UpdateChunks(pProgress);
3341 }
3342
3343 File* pFile = (File*) GetParent()->GetParent();
3344 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3345 const int iMaxDimensions = versiongt2 ? 8 : 5;
3346 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3347
3348 // make sure '3lnk' chunk exists
3349 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3350 if (!_3lnk) {
3351 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3352 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3353 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3354
3355 // move 3prg to last position
3356 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3357 }
3358
3359 // update dimension definitions in '3lnk' chunk
3360 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3361 store32(&pData[0], DimensionRegions);
3362 int shift = 0;
3363 for (int i = 0; i < iMaxDimensions; i++) {
3364 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3365 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3366 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3367 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3368 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3369 // next 3 bytes unknown, always zero?
3370
3371 shift += pDimensionDefinitions[i].bits;
3372 }
3373
3374 // update wave pool table in '3lnk' chunk
3375 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3376 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3377 int iWaveIndex = -1;
3378 if (i < DimensionRegions) {
3379 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3380 File::SampleList::iterator iter = pFile->pSamples->begin();
3381 File::SampleList::iterator end = pFile->pSamples->end();
3382 for (int index = 0; iter != end; ++iter, ++index) {
3383 if (*iter == pDimensionRegions[i]->pSample) {
3384 iWaveIndex = index;
3385 break;
3386 }
3387 }
3388 }
3389 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3390 }
3391 }
3392
3393 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3394 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3395 if (_3prg) {
3396 int dimensionRegionNr = 0;
3397 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3398 while (_3ewl) {
3399 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3400 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3401 dimensionRegionNr++;
3402 }
3403 _3ewl = _3prg->GetNextSubList();
3404 }
3405 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3406 }
3407 }
3408
3409 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3410 // update KeyRange struct and make sure regions are in correct order
3411 DLS::Region::SetKeyRange(Low, High);
3412 // update Region key table for fast lookup
3413 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3414 }
3415
3416 void Region::UpdateVelocityTable() {
3417 // get velocity dimension's index
3418 int veldim = -1;
3419 for (int i = 0 ; i < Dimensions ; i++) {
3420 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3421 veldim = i;
3422 break;
3423 }
3424 }
3425 if (veldim == -1) return;
3426
3427 int step = 1;
3428 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3429 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3430
3431 // loop through all dimension regions for all dimensions except the velocity dimension
3432 int dim[8] = { 0 };
3433 for (int i = 0 ; i < DimensionRegions ; i++) {
3434 const int end = i + step * pDimensionDefinitions[veldim].zones;
3435
3436 // create a velocity table for all cases where the velocity zone is zero
3437 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3438 pDimensionRegions[i]->VelocityUpperLimit) {
3439 // create the velocity table
3440 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3441 if (!table) {
3442 table = new uint8_t[128];
3443 pDimensionRegions[i]->VelocityTable = table;
3444 }
3445 int tableidx = 0;
3446 int velocityZone = 0;
3447 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3448 for (int k = i ; k < end ; k += step) {
3449 DimensionRegion *d = pDimensionRegions[k];
3450 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3451 velocityZone++;
3452 }
3453 } else { // gig2
3454 for (int k = i ; k < end ; k += step) {
3455 DimensionRegion *d = pDimensionRegions[k];
3456 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3457 velocityZone++;
3458 }
3459 }
3460 } else {
3461 if (pDimensionRegions[i]->VelocityTable) {
3462 delete[] pDimensionRegions[i]->VelocityTable;
3463 pDimensionRegions[i]->VelocityTable = 0;
3464 }
3465 }
3466
3467 // jump to the next case where the velocity zone is zero
3468 int j;
3469 int shift = 0;
3470 for (j = 0 ; j < Dimensions ; j++) {
3471 if (j == veldim) i += skipveldim; // skip velocity dimension
3472 else {
3473 dim[j]++;
3474 if (dim[j] < pDimensionDefinitions[j].zones) break;
3475 else {
3476 // skip unused dimension regions
3477 dim[j] = 0;
3478 i += ((1 << pDimensionDefinitions[j].bits) -
3479 pDimensionDefinitions[j].zones) << shift;
3480 }
3481 }
3482 shift += pDimensionDefinitions[j].bits;
3483 }
3484 if (j == Dimensions) break;
3485 }
3486 }
3487
3488 /** @brief Einstein would have dreamed of it - create a new dimension.
3489 *
3490 * Creates a new dimension with the dimension definition given by
3491 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3492 * There is a hard limit of dimensions and total amount of "bits" all
3493 * dimensions can have. This limit is dependant to what gig file format
3494 * version this file refers to. The gig v2 (and lower) format has a
3495 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3496 * format has a limit of 8.
3497 *
3498 * @param pDimDef - defintion of the new dimension
3499 * @throws gig::Exception if dimension of the same type exists already
3500 * @throws gig::Exception if amount of dimensions or total amount of
3501 * dimension bits limit is violated
3502 */
3503 void Region::AddDimension(dimension_def_t* pDimDef) {
3504 // some initial sanity checks of the given dimension definition
3505 if (pDimDef->zones < 2)
3506 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3507 if (pDimDef->bits < 1)
3508 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3509 if (pDimDef->dimension == dimension_samplechannel) {
3510 if (pDimDef->zones != 2)
3511 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3512 if (pDimDef->bits != 1)
3513 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3514 }
3515
3516 // check if max. amount of dimensions reached
3517 File* file = (File*) GetParent()->GetParent();
3518 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3519 if (Dimensions >= iMaxDimensions)
3520 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3521 // check if max. amount of dimension bits reached
3522 int iCurrentBits = 0;
3523 for (int i = 0; i < Dimensions; i++)
3524 iCurrentBits += pDimensionDefinitions[i].bits;
3525 if (iCurrentBits >= iMaxDimensions)
3526 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3527 const int iNewBits = iCurrentBits + pDimDef->bits;
3528 if (iNewBits > iMaxDimensions)
3529 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3530 // check if there's already a dimensions of the same type
3531 for (int i = 0; i < Dimensions; i++)
3532 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3533 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3534
3535 // pos is where the new dimension should be placed, normally
3536 // last in list, except for the samplechannel dimension which
3537 // has to be first in list
3538 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3539 int bitpos = 0;
3540 for (int i = 0 ; i < pos ; i++)
3541 bitpos += pDimensionDefinitions[i].bits;
3542
3543 // make room for the new dimension
3544 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3545 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3546 for (int j = Dimensions ; j > pos ; j--) {
3547 pDimensionRegions[i]->DimensionUpperLimits[j] =
3548 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3549 }
3550 }
3551
3552 // assign definition of new dimension
3553 pDimensionDefinitions[pos] = *pDimDef;
3554
3555 // auto correct certain dimension definition fields (where possible)
3556 pDimensionDefinitions[pos].split_type =
3557 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3558 pDimensionDefinitions[pos].zone_size =
3559 __resolveZoneSize(pDimensionDefinitions[pos]);
3560
3561 // create new dimension region(s) for this new dimension, and make
3562 // sure that the dimension regions are placed correctly in both the
3563 // RIFF list and the pDimensionRegions array
3564 RIFF::Chunk* moveTo = NULL;
3565 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3567 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3568 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3569 }
3570 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3571 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3572 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3573 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3574 // create a new dimension region and copy all parameter values from
3575 // an existing dimension region
3576 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3577 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3578
3579 DimensionRegions++;
3580 }
3581 }
3582 moveTo = pDimensionRegions[i]->pParentList;
3583 }
3584
3585 // initialize the upper limits for this dimension
3586 int mask = (1 << bitpos) - 1;
3587 for (int z = 0 ; z < pDimDef->zones ; z++) {
3588 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3589 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3590 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3591 (z << bitpos) |
3592 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3593 }
3594 }
3595
3596 Dimensions++;
3597
3598 // if this is a layer dimension, update 'Layers' attribute
3599 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3600
3601 UpdateVelocityTable();
3602 }
3603
3604 /** @brief Delete an existing dimension.
3605 *
3606 * Deletes the dimension given by \a pDimDef and deletes all respective
3607 * dimension regions, that is all dimension regions where the dimension's
3608 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3609 * for example this would delete all dimension regions for the case(s)
3610 * where the sustain pedal is pressed down.
3611 *
3612 * @param pDimDef - dimension to delete
3613 * @throws gig::Exception if given dimension cannot be found
3614 */
3615 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3616 // get dimension's index
3617 int iDimensionNr = -1;
3618 for (int i = 0; i < Dimensions; i++) {
3619 if (&pDimensionDefinitions[i] == pDimDef) {
3620 iDimensionNr = i;
3621 break;
3622 }
3623 }
3624 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3625
3626 // get amount of bits below the dimension to delete
3627 int iLowerBits = 0;
3628 for (int i = 0; i < iDimensionNr; i++)
3629 iLowerBits += pDimensionDefinitions[i].bits;
3630
3631 // get amount ot bits above the dimension to delete
3632 int iUpperBits = 0;
3633 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3634 iUpperBits += pDimensionDefinitions[i].bits;
3635
3636 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637
3638 // delete dimension regions which belong to the given dimension
3639 // (that is where the dimension's bit > 0)
3640 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3641 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3642 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3643 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3644 iObsoleteBit << iLowerBits |
3645 iLowerBit;
3646
3647 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3648 delete pDimensionRegions[iToDelete];
3649 pDimensionRegions[iToDelete] = NULL;
3650 DimensionRegions--;
3651 }
3652 }
3653 }
3654
3655 // defrag pDimensionRegions array
3656 // (that is remove the NULL spaces within the pDimensionRegions array)
3657 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3658 if (!pDimensionRegions[iTo]) {
3659 if (iFrom <= iTo) iFrom = iTo + 1;
3660 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3661 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3662 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3663 pDimensionRegions[iFrom] = NULL;
3664 }
3665 }
3666 }
3667
3668 // remove the this dimension from the upper limits arrays
3669 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3670 DimensionRegion* d = pDimensionRegions[j];
3671 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3672 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3673 }
3674 d->DimensionUpperLimits[Dimensions - 1] = 127;
3675 }
3676
3677 // 'remove' dimension definition
3678 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3679 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3680 }
3681 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3682 pDimensionDefinitions[Dimensions - 1].bits = 0;
3683 pDimensionDefinitions[Dimensions - 1].zones = 0;
3684
3685 Dimensions--;
3686
3687 // if this was a layer dimension, update 'Layers' attribute
3688 if (pDimDef->dimension == dimension_layer) Layers = 1;
3689 }
3690
3691 /** @brief Delete one split zone of a dimension (decrement zone amount).
3692 *
3693 * Instead of deleting an entire dimensions, this method will only delete
3694 * one particular split zone given by @a zone of the Region's dimension
3695 * given by @a type. So this method will simply decrement the amount of
3696 * zones by one of the dimension in question. To be able to do that, the
3697 * respective dimension must exist on this Region and it must have at least
3698 * 3 zones. All DimensionRegion objects associated with the zone will be
3699 * deleted.
3700 *
3701 * @param type - identifies the dimension where a zone shall be deleted
3702 * @param zone - index of the dimension split zone that shall be deleted
3703 * @throws gig::Exception if requested zone could not be deleted
3704 */
3705 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3706 dimension_def_t* oldDef = GetDimensionDefinition(type);
3707 if (!oldDef)
3708 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3709 if (oldDef->zones <= 2)
3710 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3711 if (zone < 0 || zone >= oldDef->zones)
3712 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3713
3714 const int newZoneSize = oldDef->zones - 1;
3715
3716 // create a temporary Region which just acts as a temporary copy
3717 // container and will be deleted at the end of this function and will
3718 // also not be visible through the API during this process
3719 gig::Region* tempRgn = NULL;
3720 {
3721 // adding these temporary chunks is probably not even necessary
3722 Instrument* instr = static_cast<Instrument*>(GetParent());
3723 RIFF::List* pCkInstrument = instr->pCkInstrument;
3724 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3725 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3726 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3727 tempRgn = new Region(instr, rgn);
3728 }
3729
3730 // copy this region's dimensions (with already the dimension split size
3731 // requested by the arguments of this method call) to the temporary
3732 // region, and don't use Region::CopyAssign() here for this task, since
3733 // it would also alter fast lookup helper variables here and there
3734 dimension_def_t newDef;
3735 for (int i = 0; i < Dimensions; ++i) {
3736 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3737 // is this the dimension requested by the method arguments? ...
3738 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3739 def.zones = newZoneSize;
3740 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3741 newDef = def;
3742 }
3743 tempRgn->AddDimension(&def);
3744 }
3745
3746 // find the dimension index in the tempRegion which is the dimension
3747 // type passed to this method (paranoidly expecting different order)
3748 int tempReducedDimensionIndex = -1;
3749 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3750 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3751 tempReducedDimensionIndex = d;
3752 break;
3753 }
3754 }
3755
3756 // copy dimension regions from this region to the temporary region
3757 for (int iDst = 0; iDst < 256; ++iDst) {
3758 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3759 if (!dstDimRgn) continue;
3760 std::map<dimension_t,int> dimCase;
3761 bool isValidZone = true;
3762 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3763 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3764 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3765 (iDst >> baseBits) & ((1 << dstBits) - 1);
3766 baseBits += dstBits;
3767 // there are also DimensionRegion objects of unused zones, skip them
3768 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3769 isValidZone = false;
3770 break;
3771 }
3772 }
3773 if (!isValidZone) continue;
3774 // a bit paranoid: cope with the chance that the dimensions would
3775 // have different order in source and destination regions
3776 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3777 if (dimCase[type] >= zone) dimCase[type]++;
3778 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3779 dstDimRgn->CopyAssign(srcDimRgn);
3780 // if this is the upper most zone of the dimension passed to this
3781 // method, then correct (raise) its upper limit to 127
3782 if (newDef.split_type == split_type_normal && isLastZone)
3783 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3784 }
3785
3786 // now tempRegion's dimensions and DimensionRegions basically reflect
3787 // what we wanted to get for this actual Region here, so we now just
3788 // delete and recreate the dimension in question with the new amount
3789 // zones and then copy back from tempRegion
3790 DeleteDimension(oldDef);
3791 AddDimension(&newDef);
3792 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3793 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3794 if (!srcDimRgn) continue;
3795 std::map<dimension_t,int> dimCase;
3796 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3797 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3798 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3799 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3800 baseBits += srcBits;
3801 }
3802 // a bit paranoid: cope with the chance that the dimensions would
3803 // have different order in source and destination regions
3804 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3805 if (!dstDimRgn) continue;
3806 dstDimRgn->CopyAssign(srcDimRgn);
3807 }
3808
3809 // delete temporary region
3810 tempRgn->DeleteChunks();
3811 delete tempRgn;
3812
3813 UpdateVelocityTable();
3814 }
3815
3816 /** @brief Divide split zone of a dimension in two (increment zone amount).
3817 *
3818 * This will increment the amount of zones for the dimension (given by
3819 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3820 * in the middle of its zone range in two. So the two zones resulting from
3821 * the zone being splitted, will be an equivalent copy regarding all their
3822 * articulation informations and sample reference. The two zones will only
3823 * differ in their zone's upper limit
3824 * (DimensionRegion::DimensionUpperLimits).
3825 *
3826 * @param type - identifies the dimension where a zone shall be splitted
3827 * @param zone - index of the dimension split zone that shall be splitted
3828 * @throws gig::Exception if requested zone could not be splitted
3829 */
3830 void Region::SplitDimensionZone(dimension_t type, int zone) {
3831 dimension_def_t* oldDef = GetDimensionDefinition(type);
3832 if (!oldDef)
3833 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3834 if (zone < 0 || zone >= oldDef->zones)
3835 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3836
3837 const int newZoneSize = oldDef->zones + 1;
3838
3839 // create a temporary Region which just acts as a temporary copy
3840 // container and will be deleted at the end of this function and will
3841 // also not be visible through the API during this process
3842 gig::Region* tempRgn = NULL;
3843 {
3844 // adding these temporary chunks is probably not even necessary
3845 Instrument* instr = static_cast<Instrument*>(GetParent());
3846 RIFF::List* pCkInstrument = instr->pCkInstrument;
3847 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3848 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3849 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3850 tempRgn = new Region(instr, rgn);
3851 }
3852
3853 // copy this region's dimensions (with already the dimension split size
3854 // requested by the arguments of this method call) to the temporary
3855 // region, and don't use Region::CopyAssign() here for this task, since
3856 // it would also alter fast lookup helper variables here and there
3857 dimension_def_t newDef;
3858 for (int i = 0; i < Dimensions; ++i) {
3859 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3860 // is this the dimension requested by the method arguments? ...
3861 if (def.dimension == type) { // ... if yes, increment zone amount by one
3862 def.zones = newZoneSize;
3863 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3864 newDef = def;
3865 }
3866 tempRgn->AddDimension(&def);
3867 }
3868
3869 // find the dimension index in the tempRegion which is the dimension
3870 // type passed to this method (paranoidly expecting different order)
3871 int tempIncreasedDimensionIndex = -1;
3872 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3873 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3874 tempIncreasedDimensionIndex = d;
3875 break;
3876 }
3877 }
3878
3879 // copy dimension regions from this region to the temporary region
3880 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3881 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3882 if (!srcDimRgn) continue;
3883 std::map<dimension_t,int> dimCase;
3884 bool isValidZone = true;
3885 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3886 const int srcBits = pDimensionDefinitions[d].bits;
3887 dimCase[pDimensionDefinitions[d].dimension] =
3888 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3889 // there are also DimensionRegion objects for unused zones, skip them
3890 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3891 isValidZone = false;
3892 break;
3893 }
3894 baseBits += srcBits;
3895 }
3896 if (!isValidZone) continue;
3897 // a bit paranoid: cope with the chance that the dimensions would
3898 // have different order in source and destination regions
3899 if (dimCase[type] > zone) dimCase[type]++;
3900 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3901 dstDimRgn->CopyAssign(srcDimRgn);
3902 // if this is the requested zone to be splitted, then also copy
3903 // the source DimensionRegion to the newly created target zone
3904 // and set the old zones upper limit lower
3905 if (dimCase[type] == zone) {
3906 // lower old zones upper limit
3907 if (newDef.split_type == split_type_normal) {
3908 const int high =
3909 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3910 int low = 0;
3911 if (zone > 0) {
3912 std::map<dimension_t,int> lowerCase = dimCase;
3913 lowerCase[type]--;
3914 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3915 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3916 }
3917 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3918 }
3919 // fill the newly created zone of the divided zone as well
3920 dimCase[type]++;
3921 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3922 dstDimRgn->CopyAssign(srcDimRgn);
3923 }
3924 }
3925
3926 // now tempRegion's dimensions and DimensionRegions basically reflect
3927 // what we wanted to get for this actual Region here, so we now just
3928 // delete and recreate the dimension in question with the new amount
3929 // zones and then copy back from tempRegion
3930 DeleteDimension(oldDef);
3931 AddDimension(&newDef);
3932 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3933 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3934 if (!srcDimRgn) continue;
3935 std::map<dimension_t,int> dimCase;
3936 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3937 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3938 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3939 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3940 baseBits += srcBits;
3941 }
3942 // a bit paranoid: cope with the chance that the dimensions would
3943 // have different order in source and destination regions
3944 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3945 if (!dstDimRgn) continue;
3946 dstDimRgn->CopyAssign(srcDimRgn);
3947 }
3948
3949 // delete temporary region
3950 tempRgn->DeleteChunks();
3951 delete tempRgn;
3952
3953 UpdateVelocityTable();
3954 }
3955
3956 /** @brief Change type of an existing dimension.
3957 *
3958 * Alters the dimension type of a dimension already existing on this
3959 * region. If there is currently no dimension on this Region with type
3960 * @a oldType, then this call with throw an Exception. Likewise there are
3961 * cases where the requested dimension type cannot be performed. For example
3962 * if the new dimension type shall be gig::dimension_samplechannel, and the
3963 * current dimension has more than 2 zones. In such cases an Exception is
3964 * thrown as well.
3965 *
3966 * @param oldType - identifies the existing dimension to be changed
3967 * @param newType - to which dimension type it should be changed to
3968 * @throws gig::Exception if requested change cannot be performed
3969 */
3970 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3971 if (oldType == newType) return;
3972 dimension_def_t* def = GetDimensionDefinition(oldType);
3973 if (!def)
3974 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3975 if (newType == dimension_samplechannel && def->zones != 2)
3976 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3977 if (GetDimensionDefinition(newType))
3978 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3979 def->dimension = newType;
3980 def->split_type = __resolveSplitType(newType);
3981 }
3982
3983 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3984 uint8_t bits[8] = {};
3985 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3986 it != DimCase.end(); ++it)
3987 {
3988 for (int d = 0; d < Dimensions; ++d) {
3989 if (pDimensionDefinitions[d].dimension == it->first) {
3990 bits[d] = it->second;
3991 goto nextDimCaseSlice;
3992 }
3993 }
3994 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3995 nextDimCaseSlice:
3996 ; // noop
3997 }
3998 return GetDimensionRegionByBit(bits);
3999 }
4000
4001 /**
4002 * Searches in the current Region for a dimension of the given dimension
4003 * type and returns the precise configuration of that dimension in this
4004 * Region.
4005 *
4006 * @param type - dimension type of the sought dimension
4007 * @returns dimension definition or NULL if there is no dimension with
4008 * sought type in this Region.
4009 */
4010 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4011 for (int i = 0; i < Dimensions; ++i)
4012 if (pDimensionDefinitions[i].dimension == type)
4013 return &pDimensionDefinitions[i];
4014 return NULL;
4015 }
4016
4017 Region::~Region() {
4018 for (int i = 0; i < 256; i++) {
4019 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4020 }
4021 }
4022
4023 /**
4024 * Use this method in your audio engine to get the appropriate dimension
4025 * region with it's articulation data for the current situation. Just
4026 * call the method with the current MIDI controller values and you'll get
4027 * the DimensionRegion with the appropriate articulation data for the
4028 * current situation (for this Region of course only). To do that you'll
4029 * first have to look which dimensions with which controllers and in
4030 * which order are defined for this Region when you load the .gig file.
4031 * Special cases are e.g. layer or channel dimensions where you just put
4032 * in the index numbers instead of a MIDI controller value (means 0 for
4033 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4034 * etc.).
4035 *
4036 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4037 * @returns adress to the DimensionRegion for the given situation
4038 * @see pDimensionDefinitions
4039 * @see Dimensions
4040 */
4041 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4042 uint8_t bits;
4043 int veldim = -1;
4044 int velbitpos = 0;
4045 int bitpos = 0;
4046 int dimregidx = 0;
4047 for (uint i = 0; i < Dimensions; i++) {
4048 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4049 // the velocity dimension must be handled after the other dimensions
4050 veldim = i;
4051 velbitpos = bitpos;
4052 } else {
4053 switch (pDimensionDefinitions[i].split_type) {
4054 case split_type_normal:
4055 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4056 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4057 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4058 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4059 }
4060 } else {
4061 // gig2: evenly sized zones
4062 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4063 }
4064 break;
4065 case split_type_bit: // the value is already the sought dimension bit number
4066 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4067 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4068 break;
4069 }
4070 dimregidx |= bits << bitpos;
4071 }
4072 bitpos += pDimensionDefinitions[i].bits;
4073 }
4074 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4075 if (!dimreg) return NULL;
4076 if (veldim != -1) {
4077 // (dimreg is now the dimension region for the lowest velocity)
4078 if (dimreg->VelocityTable) // custom defined zone ranges
4079 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4080 else // normal split type
4081 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4082
4083 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4084 dimregidx |= (bits & limiter_mask) << velbitpos;
4085 dimreg = pDimensionRegions[dimregidx & 255];
4086 }
4087 return dimreg;
4088 }
4089
4090 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4091 uint8_t bits;
4092 int veldim = -1;
4093 int velbitpos = 0;
4094 int bitpos = 0;
4095 int dimregidx = 0;
4096 for (uint i = 0; i < Dimensions; i++) {
4097 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4098 // the velocity dimension must be handled after the other dimensions
4099 veldim = i;
4100 velbitpos = bitpos;
4101 } else {
4102 switch (pDimensionDefinitions[i].split_type) {
4103 case split_type_normal:
4104 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4105 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4106 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4107 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4108 }
4109 } else {
4110 // gig2: evenly sized zones
4111 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4112 }
4113 break;
4114 case split_type_bit: // the value is already the sought dimension bit number
4115 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4116 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4117 break;
4118 }
4119 dimregidx |= bits << bitpos;
4120 }
4121 bitpos += pDimensionDefinitions[i].bits;
4122 }
4123 dimregidx &= 255;
4124 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4125 if (!dimreg) return -1;
4126 if (veldim != -1) {
4127 // (dimreg is now the dimension region for the lowest velocity)
4128 if (dimreg->VelocityTable) // custom defined zone ranges
4129 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4130 else // normal split type
4131 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4132
4133 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4134 dimregidx |= (bits & limiter_mask) << velbitpos;
4135 dimregidx &= 255;
4136 }
4137 return dimregidx;
4138 }
4139
4140 /**
4141 * Returns the appropriate DimensionRegion for the given dimension bit
4142 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4143 * instead of calling this method directly!
4144 *
4145 * @param DimBits Bit numbers for dimension 0 to 7
4146 * @returns adress to the DimensionRegion for the given dimension
4147 * bit numbers
4148 * @see GetDimensionRegionByValue()
4149 */
4150 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4151 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4152 << pDimensionDefinitions[5].bits | DimBits[5])
4153 << pDimensionDefinitions[4].bits | DimBits[4])
4154 << pDimensionDefinitions[3].bits | DimBits[3])
4155 << pDimensionDefinitions[2].bits | DimBits[2])
4156 << pDimensionDefinitions[1].bits | DimBits[1])
4157 << pDimensionDefinitions[0].bits | DimBits[0]];
4158 }
4159
4160 /**
4161 * Returns pointer address to the Sample referenced with this region.
4162 * This is the global Sample for the entire Region (not sure if this is
4163 * actually used by the Gigasampler engine - I would only use the Sample
4164 * referenced by the appropriate DimensionRegion instead of this sample).
4165 *
4166 * @returns address to Sample or NULL if there is no reference to a
4167 * sample saved in the .gig file
4168 */
4169 Sample* Region::GetSample() {
4170 if (pSample) return static_cast<gig::Sample*>(pSample);
4171 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4172 }
4173
4174 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4175 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4176 File* file = (File*) GetParent()->GetParent();
4177 if (!file->pWavePoolTable) return NULL;
4178 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4179 // for new files or files >= 2 GB use 64 bit wave pool offsets
4180 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4181 // use 64 bit wave pool offsets (treating this as large file)
4182 uint64_t soughtoffset =
4183 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4184 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4185 Sample* sample = file->GetFirstSample(pProgress);
4186 while (sample) {
4187 if (sample->ullWavePoolOffset == soughtoffset)
4188 return static_cast<gig::Sample*>(sample);
4189 sample = file->GetNextSample();
4190 }
4191 } else {
4192 // use extension files and 32 bit wave pool offsets
4193 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4194 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4195 Sample* sample = file->GetFirstSample(pProgress);
4196 while (sample) {
4197 if (sample->ullWavePoolOffset == soughtoffset &&
4198 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4199 sample = file->GetNextSample();
4200 }
4201 }
4202 return NULL;
4203 }
4204
4205 /**
4206 * Make a (semi) deep copy of the Region object given by @a orig
4207 * and assign it to this object.
4208 *
4209 * Note that all sample pointers referenced by @a orig are simply copied as
4210 * memory address. Thus the respective samples are shared, not duplicated!
4211 *
4212 * @param orig - original Region object to be copied from
4213 */
4214 void Region::CopyAssign(const Region* orig) {
4215 CopyAssign(orig, NULL);
4216 }
4217
4218 /**
4219 * Make a (semi) deep copy of the Region object given by @a orig and
4220 * assign it to this object
4221 *
4222 * @param mSamples - crosslink map between the foreign file's samples and
4223 * this file's samples
4224 */
4225 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4226 // handle base classes
4227 DLS::Region::CopyAssign(orig);
4228
4229 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4230 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4231 }
4232
4233 // handle own member variables
4234 for (int i = Dimensions - 1; i >= 0; --i) {
4235 DeleteDimension(&pDimensionDefinitions[i]);
4236 }
4237 Layers = 0; // just to be sure
4238 for (int i = 0; i < orig->Dimensions; i++) {
4239 // we need to copy the dim definition here, to avoid the compiler
4240 // complaining about const-ness issue
4241 dimension_def_t def = orig->pDimensionDefinitions[i];
4242 AddDimension(&def);
4243 }
4244 for (int i = 0; i < 256; i++) {
4245 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4246 pDimensionRegions[i]->CopyAssign(
4247 orig->pDimensionRegions[i],
4248 mSamples
4249 );
4250 }
4251 }
4252 Layers = orig->Layers;
4253 }
4254
4255
4256 // *************** MidiRule ***************
4257 // *
4258
4259 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4260 _3ewg->SetPos(36);
4261 Triggers = _3ewg->ReadUint8();
4262 _3ewg->SetPos(40);
4263 ControllerNumber = _3ewg->ReadUint8();
4264 _3ewg->SetPos(46);
4265 for (int i = 0 ; i < Triggers ; i++) {
4266 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4267 pTriggers[i].Descending = _3ewg->ReadUint8();
4268 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4269 pTriggers[i].Key = _3ewg->ReadUint8();
4270 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4271 pTriggers[i].Velocity = _3ewg->ReadUint8();
4272 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4273 _3ewg->ReadUint8();
4274 }
4275 }
4276
4277 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4278 ControllerNumber(0),
4279 Triggers(0) {
4280 }
4281
4282 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4283 pData[32] = 4;
4284 pData[33] = 16;
4285 pData[36] = Triggers;
4286 pData[40] = ControllerNumber;
4287 for (int i = 0 ; i < Triggers ; i++) {
4288 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4289 pData[47 + i * 8] = pTriggers[i].Descending;
4290 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4291 pData[49 + i * 8] = pTriggers[i].Key;
4292 pData[50 + i * 8] = pTriggers[i].NoteOff;
4293 pData[51 + i * 8] = pTriggers[i].Velocity;
4294 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4295 }
4296 }
4297
4298 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4299 _3ewg->SetPos(36);
4300 LegatoSamples = _3ewg->ReadUint8(); // always 12
4301 _3ewg->SetPos(40);
4302 BypassUseController = _3ewg->ReadUint8();
4303 BypassKey = _3ewg->ReadUint8();
4304 BypassController = _3ewg->ReadUint8();
4305 ThresholdTime = _3ewg->ReadUint16();
4306 _3ewg->ReadInt16();
4307 ReleaseTime = _3ewg->ReadUint16();
4308 _3ewg->ReadInt16();
4309 KeyRange.low = _3ewg->ReadUint8();
4310 KeyRange.high = _3ewg->ReadUint8();
4311 _3ewg->SetPos(64);
4312 ReleaseTriggerKey = _3ewg->ReadUint8();
4313 AltSustain1Key = _3ewg->ReadUint8();
4314 AltSustain2Key = _3ewg->ReadUint8();
4315 }
4316
4317 MidiRuleLegato::MidiRuleLegato() :
4318 LegatoSamples(12),
4319 BypassUseController(false),
4320 BypassKey(0),
4321 BypassController(1),
4322 ThresholdTime(20),
4323 ReleaseTime(20),
4324 ReleaseTriggerKey(0),
4325 AltSustain1Key(0),
4326 AltSustain2Key(0)
4327 {
4328 KeyRange.low = KeyRange.high = 0;
4329 }
4330
4331 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4332 pData[32] = 0;
4333 pData[33] = 16;
4334 pData[36] = LegatoSamples;
4335 pData[40] = BypassUseController;
4336 pData[41] = BypassKey;
4337 pData[42] = BypassController;
4338 store16(&pData[43], ThresholdTime);
4339 store16(&pData[47], ReleaseTime);
4340 pData[51] = KeyRange.low;
4341 pData[52] = KeyRange.high;
4342 pData[64] = ReleaseTriggerKey;
4343 pData[65] = AltSustain1Key;
4344 pData[66] = AltSustain2Key;
4345 }
4346
4347 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4348 _3ewg->SetPos(36);
4349 Articulations = _3ewg->ReadUint8();
4350 int flags = _3ewg->ReadUint8();
4351 Polyphonic = flags & 8;
4352 Chained = flags & 4;
4353 Selector = (flags & 2) ? selector_controller :
4354 (flags & 1) ? selector_key_switch : selector_none;
4355 Patterns = _3ewg->ReadUint8();
4356 _3ewg->ReadUint8(); // chosen row
4357 _3ewg->ReadUint8(); // unknown
4358 _3ewg->ReadUint8(); // unknown
4359 _3ewg->ReadUint8(); // unknown
4360 KeySwitchRange.low = _3ewg->ReadUint8();
4361 KeySwitchRange.high = _3ewg->ReadUint8();
4362 Controller = _3ewg->ReadUint8();
4363 PlayRange.low = _3ewg->ReadUint8();
4364 PlayRange.high = _3ewg->ReadUint8();
4365
4366 int n = std::min(int(Articulations), 32);
4367 for (int i = 0 ; i < n ; i++) {
4368 _3ewg->ReadString(pArticulations[i], 32);
4369 }
4370 _3ewg->SetPos(1072);
4371 n = std::min(int(Patterns), 32);
4372 for (int i = 0 ; i < n ; i++) {
4373 _3ewg->ReadString(pPatterns[i].Name, 16);
4374 pPatterns[i].Size = _3ewg->ReadUint8();
4375 _3ewg->Read(&pPatterns[i][0], 1, 32);
4376 }
4377 }
4378
4379 MidiRuleAlternator::MidiRuleAlternator() :
4380 Articulations(0),
4381 Patterns(0),
4382 Selector(selector_none),
4383 Controller(0),
4384 Polyphonic(false),
4385 Chained(false)
4386 {
4387 PlayRange.low = PlayRange.high = 0;
4388 KeySwitchRange.low = KeySwitchRange.high = 0;
4389 }
4390
4391 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4392 pData[32] = 3;
4393 pData[33] = 16;
4394 pData[36] = Articulations;
4395 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4396 (Selector == selector_controller ? 2 :
4397 (Selector == selector_key_switch ? 1 : 0));
4398 pData[38] = Patterns;
4399
4400 pData[43] = KeySwitchRange.low;
4401 pData[44] = KeySwitchRange.high;
4402 pData[45] = Controller;
4403 pData[46] = PlayRange.low;
4404 pData[47] = PlayRange.high;
4405
4406 char* str = reinterpret_cast<char*>(pData);
4407 int pos = 48;
4408 int n = std::min(int(Articulations), 32);
4409 for (int i = 0 ; i < n ; i++, pos += 32) {
4410 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4411 }
4412
4413 pos = 1072;
4414 n = std::min(int(Patterns), 32);
4415 for (int i = 0 ; i < n ; i++, pos += 49) {
4416 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4417 pData[pos + 16] = pPatterns[i].Size;
4418 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4419 }
4420 }
4421
4422 // *************** Script ***************
4423 // *
4424
4425 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4426 pGroup = group;
4427 pChunk = ckScri;
4428 if (ckScri) { // object is loaded from file ...
4429 ckScri->SetPos(0);
4430
4431 // read header
4432 uint32_t headerSize = ckScri->ReadUint32();
4433 Compression = (Compression_t) ckScri->ReadUint32();
4434 Encoding = (Encoding_t) ckScri->ReadUint32();
4435 Language = (Language_t) ckScri->ReadUint32();
4436 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4437 crc = ckScri->ReadUint32();
4438 uint32_t nameSize = ckScri->ReadUint32();
4439 Name.resize(nameSize, ' ');
4440 for (int i = 0; i < nameSize; ++i)
4441 Name[i] = ckScri->ReadUint8();
4442 // to handle potential future extensions of the header
4443 ckScri->SetPos(sizeof(int32_t) + headerSize);
4444 // read actual script data
4445 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4446 data.resize(scriptSize);
4447 for (int i = 0; i < scriptSize; ++i)
4448 data[i] = ckScri->ReadUint8();
4449 } else { // this is a new script object, so just initialize it as such ...
4450 Compression = COMPRESSION_NONE;
4451 Encoding = ENCODING_ASCII;
4452 Language = LANGUAGE_NKSP;
4453 Bypass = false;
4454 crc = 0;
4455 Name = "Unnamed Script";
4456 }
4457 }
4458
4459 Script::~Script() {
4460 }
4461
4462 /**
4463 * Returns the current script (i.e. as source code) in text format.
4464 */
4465 String Script::GetScriptAsText() {
4466 String s;
4467 s.resize(data.size(), ' ');
4468 memcpy(&s[0], &data[0], data.size());
4469 return s;
4470 }
4471
4472 /**
4473 * Replaces the current script with the new script source code text given
4474 * by @a text.
4475 *
4476 * @param text - new script source code
4477 */
4478 void Script::SetScriptAsText(const String& text) {
4479 data.resize(text.size());
4480 memcpy(&data[0], &text[0], text.size());
4481 }
4482
4483 /** @brief Remove all RIFF chunks associated with this Script object.
4484 *
4485 * At the moment Script::DeleteChunks() does nothing. It is
4486 * recommended to call this method explicitly though from deriving classes's
4487 * own overridden implementation of this method to avoid potential future
4488 * compatiblity issues.
4489 *
4490 * See DLS::Storage::DeleteChunks() for details.
4491 */
4492 void Script::DeleteChunks() {
4493 }
4494
4495 /**
4496 * Apply this script to the respective RIFF chunks. You have to call
4497 * File::Save() to make changes persistent.
4498 *
4499 * Usually there is absolutely no need to call this method explicitly.
4500 * It will be called automatically when File::Save() was called.
4501 *
4502 * @param pProgress - callback function for progress notification
4503 */
4504 void Script::UpdateChunks(progress_t* pProgress) {
4505 // recalculate CRC32 check sum
4506 __resetCRC(crc);
4507 __calculateCRC(&data[0], data.size(), crc);
4508 __finalizeCRC(crc);
4509 // make sure chunk exists and has the required size
4510 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4511 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4512 else pChunk->Resize(chunkSize);
4513 // fill the chunk data to be written to disk
4514 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4515 int pos = 0;
4516 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4517 pos += sizeof(int32_t);
4518 store32(&pData[pos], Compression);
4519 pos += sizeof(int32_t);
4520 store32(&pData[pos], Encoding);
4521 pos += sizeof(int32_t);
4522 store32(&pData[pos], Language);
4523 pos += sizeof(int32_t);
4524 store32(&pData[pos], Bypass ? 1 : 0);
4525 pos += sizeof(int32_t);
4526 store32(&pData[pos], crc);
4527 pos += sizeof(int32_t);
4528 store32(&pData[pos], (uint32_t) Name.size());
4529 pos += sizeof(int32_t);
4530 for (int i = 0; i < Name.size(); ++i, ++pos)
4531 pData[pos] = Name[i];
4532 for (int i = 0; i < data.size(); ++i, ++pos)
4533 pData[pos] = data[i];
4534 }
4535
4536 /**
4537 * Move this script from its current ScriptGroup to another ScriptGroup
4538 * given by @a pGroup.
4539 *
4540 * @param pGroup - script's new group
4541 */
4542 void Script::SetGroup(ScriptGroup* pGroup) {
4543 if (this->pGroup == pGroup) return;
4544 if (pChunk)
4545 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4546 this->pGroup = pGroup;
4547 }
4548
4549 /**
4550 * Returns the script group this script currently belongs to. Each script
4551 * is a member of exactly one ScriptGroup.
4552 *
4553 * @returns current script group
4554 */
4555 ScriptGroup* Script::GetGroup() const {
4556 return pGroup;
4557 }
4558
4559 /**
4560 * Make a (semi) deep copy of the Script object given by @a orig
4561 * and assign it to this object. Note: the ScriptGroup this Script
4562 * object belongs to remains untouched by this call.
4563 *
4564 * @param orig - original Script object to be copied from
4565 */
4566 void Script::CopyAssign(const Script* orig) {
4567 Name = orig->Name;
4568 Compression = orig->Compression;
4569 Encoding = orig->Encoding;
4570 Language = orig->Language;
4571 Bypass = orig->Bypass;
4572 data = orig->data;
4573 }
4574
4575 void Script::RemoveAllScriptReferences() {
4576 File* pFile = pGroup->pFile;
4577 for (int i = 0; pFile->GetInstrument(i); ++i) {
4578 Instrument* instr = pFile->GetInstrument(i);
4579 instr->RemoveScript(this);
4580 }
4581 }
4582
4583 // *************** ScriptGroup ***************
4584 // *
4585
4586 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4587 pFile = file;
4588 pList = lstRTIS;
4589 pScripts = NULL;
4590 if (lstRTIS) {
4591 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4592 ::LoadString(ckName, Name);
4593 } else {
4594 Name = "Default Group";
4595 }
4596 }
4597
4598 ScriptGroup::~ScriptGroup() {
4599 if (pScripts) {
4600 std::list<Script*>::iterator iter = pScripts->begin();
4601 std::list<Script*>::iterator end = pScripts->end();
4602 while (iter != end) {
4603 delete *iter;
4604 ++iter;
4605 }
4606 delete pScripts;
4607 }
4608 }
4609
4610 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4611 *
4612 * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4613 * recommended to call this method explicitly though from deriving classes's
4614 * own overridden implementation of this method to avoid potential future
4615 * compatiblity issues.
4616 *
4617 * See DLS::Storage::DeleteChunks() for details.
4618 */
4619 void ScriptGroup::DeleteChunks() {
4620 }
4621
4622 /**
4623 * Apply this script group to the respective RIFF chunks. You have to call
4624 * File::Save() to make changes persistent.
4625 *
4626 * Usually there is absolutely no need to call this method explicitly.
4627 * It will be called automatically when File::Save() was called.
4628 *
4629 * @param pProgress - callback function for progress notification
4630 */
4631 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4632 if (pScripts) {
4633 if (!pList)
4634 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4635
4636 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4637 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4638
4639 for (std::list<Script*>::iterator it = pScripts->begin();
4640 it != pScripts->end(); ++it)
4641 {
4642 (*it)->UpdateChunks(pProgress);
4643 }
4644 }
4645 }
4646
4647 /** @brief Get instrument script.
4648 *
4649 * Returns the real-time instrument script with the given index.
4650 *
4651 * @param index - number of the sought script (0..n)
4652 * @returns sought script or NULL if there's no such script
4653 */
4654 Script* ScriptGroup::GetScript(uint index) {
4655 if (!pScripts) LoadScripts();
4656 std::list<Script*>::iterator it = pScripts->begin();
4657 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4658 if (i == index) return *it;
4659 return NULL;
4660 }
4661
4662 /** @brief Add new instrument script.
4663 *
4664 * Adds a new real-time instrument script to the file. The script is not
4665 * actually used / executed unless it is referenced by an instrument to be
4666 * used. This is similar to samples, which you can add to a file, without
4667 * an instrument necessarily actually using it.
4668 *
4669 * You have to call Save() to make this persistent to the file.
4670 *
4671 * @return new empty script object
4672 */
4673 Script* ScriptGroup::AddScript() {
4674 if (!pScripts) LoadScripts();
4675 Script* pScript = new Script(this, NULL);
4676 pScripts->push_back(pScript);
4677 return pScript;
4678 }
4679
4680 /** @brief Delete an instrument script.
4681 *
4682 * This will delete the given real-time instrument script. References of
4683 * instruments that are using that script will be removed accordingly.
4684 *
4685 * You have to call Save() to make this persistent to the file.
4686 *
4687 * @param pScript - script to delete
4688 * @throws gig::Exception if given script could not be found
4689 */
4690 void ScriptGroup::DeleteScript(Script* pScript) {
4691 if (!pScripts) LoadScripts();
4692 std::list<Script*>::iterator iter =
4693 find(pScripts->begin(), pScripts->end(), pScript);
4694 if (iter == pScripts->end())
4695 throw gig::Exception("Could not delete script, could not find given script");
4696 pScripts->erase(iter);
4697 pScript->RemoveAllScriptReferences();
4698 if (pScript->pChunk)
4699 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4700 delete pScript;
4701 }
4702
4703 void ScriptGroup::LoadScripts() {
4704 if (pScripts) return;
4705 pScripts = new std::list<Script*>;
4706 if (!pList) return;
4707
4708 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4709 ck = pList->GetNextSubChunk())
4710 {
4711 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4712 pScripts->push_back(new Script(this, ck));
4713 }
4714 }
4715 }
4716
4717 // *************** Instrument ***************
4718 // *
4719
4720 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4721 static const DLS::Info::string_length_t fixedStringLengths[] = {
4722 { CHUNK_ID_INAM, 64 },
4723 { CHUNK_ID_ISFT, 12 },
4724 { 0, 0 }
4725 };
4726 pInfo->SetFixedStringLengths(fixedStringLengths);
4727
4728 // Initialization
4729 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4730 EffectSend = 0;
4731 Attenuation = 0;
4732 FineTune = 0;
4733 PitchbendRange = 2;
4734 PianoReleaseMode = false;
4735 DimensionKeyRange.low = 0;
4736 DimensionKeyRange.high = 0;
4737 pMidiRules = new MidiRule*[3];
4738 pMidiRules[0] = NULL;
4739 pScriptRefs = NULL;
4740
4741 // Loading
4742 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4743 if (lart) {
4744 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4745 if (_3ewg) {
4746 _3ewg->SetPos(0);
4747
4748 EffectSend = _3ewg->ReadUint16();
4749 Attenuation = _3ewg->ReadInt32();
4750 FineTune = _3ewg->ReadInt16();
4751 PitchbendRange = _3ewg->ReadInt16();
4752 uint8_t dimkeystart = _3ewg->ReadUint8();
4753 PianoReleaseMode = dimkeystart & 0x01;
4754 DimensionKeyRange.low = dimkeystart >> 1;
4755 DimensionKeyRange.high = _3ewg->ReadUint8();
4756
4757 if (_3ewg->GetSize() > 32) {
4758 // read MIDI rules
4759 int i = 0;
4760 _3ewg->SetPos(32);
4761 uint8_t id1 = _3ewg->ReadUint8();
4762 uint8_t id2 = _3ewg->ReadUint8();
4763
4764 if (id2 == 16) {
4765 if (id1 == 4) {
4766 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4767 } else if (id1 == 0) {
4768 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4769 } else if (id1 == 3) {
4770 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4771 } else {
4772 pMidiRules[i++] = new MidiRuleUnknown;
4773 }
4774 }
4775 else if (id1 != 0 || id2 != 0) {
4776 pMidiRules[i++] = new MidiRuleUnknown;
4777 }
4778 //TODO: all the other types of rules
4779
4780 pMidiRules[i] = NULL;
4781 }
4782 }
4783 }
4784
4785 if (pFile->GetAutoLoad()) {
4786 if (!pRegions) pRegions = new RegionList;
4787 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4788 if (lrgn) {
4789 RIFF::List* rgn = lrgn->GetFirstSubList();
4790 while (rgn) {
4791 if (rgn->GetListType() == LIST_TYPE_RGN) {
4792 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4793 pRegions->push_back(new Region(this, rgn));
4794 }
4795 rgn = lrgn->GetNextSubList();
4796 }
4797 // Creating Region Key Table for fast lookup
4798 UpdateRegionKeyTable();
4799 }
4800 }
4801
4802 // own gig format extensions
4803 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4804 if (lst3LS) {
4805 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4806 if (ckSCSL) {
4807 ckSCSL->SetPos(0);
4808
4809 int headerSize = ckSCSL->ReadUint32();
4810 int slotCount = ckSCSL->ReadUint32();
4811 if (slotCount) {
4812 int slotSize = ckSCSL->ReadUint32();
4813 ckSCSL->SetPos(headerSize); // in case of future header extensions
4814 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4815 for (int i = 0; i < slotCount; ++i) {
4816 _ScriptPooolEntry e;
4817 e.fileOffset = ckSCSL->ReadUint32();
4818 e.bypass = ckSCSL->ReadUint32() & 1;
4819 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4820 scriptPoolFileOffsets.push_back(e);
4821 }
4822 }
4823 }
4824 }
4825
4826 __notify_progress(pProgress, 1.0f); // notify done
4827 }
4828
4829 void Instrument::UpdateRegionKeyTable() {
4830 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4831 RegionList::iterator iter = pRegions->begin();
4832 RegionList::iterator end = pRegions->end();
4833 for (; iter != end; ++iter) {
4834 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4835 const int low = std::max(int(pRegion->KeyRange.low), 0);
4836 const int high = std::min(int(pRegion->KeyRange.high), 127);
4837 for (int iKey = low; iKey <= high; iKey++) {
4838 RegionKeyTable[iKey] = pRegion;
4839 }
4840 }
4841 }
4842
4843 Instrument::~Instrument() {
4844 for (int i = 0 ; pMidiRules[i] ; i++) {
4845 delete pMidiRules[i];
4846 }
4847 delete[] pMidiRules;
4848 if (pScriptRefs) delete pScriptRefs;
4849 }
4850
4851 /**
4852 * Apply Instrument with all its Regions to the respective RIFF chunks.
4853 * You have to call File::Save() to make changes persistent.
4854 *
4855 * Usually there is absolutely no need to call this method explicitly.
4856 * It will be called automatically when File::Save() was called.
4857 *
4858 * @param pProgress - callback function for progress notification
4859 * @throws gig::Exception if samples cannot be dereferenced
4860 */
4861 void Instrument::UpdateChunks(progress_t* pProgress) {
4862 // first update base classes' chunks
4863 DLS::Instrument::UpdateChunks(pProgress);
4864
4865 // update Regions' chunks
4866 {
4867 RegionList::iterator iter = pRegions->begin();
4868 RegionList::iterator end = pRegions->end();
4869 for (; iter != end; ++iter)
4870 (*iter)->UpdateChunks(pProgress);
4871 }
4872
4873 // make sure 'lart' RIFF list chunk exists
4874 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4875 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4876 // make sure '3ewg' RIFF chunk exists
4877 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4878 if (!_3ewg) {
4879 File* pFile = (File*) GetParent();
4880
4881 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4882 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4883 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4884 memset(_3ewg->LoadChunkData(), 0, size);
4885 }
4886 // update '3ewg' RIFF chunk
4887 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4888 store16(&pData[0], EffectSend);
4889 store32(&pData[2], Attenuation);
4890 store16(&pData[6], FineTune);
4891 store16(&pData[8], PitchbendRange);
4892 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4893 DimensionKeyRange.low << 1;
4894 pData[10] = dimkeystart;
4895 pData[11] = DimensionKeyRange.high;
4896
4897 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4898 pData[32] = 0;
4899 pData[33] = 0;
4900 } else {
4901 for (int i = 0 ; pMidiRules[i] ; i++) {
4902 pMidiRules[i]->UpdateChunks(pData);
4903 }
4904 }
4905
4906 // own gig format extensions
4907 if (ScriptSlotCount()) {
4908 // make sure we have converted the original loaded script file
4909 // offsets into valid Script object pointers
4910 LoadScripts();
4911
4912 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4913 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4914 const int slotCount = (int) pScriptRefs->size();
4915 const int headerSize = 3 * sizeof(uint32_t);
4916 const int slotSize = 2 * sizeof(uint32_t);
4917 const int totalChunkSize = headerSize + slotCount * slotSize;
4918 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4919 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4920 else ckSCSL->Resize(totalChunkSize);
4921 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4922 int pos = 0;
4923 store32(&pData[pos], headerSize);
4924 pos += sizeof(uint32_t);
4925 store32(&pData[pos], slotCount);
4926 pos += sizeof(uint32_t);
4927 store32(&pData[pos], slotSize);
4928 pos += sizeof(uint32_t);
4929 for (int i = 0; i < slotCount; ++i) {
4930 // arbitrary value, the actual file offset will be updated in
4931 // UpdateScriptFileOffsets() after the file has been resized
4932 int bogusFileOffset = 0;
4933 store32(&pData[pos], bogusFileOffset);
4934 pos += sizeof(uint32_t);
4935 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4936 pos += sizeof(uint32_t);
4937 }
4938 } else {
4939 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4940 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4941 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4942 }
4943 }
4944
4945 void Instrument::UpdateScriptFileOffsets() {
4946 // own gig format extensions
4947 if (pScriptRefs && pScriptRefs->size() > 0) {
4948 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4949 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4950 const int slotCount = (int) pScriptRefs->size();
4951 const int headerSize = 3 * sizeof(uint32_t);
4952 ckSCSL->SetPos(headerSize);
4953 for (int i = 0; i < slotCount; ++i) {
4954 uint32_t fileOffset = uint32_t(
4955 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4956 (*pScriptRefs)[i].script->pChunk->GetPos() -
4957 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4958 );
4959 ckSCSL->WriteUint32(&fileOffset);
4960 // jump over flags entry (containing the bypass flag)
4961 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4962 }
4963 }
4964 }
4965
4966 /**
4967 * Returns the appropriate Region for a triggered note.
4968 *
4969 * @param Key MIDI Key number of triggered note / key (0 - 127)
4970 * @returns pointer adress to the appropriate Region or NULL if there
4971 * there is no Region defined for the given \a Key
4972 */
4973 Region* Instrument::GetRegion(unsigned int Key) {
4974 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4975 return RegionKeyTable[Key];
4976
4977 /*for (int i = 0; i < Regions; i++) {
4978 if (Key <= pRegions[i]->KeyRange.high &&
4979 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4980 }
4981 return NULL;*/
4982 }
4983
4984 /**
4985 * Returns the first Region of the instrument. You have to call this
4986 * method once before you use GetNextRegion().
4987 *
4988 * @returns pointer address to first region or NULL if there is none
4989 * @see GetNextRegion()
4990 */
4991 Region* Instrument::GetFirstRegion() {
4992 if (!pRegions) return NULL;
4993 RegionsIterator = pRegions->begin();
4994 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4995 }
4996
4997 /**
4998 * Returns the next Region of the instrument. You have to call
4999 * GetFirstRegion() once before you can use this method. By calling this
5000 * method multiple times it iterates through the available Regions.
5001 *
5002 * @returns pointer address to the next region or NULL if end reached
5003 * @see GetFirstRegion()
5004 */
5005 Region* Instrument::GetNextRegion() {
5006 if (!pRegions) return NULL;
5007 RegionsIterator++;
5008 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5009 }
5010
5011 Region* Instrument::AddRegion() {
5012 // create new Region object (and its RIFF chunks)
5013 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5014 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5015 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5016 Region* pNewRegion = new Region(this, rgn);
5017 pRegions->push_back(pNewRegion);
5018 Regions = (uint32_t) pRegions->size();
5019 // update Region key table for fast lookup
5020 UpdateRegionKeyTable();
5021 // done
5022 return pNewRegion;
5023 }
5024
5025 void Instrument::DeleteRegion(Region* pRegion) {
5026 if (!pRegions) return;
5027 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5028 // update Region key table for fast lookup
5029 UpdateRegionKeyTable();
5030 }
5031
5032 /**
5033 * Move this instrument at the position before @arg dst.
5034 *
5035 * This method can be used to reorder the sequence of instruments in a
5036 * .gig file. This might be helpful especially on large .gig files which
5037 * contain a large number of instruments within the same .gig file. So
5038 * grouping such instruments to similar ones, can help to keep track of them
5039 * when working with such complex .gig files.
5040 *
5041 * When calling this method, this instrument will be removed from in its
5042 * current position in the instruments list and moved to the requested
5043 * target position provided by @param dst. You may also pass NULL as
5044 * argument to this method, in that case this intrument will be moved to the
5045 * very end of the .gig file's instrument list.
5046 *
5047 * You have to call Save() to make the order change persistent to the .gig
5048 * file.
5049 *
5050 * Currently this method is limited to moving the instrument within the same
5051 * .gig file. Trying to move it to another .gig file by calling this method
5052 * will throw an exception.
5053 *
5054 * @param dst - destination instrument at which this instrument will be
5055 * moved to, or pass NULL for moving to end of list
5056 * @throw gig::Exception if this instrument and target instrument are not
5057 * part of the same file
5058 */
5059 void Instrument::MoveTo(Instrument* dst) {
5060 if (dst && GetParent() != dst->GetParent())
5061 throw Exception(
5062 "gig::Instrument::MoveTo() can only be used for moving within "
5063 "the same gig file."
5064 );
5065
5066 File* pFile = (File*) GetParent();
5067
5068 // move this instrument within the instrument list
5069 {
5070 File::InstrumentList& list = *pFile->pInstruments;
5071
5072 File::InstrumentList::iterator itFrom =
5073 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5074
5075 File::InstrumentList::iterator itTo =
5076 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5077
5078 list.splice(itTo, list, itFrom);
5079 }
5080
5081 // move the instrument's actual list RIFF chunk appropriately
5082 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5083 lstCkInstruments->MoveSubChunk(
5084 this->pCkInstrument,
5085 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5086 );
5087 }
5088
5089 /**
5090 * Returns a MIDI rule of the instrument.
5091 *
5092 * The list of MIDI rules, at least in gig v3, always contains at
5093 * most two rules. The second rule can only be the DEF filter
5094 * (which currently isn't supported by libgig).
5095 *
5096 * @param i - MIDI rule number
5097 * @returns pointer address to MIDI rule number i or NULL if there is none
5098 */
5099 MidiRule* Instrument::GetMidiRule(int i) {
5100 return pMidiRules[i];
5101 }
5102
5103 /**
5104 * Adds the "controller trigger" MIDI rule to the instrument.
5105 *
5106 * @returns the new MIDI rule
5107 */
5108 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5109 delete pMidiRules[0];
5110 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5111 pMidiRules[0] = r;
5112 pMidiRules[1] = 0;
5113 return r;
5114 }
5115
5116 /**
5117 * Adds the legato MIDI rule to the instrument.
5118 *
5119 * @returns the new MIDI rule
5120 */
5121 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5122 delete pMidiRules[0];
5123 MidiRuleLegato* r = new MidiRuleLegato;
5124 pMidiRules[0] = r;
5125 pMidiRules[1] = 0;
5126 return r;
5127 }
5128
5129 /**
5130 * Adds the alternator MIDI rule to the instrument.
5131 *
5132 * @returns the new MIDI rule
5133 */
5134 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5135 delete pMidiRules[0];
5136 MidiRuleAlternator* r = new MidiRuleAlternator;
5137 pMidiRules[0] = r;
5138 pMidiRules[1] = 0;
5139 return r;
5140 }
5141
5142 /**
5143 * Deletes a MIDI rule from the instrument.
5144 *
5145 * @param i - MIDI rule number
5146 */
5147 void Instrument::DeleteMidiRule(int i) {
5148 delete pMidiRules[i];
5149 pMidiRules[i] = 0;
5150 }
5151
5152 void Instrument::LoadScripts() {
5153 if (pScriptRefs) return;
5154 pScriptRefs = new std::vector<_ScriptPooolRef>;
5155 if (scriptPoolFileOffsets.empty()) return;
5156 File* pFile = (File*) GetParent();
5157 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5158 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5159 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5160 ScriptGroup* group = pFile->GetScriptGroup(i);
5161 for (uint s = 0; group->GetScript(s); ++s) {
5162 Script* script = group->GetScript(s);
5163 if (script->pChunk) {
5164 uint32_t offset = uint32_t(
5165 script->pChunk->GetFilePos() -
5166 script->pChunk->GetPos() -
5167 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5168 );
5169 if (offset == soughtOffset)
5170 {
5171 _ScriptPooolRef ref;
5172 ref.script = script;
5173 ref.bypass = scriptPoolFileOffsets[k].bypass;
5174 pScriptRefs->push_back(ref);
5175 break;
5176 }
5177 }
5178 }
5179 }
5180 }
5181 // we don't need that anymore
5182 scriptPoolFileOffsets.clear();
5183 }
5184
5185 /** @brief Get instrument script (gig format extension).
5186 *
5187 * Returns the real-time instrument script of instrument script slot
5188 * @a index.
5189 *
5190 * @note This is an own format extension which did not exist i.e. in the
5191 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5192 * gigedit.
5193 *
5194 * @param index - instrument script slot index
5195 * @returns script or NULL if index is out of bounds
5196 */
5197 Script* Instrument::GetScriptOfSlot(uint index) {
5198 LoadScripts();
5199 if (index >= pScriptRefs->size()) return NULL;
5200 return pScriptRefs->at(index).script;
5201 }
5202
5203 /** @brief Add new instrument script slot (gig format extension).
5204 *
5205 * Add the given real-time instrument script reference to this instrument,
5206 * which shall be executed by the sampler for for this instrument. The
5207 * script will be added to the end of the script list of this instrument.
5208 * The positions of the scripts in the Instrument's Script list are
5209 * relevant, because they define in which order they shall be executed by
5210 * the sampler. For this reason it is also legal to add the same script
5211 * twice to an instrument, for example you might have a script called
5212 * "MyFilter" which performs an event filter task, and you might have
5213 * another script called "MyNoteTrigger" which triggers new notes, then you
5214 * might for example have the following list of scripts on the instrument:
5215 *
5216 * 1. Script "MyFilter"
5217 * 2. Script "MyNoteTrigger"
5218 * 3. Script "MyFilter"
5219 *
5220 * Which would make sense, because the 2nd script launched new events, which
5221 * you might need to filter as well.
5222 *
5223 * There are two ways to disable / "bypass" scripts. You can either disable
5224 * a script locally for the respective script slot on an instrument (i.e. by
5225 * passing @c false to the 2nd argument of this method, or by calling
5226 * SetScriptBypassed()). Or you can disable a script globally for all slots
5227 * and all instruments by setting Script::Bypass.
5228 *
5229 * @note This is an own format extension which did not exist i.e. in the
5230 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5231 * gigedit.
5232 *
5233 * @param pScript - script that shall be executed for this instrument
5234 * @param bypass - if enabled, the sampler shall skip executing this
5235 * script (in the respective list position)
5236 * @see SetScriptBypassed()
5237 */
5238 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5239 LoadScripts();
5240 _ScriptPooolRef ref = { pScript, bypass };
5241 pScriptRefs->push_back(ref);
5242 }
5243
5244 /** @brief Flip two script slots with each other (gig format extension).
5245 *
5246 * Swaps the position of the two given scripts in the Instrument's Script
5247 * list. The positions of the scripts in the Instrument's Script list are
5248 * relevant, because they define in which order they shall be executed by
5249 * the sampler.
5250 *
5251 * @note This is an own format extension which did not exist i.e. in the
5252 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5253 * gigedit.
5254 *
5255 * @param index1 - index of the first script slot to swap
5256 * @param index2 - index of the second script slot to swap
5257 */
5258 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5259 LoadScripts();
5260 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5261 return;
5262 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5263 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5264 (*pScriptRefs)[index2] = tmp;
5265 }
5266
5267 /** @brief Remove script slot.
5268 *
5269 * Removes the script slot with the given slot index.
5270 *
5271 * @param index - index of script slot to remove
5272 */
5273 void Instrument::RemoveScriptSlot(uint index) {
5274 LoadScripts();
5275 if (index >= pScriptRefs->size()) return;
5276 pScriptRefs->erase( pScriptRefs->begin() + index );
5277 }
5278
5279 /** @brief Remove reference to given Script (gig format extension).
5280 *
5281 * This will remove all script slots on the instrument which are referencing
5282 * the given script.
5283 *
5284 * @note This is an own format extension which did not exist i.e. in the
5285 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5286 * gigedit.
5287 *
5288 * @param pScript - script reference to remove from this instrument
5289 * @see RemoveScriptSlot()
5290 */
5291 void Instrument::RemoveScript(Script* pScript) {
5292 LoadScripts();
5293 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5294 if ((*pScriptRefs)[i].script == pScript) {
5295 pScriptRefs->erase( pScriptRefs->begin() + i );
5296 }
5297 }
5298 }
5299
5300 /** @brief Instrument's amount of script slots.
5301 *
5302 * This method returns the amount of script slots this instrument currently
5303 * uses.
5304 *
5305 * A script slot is a reference of a real-time instrument script to be
5306 * executed by the sampler. The scripts will be executed by the sampler in
5307 * sequence of the slots. One (same) script may be referenced multiple
5308 * times in different slots.
5309 *
5310 * @note This is an own format extension which did not exist i.e. in the
5311 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5312 * gigedit.
5313 */
5314 uint Instrument::ScriptSlotCount() const {
5315 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5316 }
5317
5318 /** @brief Whether script execution shall be skipped.
5319 *
5320 * Defines locally for the Script reference slot in the Instrument's Script
5321 * list, whether the script shall be skipped by the sampler regarding
5322 * execution.
5323 *
5324 * It is also possible to ignore exeuction of the script globally, for all
5325 * slots and for all instruments by setting Script::Bypass.
5326 *
5327 * @note This is an own format extension which did not exist i.e. in the
5328 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5329 * gigedit.
5330 *
5331 * @param index - index of the script slot on this instrument
5332 * @see Script::Bypass
5333 */
5334 bool Instrument::IsScriptSlotBypassed(uint index) {
5335 if (index >= ScriptSlotCount()) return false;
5336 return pScriptRefs ? pScriptRefs->at(index).bypass
5337 : scriptPoolFileOffsets.at(index).bypass;
5338
5339 }
5340
5341 /** @brief Defines whether execution shall be skipped.
5342 *
5343 * You can call this method to define locally whether or whether not the
5344 * given script slot shall be executed by the sampler.
5345 *
5346 * @note This is an own format extension which did not exist i.e. in the
5347 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5348 * gigedit.
5349 *
5350 * @param index - script slot index on this instrument
5351 * @param bBypass - if true, the script slot will be skipped by the sampler
5352 * @see Script::Bypass
5353 */
5354 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5355 if (index >= ScriptSlotCount()) return;
5356 if (pScriptRefs)
5357 pScriptRefs->at(index).bypass = bBypass;
5358 else
5359 scriptPoolFileOffsets.at(index).bypass = bBypass;
5360 }
5361
5362 /**
5363 * Make a (semi) deep copy of the Instrument object given by @a orig
5364 * and assign it to this object.
5365 *
5366 * Note that all sample pointers referenced by @a orig are simply copied as
5367 * memory address. Thus the respective samples are shared, not duplicated!
5368 *
5369 * @param orig - original Instrument object to be copied from
5370 */
5371 void Instrument::CopyAssign(const Instrument* orig) {
5372 CopyAssign(orig, NULL);
5373 }
5374
5375 /**
5376 * Make a (semi) deep copy of the Instrument object given by @a orig
5377 * and assign it to this object.
5378 *
5379 * @param orig - original Instrument object to be copied from
5380 * @param mSamples - crosslink map between the foreign file's samples and
5381 * this file's samples
5382 */
5383 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5384 // handle base class
5385 // (without copying DLS region stuff)
5386 DLS::Instrument::CopyAssignCore(orig);
5387
5388 // handle own member variables
5389 Attenuation = orig->Attenuation;
5390 EffectSend = orig->EffectSend;
5391 FineTune = orig->FineTune;
5392 PitchbendRange = orig->PitchbendRange;
5393 PianoReleaseMode = orig->PianoReleaseMode;
5394 DimensionKeyRange = orig->DimensionKeyRange;
5395 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5396 pScriptRefs = orig->pScriptRefs;
5397
5398 // free old midi rules
5399 for (int i = 0 ; pMidiRules[i] ; i++) {
5400 delete pMidiRules[i];
5401 }
5402 //TODO: MIDI rule copying
5403 pMidiRules[0] = NULL;
5404
5405 // delete all old regions
5406 while (Regions) DeleteRegion(GetFirstRegion());
5407 // create new regions and copy them from original
5408 {
5409 RegionList::const_iterator it = orig->pRegions->begin();
5410 for (int i = 0; i < orig->Regions; ++i, ++it) {
5411 Region* dstRgn = AddRegion();
5412 //NOTE: Region does semi-deep copy !
5413 dstRgn->CopyAssign(
5414 static_cast<gig::Region*>(*it),
5415 mSamples
5416 );
5417 }
5418 }
5419
5420 UpdateRegionKeyTable();
5421 }
5422
5423
5424 // *************** Group ***************
5425 // *
5426
5427 /** @brief Constructor.
5428 *
5429 * @param file - pointer to the gig::File object
5430 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5431 * NULL if this is a new Group
5432 */
5433 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5434 pFile = file;
5435 pNameChunk = ck3gnm;
5436 ::LoadString(pNameChunk, Name);
5437 }
5438
5439 /** @brief Destructor.
5440 *
5441 * Currently this destructor implementation does nothing.
5442 */
5443 Group::~Group() {
5444 }
5445
5446 /** @brief Remove all RIFF chunks associated with this Group object.
5447 *
5448 * See DLS::Storage::DeleteChunks() for details.
5449 */
5450 void Group::DeleteChunks() {
5451 // handle own RIFF chunks
5452 if (pNameChunk) {
5453 pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5454 pNameChunk = NULL;
5455 }
5456 }
5457
5458 /** @brief Update chunks with current group settings.
5459 *
5460 * Apply current Group field values to the respective chunks. You have
5461 * to call File::Save() to make changes persistent.
5462 *
5463 * Usually there is absolutely no need to call this method explicitly.
5464 * It will be called automatically when File::Save() was called.
5465 *
5466 * @param pProgress - callback function for progress notification
5467 */
5468 void Group::UpdateChunks(progress_t* pProgress) {
5469 // make sure <3gri> and <3gnl> list chunks exist
5470 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5471 if (!_3gri) {
5472 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5473 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5474 }
5475 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5476 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5477
5478 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5479 // v3 has a fixed list of 128 strings, find a free one
5480 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5481 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5482 pNameChunk = ck;
5483 break;
5484 }
5485 }
5486 }
5487
5488 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5489 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5490 }
5491
5492 /**
5493 * Returns the first Sample of this Group. You have to call this method
5494 * once before you use GetNextSample().
5495 *
5496 * <b>Notice:</b> this method might block for a long time, in case the
5497 * samples of this .gig file were not scanned yet
5498 *
5499 * @returns pointer address to first Sample or NULL if there is none
5500 * applied to this Group
5501 * @see GetNextSample()
5502 */
5503 Sample* Group::GetFirstSample() {
5504 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5505 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5506 if (pSample->GetGroup() == this) return pSample;
5507 }
5508 return NULL;
5509 }
5510
5511 /**
5512 * Returns the next Sample of the Group. You have to call
5513 * GetFirstSample() once before you can use this method. By calling this
5514 * method multiple times it iterates through the Samples assigned to
5515 * this Group.
5516 *
5517 * @returns pointer address to the next Sample of this Group or NULL if
5518 * end reached
5519 * @see GetFirstSample()
5520 */
5521 Sample* Group::GetNextSample() {
5522 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5523 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5524 if (pSample->GetGroup() == this) return pSample;
5525 }
5526 return NULL;
5527 }
5528
5529 /**
5530 * Move Sample given by \a pSample from another Group to this Group.
5531 */
5532 void Group::AddSample(Sample* pSample) {
5533 pSample->pGroup = this;
5534 }
5535
5536 /**
5537 * Move all members of this group to another group (preferably the 1st
5538 * one except this). This method is called explicitly by
5539 * File::DeleteGroup() thus when a Group was deleted. This code was
5540 * intentionally not placed in the destructor!
5541 */
5542 void Group::MoveAll() {
5543 // get "that" other group first
5544 Group* pOtherGroup = NULL;
5545 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5546 if (pOtherGroup != this) break;
5547 }
5548 if (!pOtherGroup) throw Exception(
5549 "Could not move samples to another group, since there is no "
5550 "other Group. This is a bug, report it!"
5551 );
5552 // now move all samples of this group to the other group
5553 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5554 pOtherGroup->AddSample(pSample);
5555 }
5556 }
5557
5558
5559
5560 // *************** File ***************
5561 // *
5562
5563 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5564 const DLS::version_t File::VERSION_2 = {
5565 0, 2, 19980628 & 0xffff, 19980628 >> 16
5566 };
5567
5568 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5569 const DLS::version_t File::VERSION_3 = {
5570 0, 3, 20030331 & 0xffff, 20030331 >> 16
5571 };
5572
5573 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5574 const DLS::version_t File::VERSION_4 = {
5575 0, 4, 20071012 & 0xffff, 20071012 >> 16
5576 };
5577
5578 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5579 { CHUNK_ID_IARL, 256 },
5580 { CHUNK_ID_IART, 128 },
5581 { CHUNK_ID_ICMS, 128 },
5582 { CHUNK_ID_ICMT, 1024 },
5583 { CHUNK_ID_ICOP, 128 },
5584 { CHUNK_ID_ICRD, 128 },
5585 { CHUNK_ID_IENG, 128 },
5586 { CHUNK_ID_IGNR, 128 },
5587 { CHUNK_ID_IKEY, 128 },
5588 { CHUNK_ID_IMED, 128 },
5589 { CHUNK_ID_INAM, 128 },
5590 { CHUNK_ID_IPRD, 128 },
5591 { CHUNK_ID_ISBJ, 128 },
5592 { CHUNK_ID_ISFT, 128 },
5593 { CHUNK_ID_ISRC, 128 },
5594 { CHUNK_ID_ISRF, 128 },
5595 { CHUNK_ID_ITCH, 128 },
5596 { 0, 0 }
5597 };
5598
5599 File::File() : DLS::File() {
5600 bAutoLoad = true;
5601 *pVersion = VERSION_3;
5602 pGroups = NULL;
5603 pScriptGroups = NULL;
5604 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5605 pInfo->ArchivalLocation = String(256, ' ');
5606
5607 // add some mandatory chunks to get the file chunks in right
5608 // order (INFO chunk will be moved to first position later)
5609 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5610 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5611 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5612
5613 GenerateDLSID();
5614 }
5615
5616 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5617 bAutoLoad = true;
5618 pGroups = NULL;
5619 pScriptGroups = NULL;
5620 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5621 }
5622
5623 File::~File() {
5624 if (pGroups) {
5625 std::list<Group*>::iterator iter = pGroups->begin();
5626 std::list<Group*>::iterator end = pGroups->end();
5627 while (iter != end) {
5628 delete *iter;
5629 ++iter;
5630 }
5631 delete pGroups;
5632 }
5633 if (pScriptGroups) {
5634 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5635 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5636 while (iter != end) {
5637 delete *iter;
5638 ++iter;
5639 }
5640 delete pScriptGroups;
5641 }
5642 }
5643
5644 Sample* File::GetFirstSample(progress_t* pProgress) {
5645 if (!pSamples) LoadSamples(pProgress);
5646 if (!pSamples) return NULL;
5647 SamplesIterator = pSamples->begin();
5648 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5649 }
5650
5651 Sample* File::GetNextSample() {
5652 if (!pSamples) return NULL;
5653 SamplesIterator++;
5654 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5655 }
5656
5657 /**
5658 * Returns Sample object of @a index.
5659 *
5660 * @returns sample object or NULL if index is out of bounds
5661 */
5662 Sample* File::GetSample(uint index) {
5663 if (!pSamples) LoadSamples();
5664 if (!pSamples) return NULL;
5665 DLS::File::SampleList::iterator it = pSamples->begin();
5666 for (int i = 0; i < index; ++i) {
5667 ++it;
5668 if (it == pSamples->end()) return NULL;
5669 }
5670 if (it == pSamples->end()) return NULL;
5671 return static_cast<gig::Sample*>( *it );
5672 }
5673
5674 /**
5675 * Returns the total amount of samples of this gig file.
5676 *
5677 * Note that this method might block for a long time in case it is required
5678 * to load the sample info for the first time.
5679 *
5680 * @returns total amount of samples
5681 */
5682 size_t File::CountSamples() {
5683 if (!pSamples) LoadSamples();
5684 if (!pSamples) return 0;
5685 return pSamples->size();
5686 }
5687
5688 /** @brief Add a new sample.
5689 *
5690 * This will create a new Sample object for the gig file. You have to
5691 * call Save() to make this persistent to the file.
5692 *
5693 * @returns pointer to new Sample object
5694 */
5695 Sample* File::AddSample() {
5696 if (!pSamples) LoadSamples();
5697 __ensureMandatoryChunksExist();
5698 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5699 // create new Sample object and its respective 'wave' list chunk
5700 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5701 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5702
5703 // add mandatory chunks to get the chunks in right order
5704 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5705 wave->AddSubList(LIST_TYPE_INFO);
5706
5707 pSamples->push_back(pSample);
5708 return pSample;
5709 }
5710
5711 /** @brief Delete a sample.
5712 *
5713 * This will delete the given Sample object from the gig file. Any
5714 * references to this sample from Regions and DimensionRegions will be
5715 * removed. You have to call Save() to make this persistent to the file.
5716 *
5717 * @param pSample - sample to delete
5718 * @throws gig::Exception if given sample could not be found
5719 */
5720 void File::DeleteSample(Sample* pSample) {
5721 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5722 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5723 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5724 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5725 pSamples->erase(iter);
5726 pSample->DeleteChunks();
5727 delete pSample;
5728
5729 SampleList::iterator tmp = SamplesIterator;
5730 // remove all references to the sample
5731 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5732 instrument = GetNextInstrument()) {
5733 for (Region* region = instrument->GetFirstRegion() ; region ;
5734 region = instrument->GetNextRegion()) {
5735
5736 if (region->GetSample() == pSample) region->SetSample(NULL);
5737
5738 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5739 gig::DimensionRegion *d = region->pDimensionRegions[i];
5740 if (d->pSample == pSample) d->pSample = NULL;
5741 }
5742 }
5743 }
5744 SamplesIterator = tmp; // restore iterator
5745 }
5746
5747 void File::LoadSamples() {
5748 LoadSamples(NULL);
5749 }
5750
5751 void File::LoadSamples(progress_t* pProgress) {
5752 // Groups must be loaded before samples, because samples will try
5753 // to resolve the group they belong to
5754 if (!pGroups) LoadGroups();
5755
5756 if (!pSamples) pSamples = new SampleList;
5757
5758 RIFF::File* file = pRIFF;
5759
5760 // just for progress calculation
5761 int iSampleIndex = 0;
5762 int iTotalSamples = WavePoolCount;
5763
5764 // just for assembling path of optional extension files to be read
5765 const std::string folder = parentPath(pRIFF->GetFileName());
5766 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5767
5768 // the main gig file and the extension files (.gx01, ... , .gx98) may
5769 // contain wave data (wave pool)
5770 std::vector<RIFF::File*> poolFiles;
5771 poolFiles.push_back(pRIFF);
5772
5773 // get info about all extension files
5774 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5775 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5776 const uint32_t n = ckXfil->ReadInt32();
5777 for (int i = 0; i < n; i++) {
5778 // read the filename and load the extension file
5779 std::string name;
5780 ckXfil->ReadString(name, 128);
5781 std::string path = concatPath(folder, name);
5782 RIFF::File* pExtFile = new RIFF::File(path);
5783 // check that the dlsids match
5784 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5785 if (ckDLSID) {
5786 ::DLS::dlsid_t idExpected;
5787 idExpected.ulData1 = ckXfil->ReadInt32();
5788 idExpected.usData2 = ckXfil->ReadInt16();
5789 idExpected.usData3 = ckXfil->ReadInt16();
5790 ckXfil->Read(idExpected.abData, 8, 1);
5791 ::DLS::dlsid_t idFound;
5792 ckDLSID->Read(&idFound.ulData1, 1, 4);
5793 ckDLSID->Read(&idFound.usData2, 1, 2);
5794 ckDLSID->Read(&idFound.usData3, 1, 2);
5795 ckDLSID->Read(idFound.abData, 8, 1);
5796 if (memcmp(&idExpected, &idFound, 16) != 0)
5797 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5798 }
5799 poolFiles.push_back(pExtFile);
5800 ExtensionFiles.push_back(pExtFile);
5801 }
5802 }
5803
5804 // check if a .gx99 (GigaPulse) file exists
5805 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5806 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5807 std::string path = baseName + ".gx99";
5808 RIFF::File* pExtFile = new RIFF::File(path);
5809
5810 // skip unused int and filename
5811 ckDoxf->SetPos(132, RIFF::stream_curpos);
5812
5813 // check that the dlsids match
5814 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5815 if (ckDLSID) {
5816 ::DLS::dlsid_t idExpected;
5817 idExpected.ulData1 = ckDoxf->ReadInt32();
5818 idExpected.usData2 = ckDoxf->ReadInt16();
5819 idExpected.usData3 = ckDoxf->ReadInt16();
5820 ckDoxf->Read(idExpected.abData, 8, 1);
5821 ::DLS::dlsid_t idFound;
5822 ckDLSID->Read(&idFound.ulData1, 1, 4);
5823 ckDLSID->Read(&idFound.usData2, 1, 2);
5824 ckDLSID->Read(&idFound.usData3, 1, 2);
5825 ckDLSID->Read(idFound.abData, 8, 1);
5826 if (memcmp(&idExpected, &idFound, 16) != 0)
5827 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5828 }
5829 poolFiles.push_back(pExtFile);
5830 ExtensionFiles.push_back(pExtFile);
5831 }
5832
5833 // load samples from extension files (if required)
5834 for (int i = 0; i < poolFiles.size(); i++) {
5835 RIFF::File* file = poolFiles[i];
5836 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5837 if (wvpl) {
5838 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5839 wvpl->GetPos(); // should be zero, but just to be sure
5840 RIFF::List* wave = wvpl->GetFirstSubList();
5841 while (wave) {
5842 if (wave->GetListType() == LIST_TYPE_WAVE) {
5843 // notify current progress
5844 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5845 __notify_progress(pProgress, subprogress);
5846
5847 file_offset_t waveFileOffset = wave->GetFilePos();
5848 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5849
5850 iSampleIndex++;
5851 }
5852 wave = wvpl->GetNextSubList();
5853 }
5854 }
5855 }
5856
5857 __notify_progress(pProgress, 1.0); // notify done
5858 }
5859
5860 Instrument* File::GetFirstInstrument() {
5861 if (!pInstruments) LoadInstruments();
5862 if (!pInstruments) return NULL;
5863 InstrumentsIterator = pInstruments->begin();
5864 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5865 }
5866
5867 Instrument* File::GetNextInstrument() {
5868 if (!pInstruments) return NULL;
5869 InstrumentsIterator++;
5870 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5871 }
5872
5873 /**
5874 * Returns the total amount of instruments of this gig file.
5875 *
5876 * Note that this method might block for a long time in case it is required
5877 * to load the instruments info for the first time.
5878 *
5879 * @returns total amount of instruments
5880 */
5881 size_t File::CountInstruments() {
5882 if (!pInstruments) LoadInstruments();
5883 if (!pInstruments) return 0;
5884 return pInstruments->size();
5885 }
5886
5887 /**
5888 * Returns the instrument with the given index.
5889 *
5890 * @param index - number of the sought instrument (0..n)
5891 * @param pProgress - optional: callback function for progress notification
5892 * @returns sought instrument or NULL if there's no such instrument
5893 */
5894 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5895 if (!pInstruments) {
5896 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5897
5898 // sample loading subtask
5899 progress_t subprogress;
5900 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5901 __notify_progress(&subprogress, 0.0f);
5902 if (GetAutoLoad())
5903 GetFirstSample(&subprogress); // now force all samples to be loaded
5904 __notify_progress(&subprogress, 1.0f);
5905
5906 // instrument loading subtask
5907 if (pProgress && pProgress->callback) {
5908 subprogress.__range_min = subprogress.__range_max;
5909 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5910 }
5911 __notify_progress(&subprogress, 0.0f);
5912 LoadInstruments(&subprogress);
5913 __notify_progress(&subprogress, 1.0f);
5914 }
5915 if (!pInstruments) return NULL;
5916 InstrumentsIterator = pInstruments->begin();
5917 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5918 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5919 InstrumentsIterator++;
5920 }
5921 return NULL;
5922 }
5923
5924 /** @brief Add a new instrument definition.
5925 *
5926 * This will create a new Instrument object for the gig file. You have
5927 * to call Save() to make this persistent to the file.
5928 *
5929 * @returns pointer to new Instrument object
5930 */
5931 Instrument* File::AddInstrument() {
5932 if (!pInstruments) LoadInstruments();
5933 __ensureMandatoryChunksExist();
5934 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5935 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5936
5937 // add mandatory chunks to get the chunks in right order
5938 lstInstr->AddSubList(LIST_TYPE_INFO);
5939 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5940
5941 Instrument* pInstrument = new Instrument(this, lstInstr);
5942 pInstrument->GenerateDLSID();
5943
5944 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5945
5946 // this string is needed for the gig to be loadable in GSt:
5947 pInstrument->pInfo->Software = "Endless Wave";
5948
5949 pInstruments->push_back(pInstrument);
5950 return pInstrument;
5951 }
5952
5953 /** @brief Add a duplicate of an existing instrument.
5954 *
5955 * Duplicates the instrument definition given by @a orig and adds it
5956 * to this file. This allows in an instrument editor application to
5957 * easily create variations of an instrument, which will be stored in
5958 * the same .gig file, sharing i.e. the same samples.
5959 *
5960 * Note that all sample pointers referenced by @a orig are simply copied as
5961 * memory address. Thus the respective samples are shared, not duplicated!
5962 *
5963 * You have to call Save() to make this persistent to the file.
5964 *
5965 * @param orig - original instrument to be copied
5966 * @returns duplicated copy of the given instrument
5967 */
5968 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5969 Instrument* instr = AddInstrument();
5970 instr->CopyAssign(orig);
5971 return instr;
5972 }
5973
5974 /** @brief Add content of another existing file.
5975 *
5976 * Duplicates the samples, groups and instruments of the original file
5977 * given by @a pFile and adds them to @c this File. In case @c this File is
5978 * a new one that you haven't saved before, then you have to call
5979 * SetFileName() before calling AddContentOf(), because this method will
5980 * automatically save this file during operation, which is required for
5981 * writing the sample waveform data by disk streaming.
5982 *
5983 * @param pFile - original file whose's content shall be copied from
5984 */
5985 void File::AddContentOf(File* pFile) {
5986 static int iCallCount = -1;
5987 iCallCount++;
5988 std::map<Group*,Group*> mGroups;
5989 std::map<Sample*,Sample*> mSamples;
5990
5991 // clone sample groups
5992 for (int i = 0; pFile->GetGroup(i); ++i) {
5993 Group* g = AddGroup();
5994 g->Name =
5995 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5996 mGroups[pFile->GetGroup(i)] = g;
5997 }
5998
5999 // clone samples (not waveform data here yet)
6000 for (int i = 0; pFile->GetSample(i); ++i) {
6001 Sample* s = AddSample();
6002 s->CopyAssignMeta(pFile->GetSample(i));
6003 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6004 mSamples[pFile->GetSample(i)] = s;
6005 }
6006
6007 // clone script groups and their scripts
6008 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6009 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6010 ScriptGroup* dg = AddScriptGroup();
6011 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6012 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6013 Script* ss = sg->GetScript(iScript);
6014 Script* ds = dg->AddScript();
6015 ds->CopyAssign(ss);
6016 }
6017 }
6018
6019 //BUG: For some reason this method only works with this additional
6020 // Save() call in between here.
6021 //
6022 // Important: The correct one of the 2 Save() methods has to be called
6023 // here, depending on whether the file is completely new or has been
6024 // saved to disk already, otherwise it will result in data corruption.
6025 if (pRIFF->IsNew())
6026 Save(GetFileName());
6027 else
6028 Save();
6029
6030 // clone instruments
6031 // (passing the crosslink table here for the cloned samples)
6032 for (int i = 0; pFile->GetInstrument(i); ++i) {
6033 Instrument* instr = AddInstrument();
6034 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6035 }
6036
6037 // Mandatory: file needs to be saved to disk at this point, so this
6038 // file has the correct size and data layout for writing the samples'
6039 // waveform data to disk.
6040 Save();
6041
6042 // clone samples' waveform data
6043 // (using direct read & write disk streaming)
6044 for (int i = 0; pFile->GetSample(i); ++i) {
6045 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6046 }
6047 }
6048
6049 /** @brief Delete an instrument.
6050 *
6051 * This will delete the given Instrument object from the gig file. You
6052 * have to call Save() to make this persistent to the file.
6053 *
6054 * @param pInstrument - instrument to delete
6055 * @throws gig::Exception if given instrument could not be found
6056 */
6057 void File::DeleteInstrument(Instrument* pInstrument) {
6058 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6059 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6060 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6061 pInstruments->erase(iter);
6062 pInstrument->DeleteChunks();
6063 delete pInstrument;
6064 }
6065
6066 void File::LoadInstruments() {
6067 LoadInstruments(NULL);
6068 }
6069
6070 void File::LoadInstruments(progress_t* pProgress) {
6071 if (!pInstruments) pInstruments = new InstrumentList;
6072 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6073 if (lstInstruments) {
6074 int iInstrumentIndex = 0;
6075 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6076 while (lstInstr) {
6077 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6078 // notify current progress
6079 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6080 __notify_progress(pProgress, localProgress);
6081
6082 // divide local progress into subprogress for loading current Instrument
6083 progress_t subprogress;
6084 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6085
6086 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6087
6088 iInstrumentIndex++;
6089 }
6090 lstInstr = lstInstruments->GetNextSubList();
6091 }
6092 __notify_progress(pProgress, 1.0); // notify done
6093 }
6094 }
6095
6096 /// Updates the 3crc chunk with the checksum of a sample. The
6097 /// update is done directly to disk, as this method is called
6098 /// after File::Save()
6099 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6100 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6101 if (!_3crc) return;
6102
6103 // get the index of the sample
6104 int iWaveIndex = GetWaveTableIndexOf(pSample);
6105 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6106
6107 // write the CRC-32 checksum to disk
6108 _3crc->SetPos(iWaveIndex * 8);
6109 uint32_t one = 1;
6110 _3crc->WriteUint32(&one); // always 1
6111 _3crc->WriteUint32(&crc);
6112 }
6113
6114 uint32_t File::GetSampleChecksum(Sample* pSample) {
6115 // get the index of the sample
6116 int iWaveIndex = GetWaveTableIndexOf(pSample);
6117 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6118
6119 return GetSampleChecksumByIndex(iWaveIndex);
6120 }
6121
6122 uint32_t File::GetSampleChecksumByIndex(int index) {
6123 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6124
6125 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6126 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6127 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6128 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6129
6130 // read the CRC-32 checksum directly from disk
6131 size_t pos = index * 8;
6132 if (pos + 8 > _3crc->GetNewSize())
6133 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6134
6135 uint32_t one = load32(&pData[pos]); // always 1
6136 if (one != 1)
6137 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6138
6139 return load32(&pData[pos+4]);
6140 }
6141
6142 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6143 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6144 File::SampleList::iterator iter = pSamples->begin();
6145 File::SampleList::iterator end = pSamples->end();
6146 for (int index = 0; iter != end; ++iter, ++index)
6147 if (*iter == pSample)
6148 return index;
6149 return -1;
6150 }
6151
6152 /**
6153 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6154 * the CRC32 check sums of all samples' raw wave data.
6155 *
6156 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6157 */
6158 bool File::VerifySampleChecksumTable() {
6159 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6160 if (!_3crc) return false;
6161 if (_3crc->GetNewSize() <= 0) return false;
6162 if (_3crc->GetNewSize() % 8) return false;
6163 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6164 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6165
6166 const file_offset_t n = _3crc->GetNewSize() / 8;
6167
6168 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6169 if (!pData) return false;
6170
6171 for (file_offset_t i = 0; i < n; ++i) {
6172 uint32_t one = pData[i*2];
6173 if (one != 1) return false;
6174 }
6175
6176 return true;
6177 }
6178
6179 /**
6180 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6181 * file's checksum table with those new checksums. This might usually
6182 * just be necessary if the checksum table was damaged.
6183 *
6184 * @e IMPORTANT: The current implementation of this method only works
6185 * with files that have not been modified since it was loaded, because
6186 * it expects that no externally caused file structure changes are
6187 * required!
6188 *
6189 * Due to the expectation above, this method is currently protected
6190 * and actually only used by the command line tool "gigdump" yet.
6191 *
6192 * @returns true if Save() is required to be called after this call,
6193 * false if no further action is required
6194 */
6195 bool File::RebuildSampleChecksumTable() {
6196 // make sure sample chunks were scanned
6197 if (!pSamples) GetFirstSample();
6198
6199 bool bRequiresSave = false;
6200
6201 // make sure "3CRC" chunk exists with required size
6202 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6203 if (!_3crc) {
6204 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6205 // the order of einf and 3crc is not the same in v2 and v3
6206 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6207 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6208 bRequiresSave = true;
6209 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6210 _3crc->Resize(pSamples->size() * 8);
6211 bRequiresSave = true;
6212 }
6213
6214 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6215 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6216 {
6217 File::SampleList::iterator iter = pSamples->begin();
6218 File::SampleList::iterator end = pSamples->end();
6219 for (; iter != end; ++iter) {
6220 gig::Sample* pSample = (gig::Sample*) *iter;
6221 int index = GetWaveTableIndexOf(pSample);
6222 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6223 pData[index*2] = 1; // always 1
6224 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6225 }
6226 }
6227 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6228 // make sure file is in write mode
6229 pRIFF->SetMode(RIFF::stream_mode_read_write);
6230 {
6231 File::SampleList::iterator iter = pSamples->begin();
6232 File::SampleList::iterator end = pSamples->end();
6233 for (; iter != end; ++iter) {
6234 gig::Sample* pSample = (gig::Sample*) *iter;
6235 int index = GetWaveTableIndexOf(pSample);
6236 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6237 pSample->crc = pSample->CalculateWaveDataChecksum();
6238 SetSampleChecksum(pSample, pSample->crc);
6239 }
6240 }
6241 }
6242
6243 return bRequiresSave;
6244 }
6245
6246 Group* File::GetFirstGroup() {
6247 if (!pGroups) LoadGroups();
6248 // there must always be at least one group
6249 GroupsIterator = pGroups->begin();
6250 return *GroupsIterator;
6251 }
6252
6253 Group* File::GetNextGroup() {
6254 if (!pGroups) return NULL;
6255 ++GroupsIterator;
6256 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6257 }
6258
6259 /**
6260 * Returns the group with the given index.
6261 *
6262 * @param index - number of the sought group (0..n)
6263 * @returns sought group or NULL if there's no such group
6264 */
6265 Group* File::GetGroup(uint index) {
6266 if (!pGroups) LoadGroups();
6267 GroupsIterator = pGroups->begin();
6268 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6269 if (i == index) return *GroupsIterator;
6270 ++GroupsIterator;
6271 }
6272 return NULL;
6273 }
6274
6275 /**
6276 * Returns the group with the given group name.
6277 *
6278 * Note: group names don't have to be unique in the gig format! So there
6279 * can be multiple groups with the same name. This method will simply
6280 * return the first group found with the given name.
6281 *
6282 * @param name - name of the sought group
6283 * @returns sought group or NULL if there's no group with that name
6284 */
6285 Group* File::GetGroup(String name) {
6286 if (!pGroups) LoadGroups();
6287 GroupsIterator = pGroups->begin();
6288 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6289 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6290 return NULL;
6291 }
6292
6293 Group* File::AddGroup() {
6294 if (!pGroups) LoadGroups();
6295 // there must always be at least one group
6296 __ensureMandatoryChunksExist();
6297 Group* pGroup = new Group(this, NULL);
6298 pGroups->push_back(pGroup);
6299 return pGroup;
6300 }
6301
6302 /** @brief Delete a group and its samples.
6303 *
6304 * This will delete the given Group object and all the samples that
6305 * belong to this group from the gig file. You have to call Save() to
6306 * make this persistent to the file.
6307 *
6308 * @param pGroup - group to delete
6309 * @throws gig::Exception if given group could not be found
6310 */
6311 void File::DeleteGroup(Group* pGroup) {
6312 if (!pGroups) LoadGroups();
6313 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6314 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6315 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6316 // delete all members of this group
6317 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6318 DeleteSample(pSample);
6319 }
6320 // now delete this group object
6321 pGroups->erase(iter);
6322 pGroup->DeleteChunks();
6323 delete pGroup;
6324 }
6325
6326 /** @brief Delete a group.
6327 *
6328 * This will delete the given Group object from the gig file. All the
6329 * samples that belong to this group will not be deleted, but instead
6330 * be moved to another group. You have to call Save() to make this
6331 * persistent to the file.
6332 *
6333 * @param pGroup - group to delete
6334 * @throws gig::Exception if given group could not be found
6335 */
6336 void File::DeleteGroupOnly(Group* pGroup) {
6337 if (!pGroups) LoadGroups();
6338 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6339 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6340 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6341 // move all members of this group to another group
6342 pGroup->MoveAll();
6343 pGroups->erase(iter);
6344 pGroup->DeleteChunks();
6345 delete pGroup;
6346 }
6347
6348 void File::LoadGroups() {
6349 if (!pGroups) pGroups = new std::list<Group*>;
6350 // try to read defined groups from file
6351 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6352 if (lst3gri) {
6353 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6354 if (lst3gnl) {
6355 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6356 while (ck) {
6357 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6358 if (pVersion && pVersion->major > 2 &&
6359 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6360
6361 pGroups->push_back(new Group(this, ck));
6362 }
6363 ck = lst3gnl->GetNextSubChunk();
6364 }
6365 }
6366 }
6367 // if there were no group(s), create at least the mandatory default group
6368 if (!pGroups->size()) {
6369 Group* pGroup = new Group(this, NULL);
6370 pGroup->Name = "Default Group";
6371 pGroups->push_back(pGroup);
6372 }
6373 }
6374
6375 /** @brief Get instrument script group (by index).
6376 *
6377 * Returns the real-time instrument script group with the given index.
6378 *
6379 * @param index - number of the sought group (0..n)
6380 * @returns sought script group or NULL if there's no such group
6381 */
6382 ScriptGroup* File::GetScriptGroup(uint index) {
6383 if (!pScriptGroups) LoadScriptGroups();
6384 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6385 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6386 if (i == index) return *it;
6387 return NULL;
6388 }
6389
6390 /** @brief Get instrument script group (by name).
6391 *
6392 * Returns the first real-time instrument script group found with the given
6393 * group name. Note that group names may not necessarily be unique.
6394 *
6395 * @param name - name of the sought script group
6396 * @returns sought script group or NULL if there's no such group
6397 */
6398 ScriptGroup* File::GetScriptGroup(const String& name) {
6399 if (!pScriptGroups) LoadScriptGroups();
6400 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6401 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6402 if ((*it)->Name == name) return *it;
6403 return NULL;
6404 }
6405
6406 /** @brief Add new instrument script group.
6407 *
6408 * Adds a new, empty real-time instrument script group to the file.
6409 *
6410 * You have to call Save() to make this persistent to the file.
6411 *
6412 * @return new empty script group
6413 */
6414 ScriptGroup* File::AddScriptGroup() {
6415 if (!pScriptGroups) LoadScriptGroups();
6416 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6417 pScriptGroups->push_back(pScriptGroup);
6418 return pScriptGroup;
6419 }
6420
6421 /** @brief Delete an instrument script group.
6422 *
6423 * This will delete the given real-time instrument script group and all its
6424 * instrument scripts it contains. References inside instruments that are
6425 * using the deleted scripts will be removed from the respective instruments
6426 * accordingly.
6427 *
6428 * You have to call Save() to make this persistent to the file.
6429 *
6430 * @param pScriptGroup - script group to delete
6431 * @throws gig::Exception if given script group could not be found
6432 */
6433 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6434 if (!pScriptGroups) LoadScriptGroups();
6435 std::list<ScriptGroup*>::iterator iter =
6436 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6437 if (iter == pScriptGroups->end())
6438 throw gig::Exception("Could not delete script group, could not find given script group");
6439 pScriptGroups->erase(iter);
6440 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6441 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6442 if (pScriptGroup->pList)
6443 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6444 pScriptGroup->DeleteChunks();
6445 delete pScriptGroup;
6446 }
6447
6448 void File::LoadScriptGroups() {
6449 if (pScriptGroups) return;
6450 pScriptGroups = new std::list<ScriptGroup*>;
6451 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6452 if (lstLS) {
6453 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6454 lst = lstLS->GetNextSubList())
6455 {
6456 if (lst->GetListType() == LIST_TYPE_RTIS) {
6457 pScriptGroups->push_back(new ScriptGroup(this, lst));
6458 }
6459 }
6460 }
6461 }
6462
6463 /**
6464 * Apply all the gig file's current instruments, samples, groups and settings
6465 * to the respective RIFF chunks. You have to call Save() to make changes
6466 * persistent.
6467 *
6468 * Usually there is absolutely no need to call this method explicitly.
6469 * It will be called automatically when File::Save() was called.
6470 *
6471 * @param pProgress - callback function for progress notification
6472 * @throws Exception - on errors
6473 */
6474 void File::UpdateChunks(progress_t* pProgress) {
6475 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6476
6477 // update own gig format extension chunks
6478 // (not part of the GigaStudio 4 format)
6479 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6480 if (!lst3LS) {
6481 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6482 }
6483 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6484 // location of <3LS > is irrelevant, however it should be located
6485 // before the actual wave data
6486 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6487 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6488
6489 // This must be performed before writing the chunks for instruments,
6490 // because the instruments' script slots will write the file offsets
6491 // of the respective instrument script chunk as reference.
6492 if (pScriptGroups) {
6493 // Update instrument script (group) chunks.
6494 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6495 it != pScriptGroups->end(); ++it)
6496 {
6497 (*it)->UpdateChunks(pProgress);
6498 }
6499 }
6500
6501 // in case no libgig custom format data was added, then remove the
6502 // custom "3LS " chunk again
6503 if (!lst3LS->CountSubChunks()) {
6504 pRIFF->DeleteSubChunk(lst3LS);
6505 lst3LS = NULL;
6506 }
6507
6508 // first update base class's chunks
6509 DLS::File::UpdateChunks(pProgress);
6510
6511 if (newFile) {
6512 // INFO was added by Resource::UpdateChunks - make sure it
6513 // is placed first in file
6514 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6515 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6516 if (first != info) {
6517 pRIFF->MoveSubChunk(info, first);
6518 }
6519 }
6520
6521 // update group's chunks
6522 if (pGroups) {
6523 // make sure '3gri' and '3gnl' list chunks exist
6524 // (before updating the Group chunks)
6525 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6526 if (!_3gri) {
6527 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6528 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6529 }
6530 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6531 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6532
6533 // v3: make sure the file has 128 3gnm chunks
6534 // (before updating the Group chunks)
6535 if (pVersion && pVersion->major > 2) {
6536 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6537 for (int i = 0 ; i < 128 ; i++) {
6538 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6539 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6540 }
6541 }
6542
6543 std::list<Group*>::iterator iter = pGroups->begin();
6544 std::list<Group*>::iterator end = pGroups->end();
6545 for (; iter != end; ++iter) {
6546 (*iter)->UpdateChunks(pProgress);
6547 }
6548 }
6549
6550 // update einf chunk
6551
6552 // The einf chunk contains statistics about the gig file, such
6553 // as the number of regions and samples used by each
6554 // instrument. It is divided in equally sized parts, where the
6555 // first part contains information about the whole gig file,
6556 // and the rest of the parts map to each instrument in the
6557 // file.
6558 //
6559 // At the end of each part there is a bit map of each sample
6560 // in the file, where a set bit means that the sample is used
6561 // by the file/instrument.
6562 //
6563 // Note that there are several fields with unknown use. These
6564 // are set to zero.
6565
6566 int sublen = int(pSamples->size() / 8 + 49);
6567 int einfSize = (Instruments + 1) * sublen;
6568
6569 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6570 if (einf) {
6571 if (einf->GetSize() != einfSize) {
6572 einf->Resize(einfSize);
6573 memset(einf->LoadChunkData(), 0, einfSize);
6574 }
6575 } else if (newFile) {
6576 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6577 }
6578 if (einf) {
6579 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6580
6581 std::map<gig::Sample*,int> sampleMap;
6582 int sampleIdx = 0;
6583 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6584 sampleMap[pSample] = sampleIdx++;
6585 }
6586
6587 int totnbusedsamples = 0;
6588 int totnbusedchannels = 0;
6589 int totnbregions = 0;
6590 int totnbdimregions = 0;
6591 int totnbloops = 0;
6592 int instrumentIdx = 0;
6593
6594 memset(&pData[48], 0, sublen - 48);
6595
6596 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6597 instrument = GetNextInstrument()) {
6598 int nbusedsamples = 0;
6599 int nbusedchannels = 0;
6600 int nbdimregions = 0;
6601 int nbloops = 0;
6602
6603 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6604
6605 for (Region* region = instrument->GetFirstRegion() ; region ;
6606 region = instrument->GetNextRegion()) {
6607 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6608 gig::DimensionRegion *d = region->pDimensionRegions[i];
6609 if (d->pSample) {
6610 int sampleIdx = sampleMap[d->pSample];
6611 int byte = 48 + sampleIdx / 8;
6612 int bit = 1 << (sampleIdx & 7);
6613 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6614 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6615 nbusedsamples++;
6616 nbusedchannels += d->pSample->Channels;
6617
6618 if ((pData[byte] & bit) == 0) {
6619 pData[byte] |= bit;
6620 totnbusedsamples++;
6621 totnbusedchannels += d->pSample->Channels;
6622 }
6623 }
6624 }
6625 if (d->SampleLoops) nbloops++;
6626 }
6627 nbdimregions += region->DimensionRegions;
6628 }
6629 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6630 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6631 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6632 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6633 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6634 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6635 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6636 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6637 // next 8 bytes unknown
6638 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6639 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6640 // next 4 bytes unknown
6641
6642 totnbregions += instrument->Regions;
6643 totnbdimregions += nbdimregions;
6644 totnbloops += nbloops;
6645 instrumentIdx++;
6646 }
6647 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6648 // store32(&pData[0], sublen);
6649 store32(&pData[4], totnbusedchannels);
6650 store32(&pData[8], totnbusedsamples);
6651 store32(&pData[12], Instruments);
6652 store32(&pData[16], totnbregions);
6653 store32(&pData[20], totnbdimregions);
6654 store32(&pData[24], totnbloops);
6655 // next 8 bytes unknown
6656 // next 4 bytes unknown, not always 0
6657 store32(&pData[40], (uint32_t) pSamples->size());
6658 // next 4 bytes unknown
6659 }
6660
6661 // update 3crc chunk
6662
6663 // The 3crc chunk contains CRC-32 checksums for the
6664 // samples. When saving a gig file to disk, we first update the 3CRC
6665 // chunk here (in RAM) with the old crc values which we read from the
6666 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6667 // member variable). This step is required, because samples might have
6668 // been deleted by the user since the file was opened, which in turn
6669 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6670 // If a sample was conciously modified by the user (that is if
6671 // Sample::Write() was called later on) then Sample::Write() will just
6672 // update the respective individual checksum(s) directly on disk and
6673 // leaves all other sample checksums untouched.
6674
6675 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6676 if (_3crc) {
6677 _3crc->Resize(pSamples->size() * 8);
6678 } else /*if (newFile)*/ {
6679 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6680 // the order of einf and 3crc is not the same in v2 and v3
6681 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6682 }
6683 { // must be performed in RAM here ...
6684 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6685 if (pData) {
6686 File::SampleList::iterator iter = pSamples->begin();
6687 File::SampleList::iterator end = pSamples->end();
6688 for (int index = 0; iter != end; ++iter, ++index) {
6689 gig::Sample* pSample = (gig::Sample*) *iter;
6690 pData[index*2] = 1; // always 1
6691 pData[index*2+1] = pSample->crc;
6692 }
6693 }
6694 }
6695 }
6696
6697 void File::UpdateFileOffsets() {
6698 DLS::File::UpdateFileOffsets();
6699
6700 for (Instrument* instrument = GetFirstInstrument(); instrument;
6701 instrument = GetNextInstrument())
6702 {
6703 instrument->UpdateScriptFileOffsets();
6704 }
6705 }
6706
6707 /**
6708 * Enable / disable automatic loading. By default this property is
6709 * enabled and every information is loaded automatically. However
6710 * loading all Regions, DimensionRegions and especially samples might
6711 * take a long time for large .gig files, and sometimes one might only
6712 * be interested in retrieving very superficial informations like the
6713 * amount of instruments and their names. In this case one might disable
6714 * automatic loading to avoid very slow response times.
6715 *
6716 * @e CAUTION: by disabling this property many pointers (i.e. sample
6717 * references) and attributes will have invalid or even undefined
6718 * data! This feature is currently only intended for retrieving very
6719 * superficial information in a very fast way. Don't use it to retrieve
6720 * details like synthesis information or even to modify .gig files!
6721 */
6722 void File::SetAutoLoad(bool b) {
6723 bAutoLoad = b;
6724 }
6725
6726 /**
6727 * Returns whether automatic loading is enabled.
6728 * @see SetAutoLoad()
6729 */
6730 bool File::GetAutoLoad() {
6731 return bAutoLoad;
6732 }
6733
6734
6735
6736 // *************** Exception ***************
6737 // *
6738
6739 Exception::Exception() : DLS::Exception() {
6740 }
6741
6742 Exception::Exception(String format, ...) : DLS::Exception() {
6743 va_list arg;
6744 va_start(arg, format);
6745 Message = assemble(format, arg);
6746 va_end(arg);
6747 }
6748
6749 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6750 Message = assemble(format, arg);
6751 }
6752
6753 void Exception::PrintMessage() {
6754 std::cout << "gig::Exception: " << Message << std::endl;
6755 }
6756
6757
6758 // *************** functions ***************
6759 // *
6760
6761 /**
6762 * Returns the name of this C++ library. This is usually "libgig" of
6763 * course. This call is equivalent to RIFF::libraryName() and
6764 * DLS::libraryName().
6765 */
6766 String libraryName() {
6767 return PACKAGE;
6768 }
6769
6770 /**
6771 * Returns version of this C++ library. This call is equivalent to
6772 * RIFF::libraryVersion() and DLS::libraryVersion().
6773 */
6774 String libraryVersion() {
6775 return VERSION;
6776 }
6777
6778 } // namespace gig

  ViewVC Help
Powered by ViewVC