/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 809 - (show annotations) (download)
Tue Nov 22 11:26:55 2005 UTC (18 years, 4 months ago) by schoenebeck
File size: 134254 byte(s)
* src/gig.cpp, src/gig.h:
  - added write support (highly experimental)
  - removed unnecessary definitions from header file
* src/DLS.cpp:
  - try to load instruments/samples before adding a new instrument/sample

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** dimension_def_t ***************
55 // *
56
57 dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {
58 dimension = arg.dimension;
59 bits = arg.bits;
60 zones = arg.zones;
61 split_type = arg.split_type;
62 ranges = arg.ranges;
63 zone_size = arg.zone_size;
64 if (ranges) {
65 ranges = new range_t[zones];
66 for (int i = 0; i < zones; i++)
67 ranges[i] = arg.ranges[i];
68 }
69 return *this;
70 }
71
72
73
74 // *************** progress_t ***************
75 // *
76
77 progress_t::progress_t() {
78 callback = NULL;
79 custom = NULL;
80 __range_min = 0.0f;
81 __range_max = 1.0f;
82 }
83
84 // private helper function to convert progress of a subprocess into the global progress
85 static void __notify_progress(progress_t* pProgress, float subprogress) {
86 if (pProgress && pProgress->callback) {
87 const float totalrange = pProgress->__range_max - pProgress->__range_min;
88 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
89 pProgress->factor = totalprogress;
90 pProgress->callback(pProgress); // now actually notify about the progress
91 }
92 }
93
94 // private helper function to divide a progress into subprogresses
95 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
96 if (pParentProgress && pParentProgress->callback) {
97 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
98 pSubProgress->callback = pParentProgress->callback;
99 pSubProgress->custom = pParentProgress->custom;
100 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
101 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
102 }
103 }
104
105
106 // *************** Internal functions for sample decompression ***************
107 // *
108
109 namespace {
110
111 inline int get12lo(const unsigned char* pSrc)
112 {
113 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
114 return x & 0x800 ? x - 0x1000 : x;
115 }
116
117 inline int get12hi(const unsigned char* pSrc)
118 {
119 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
120 return x & 0x800 ? x - 0x1000 : x;
121 }
122
123 inline int16_t get16(const unsigned char* pSrc)
124 {
125 return int16_t(pSrc[0] | pSrc[1] << 8);
126 }
127
128 inline int get24(const unsigned char* pSrc)
129 {
130 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
131 return x & 0x800000 ? x - 0x1000000 : x;
132 }
133
134 void Decompress16(int compressionmode, const unsigned char* params,
135 int srcStep, int dstStep,
136 const unsigned char* pSrc, int16_t* pDst,
137 unsigned long currentframeoffset,
138 unsigned long copysamples)
139 {
140 switch (compressionmode) {
141 case 0: // 16 bit uncompressed
142 pSrc += currentframeoffset * srcStep;
143 while (copysamples) {
144 *pDst = get16(pSrc);
145 pDst += dstStep;
146 pSrc += srcStep;
147 copysamples--;
148 }
149 break;
150
151 case 1: // 16 bit compressed to 8 bit
152 int y = get16(params);
153 int dy = get16(params + 2);
154 while (currentframeoffset) {
155 dy -= int8_t(*pSrc);
156 y -= dy;
157 pSrc += srcStep;
158 currentframeoffset--;
159 }
160 while (copysamples) {
161 dy -= int8_t(*pSrc);
162 y -= dy;
163 *pDst = y;
164 pDst += dstStep;
165 pSrc += srcStep;
166 copysamples--;
167 }
168 break;
169 }
170 }
171
172 void Decompress24(int compressionmode, const unsigned char* params,
173 int dstStep, const unsigned char* pSrc, int16_t* pDst,
174 unsigned long currentframeoffset,
175 unsigned long copysamples, int truncatedBits)
176 {
177 // Note: The 24 bits are truncated to 16 bits for now.
178
179 int y, dy, ddy, dddy;
180 const int shift = 8 - truncatedBits;
181
182 #define GET_PARAMS(params) \
183 y = get24(params); \
184 dy = y - get24((params) + 3); \
185 ddy = get24((params) + 6); \
186 dddy = get24((params) + 9)
187
188 #define SKIP_ONE(x) \
189 dddy -= (x); \
190 ddy -= dddy; \
191 dy = -dy - ddy; \
192 y += dy
193
194 #define COPY_ONE(x) \
195 SKIP_ONE(x); \
196 *pDst = y >> shift; \
197 pDst += dstStep
198
199 switch (compressionmode) {
200 case 2: // 24 bit uncompressed
201 pSrc += currentframeoffset * 3;
202 while (copysamples) {
203 *pDst = get24(pSrc) >> shift;
204 pDst += dstStep;
205 pSrc += 3;
206 copysamples--;
207 }
208 break;
209
210 case 3: // 24 bit compressed to 16 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(get16(pSrc));
214 pSrc += 2;
215 currentframeoffset--;
216 }
217 while (copysamples) {
218 COPY_ONE(get16(pSrc));
219 pSrc += 2;
220 copysamples--;
221 }
222 break;
223
224 case 4: // 24 bit compressed to 12 bit
225 GET_PARAMS(params);
226 while (currentframeoffset > 1) {
227 SKIP_ONE(get12lo(pSrc));
228 SKIP_ONE(get12hi(pSrc));
229 pSrc += 3;
230 currentframeoffset -= 2;
231 }
232 if (currentframeoffset) {
233 SKIP_ONE(get12lo(pSrc));
234 currentframeoffset--;
235 if (copysamples) {
236 COPY_ONE(get12hi(pSrc));
237 pSrc += 3;
238 copysamples--;
239 }
240 }
241 while (copysamples > 1) {
242 COPY_ONE(get12lo(pSrc));
243 COPY_ONE(get12hi(pSrc));
244 pSrc += 3;
245 copysamples -= 2;
246 }
247 if (copysamples) {
248 COPY_ONE(get12lo(pSrc));
249 }
250 break;
251
252 case 5: // 24 bit compressed to 8 bit
253 GET_PARAMS(params);
254 while (currentframeoffset) {
255 SKIP_ONE(int8_t(*pSrc++));
256 currentframeoffset--;
257 }
258 while (copysamples) {
259 COPY_ONE(int8_t(*pSrc++));
260 copysamples--;
261 }
262 break;
263 }
264 }
265
266 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
267 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
268 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
269 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
270 }
271
272
273 // *************** Sample ***************
274 // *
275
276 unsigned int Sample::Instances = 0;
277 buffer_t Sample::InternalDecompressionBuffer;
278
279 /** @brief Constructor.
280 *
281 * Load an existing sample or create a new one. A 'wave' list chunk must
282 * be given to this constructor. In case the given 'wave' list chunk
283 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
284 * format and sample data will be loaded from there, otherwise default
285 * values will be used and those chunks will be created when
286 * File::Save() will be called later on.
287 *
288 * @param pFile - pointer to gig::File where this sample is
289 * located (or will be located)
290 * @param waveList - pointer to 'wave' list chunk which is (or
291 * will be) associated with this sample
292 * @param WavePoolOffset - offset of this sample data from wave pool
293 * ('wvpl') list chunk
294 * @param fileNo - number of an extension file where this sample
295 * is located, 0 otherwise
296 */
297 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
298 Instances++;
299 FileNo = fileNo;
300
301 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
302 if (pCk3gix) {
303 SampleGroup = pCk3gix->ReadInt16();
304 } else { // '3gix' chunk missing
305 // use default value(s)
306 SampleGroup = 0;
307 }
308
309 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
310 if (pCkSmpl) {
311 Manufacturer = pCkSmpl->ReadInt32();
312 Product = pCkSmpl->ReadInt32();
313 SamplePeriod = pCkSmpl->ReadInt32();
314 MIDIUnityNote = pCkSmpl->ReadInt32();
315 FineTune = pCkSmpl->ReadInt32();
316 pCkSmpl->Read(&SMPTEFormat, 1, 4);
317 SMPTEOffset = pCkSmpl->ReadInt32();
318 Loops = pCkSmpl->ReadInt32();
319 pCkSmpl->ReadInt32(); // manufByt
320 LoopID = pCkSmpl->ReadInt32();
321 pCkSmpl->Read(&LoopType, 1, 4);
322 LoopStart = pCkSmpl->ReadInt32();
323 LoopEnd = pCkSmpl->ReadInt32();
324 LoopFraction = pCkSmpl->ReadInt32();
325 LoopPlayCount = pCkSmpl->ReadInt32();
326 } else { // 'smpl' chunk missing
327 // use default values
328 Manufacturer = 0;
329 Product = 0;
330 SamplePeriod = 1 / SamplesPerSecond;
331 MIDIUnityNote = 64;
332 FineTune = 0;
333 SMPTEOffset = 0;
334 Loops = 0;
335 LoopID = 0;
336 LoopStart = 0;
337 LoopEnd = 0;
338 LoopFraction = 0;
339 LoopPlayCount = 0;
340 }
341
342 FrameTable = NULL;
343 SamplePos = 0;
344 RAMCache.Size = 0;
345 RAMCache.pStart = NULL;
346 RAMCache.NullExtensionSize = 0;
347
348 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
349
350 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
351 Compressed = ewav;
352 Dithered = false;
353 TruncatedBits = 0;
354 if (Compressed) {
355 uint32_t version = ewav->ReadInt32();
356 if (version == 3 && BitDepth == 24) {
357 Dithered = ewav->ReadInt32();
358 ewav->SetPos(Channels == 2 ? 84 : 64);
359 TruncatedBits = ewav->ReadInt32();
360 }
361 ScanCompressedSample();
362 }
363
364 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
365 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
366 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
367 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
368 }
369 FrameOffset = 0; // just for streaming compressed samples
370
371 LoopSize = LoopEnd - LoopStart;
372 }
373
374 /**
375 * Apply sample and its settings to the respective RIFF chunks. You have
376 * to call File::Save() to make changes persistent.
377 *
378 * Usually there is absolutely no need to call this method explicitly.
379 * It will be called automatically when File::Save() was called.
380 *
381 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
382 * was provided yet
383 * @throws gig::Exception if there is any invalid sample setting
384 */
385 void Sample::UpdateChunks() {
386 // first update base class's chunks
387 DLS::Sample::UpdateChunks();
388
389 // make sure 'smpl' chunk exists
390 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
391 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
392 // update 'smpl' chunk
393 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
394 SamplePeriod = 1 / SamplesPerSecond;
395 memcpy(&pData[0], &Manufacturer, 4);
396 memcpy(&pData[4], &Product, 4);
397 memcpy(&pData[8], &SamplePeriod, 4);
398 memcpy(&pData[12], &MIDIUnityNote, 4);
399 memcpy(&pData[16], &FineTune, 4);
400 memcpy(&pData[20], &SMPTEFormat, 4);
401 memcpy(&pData[24], &SMPTEOffset, 4);
402 memcpy(&pData[28], &Loops, 4);
403
404 // we skip 'manufByt' for now (4 bytes)
405
406 memcpy(&pData[36], &LoopID, 4);
407 memcpy(&pData[40], &LoopType, 4);
408 memcpy(&pData[44], &LoopStart, 4);
409 memcpy(&pData[48], &LoopEnd, 4);
410 memcpy(&pData[52], &LoopFraction, 4);
411 memcpy(&pData[56], &LoopPlayCount, 4);
412
413 // make sure '3gix' chunk exists
414 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
415 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
416 // update '3gix' chunk
417 pData = (uint8_t*) pCk3gix->LoadChunkData();
418 memcpy(&pData[0], &SampleGroup, 2);
419 }
420
421 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
422 void Sample::ScanCompressedSample() {
423 //TODO: we have to add some more scans here (e.g. determine compression rate)
424 this->SamplesTotal = 0;
425 std::list<unsigned long> frameOffsets;
426
427 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
428 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
429
430 // Scanning
431 pCkData->SetPos(0);
432 if (Channels == 2) { // Stereo
433 for (int i = 0 ; ; i++) {
434 // for 24 bit samples every 8:th frame offset is
435 // stored, to save some memory
436 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
437
438 const int mode_l = pCkData->ReadUint8();
439 const int mode_r = pCkData->ReadUint8();
440 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
441 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
442
443 if (pCkData->RemainingBytes() <= frameSize) {
444 SamplesInLastFrame =
445 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
446 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
447 SamplesTotal += SamplesInLastFrame;
448 break;
449 }
450 SamplesTotal += SamplesPerFrame;
451 pCkData->SetPos(frameSize, RIFF::stream_curpos);
452 }
453 }
454 else { // Mono
455 for (int i = 0 ; ; i++) {
456 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
457
458 const int mode = pCkData->ReadUint8();
459 if (mode > 5) throw gig::Exception("Unknown compression mode");
460 const unsigned long frameSize = bytesPerFrame[mode];
461
462 if (pCkData->RemainingBytes() <= frameSize) {
463 SamplesInLastFrame =
464 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
465 SamplesTotal += SamplesInLastFrame;
466 break;
467 }
468 SamplesTotal += SamplesPerFrame;
469 pCkData->SetPos(frameSize, RIFF::stream_curpos);
470 }
471 }
472 pCkData->SetPos(0);
473
474 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
475 if (FrameTable) delete[] FrameTable;
476 FrameTable = new unsigned long[frameOffsets.size()];
477 std::list<unsigned long>::iterator end = frameOffsets.end();
478 std::list<unsigned long>::iterator iter = frameOffsets.begin();
479 for (int i = 0; iter != end; i++, iter++) {
480 FrameTable[i] = *iter;
481 }
482 }
483
484 /**
485 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
486 * ReleaseSampleData() to free the memory if you don't need the cached
487 * sample data anymore.
488 *
489 * @returns buffer_t structure with start address and size of the buffer
490 * in bytes
491 * @see ReleaseSampleData(), Read(), SetPos()
492 */
493 buffer_t Sample::LoadSampleData() {
494 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
495 }
496
497 /**
498 * Reads (uncompresses if needed) and caches the first \a SampleCount
499 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
500 * memory space if you don't need the cached samples anymore. There is no
501 * guarantee that exactly \a SampleCount samples will be cached; this is
502 * not an error. The size will be eventually truncated e.g. to the
503 * beginning of a frame of a compressed sample. This is done for
504 * efficiency reasons while streaming the wave by your sampler engine
505 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
506 * that will be returned to determine the actual cached samples, but note
507 * that the size is given in bytes! You get the number of actually cached
508 * samples by dividing it by the frame size of the sample:
509 * @code
510 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
511 * long cachedsamples = buf.Size / pSample->FrameSize;
512 * @endcode
513 *
514 * @param SampleCount - number of sample points to load into RAM
515 * @returns buffer_t structure with start address and size of
516 * the cached sample data in bytes
517 * @see ReleaseSampleData(), Read(), SetPos()
518 */
519 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
520 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
521 }
522
523 /**
524 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
525 * ReleaseSampleData() to free the memory if you don't need the cached
526 * sample data anymore.
527 * The method will add \a NullSamplesCount silence samples past the
528 * official buffer end (this won't affect the 'Size' member of the
529 * buffer_t structure, that means 'Size' always reflects the size of the
530 * actual sample data, the buffer might be bigger though). Silence
531 * samples past the official buffer are needed for differential
532 * algorithms that always have to take subsequent samples into account
533 * (resampling/interpolation would be an important example) and avoids
534 * memory access faults in such cases.
535 *
536 * @param NullSamplesCount - number of silence samples the buffer should
537 * be extended past it's data end
538 * @returns buffer_t structure with start address and
539 * size of the buffer in bytes
540 * @see ReleaseSampleData(), Read(), SetPos()
541 */
542 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
543 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
544 }
545
546 /**
547 * Reads (uncompresses if needed) and caches the first \a SampleCount
548 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
549 * memory space if you don't need the cached samples anymore. There is no
550 * guarantee that exactly \a SampleCount samples will be cached; this is
551 * not an error. The size will be eventually truncated e.g. to the
552 * beginning of a frame of a compressed sample. This is done for
553 * efficiency reasons while streaming the wave by your sampler engine
554 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
555 * that will be returned to determine the actual cached samples, but note
556 * that the size is given in bytes! You get the number of actually cached
557 * samples by dividing it by the frame size of the sample:
558 * @code
559 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
560 * long cachedsamples = buf.Size / pSample->FrameSize;
561 * @endcode
562 * The method will add \a NullSamplesCount silence samples past the
563 * official buffer end (this won't affect the 'Size' member of the
564 * buffer_t structure, that means 'Size' always reflects the size of the
565 * actual sample data, the buffer might be bigger though). Silence
566 * samples past the official buffer are needed for differential
567 * algorithms that always have to take subsequent samples into account
568 * (resampling/interpolation would be an important example) and avoids
569 * memory access faults in such cases.
570 *
571 * @param SampleCount - number of sample points to load into RAM
572 * @param NullSamplesCount - number of silence samples the buffer should
573 * be extended past it's data end
574 * @returns buffer_t structure with start address and
575 * size of the cached sample data in bytes
576 * @see ReleaseSampleData(), Read(), SetPos()
577 */
578 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
579 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
580 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
581 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
582 RAMCache.pStart = new int8_t[allocationsize];
583 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
584 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
585 // fill the remaining buffer space with silence samples
586 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
587 return GetCache();
588 }
589
590 /**
591 * Returns current cached sample points. A buffer_t structure will be
592 * returned which contains address pointer to the begin of the cache and
593 * the size of the cached sample data in bytes. Use
594 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
595 * RAM.
596 *
597 * @returns buffer_t structure with current cached sample points
598 * @see LoadSampleData();
599 */
600 buffer_t Sample::GetCache() {
601 // return a copy of the buffer_t structure
602 buffer_t result;
603 result.Size = this->RAMCache.Size;
604 result.pStart = this->RAMCache.pStart;
605 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
606 return result;
607 }
608
609 /**
610 * Frees the cached sample from RAM if loaded with
611 * <i>LoadSampleData()</i> previously.
612 *
613 * @see LoadSampleData();
614 */
615 void Sample::ReleaseSampleData() {
616 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
617 RAMCache.pStart = NULL;
618 RAMCache.Size = 0;
619 }
620
621 /** @brief Resize sample.
622 *
623 * Resizes the sample's wave form data, that is the actual size of
624 * sample wave data possible to be written for this sample. This call
625 * will return immediately and just schedule the resize operation. You
626 * should call File::Save() to actually perform the resize operation(s)
627 * "physically" to the file. As this can take a while on large files, it
628 * is recommended to call Resize() first on all samples which have to be
629 * resized and finally to call File::Save() to perform all those resize
630 * operations in one rush.
631 *
632 * The actual size (in bytes) is dependant to the current FrameSize
633 * value. You may want to set FrameSize before calling Resize().
634 *
635 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
636 * enlarged samples before calling File::Save() as this might exceed the
637 * current sample's boundary!
638 *
639 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
640 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
641 * other formats will fail!
642 *
643 * @param iNewSize - new sample wave data size in sample points (must be
644 * greater than zero)
645 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
646 * or if \a iNewSize is less than 1
647 * @throws gig::Exception if existing sample is compressed
648 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
649 * DLS::Sample::FormatTag, File::Save()
650 */
651 void Sample::Resize(int iNewSize) {
652 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
653 DLS::Sample::Resize(iNewSize);
654 }
655
656 /**
657 * Sets the position within the sample (in sample points, not in
658 * bytes). Use this method and <i>Read()</i> if you don't want to load
659 * the sample into RAM, thus for disk streaming.
660 *
661 * Although the original Gigasampler engine doesn't allow positioning
662 * within compressed samples, I decided to implement it. Even though
663 * the Gigasampler format doesn't allow to define loops for compressed
664 * samples at the moment, positioning within compressed samples might be
665 * interesting for some sampler engines though. The only drawback about
666 * my decision is that it takes longer to load compressed gig Files on
667 * startup, because it's neccessary to scan the samples for some
668 * mandatory informations. But I think as it doesn't affect the runtime
669 * efficiency, nobody will have a problem with that.
670 *
671 * @param SampleCount number of sample points to jump
672 * @param Whence optional: to which relation \a SampleCount refers
673 * to, if omited <i>RIFF::stream_start</i> is assumed
674 * @returns the new sample position
675 * @see Read()
676 */
677 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
678 if (Compressed) {
679 switch (Whence) {
680 case RIFF::stream_curpos:
681 this->SamplePos += SampleCount;
682 break;
683 case RIFF::stream_end:
684 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
685 break;
686 case RIFF::stream_backward:
687 this->SamplePos -= SampleCount;
688 break;
689 case RIFF::stream_start: default:
690 this->SamplePos = SampleCount;
691 break;
692 }
693 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
694
695 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
696 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
697 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
698 return this->SamplePos;
699 }
700 else { // not compressed
701 unsigned long orderedBytes = SampleCount * this->FrameSize;
702 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
703 return (result == orderedBytes) ? SampleCount
704 : result / this->FrameSize;
705 }
706 }
707
708 /**
709 * Returns the current position in the sample (in sample points).
710 */
711 unsigned long Sample::GetPos() {
712 if (Compressed) return SamplePos;
713 else return pCkData->GetPos() / FrameSize;
714 }
715
716 /**
717 * Reads \a SampleCount number of sample points from the position stored
718 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
719 * the position within the sample respectively, this method honors the
720 * looping informations of the sample (if any). The sample wave stream
721 * will be decompressed on the fly if using a compressed sample. Use this
722 * method if you don't want to load the sample into RAM, thus for disk
723 * streaming. All this methods needs to know to proceed with streaming
724 * for the next time you call this method is stored in \a pPlaybackState.
725 * You have to allocate and initialize the playback_state_t structure by
726 * yourself before you use it to stream a sample:
727 * @code
728 * gig::playback_state_t playbackstate;
729 * playbackstate.position = 0;
730 * playbackstate.reverse = false;
731 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
732 * @endcode
733 * You don't have to take care of things like if there is actually a loop
734 * defined or if the current read position is located within a loop area.
735 * The method already handles such cases by itself.
736 *
737 * <b>Caution:</b> If you are using more than one streaming thread, you
738 * have to use an external decompression buffer for <b>EACH</b>
739 * streaming thread to avoid race conditions and crashes!
740 *
741 * @param pBuffer destination buffer
742 * @param SampleCount number of sample points to read
743 * @param pPlaybackState will be used to store and reload the playback
744 * state for the next ReadAndLoop() call
745 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
746 * @returns number of successfully read sample points
747 * @see CreateDecompressionBuffer()
748 */
749 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
750 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
751 uint8_t* pDst = (uint8_t*) pBuffer;
752
753 SetPos(pPlaybackState->position); // recover position from the last time
754
755 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
756
757 switch (this->LoopType) {
758
759 case loop_type_bidirectional: { //TODO: not tested yet!
760 do {
761 // if not endless loop check if max. number of loop cycles have been passed
762 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
763
764 if (!pPlaybackState->reverse) { // forward playback
765 do {
766 samplestoloopend = this->LoopEnd - GetPos();
767 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
768 samplestoread -= readsamples;
769 totalreadsamples += readsamples;
770 if (readsamples == samplestoloopend) {
771 pPlaybackState->reverse = true;
772 break;
773 }
774 } while (samplestoread && readsamples);
775 }
776 else { // backward playback
777
778 // as we can only read forward from disk, we have to
779 // determine the end position within the loop first,
780 // read forward from that 'end' and finally after
781 // reading, swap all sample frames so it reflects
782 // backward playback
783
784 unsigned long swapareastart = totalreadsamples;
785 unsigned long loopoffset = GetPos() - this->LoopStart;
786 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
787 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
788
789 SetPos(reverseplaybackend);
790
791 // read samples for backward playback
792 do {
793 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
794 samplestoreadinloop -= readsamples;
795 samplestoread -= readsamples;
796 totalreadsamples += readsamples;
797 } while (samplestoreadinloop && readsamples);
798
799 SetPos(reverseplaybackend); // pretend we really read backwards
800
801 if (reverseplaybackend == this->LoopStart) {
802 pPlaybackState->loop_cycles_left--;
803 pPlaybackState->reverse = false;
804 }
805
806 // reverse the sample frames for backward playback
807 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
808 }
809 } while (samplestoread && readsamples);
810 break;
811 }
812
813 case loop_type_backward: { // TODO: not tested yet!
814 // forward playback (not entered the loop yet)
815 if (!pPlaybackState->reverse) do {
816 samplestoloopend = this->LoopEnd - GetPos();
817 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
818 samplestoread -= readsamples;
819 totalreadsamples += readsamples;
820 if (readsamples == samplestoloopend) {
821 pPlaybackState->reverse = true;
822 break;
823 }
824 } while (samplestoread && readsamples);
825
826 if (!samplestoread) break;
827
828 // as we can only read forward from disk, we have to
829 // determine the end position within the loop first,
830 // read forward from that 'end' and finally after
831 // reading, swap all sample frames so it reflects
832 // backward playback
833
834 unsigned long swapareastart = totalreadsamples;
835 unsigned long loopoffset = GetPos() - this->LoopStart;
836 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
837 : samplestoread;
838 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
839
840 SetPos(reverseplaybackend);
841
842 // read samples for backward playback
843 do {
844 // if not endless loop check if max. number of loop cycles have been passed
845 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
846 samplestoloopend = this->LoopEnd - GetPos();
847 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
848 samplestoreadinloop -= readsamples;
849 samplestoread -= readsamples;
850 totalreadsamples += readsamples;
851 if (readsamples == samplestoloopend) {
852 pPlaybackState->loop_cycles_left--;
853 SetPos(this->LoopStart);
854 }
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 // reverse the sample frames for backward playback
860 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
861 break;
862 }
863
864 default: case loop_type_normal: {
865 do {
866 // if not endless loop check if max. number of loop cycles have been passed
867 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
868 samplestoloopend = this->LoopEnd - GetPos();
869 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
870 samplestoread -= readsamples;
871 totalreadsamples += readsamples;
872 if (readsamples == samplestoloopend) {
873 pPlaybackState->loop_cycles_left--;
874 SetPos(this->LoopStart);
875 }
876 } while (samplestoread && readsamples);
877 break;
878 }
879 }
880 }
881
882 // read on without looping
883 if (samplestoread) do {
884 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
885 samplestoread -= readsamples;
886 totalreadsamples += readsamples;
887 } while (readsamples && samplestoread);
888
889 // store current position
890 pPlaybackState->position = GetPos();
891
892 return totalreadsamples;
893 }
894
895 /**
896 * Reads \a SampleCount number of sample points from the current
897 * position into the buffer pointed by \a pBuffer and increments the
898 * position within the sample. The sample wave stream will be
899 * decompressed on the fly if using a compressed sample. Use this method
900 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
901 * thus for disk streaming.
902 *
903 * <b>Caution:</b> If you are using more than one streaming thread, you
904 * have to use an external decompression buffer for <b>EACH</b>
905 * streaming thread to avoid race conditions and crashes!
906 *
907 * @param pBuffer destination buffer
908 * @param SampleCount number of sample points to read
909 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
910 * @returns number of successfully read sample points
911 * @see SetPos(), CreateDecompressionBuffer()
912 */
913 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
914 if (SampleCount == 0) return 0;
915 if (!Compressed) {
916 if (BitDepth == 24) {
917 // 24 bit sample. For now just truncate to 16 bit.
918 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
919 int16_t* pDst = static_cast<int16_t*>(pBuffer);
920 if (Channels == 2) { // Stereo
921 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
922 pSrc++;
923 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
924 *pDst++ = get16(pSrc);
925 pSrc += 3;
926 }
927 return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
928 }
929 else { // Mono
930 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
931 pSrc++;
932 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
933 *pDst++ = get16(pSrc);
934 pSrc += 3;
935 }
936 return pDst - static_cast<int16_t*>(pBuffer);
937 }
938 }
939 else { // 16 bit
940 // (pCkData->Read does endian correction)
941 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
942 : pCkData->Read(pBuffer, SampleCount, 2);
943 }
944 }
945 else {
946 if (this->SamplePos >= this->SamplesTotal) return 0;
947 //TODO: efficiency: maybe we should test for an average compression rate
948 unsigned long assumedsize = GuessSize(SampleCount),
949 remainingbytes = 0, // remaining bytes in the local buffer
950 remainingsamples = SampleCount,
951 copysamples, skipsamples,
952 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
953 this->FrameOffset = 0;
954
955 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
956
957 // if decompression buffer too small, then reduce amount of samples to read
958 if (pDecompressionBuffer->Size < assumedsize) {
959 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
960 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
961 remainingsamples = SampleCount;
962 assumedsize = GuessSize(SampleCount);
963 }
964
965 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
966 int16_t* pDst = static_cast<int16_t*>(pBuffer);
967 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
968
969 while (remainingsamples && remainingbytes) {
970 unsigned long framesamples = SamplesPerFrame;
971 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
972
973 int mode_l = *pSrc++, mode_r = 0;
974
975 if (Channels == 2) {
976 mode_r = *pSrc++;
977 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
978 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
979 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
980 if (remainingbytes < framebytes) { // last frame in sample
981 framesamples = SamplesInLastFrame;
982 if (mode_l == 4 && (framesamples & 1)) {
983 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
984 }
985 else {
986 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
987 }
988 }
989 }
990 else {
991 framebytes = bytesPerFrame[mode_l] + 1;
992 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
993 if (remainingbytes < framebytes) {
994 framesamples = SamplesInLastFrame;
995 }
996 }
997
998 // determine how many samples in this frame to skip and read
999 if (currentframeoffset + remainingsamples >= framesamples) {
1000 if (currentframeoffset <= framesamples) {
1001 copysamples = framesamples - currentframeoffset;
1002 skipsamples = currentframeoffset;
1003 }
1004 else {
1005 copysamples = 0;
1006 skipsamples = framesamples;
1007 }
1008 }
1009 else {
1010 // This frame has enough data for pBuffer, but not
1011 // all of the frame is needed. Set file position
1012 // to start of this frame for next call to Read.
1013 copysamples = remainingsamples;
1014 skipsamples = currentframeoffset;
1015 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1016 this->FrameOffset = currentframeoffset + copysamples;
1017 }
1018 remainingsamples -= copysamples;
1019
1020 if (remainingbytes > framebytes) {
1021 remainingbytes -= framebytes;
1022 if (remainingsamples == 0 &&
1023 currentframeoffset + copysamples == framesamples) {
1024 // This frame has enough data for pBuffer, and
1025 // all of the frame is needed. Set file
1026 // position to start of next frame for next
1027 // call to Read. FrameOffset is 0.
1028 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1029 }
1030 }
1031 else remainingbytes = 0;
1032
1033 currentframeoffset -= skipsamples;
1034
1035 if (copysamples == 0) {
1036 // skip this frame
1037 pSrc += framebytes - Channels;
1038 }
1039 else {
1040 const unsigned char* const param_l = pSrc;
1041 if (BitDepth == 24) {
1042 if (mode_l != 2) pSrc += 12;
1043
1044 if (Channels == 2) { // Stereo
1045 const unsigned char* const param_r = pSrc;
1046 if (mode_r != 2) pSrc += 12;
1047
1048 Decompress24(mode_l, param_l, 2, pSrc, pDst,
1049 skipsamples, copysamples, TruncatedBits);
1050 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
1051 skipsamples, copysamples, TruncatedBits);
1052 pDst += copysamples << 1;
1053 }
1054 else { // Mono
1055 Decompress24(mode_l, param_l, 1, pSrc, pDst,
1056 skipsamples, copysamples, TruncatedBits);
1057 pDst += copysamples;
1058 }
1059 }
1060 else { // 16 bit
1061 if (mode_l) pSrc += 4;
1062
1063 int step;
1064 if (Channels == 2) { // Stereo
1065 const unsigned char* const param_r = pSrc;
1066 if (mode_r) pSrc += 4;
1067
1068 step = (2 - mode_l) + (2 - mode_r);
1069 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1070 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1071 skipsamples, copysamples);
1072 pDst += copysamples << 1;
1073 }
1074 else { // Mono
1075 step = 2 - mode_l;
1076 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1077 pDst += copysamples;
1078 }
1079 }
1080 pSrc += nextFrameOffset;
1081 }
1082
1083 // reload from disk to local buffer if needed
1084 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1085 assumedsize = GuessSize(remainingsamples);
1086 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1087 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1088 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1089 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1090 }
1091 } // while
1092
1093 this->SamplePos += (SampleCount - remainingsamples);
1094 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1095 return (SampleCount - remainingsamples);
1096 }
1097 }
1098
1099 /** @brief Write sample wave data.
1100 *
1101 * Writes \a SampleCount number of sample points from the buffer pointed
1102 * by \a pBuffer and increments the position within the sample. Use this
1103 * method to directly write the sample data to disk, i.e. if you don't
1104 * want or cannot load the whole sample data into RAM.
1105 *
1106 * You have to Resize() the sample to the desired size and call
1107 * File::Save() <b>before</b> using Write().
1108 *
1109 * Note: there is currently no support for writing compressed samples.
1110 *
1111 * @param pBuffer - source buffer
1112 * @param SampleCount - number of sample points to write
1113 * @throws DLS::Exception if current sample size is too small
1114 * @throws gig::Exception if sample is compressed
1115 * @see DLS::LoadSampleData()
1116 */
1117 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1118 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1119 return DLS::Sample::Write(pBuffer, SampleCount);
1120 }
1121
1122 /**
1123 * Allocates a decompression buffer for streaming (compressed) samples
1124 * with Sample::Read(). If you are using more than one streaming thread
1125 * in your application you <b>HAVE</b> to create a decompression buffer
1126 * for <b>EACH</b> of your streaming threads and provide it with the
1127 * Sample::Read() call in order to avoid race conditions and crashes.
1128 *
1129 * You should free the memory occupied by the allocated buffer(s) once
1130 * you don't need one of your streaming threads anymore by calling
1131 * DestroyDecompressionBuffer().
1132 *
1133 * @param MaxReadSize - the maximum size (in sample points) you ever
1134 * expect to read with one Read() call
1135 * @returns allocated decompression buffer
1136 * @see DestroyDecompressionBuffer()
1137 */
1138 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1139 buffer_t result;
1140 const double worstCaseHeaderOverhead =
1141 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1142 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1143 result.pStart = new int8_t[result.Size];
1144 result.NullExtensionSize = 0;
1145 return result;
1146 }
1147
1148 /**
1149 * Free decompression buffer, previously created with
1150 * CreateDecompressionBuffer().
1151 *
1152 * @param DecompressionBuffer - previously allocated decompression
1153 * buffer to free
1154 */
1155 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1156 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1157 delete[] (int8_t*) DecompressionBuffer.pStart;
1158 DecompressionBuffer.pStart = NULL;
1159 DecompressionBuffer.Size = 0;
1160 DecompressionBuffer.NullExtensionSize = 0;
1161 }
1162 }
1163
1164 Sample::~Sample() {
1165 Instances--;
1166 if (!Instances && InternalDecompressionBuffer.Size) {
1167 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1168 InternalDecompressionBuffer.pStart = NULL;
1169 InternalDecompressionBuffer.Size = 0;
1170 }
1171 if (FrameTable) delete[] FrameTable;
1172 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1173 }
1174
1175
1176
1177 // *************** DimensionRegion ***************
1178 // *
1179
1180 uint DimensionRegion::Instances = 0;
1181 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1182
1183 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1184 Instances++;
1185
1186 memcpy(&Crossfade, &SamplerOptions, 4);
1187 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1188
1189 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1190 if (_3ewa) { // if '3ewa' chunk exists
1191 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1192 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1193 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1194 _3ewa->ReadInt16(); // unknown
1195 LFO1InternalDepth = _3ewa->ReadUint16();
1196 _3ewa->ReadInt16(); // unknown
1197 LFO3InternalDepth = _3ewa->ReadInt16();
1198 _3ewa->ReadInt16(); // unknown
1199 LFO1ControlDepth = _3ewa->ReadUint16();
1200 _3ewa->ReadInt16(); // unknown
1201 LFO3ControlDepth = _3ewa->ReadInt16();
1202 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1203 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1204 _3ewa->ReadInt16(); // unknown
1205 EG1Sustain = _3ewa->ReadUint16();
1206 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1207 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1208 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1209 EG1ControllerInvert = eg1ctrloptions & 0x01;
1210 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1211 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1212 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1213 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1214 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1215 EG2ControllerInvert = eg2ctrloptions & 0x01;
1216 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1217 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1218 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1219 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1220 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1221 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222 _3ewa->ReadInt16(); // unknown
1223 EG2Sustain = _3ewa->ReadUint16();
1224 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1225 _3ewa->ReadInt16(); // unknown
1226 LFO2ControlDepth = _3ewa->ReadUint16();
1227 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1228 _3ewa->ReadInt16(); // unknown
1229 LFO2InternalDepth = _3ewa->ReadUint16();
1230 int32_t eg1decay2 = _3ewa->ReadInt32();
1231 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1232 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1233 _3ewa->ReadInt16(); // unknown
1234 EG1PreAttack = _3ewa->ReadUint16();
1235 int32_t eg2decay2 = _3ewa->ReadInt32();
1236 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1237 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1238 _3ewa->ReadInt16(); // unknown
1239 EG2PreAttack = _3ewa->ReadUint16();
1240 uint8_t velocityresponse = _3ewa->ReadUint8();
1241 if (velocityresponse < 5) {
1242 VelocityResponseCurve = curve_type_nonlinear;
1243 VelocityResponseDepth = velocityresponse;
1244 } else if (velocityresponse < 10) {
1245 VelocityResponseCurve = curve_type_linear;
1246 VelocityResponseDepth = velocityresponse - 5;
1247 } else if (velocityresponse < 15) {
1248 VelocityResponseCurve = curve_type_special;
1249 VelocityResponseDepth = velocityresponse - 10;
1250 } else {
1251 VelocityResponseCurve = curve_type_unknown;
1252 VelocityResponseDepth = 0;
1253 }
1254 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1255 if (releasevelocityresponse < 5) {
1256 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1257 ReleaseVelocityResponseDepth = releasevelocityresponse;
1258 } else if (releasevelocityresponse < 10) {
1259 ReleaseVelocityResponseCurve = curve_type_linear;
1260 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1261 } else if (releasevelocityresponse < 15) {
1262 ReleaseVelocityResponseCurve = curve_type_special;
1263 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1264 } else {
1265 ReleaseVelocityResponseCurve = curve_type_unknown;
1266 ReleaseVelocityResponseDepth = 0;
1267 }
1268 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1269 AttenuationControllerThreshold = _3ewa->ReadInt8();
1270 _3ewa->ReadInt32(); // unknown
1271 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1272 _3ewa->ReadInt16(); // unknown
1273 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1274 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1275 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1276 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1277 else DimensionBypass = dim_bypass_ctrl_none;
1278 uint8_t pan = _3ewa->ReadUint8();
1279 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1280 SelfMask = _3ewa->ReadInt8() & 0x01;
1281 _3ewa->ReadInt8(); // unknown
1282 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1283 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1284 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1285 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1286 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1287 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1288 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1289 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1290 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1291 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1292 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1293 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1294 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1295 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1296 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1297 : vcf_res_ctrl_none;
1298 uint16_t eg3depth = _3ewa->ReadUint16();
1299 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1300 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1301 _3ewa->ReadInt16(); // unknown
1302 ChannelOffset = _3ewa->ReadUint8() / 4;
1303 uint8_t regoptions = _3ewa->ReadUint8();
1304 MSDecode = regoptions & 0x01; // bit 0
1305 SustainDefeat = regoptions & 0x02; // bit 1
1306 _3ewa->ReadInt16(); // unknown
1307 VelocityUpperLimit = _3ewa->ReadInt8();
1308 _3ewa->ReadInt8(); // unknown
1309 _3ewa->ReadInt16(); // unknown
1310 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1311 _3ewa->ReadInt8(); // unknown
1312 _3ewa->ReadInt8(); // unknown
1313 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1314 uint8_t vcfcutoff = _3ewa->ReadUint8();
1315 VCFEnabled = vcfcutoff & 0x80; // bit 7
1316 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1317 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1318 uint8_t vcfvelscale = _3ewa->ReadUint8();
1319 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1320 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1321 _3ewa->ReadInt8(); // unknown
1322 uint8_t vcfresonance = _3ewa->ReadUint8();
1323 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1324 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1325 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1326 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1327 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1328 uint8_t vcfvelocity = _3ewa->ReadUint8();
1329 VCFVelocityDynamicRange = vcfvelocity % 5;
1330 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1331 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1332 if (VCFType == vcf_type_lowpass) {
1333 if (lfo3ctrl & 0x40) // bit 6
1334 VCFType = vcf_type_lowpassturbo;
1335 }
1336 } else { // '3ewa' chunk does not exist yet
1337 // use default values
1338 LFO3Frequency = 1.0;
1339 EG3Attack = 0.0;
1340 LFO1InternalDepth = 0;
1341 LFO3InternalDepth = 0;
1342 LFO1ControlDepth = 0;
1343 LFO3ControlDepth = 0;
1344 EG1Attack = 0.0;
1345 EG1Decay1 = 0.0;
1346 EG1Sustain = 0;
1347 EG1Release = 0.0;
1348 EG1Controller.type = eg1_ctrl_t::type_none;
1349 EG1Controller.controller_number = 0;
1350 EG1ControllerInvert = false;
1351 EG1ControllerAttackInfluence = 0;
1352 EG1ControllerDecayInfluence = 0;
1353 EG1ControllerReleaseInfluence = 0;
1354 EG2Controller.type = eg2_ctrl_t::type_none;
1355 EG2Controller.controller_number = 0;
1356 EG2ControllerInvert = false;
1357 EG2ControllerAttackInfluence = 0;
1358 EG2ControllerDecayInfluence = 0;
1359 EG2ControllerReleaseInfluence = 0;
1360 LFO1Frequency = 1.0;
1361 EG2Attack = 0.0;
1362 EG2Decay1 = 0.0;
1363 EG2Sustain = 0;
1364 EG2Release = 0.0;
1365 LFO2ControlDepth = 0;
1366 LFO2Frequency = 1.0;
1367 LFO2InternalDepth = 0;
1368 EG1Decay2 = 0.0;
1369 EG1InfiniteSustain = false;
1370 EG1PreAttack = 1000;
1371 EG2Decay2 = 0.0;
1372 EG2InfiniteSustain = false;
1373 EG2PreAttack = 1000;
1374 VelocityResponseCurve = curve_type_nonlinear;
1375 VelocityResponseDepth = 3;
1376 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1377 ReleaseVelocityResponseDepth = 3;
1378 VelocityResponseCurveScaling = 32;
1379 AttenuationControllerThreshold = 0;
1380 SampleStartOffset = 0;
1381 PitchTrack = true;
1382 DimensionBypass = dim_bypass_ctrl_none;
1383 Pan = 0;
1384 SelfMask = true;
1385 LFO3Controller = lfo3_ctrl_modwheel;
1386 LFO3Sync = false;
1387 InvertAttenuationController = false;
1388 AttenuationController.type = attenuation_ctrl_t::type_none;
1389 AttenuationController.controller_number = 0;
1390 LFO2Controller = lfo2_ctrl_internal;
1391 LFO2FlipPhase = false;
1392 LFO2Sync = false;
1393 LFO1Controller = lfo1_ctrl_internal;
1394 LFO1FlipPhase = false;
1395 LFO1Sync = false;
1396 VCFResonanceController = vcf_res_ctrl_none;
1397 EG3Depth = 0;
1398 ChannelOffset = 0;
1399 MSDecode = false;
1400 SustainDefeat = false;
1401 VelocityUpperLimit = 0;
1402 ReleaseTriggerDecay = 0;
1403 EG1Hold = false;
1404 VCFEnabled = false;
1405 VCFCutoff = 0;
1406 VCFCutoffController = vcf_cutoff_ctrl_none;
1407 VCFCutoffControllerInvert = false;
1408 VCFVelocityScale = 0;
1409 VCFResonance = 0;
1410 VCFResonanceDynamic = false;
1411 VCFKeyboardTracking = false;
1412 VCFKeyboardTrackingBreakpoint = 0;
1413 VCFVelocityDynamicRange = 0x04;
1414 VCFVelocityCurve = curve_type_linear;
1415 VCFType = vcf_type_lowpass;
1416 }
1417
1418 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1419 VelocityResponseDepth,
1420 VelocityResponseCurveScaling);
1421
1422 curve_type_t curveType = ReleaseVelocityResponseCurve;
1423 uint8_t depth = ReleaseVelocityResponseDepth;
1424
1425 // this models a strange behaviour or bug in GSt: two of the
1426 // velocity response curves for release time are not used even
1427 // if specified, instead another curve is chosen.
1428 if ((curveType == curve_type_nonlinear && depth == 0) ||
1429 (curveType == curve_type_special && depth == 4)) {
1430 curveType = curve_type_nonlinear;
1431 depth = 3;
1432 }
1433 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1434
1435 curveType = VCFVelocityCurve;
1436 depth = VCFVelocityDynamicRange;
1437
1438 // even stranger GSt: two of the velocity response curves for
1439 // filter cutoff are not used, instead another special curve
1440 // is chosen. This curve is not used anywhere else.
1441 if ((curveType == curve_type_nonlinear && depth == 0) ||
1442 (curveType == curve_type_special && depth == 4)) {
1443 curveType = curve_type_special;
1444 depth = 5;
1445 }
1446 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1447 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1448
1449 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1450 }
1451
1452 /**
1453 * Apply dimension region settings to the respective RIFF chunks. You
1454 * have to call File::Save() to make changes persistent.
1455 *
1456 * Usually there is absolutely no need to call this method explicitly.
1457 * It will be called automatically when File::Save() was called.
1458 */
1459 void DimensionRegion::UpdateChunks() {
1460 // first update base class's chunk
1461 DLS::Sampler::UpdateChunks();
1462
1463 // make sure '3ewa' chunk exists
1464 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1465 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1466 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1467
1468 // update '3ewa' chunk with DimensionRegion's current settings
1469
1470 const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1471 memcpy(&pData[0], &unknown, 4);
1472
1473 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1474 memcpy(&pData[4], &lfo3freq, 4);
1475
1476 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1477 memcpy(&pData[4], &eg3attack, 4);
1478
1479 // next 2 bytes unknown
1480
1481 memcpy(&pData[10], &LFO1InternalDepth, 2);
1482
1483 // next 2 bytes unknown
1484
1485 memcpy(&pData[14], &LFO3InternalDepth, 2);
1486
1487 // next 2 bytes unknown
1488
1489 memcpy(&pData[18], &LFO1ControlDepth, 2);
1490
1491 // next 2 bytes unknown
1492
1493 memcpy(&pData[22], &LFO3ControlDepth, 2);
1494
1495 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1496 memcpy(&pData[24], &eg1attack, 4);
1497
1498 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1499 memcpy(&pData[28], &eg1decay1, 4);
1500
1501 // next 2 bytes unknown
1502
1503 memcpy(&pData[34], &EG1Sustain, 2);
1504
1505 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1506 memcpy(&pData[36], &eg1release, 4);
1507
1508 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1509 memcpy(&pData[40], &eg1ctl, 1);
1510
1511 const uint8_t eg1ctrloptions =
1512 (EG1ControllerInvert) ? 0x01 : 0x00 |
1513 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1514 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1515 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1516 memcpy(&pData[41], &eg1ctrloptions, 1);
1517
1518 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1519 memcpy(&pData[42], &eg2ctl, 1);
1520
1521 const uint8_t eg2ctrloptions =
1522 (EG2ControllerInvert) ? 0x01 : 0x00 |
1523 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1524 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1525 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1526 memcpy(&pData[43], &eg2ctrloptions, 1);
1527
1528 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1529 memcpy(&pData[44], &lfo1freq, 4);
1530
1531 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1532 memcpy(&pData[48], &eg2attack, 4);
1533
1534 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1535 memcpy(&pData[52], &eg2decay1, 4);
1536
1537 // next 2 bytes unknown
1538
1539 memcpy(&pData[58], &EG2Sustain, 2);
1540
1541 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1542 memcpy(&pData[60], &eg2release, 4);
1543
1544 // next 2 bytes unknown
1545
1546 memcpy(&pData[66], &LFO2ControlDepth, 2);
1547
1548 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1549 memcpy(&pData[68], &lfo2freq, 4);
1550
1551 // next 2 bytes unknown
1552
1553 memcpy(&pData[72], &LFO2InternalDepth, 2);
1554
1555 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1556 memcpy(&pData[74], &eg1decay2, 4);
1557
1558 // next 2 bytes unknown
1559
1560 memcpy(&pData[80], &EG1PreAttack, 2);
1561
1562 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1563 memcpy(&pData[82], &eg2decay2, 4);
1564
1565 // next 2 bytes unknown
1566
1567 memcpy(&pData[88], &EG2PreAttack, 2);
1568
1569 {
1570 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1571 uint8_t velocityresponse = VelocityResponseDepth;
1572 switch (VelocityResponseCurve) {
1573 case curve_type_nonlinear:
1574 break;
1575 case curve_type_linear:
1576 velocityresponse += 5;
1577 break;
1578 case curve_type_special:
1579 velocityresponse += 10;
1580 break;
1581 case curve_type_unknown:
1582 default:
1583 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1584 }
1585 memcpy(&pData[90], &velocityresponse, 1);
1586 }
1587
1588 {
1589 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1590 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1591 switch (ReleaseVelocityResponseCurve) {
1592 case curve_type_nonlinear:
1593 break;
1594 case curve_type_linear:
1595 releasevelocityresponse += 5;
1596 break;
1597 case curve_type_special:
1598 releasevelocityresponse += 10;
1599 break;
1600 case curve_type_unknown:
1601 default:
1602 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1603 }
1604 memcpy(&pData[91], &releasevelocityresponse, 1);
1605 }
1606
1607 memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1608
1609 memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1610
1611 // next 4 bytes unknown
1612
1613 memcpy(&pData[98], &SampleStartOffset, 2);
1614
1615 // next 2 bytes unknown
1616
1617 {
1618 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1619 switch (DimensionBypass) {
1620 case dim_bypass_ctrl_94:
1621 pitchTrackDimensionBypass |= 0x10;
1622 break;
1623 case dim_bypass_ctrl_95:
1624 pitchTrackDimensionBypass |= 0x20;
1625 break;
1626 case dim_bypass_ctrl_none:
1627 //FIXME: should we set anything here?
1628 break;
1629 default:
1630 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1631 }
1632 memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1633 }
1634
1635 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1636 memcpy(&pData[103], &pan, 1);
1637
1638 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1639 memcpy(&pData[104], &selfmask, 1);
1640
1641 // next byte unknown
1642
1643 {
1644 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1645 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1646 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1647 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1648 memcpy(&pData[106], &lfo3ctrl, 1);
1649 }
1650
1651 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1652 memcpy(&pData[107], &attenctl, 1);
1653
1654 {
1655 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1656 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1657 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1658 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1659 memcpy(&pData[108], &lfo2ctrl, 1);
1660 }
1661
1662 {
1663 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1664 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1665 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1666 if (VCFResonanceController != vcf_res_ctrl_none)
1667 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1668 memcpy(&pData[109], &lfo1ctrl, 1);
1669 }
1670
1671 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1672 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1673 memcpy(&pData[110], &eg3depth, 1);
1674
1675 // next 2 bytes unknown
1676
1677 const uint8_t channeloffset = ChannelOffset * 4;
1678 memcpy(&pData[113], &channeloffset, 1);
1679
1680 {
1681 uint8_t regoptions = 0;
1682 if (MSDecode) regoptions |= 0x01; // bit 0
1683 if (SustainDefeat) regoptions |= 0x02; // bit 1
1684 memcpy(&pData[114], &regoptions, 1);
1685 }
1686
1687 // next 2 bytes unknown
1688
1689 memcpy(&pData[117], &VelocityUpperLimit, 1);
1690
1691 // next 3 bytes unknown
1692
1693 memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1694
1695 // next 2 bytes unknown
1696
1697 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1698 memcpy(&pData[124], &eg1hold, 1);
1699
1700 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1701 (VCFCutoff) ? 0x7f : 0x00; /* lower 7 bits */
1702 memcpy(&pData[125], &vcfcutoff, 1);
1703
1704 memcpy(&pData[126], &VCFCutoffController, 1);
1705
1706 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1707 (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1708 memcpy(&pData[127], &vcfvelscale, 1);
1709
1710 // next byte unknown
1711
1712 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1713 (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1714 memcpy(&pData[129], &vcfresonance, 1);
1715
1716 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1717 (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1718 memcpy(&pData[130], &vcfbreakpoint, 1);
1719
1720 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1721 VCFVelocityCurve * 5;
1722 memcpy(&pData[131], &vcfvelocity, 1);
1723
1724 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1725 memcpy(&pData[132], &vcftype, 1);
1726 }
1727
1728 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1729 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1730 {
1731 double* table;
1732 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1733 if (pVelocityTables->count(tableKey)) { // if key exists
1734 table = (*pVelocityTables)[tableKey];
1735 }
1736 else {
1737 table = CreateVelocityTable(curveType, depth, scaling);
1738 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1739 }
1740 return table;
1741 }
1742
1743 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1744 leverage_ctrl_t decodedcontroller;
1745 switch (EncodedController) {
1746 // special controller
1747 case _lev_ctrl_none:
1748 decodedcontroller.type = leverage_ctrl_t::type_none;
1749 decodedcontroller.controller_number = 0;
1750 break;
1751 case _lev_ctrl_velocity:
1752 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1753 decodedcontroller.controller_number = 0;
1754 break;
1755 case _lev_ctrl_channelaftertouch:
1756 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1757 decodedcontroller.controller_number = 0;
1758 break;
1759
1760 // ordinary MIDI control change controller
1761 case _lev_ctrl_modwheel:
1762 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1763 decodedcontroller.controller_number = 1;
1764 break;
1765 case _lev_ctrl_breath:
1766 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1767 decodedcontroller.controller_number = 2;
1768 break;
1769 case _lev_ctrl_foot:
1770 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1771 decodedcontroller.controller_number = 4;
1772 break;
1773 case _lev_ctrl_effect1:
1774 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1775 decodedcontroller.controller_number = 12;
1776 break;
1777 case _lev_ctrl_effect2:
1778 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1779 decodedcontroller.controller_number = 13;
1780 break;
1781 case _lev_ctrl_genpurpose1:
1782 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1783 decodedcontroller.controller_number = 16;
1784 break;
1785 case _lev_ctrl_genpurpose2:
1786 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1787 decodedcontroller.controller_number = 17;
1788 break;
1789 case _lev_ctrl_genpurpose3:
1790 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1791 decodedcontroller.controller_number = 18;
1792 break;
1793 case _lev_ctrl_genpurpose4:
1794 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1795 decodedcontroller.controller_number = 19;
1796 break;
1797 case _lev_ctrl_portamentotime:
1798 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1799 decodedcontroller.controller_number = 5;
1800 break;
1801 case _lev_ctrl_sustainpedal:
1802 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1803 decodedcontroller.controller_number = 64;
1804 break;
1805 case _lev_ctrl_portamento:
1806 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1807 decodedcontroller.controller_number = 65;
1808 break;
1809 case _lev_ctrl_sostenutopedal:
1810 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1811 decodedcontroller.controller_number = 66;
1812 break;
1813 case _lev_ctrl_softpedal:
1814 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1815 decodedcontroller.controller_number = 67;
1816 break;
1817 case _lev_ctrl_genpurpose5:
1818 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1819 decodedcontroller.controller_number = 80;
1820 break;
1821 case _lev_ctrl_genpurpose6:
1822 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1823 decodedcontroller.controller_number = 81;
1824 break;
1825 case _lev_ctrl_genpurpose7:
1826 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1827 decodedcontroller.controller_number = 82;
1828 break;
1829 case _lev_ctrl_genpurpose8:
1830 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1831 decodedcontroller.controller_number = 83;
1832 break;
1833 case _lev_ctrl_effect1depth:
1834 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1835 decodedcontroller.controller_number = 91;
1836 break;
1837 case _lev_ctrl_effect2depth:
1838 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1839 decodedcontroller.controller_number = 92;
1840 break;
1841 case _lev_ctrl_effect3depth:
1842 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1843 decodedcontroller.controller_number = 93;
1844 break;
1845 case _lev_ctrl_effect4depth:
1846 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1847 decodedcontroller.controller_number = 94;
1848 break;
1849 case _lev_ctrl_effect5depth:
1850 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1851 decodedcontroller.controller_number = 95;
1852 break;
1853
1854 // unknown controller type
1855 default:
1856 throw gig::Exception("Unknown leverage controller type.");
1857 }
1858 return decodedcontroller;
1859 }
1860
1861 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1862 _lev_ctrl_t encodedcontroller;
1863 switch (DecodedController.type) {
1864 // special controller
1865 case leverage_ctrl_t::type_none:
1866 encodedcontroller = _lev_ctrl_none;
1867 break;
1868 case leverage_ctrl_t::type_velocity:
1869 encodedcontroller = _lev_ctrl_velocity;
1870 break;
1871 case leverage_ctrl_t::type_channelaftertouch:
1872 encodedcontroller = _lev_ctrl_channelaftertouch;
1873 break;
1874
1875 // ordinary MIDI control change controller
1876 case leverage_ctrl_t::type_controlchange:
1877 switch (DecodedController.controller_number) {
1878 case 1:
1879 encodedcontroller = _lev_ctrl_modwheel;
1880 break;
1881 case 2:
1882 encodedcontroller = _lev_ctrl_breath;
1883 break;
1884 case 4:
1885 encodedcontroller = _lev_ctrl_foot;
1886 break;
1887 case 12:
1888 encodedcontroller = _lev_ctrl_effect1;
1889 break;
1890 case 13:
1891 encodedcontroller = _lev_ctrl_effect2;
1892 break;
1893 case 16:
1894 encodedcontroller = _lev_ctrl_genpurpose1;
1895 break;
1896 case 17:
1897 encodedcontroller = _lev_ctrl_genpurpose2;
1898 break;
1899 case 18:
1900 encodedcontroller = _lev_ctrl_genpurpose3;
1901 break;
1902 case 19:
1903 encodedcontroller = _lev_ctrl_genpurpose4;
1904 break;
1905 case 5:
1906 encodedcontroller = _lev_ctrl_portamentotime;
1907 break;
1908 case 64:
1909 encodedcontroller = _lev_ctrl_sustainpedal;
1910 break;
1911 case 65:
1912 encodedcontroller = _lev_ctrl_portamento;
1913 break;
1914 case 66:
1915 encodedcontroller = _lev_ctrl_sostenutopedal;
1916 break;
1917 case 67:
1918 encodedcontroller = _lev_ctrl_softpedal;
1919 break;
1920 case 80:
1921 encodedcontroller = _lev_ctrl_genpurpose5;
1922 break;
1923 case 81:
1924 encodedcontroller = _lev_ctrl_genpurpose6;
1925 break;
1926 case 82:
1927 encodedcontroller = _lev_ctrl_genpurpose7;
1928 break;
1929 case 83:
1930 encodedcontroller = _lev_ctrl_genpurpose8;
1931 break;
1932 case 91:
1933 encodedcontroller = _lev_ctrl_effect1depth;
1934 break;
1935 case 92:
1936 encodedcontroller = _lev_ctrl_effect2depth;
1937 break;
1938 case 93:
1939 encodedcontroller = _lev_ctrl_effect3depth;
1940 break;
1941 case 94:
1942 encodedcontroller = _lev_ctrl_effect4depth;
1943 break;
1944 case 95:
1945 encodedcontroller = _lev_ctrl_effect5depth;
1946 break;
1947 default:
1948 throw gig::Exception("leverage controller number is not supported by the gig format");
1949 }
1950 default:
1951 throw gig::Exception("Unknown leverage controller type.");
1952 }
1953 return encodedcontroller;
1954 }
1955
1956 DimensionRegion::~DimensionRegion() {
1957 Instances--;
1958 if (!Instances) {
1959 // delete the velocity->volume tables
1960 VelocityTableMap::iterator iter;
1961 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1962 double* pTable = iter->second;
1963 if (pTable) delete[] pTable;
1964 }
1965 pVelocityTables->clear();
1966 delete pVelocityTables;
1967 pVelocityTables = NULL;
1968 }
1969 }
1970
1971 /**
1972 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1973 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1974 * and VelocityResponseCurveScaling) involved are taken into account to
1975 * calculate the amplitude factor. Use this method when a key was
1976 * triggered to get the volume with which the sample should be played
1977 * back.
1978 *
1979 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1980 * @returns amplitude factor (between 0.0 and 1.0)
1981 */
1982 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1983 return pVelocityAttenuationTable[MIDIKeyVelocity];
1984 }
1985
1986 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1987 return pVelocityReleaseTable[MIDIKeyVelocity];
1988 }
1989
1990 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1991 return pVelocityCutoffTable[MIDIKeyVelocity];
1992 }
1993
1994 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1995
1996 // line-segment approximations of the 15 velocity curves
1997
1998 // linear
1999 const int lin0[] = { 1, 1, 127, 127 };
2000 const int lin1[] = { 1, 21, 127, 127 };
2001 const int lin2[] = { 1, 45, 127, 127 };
2002 const int lin3[] = { 1, 74, 127, 127 };
2003 const int lin4[] = { 1, 127, 127, 127 };
2004
2005 // non-linear
2006 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2007 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2008 127, 127 };
2009 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2010 127, 127 };
2011 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2012 127, 127 };
2013 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2014
2015 // special
2016 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2017 113, 127, 127, 127 };
2018 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2019 118, 127, 127, 127 };
2020 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2021 85, 90, 91, 127, 127, 127 };
2022 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2023 117, 127, 127, 127 };
2024 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2025 127, 127 };
2026
2027 // this is only used by the VCF velocity curve
2028 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2029 91, 127, 127, 127 };
2030
2031 const int* const curves[] = { non0, non1, non2, non3, non4,
2032 lin0, lin1, lin2, lin3, lin4,
2033 spe0, spe1, spe2, spe3, spe4, spe5 };
2034
2035 double* const table = new double[128];
2036
2037 const int* curve = curves[curveType * 5 + depth];
2038 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2039
2040 table[0] = 0;
2041 for (int x = 1 ; x < 128 ; x++) {
2042
2043 if (x > curve[2]) curve += 2;
2044 double y = curve[1] + (x - curve[0]) *
2045 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2046 y = y / 127;
2047
2048 // Scale up for s > 20, down for s < 20. When
2049 // down-scaling, the curve still ends at 1.0.
2050 if (s < 20 && y >= 0.5)
2051 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2052 else
2053 y = y * (s / 20.0);
2054 if (y > 1) y = 1;
2055
2056 table[x] = y;
2057 }
2058 return table;
2059 }
2060
2061
2062 // *************** Region ***************
2063 // *
2064
2065 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2066 // Initialization
2067 Dimensions = 0;
2068 for (int i = 0; i < 256; i++) {
2069 pDimensionRegions[i] = NULL;
2070 }
2071 Layers = 1;
2072 File* file = (File*) GetParent()->GetParent();
2073 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2074
2075 // Actual Loading
2076
2077 LoadDimensionRegions(rgnList);
2078
2079 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2080 if (_3lnk) {
2081 DimensionRegions = _3lnk->ReadUint32();
2082 for (int i = 0; i < dimensionBits; i++) {
2083 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2084 uint8_t bits = _3lnk->ReadUint8();
2085 _3lnk->ReadUint8(); // probably the position of the dimension
2086 _3lnk->ReadUint8(); // unknown
2087 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2088 if (dimension == dimension_none) { // inactive dimension
2089 pDimensionDefinitions[i].dimension = dimension_none;
2090 pDimensionDefinitions[i].bits = 0;
2091 pDimensionDefinitions[i].zones = 0;
2092 pDimensionDefinitions[i].split_type = split_type_bit;
2093 pDimensionDefinitions[i].ranges = NULL;
2094 pDimensionDefinitions[i].zone_size = 0;
2095 }
2096 else { // active dimension
2097 pDimensionDefinitions[i].dimension = dimension;
2098 pDimensionDefinitions[i].bits = bits;
2099 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2100 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2101 dimension == dimension_samplechannel ||
2102 dimension == dimension_releasetrigger ||
2103 dimension == dimension_roundrobin ||
2104 dimension == dimension_random) ? split_type_bit
2105 : split_type_normal;
2106 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
2107 pDimensionDefinitions[i].zone_size =
2108 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2109 : 0;
2110 Dimensions++;
2111
2112 // if this is a layer dimension, remember the amount of layers
2113 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2114 }
2115 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2116 }
2117
2118 // check velocity dimension (if there is one) for custom defined zone ranges
2119 for (uint i = 0; i < Dimensions; i++) {
2120 dimension_def_t* pDimDef = pDimensionDefinitions + i;
2121 if (pDimDef->dimension == dimension_velocity) {
2122 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
2123 // no custom defined ranges
2124 pDimDef->split_type = split_type_normal;
2125 pDimDef->ranges = NULL;
2126 }
2127 else { // custom defined ranges
2128 pDimDef->split_type = split_type_customvelocity;
2129 pDimDef->ranges = new range_t[pDimDef->zones];
2130 UpdateVelocityTable(pDimDef);
2131 }
2132 }
2133 }
2134
2135 // jump to start of the wave pool indices (if not already there)
2136 File* file = (File*) GetParent()->GetParent();
2137 if (file->pVersion && file->pVersion->major == 3)
2138 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2139 else
2140 _3lnk->SetPos(44);
2141
2142 // load sample references
2143 for (uint i = 0; i < DimensionRegions; i++) {
2144 uint32_t wavepoolindex = _3lnk->ReadUint32();
2145 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2146 }
2147 }
2148 }
2149
2150 /**
2151 * Apply Region settings and all its DimensionRegions to the respective
2152 * RIFF chunks. You have to call File::Save() to make changes persistent.
2153 *
2154 * Usually there is absolutely no need to call this method explicitly.
2155 * It will be called automatically when File::Save() was called.
2156 *
2157 * @throws gig::Exception if samples cannot be dereferenced
2158 */
2159 void Region::UpdateChunks() {
2160 // first update base class's chunks
2161 DLS::Region::UpdateChunks();
2162
2163 // update dimension region's chunks
2164 for (int i = 0; i < Dimensions; i++)
2165 pDimensionRegions[i]->UpdateChunks();
2166
2167 File* pFile = (File*) GetParent()->GetParent();
2168 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2169 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2170
2171 // make sure '3lnk' chunk exists
2172 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2173 if (!_3lnk) {
2174 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2175 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2176 }
2177
2178 // update dimension definitions in '3lnk' chunk
2179 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2180 for (int i = 0; i < iMaxDimensions; i++) {
2181 pData[i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2182 pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2183 // next 2 bytes unknown
2184 pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2185 // next 3 bytes unknown
2186 }
2187
2188 // update wave pool table in '3lnk' chunk
2189 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2190 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2191 int iWaveIndex = -1;
2192 if (i < DimensionRegions) {
2193 if (!pFile->pSamples) throw gig::Exception("Could not update gig::Region, there are no samples");
2194 std::list<Sample*>::iterator iter = pFile->pSamples->begin();
2195 std::list<Sample*>::iterator end = pFile->pSamples->end();
2196 for (int index = 0; iter != end; ++iter, ++index) {
2197 if (*iter == pDimensionRegions[i]->pSample) iWaveIndex = index;
2198 break;
2199 }
2200 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2201 }
2202 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2203 }
2204 }
2205
2206 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2207 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2208 if (_3prg) {
2209 int dimensionRegionNr = 0;
2210 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2211 while (_3ewl) {
2212 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2213 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2214 dimensionRegionNr++;
2215 }
2216 _3ewl = _3prg->GetNextSubList();
2217 }
2218 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2219 }
2220 }
2221
2222 void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {
2223 // get dimension's index
2224 int iDimensionNr = -1;
2225 for (int i = 0; i < Dimensions; i++) {
2226 if (&pDimensionDefinitions[i] == pDimDef) {
2227 iDimensionNr = i;
2228 break;
2229 }
2230 }
2231 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2232
2233 uint8_t bits[8] = { 0 };
2234 int previousUpperLimit = -1;
2235 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
2236 bits[iDimensionNr] = velocityZone;
2237 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
2238
2239 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
2240 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
2241 previousUpperLimit = pDimDef->ranges[velocityZone].high;
2242 // fill velocity table
2243 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
2244 VelocityTable[i] = velocityZone;
2245 }
2246 }
2247 }
2248
2249 /** @brief Einstein would have dreamed of it - create a new dimension.
2250 *
2251 * Creates a new dimension with the dimension definition given by
2252 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2253 * There is a hard limit of dimensions and total amount of "bits" all
2254 * dimensions can have. This limit is dependant to what gig file format
2255 * version this file refers to. The gig v2 (and lower) format has a
2256 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2257 * format has a limit of 8.
2258 *
2259 * @param pDimDef - defintion of the new dimension
2260 * @throws gig::Exception if dimension of the same type exists already
2261 * @throws gig::Exception if amount of dimensions or total amount of
2262 * dimension bits limit is violated
2263 */
2264 void Region::AddDimension(dimension_def_t* pDimDef) {
2265 // check if max. amount of dimensions reached
2266 File* file = (File*) GetParent()->GetParent();
2267 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2268 if (Dimensions >= iMaxDimensions)
2269 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2270 // check if max. amount of dimension bits reached
2271 int iCurrentBits = 0;
2272 for (int i = 0; i < Dimensions; i++)
2273 iCurrentBits += pDimensionDefinitions[i].bits;
2274 if (iCurrentBits >= iMaxDimensions)
2275 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2276 const int iNewBits = iCurrentBits + pDimDef->bits;
2277 if (iNewBits > iMaxDimensions)
2278 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2279 // check if there's already a dimensions of the same type
2280 for (int i = 0; i < Dimensions; i++)
2281 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2282 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2283
2284 // assign definition of new dimension
2285 pDimensionDefinitions[Dimensions] = *pDimDef;
2286
2287 // create new dimension region(s) for this new dimension
2288 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2289 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2290 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2291 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2292 DimensionRegions++;
2293 }
2294
2295 Dimensions++;
2296
2297 // if this is a layer dimension, update 'Layers' attribute
2298 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2299
2300 // if this is velocity dimension and got custom defined ranges, update velocity table
2301 if (pDimDef->dimension == dimension_velocity &&
2302 pDimDef->split_type == split_type_customvelocity) {
2303 UpdateVelocityTable(pDimDef);
2304 }
2305 }
2306
2307 /** @brief Delete an existing dimension.
2308 *
2309 * Deletes the dimension given by \a pDimDef and deletes all respective
2310 * dimension regions, that is all dimension regions where the dimension's
2311 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2312 * for example this would delete all dimension regions for the case(s)
2313 * where the sustain pedal is pressed down.
2314 *
2315 * @param pDimDef - dimension to delete
2316 * @throws gig::Exception if given dimension cannot be found
2317 */
2318 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2319 // get dimension's index
2320 int iDimensionNr = -1;
2321 for (int i = 0; i < Dimensions; i++) {
2322 if (&pDimensionDefinitions[i] == pDimDef) {
2323 iDimensionNr = i;
2324 break;
2325 }
2326 }
2327 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2328
2329 // get amount of bits below the dimension to delete
2330 int iLowerBits = 0;
2331 for (int i = 0; i < iDimensionNr; i++)
2332 iLowerBits += pDimensionDefinitions[i].bits;
2333
2334 // get amount ot bits above the dimension to delete
2335 int iUpperBits = 0;
2336 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2337 iUpperBits += pDimensionDefinitions[i].bits;
2338
2339 // delete dimension regions which belong to the given dimension
2340 // (that is where the dimension's bit > 0)
2341 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2342 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2343 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2344 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2345 iObsoleteBit << iLowerBits |
2346 iLowerBit;
2347 delete pDimensionRegions[iToDelete];
2348 pDimensionRegions[iToDelete] = NULL;
2349 DimensionRegions--;
2350 }
2351 }
2352 }
2353
2354 // defrag pDimensionRegions array
2355 // (that is remove the NULL spaces within the pDimensionRegions array)
2356 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2357 if (!pDimensionRegions[iTo]) {
2358 if (iFrom <= iTo) iFrom = iTo + 1;
2359 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2360 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2361 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2362 pDimensionRegions[iFrom] = NULL;
2363 }
2364 }
2365 }
2366
2367 // 'remove' dimension definition
2368 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2369 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2370 }
2371 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2372 pDimensionDefinitions[Dimensions - 1].bits = 0;
2373 pDimensionDefinitions[Dimensions - 1].zones = 0;
2374 if (pDimensionDefinitions[Dimensions - 1].ranges) {
2375 delete[] pDimensionDefinitions[Dimensions - 1].ranges;
2376 pDimensionDefinitions[Dimensions - 1].ranges = NULL;
2377 }
2378
2379 Dimensions--;
2380
2381 // if this was a layer dimension, update 'Layers' attribute
2382 if (pDimDef->dimension == dimension_layer) Layers = 1;
2383 }
2384
2385 Region::~Region() {
2386 for (uint i = 0; i < Dimensions; i++) {
2387 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
2388 }
2389 for (int i = 0; i < 256; i++) {
2390 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2391 }
2392 }
2393
2394 /**
2395 * Use this method in your audio engine to get the appropriate dimension
2396 * region with it's articulation data for the current situation. Just
2397 * call the method with the current MIDI controller values and you'll get
2398 * the DimensionRegion with the appropriate articulation data for the
2399 * current situation (for this Region of course only). To do that you'll
2400 * first have to look which dimensions with which controllers and in
2401 * which order are defined for this Region when you load the .gig file.
2402 * Special cases are e.g. layer or channel dimensions where you just put
2403 * in the index numbers instead of a MIDI controller value (means 0 for
2404 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2405 * etc.).
2406 *
2407 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2408 * @returns adress to the DimensionRegion for the given situation
2409 * @see pDimensionDefinitions
2410 * @see Dimensions
2411 */
2412 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2413 uint8_t bits[8] = { 0 };
2414 for (uint i = 0; i < Dimensions; i++) {
2415 bits[i] = DimValues[i];
2416 switch (pDimensionDefinitions[i].split_type) {
2417 case split_type_normal:
2418 bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);
2419 break;
2420 case split_type_customvelocity:
2421 bits[i] = VelocityTable[bits[i]];
2422 break;
2423 case split_type_bit: // the value is already the sought dimension bit number
2424 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2425 bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
2426 break;
2427 }
2428 }
2429 return GetDimensionRegionByBit(bits);
2430 }
2431
2432 /**
2433 * Returns the appropriate DimensionRegion for the given dimension bit
2434 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2435 * instead of calling this method directly!
2436 *
2437 * @param DimBits Bit numbers for dimension 0 to 7
2438 * @returns adress to the DimensionRegion for the given dimension
2439 * bit numbers
2440 * @see GetDimensionRegionByValue()
2441 */
2442 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2443 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2444 << pDimensionDefinitions[5].bits | DimBits[5])
2445 << pDimensionDefinitions[4].bits | DimBits[4])
2446 << pDimensionDefinitions[3].bits | DimBits[3])
2447 << pDimensionDefinitions[2].bits | DimBits[2])
2448 << pDimensionDefinitions[1].bits | DimBits[1])
2449 << pDimensionDefinitions[0].bits | DimBits[0]];
2450 }
2451
2452 /**
2453 * Returns pointer address to the Sample referenced with this region.
2454 * This is the global Sample for the entire Region (not sure if this is
2455 * actually used by the Gigasampler engine - I would only use the Sample
2456 * referenced by the appropriate DimensionRegion instead of this sample).
2457 *
2458 * @returns address to Sample or NULL if there is no reference to a
2459 * sample saved in the .gig file
2460 */
2461 Sample* Region::GetSample() {
2462 if (pSample) return static_cast<gig::Sample*>(pSample);
2463 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2464 }
2465
2466 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2467 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2468 File* file = (File*) GetParent()->GetParent();
2469 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2470 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2471 Sample* sample = file->GetFirstSample(pProgress);
2472 while (sample) {
2473 if (sample->ulWavePoolOffset == soughtoffset &&
2474 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2475 sample = file->GetNextSample();
2476 }
2477 return NULL;
2478 }
2479
2480
2481
2482 // *************** Instrument ***************
2483 // *
2484
2485 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2486 // Initialization
2487 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2488 RegionIndex = -1;
2489
2490 // Loading
2491 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2492 if (lart) {
2493 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2494 if (_3ewg) {
2495 EffectSend = _3ewg->ReadUint16();
2496 Attenuation = _3ewg->ReadInt32();
2497 FineTune = _3ewg->ReadInt16();
2498 PitchbendRange = _3ewg->ReadInt16();
2499 uint8_t dimkeystart = _3ewg->ReadUint8();
2500 PianoReleaseMode = dimkeystart & 0x01;
2501 DimensionKeyRange.low = dimkeystart >> 1;
2502 DimensionKeyRange.high = _3ewg->ReadUint8();
2503 }
2504 }
2505
2506 pRegions = new Region*[Regions];
2507 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2508 if (lrgn) {
2509 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
2510 RIFF::List* rgn = lrgn->GetFirstSubList();
2511 unsigned int iRegion = 0;
2512 while (rgn) {
2513 if (rgn->GetListType() == LIST_TYPE_RGN) {
2514 __notify_progress(pProgress, (float) iRegion / (float) Regions);
2515 pRegions[iRegion] = new Region(this, rgn);
2516 iRegion++;
2517 }
2518 rgn = lrgn->GetNextSubList();
2519 }
2520 // Creating Region Key Table for fast lookup
2521 UpdateRegionKeyTable();
2522 }
2523
2524 __notify_progress(pProgress, 1.0f); // notify done
2525 }
2526
2527 void Instrument::UpdateRegionKeyTable() {
2528 for (uint iReg = 0; iReg < Regions; iReg++) {
2529 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
2530 RegionKeyTable[iKey] = pRegions[iReg];
2531 }
2532 }
2533 }
2534
2535 Instrument::~Instrument() {
2536 for (uint i = 0; i < Regions; i++) {
2537 if (pRegions) {
2538 if (pRegions[i]) delete (pRegions[i]);
2539 }
2540 }
2541 if (pRegions) delete[] pRegions;
2542 }
2543
2544 /**
2545 * Apply Instrument with all its Regions to the respective RIFF chunks.
2546 * You have to call File::Save() to make changes persistent.
2547 *
2548 * Usually there is absolutely no need to call this method explicitly.
2549 * It will be called automatically when File::Save() was called.
2550 *
2551 * @throws gig::Exception if samples cannot be dereferenced
2552 */
2553 void Instrument::UpdateChunks() {
2554 // first update base classes' chunks
2555 DLS::Instrument::UpdateChunks();
2556
2557 // update Regions' chunks
2558 for (int i = 0; i < Regions; i++)
2559 pRegions[i]->UpdateChunks();
2560
2561 // make sure 'lart' RIFF list chunk exists
2562 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2563 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2564 // make sure '3ewg' RIFF chunk exists
2565 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2566 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2567 // update '3ewg' RIFF chunk
2568 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2569 memcpy(&pData[0], &EffectSend, 2);
2570 memcpy(&pData[2], &Attenuation, 4);
2571 memcpy(&pData[6], &FineTune, 2);
2572 memcpy(&pData[8], &PitchbendRange, 2);
2573 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2574 DimensionKeyRange.low << 1;
2575 memcpy(&pData[10], &dimkeystart, 1);
2576 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2577 }
2578
2579 /**
2580 * Returns the appropriate Region for a triggered note.
2581 *
2582 * @param Key MIDI Key number of triggered note / key (0 - 127)
2583 * @returns pointer adress to the appropriate Region or NULL if there
2584 * there is no Region defined for the given \a Key
2585 */
2586 Region* Instrument::GetRegion(unsigned int Key) {
2587 if (!pRegions || Key > 127) return NULL;
2588 return RegionKeyTable[Key];
2589 /*for (int i = 0; i < Regions; i++) {
2590 if (Key <= pRegions[i]->KeyRange.high &&
2591 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2592 }
2593 return NULL;*/
2594 }
2595
2596 /**
2597 * Returns the first Region of the instrument. You have to call this
2598 * method once before you use GetNextRegion().
2599 *
2600 * @returns pointer address to first region or NULL if there is none
2601 * @see GetNextRegion()
2602 */
2603 Region* Instrument::GetFirstRegion() {
2604 if (!Regions) return NULL;
2605 RegionIndex = 1;
2606 return pRegions[0];
2607 }
2608
2609 /**
2610 * Returns the next Region of the instrument. You have to call
2611 * GetFirstRegion() once before you can use this method. By calling this
2612 * method multiple times it iterates through the available Regions.
2613 *
2614 * @returns pointer address to the next region or NULL if end reached
2615 * @see GetFirstRegion()
2616 */
2617 Region* Instrument::GetNextRegion() {
2618 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
2619 return pRegions[RegionIndex++];
2620 }
2621
2622 Region* Instrument::AddRegion() {
2623 // create new Region object (and its RIFF chunks)
2624 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2625 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2626 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2627 Region* pNewRegion = new Region(this, rgn);
2628 // resize 'pRegions' array (increase by one)
2629 Region** pNewRegions = new Region*[Regions + 1];
2630 memcpy(pNewRegions, pRegions, Regions * sizeof(Region*));
2631 // add new Region object
2632 pNewRegions[Regions] = pNewRegion;
2633 // replace old 'pRegions' array by the new increased array
2634 if (pRegions) delete[] pRegions;
2635 pRegions = pNewRegions;
2636 Regions++;
2637 // update Region key table for fast lookup
2638 UpdateRegionKeyTable();
2639 // done
2640 return pNewRegion;
2641 }
2642
2643 void Instrument::DeleteRegion(Region* pRegion) {
2644 if (!pRegions) return;
2645 int iOffset = 0;
2646 // resize 'pRegions' array (decrease by one)
2647 Region** pNewRegions = new Region*[Regions - 1];
2648 for (int i = 0; i < Regions; i++) {
2649 if (pRegions[i] == pRegion) { // found Region to delete
2650 iOffset = 1;
2651 delete pRegion;
2652 }
2653 if (i < Regions - 1) pNewRegions[i] = pRegions[i + iOffset];
2654 }
2655 if (!iOffset) throw gig::Exception("There is no such gig::Region to delete");
2656 // replace old 'pRegions' array by the new decreased array
2657 if (pRegions) delete[] pRegions;
2658 pRegions = pNewRegions;
2659 Regions--;
2660 // update Region key table for fast lookup
2661 UpdateRegionKeyTable();
2662 }
2663
2664
2665
2666 // *************** File ***************
2667 // *
2668
2669 File::File() : DLS::File() {
2670 pSamples = NULL;
2671 pInstruments = NULL;
2672 }
2673
2674 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2675 pSamples = NULL;
2676 pInstruments = NULL;
2677 }
2678
2679 File::~File() {
2680 // free samples
2681 if (pSamples) {
2682 SamplesIterator = pSamples->begin();
2683 while (SamplesIterator != pSamples->end() ) {
2684 delete (*SamplesIterator);
2685 SamplesIterator++;
2686 }
2687 pSamples->clear();
2688 delete pSamples;
2689
2690 }
2691 // free instruments
2692 if (pInstruments) {
2693 InstrumentsIterator = pInstruments->begin();
2694 while (InstrumentsIterator != pInstruments->end() ) {
2695 delete (*InstrumentsIterator);
2696 InstrumentsIterator++;
2697 }
2698 pInstruments->clear();
2699 delete pInstruments;
2700 }
2701 // free extension files
2702 for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
2703 delete *i;
2704 }
2705
2706 Sample* File::GetFirstSample(progress_t* pProgress) {
2707 if (!pSamples) LoadSamples(pProgress);
2708 if (!pSamples) return NULL;
2709 SamplesIterator = pSamples->begin();
2710 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2711 }
2712
2713 Sample* File::GetNextSample() {
2714 if (!pSamples) return NULL;
2715 SamplesIterator++;
2716 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2717 }
2718
2719 /** @brief Add a new sample.
2720 *
2721 * This will create a new Sample object for the gig file. You have to
2722 * call Save() to make this persistent to the file.
2723 *
2724 * @returns pointer to new Sample object
2725 */
2726 Sample* File::AddSample() {
2727 if (!pSamples) LoadSamples();
2728 __ensureMandatoryChunksExist();
2729 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2730 // create new Sample object and its respective 'wave' list chunk
2731 if (!pSamples) pSamples = new SampleList;
2732 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2733 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2734 pSamples->push_back(pSample);
2735 return pSample;
2736 }
2737
2738 /** @brief Delete a sample.
2739 *
2740 * This will delete the given Sample object from the gig file. You have
2741 * to call Save() to make this persistent to the file.
2742 *
2743 * @param pSample - sample to delete
2744 * @throws gig::Exception if given sample could not be found
2745 */
2746 void File::DeleteSample(Sample* pSample) {
2747 if (!pSamples) throw gig::Exception("Could not delete sample as there are no samples");
2748 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), pSample);
2749 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2750 pSamples->erase(iter);
2751 delete pSample;
2752 }
2753
2754 void File::LoadSamples(progress_t* pProgress) {
2755 RIFF::File* file = pRIFF;
2756
2757 // just for progress calculation
2758 int iSampleIndex = 0;
2759 int iTotalSamples = WavePoolCount;
2760
2761 // check if samples should be loaded from extension files
2762 int lastFileNo = 0;
2763 for (int i = 0 ; i < WavePoolCount ; i++) {
2764 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2765 }
2766 String name(pRIFF->GetFileName());
2767 int nameLen = name.length();
2768 char suffix[6];
2769 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2770
2771 for (int fileNo = 0 ; ; ) {
2772 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2773 if (wvpl) {
2774 unsigned long wvplFileOffset = wvpl->GetFilePos();
2775 RIFF::List* wave = wvpl->GetFirstSubList();
2776 while (wave) {
2777 if (wave->GetListType() == LIST_TYPE_WAVE) {
2778 // notify current progress
2779 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2780 __notify_progress(pProgress, subprogress);
2781
2782 if (!pSamples) pSamples = new SampleList;
2783 unsigned long waveFileOffset = wave->GetFilePos();
2784 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2785
2786 iSampleIndex++;
2787 }
2788 wave = wvpl->GetNextSubList();
2789 }
2790
2791 if (fileNo == lastFileNo) break;
2792
2793 // open extension file (*.gx01, *.gx02, ...)
2794 fileNo++;
2795 sprintf(suffix, ".gx%02d", fileNo);
2796 name.replace(nameLen, 5, suffix);
2797 file = new RIFF::File(name);
2798 ExtensionFiles.push_back(file);
2799 }
2800 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
2801 }
2802
2803 __notify_progress(pProgress, 1.0); // notify done
2804 }
2805
2806 Instrument* File::GetFirstInstrument() {
2807 if (!pInstruments) LoadInstruments();
2808 if (!pInstruments) return NULL;
2809 InstrumentsIterator = pInstruments->begin();
2810 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
2811 }
2812
2813 Instrument* File::GetNextInstrument() {
2814 if (!pInstruments) return NULL;
2815 InstrumentsIterator++;
2816 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
2817 }
2818
2819 /**
2820 * Returns the instrument with the given index.
2821 *
2822 * @param index - number of the sought instrument (0..n)
2823 * @param pProgress - optional: callback function for progress notification
2824 * @returns sought instrument or NULL if there's no such instrument
2825 */
2826 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2827 if (!pInstruments) {
2828 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2829
2830 // sample loading subtask
2831 progress_t subprogress;
2832 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2833 __notify_progress(&subprogress, 0.0f);
2834 GetFirstSample(&subprogress); // now force all samples to be loaded
2835 __notify_progress(&subprogress, 1.0f);
2836
2837 // instrument loading subtask
2838 if (pProgress && pProgress->callback) {
2839 subprogress.__range_min = subprogress.__range_max;
2840 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2841 }
2842 __notify_progress(&subprogress, 0.0f);
2843 LoadInstruments(&subprogress);
2844 __notify_progress(&subprogress, 1.0f);
2845 }
2846 if (!pInstruments) return NULL;
2847 InstrumentsIterator = pInstruments->begin();
2848 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2849 if (i == index) return *InstrumentsIterator;
2850 InstrumentsIterator++;
2851 }
2852 return NULL;
2853 }
2854
2855 /** @brief Add a new instrument definition.
2856 *
2857 * This will create a new Instrument object for the gig file. You have
2858 * to call Save() to make this persistent to the file.
2859 *
2860 * @returns pointer to new Instrument object
2861 */
2862 Instrument* File::AddInstrument() {
2863 if (!pInstruments) LoadInstruments();
2864 __ensureMandatoryChunksExist();
2865 if (!pInstruments) pInstruments = new InstrumentList;
2866 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2867 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2868 Instrument* pInstrument = new Instrument(this, lstInstr);
2869 pInstruments->push_back(pInstrument);
2870 return pInstrument;
2871 }
2872
2873 /** @brief Delete an instrument.
2874 *
2875 * This will delete the given Instrument object from the gig file. You
2876 * have to call Save() to make this persistent to the file.
2877 *
2878 * @param pInstrument - instrument to delete
2879 * @throws gig::Excption if given instrument could not be found
2880 */
2881 void File::DeleteInstrument(Instrument* pInstrument) {
2882 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2883 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), pInstrument);
2884 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2885 pInstruments->erase(iter);
2886 delete pInstrument;
2887 }
2888
2889 void File::LoadInstruments(progress_t* pProgress) {
2890 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2891 if (lstInstruments) {
2892 int iInstrumentIndex = 0;
2893 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2894 while (lstInstr) {
2895 if (lstInstr->GetListType() == LIST_TYPE_INS) {
2896 // notify current progress
2897 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2898 __notify_progress(pProgress, localProgress);
2899
2900 // divide local progress into subprogress for loading current Instrument
2901 progress_t subprogress;
2902 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2903
2904 if (!pInstruments) pInstruments = new InstrumentList;
2905 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2906
2907 iInstrumentIndex++;
2908 }
2909 lstInstr = lstInstruments->GetNextSubList();
2910 }
2911 __notify_progress(pProgress, 1.0); // notify done
2912 }
2913 else throw gig::Exception("Mandatory <lins> list chunk not found.");
2914 }
2915
2916
2917
2918 // *************** Exception ***************
2919 // *
2920
2921 Exception::Exception(String Message) : DLS::Exception(Message) {
2922 }
2923
2924 void Exception::PrintMessage() {
2925 std::cout << "gig::Exception: " << Message << std::endl;
2926 }
2927
2928
2929 // *************** functions ***************
2930 // *
2931
2932 /**
2933 * Returns the name of this C++ library. This is usually "libgig" of
2934 * course. This call is equivalent to RIFF::libraryName() and
2935 * DLS::libraryName().
2936 */
2937 String libraryName() {
2938 return PACKAGE;
2939 }
2940
2941 /**
2942 * Returns version of this C++ library. This call is equivalent to
2943 * RIFF::libraryVersion() and DLS::libraryVersion().
2944 */
2945 String libraryVersion() {
2946 return VERSION;
2947 }
2948
2949 } // namespace gig

  ViewVC Help
Powered by ViewVC