/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 695 - (show annotations) (download)
Sat Jul 16 19:36:23 2005 UTC (13 years, 8 months ago) by persson
File size: 89695 byte(s)
* fixed the 24 bit decompression, the result should now be exact
  instead of an approximation

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include <iostream>
27
28 namespace gig {
29
30 // *************** progress_t ***************
31 // *
32
33 progress_t::progress_t() {
34 callback = NULL;
35 custom = NULL;
36 __range_min = 0.0f;
37 __range_max = 1.0f;
38 }
39
40 // private helper function to convert progress of a subprocess into the global progress
41 static void __notify_progress(progress_t* pProgress, float subprogress) {
42 if (pProgress && pProgress->callback) {
43 const float totalrange = pProgress->__range_max - pProgress->__range_min;
44 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
45 pProgress->factor = totalprogress;
46 pProgress->callback(pProgress); // now actually notify about the progress
47 }
48 }
49
50 // private helper function to divide a progress into subprogresses
51 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
52 if (pParentProgress && pParentProgress->callback) {
53 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
54 pSubProgress->callback = pParentProgress->callback;
55 pSubProgress->custom = pParentProgress->custom;
56 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
57 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
58 }
59 }
60
61
62 // *************** Internal functions for sample decopmression ***************
63 // *
64
65 namespace {
66
67 inline int get12lo(const unsigned char* pSrc)
68 {
69 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
70 return x & 0x800 ? x - 0x1000 : x;
71 }
72
73 inline int get12hi(const unsigned char* pSrc)
74 {
75 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
76 return x & 0x800 ? x - 0x1000 : x;
77 }
78
79 inline int16_t get16(const unsigned char* pSrc)
80 {
81 return int16_t(pSrc[0] | pSrc[1] << 8);
82 }
83
84 inline int get24(const unsigned char* pSrc)
85 {
86 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
87 return x & 0x800000 ? x - 0x1000000 : x;
88 }
89
90 void Decompress16(int compressionmode, const unsigned char* params,
91 int srcStep, int dstStep,
92 const unsigned char* pSrc, int16_t* pDst,
93 unsigned long currentframeoffset,
94 unsigned long copysamples)
95 {
96 switch (compressionmode) {
97 case 0: // 16 bit uncompressed
98 pSrc += currentframeoffset * srcStep;
99 while (copysamples) {
100 *pDst = get16(pSrc);
101 pDst += dstStep;
102 pSrc += srcStep;
103 copysamples--;
104 }
105 break;
106
107 case 1: // 16 bit compressed to 8 bit
108 int y = get16(params);
109 int dy = get16(params + 2);
110 while (currentframeoffset) {
111 dy -= int8_t(*pSrc);
112 y -= dy;
113 pSrc += srcStep;
114 currentframeoffset--;
115 }
116 while (copysamples) {
117 dy -= int8_t(*pSrc);
118 y -= dy;
119 *pDst = y;
120 pDst += dstStep;
121 pSrc += srcStep;
122 copysamples--;
123 }
124 break;
125 }
126 }
127
128 void Decompress24(int compressionmode, const unsigned char* params,
129 int dstStep, const unsigned char* pSrc, int16_t* pDst,
130 unsigned long currentframeoffset,
131 unsigned long copysamples, int truncatedBits)
132 {
133 // Note: The 24 bits are truncated to 16 bits for now.
134
135 int y, dy, ddy, dddy;
136 const int shift = 8 - truncatedBits;
137
138 #define GET_PARAMS(params) \
139 y = get24(params); \
140 dy = y - get24((params) + 3); \
141 ddy = get24((params) + 6); \
142 dddy = get24((params) + 9)
143
144 #define SKIP_ONE(x) \
145 dddy -= (x); \
146 ddy -= dddy; \
147 dy = -dy - ddy; \
148 y += dy
149
150 #define COPY_ONE(x) \
151 SKIP_ONE(x); \
152 *pDst = y >> shift; \
153 pDst += dstStep
154
155 switch (compressionmode) {
156 case 2: // 24 bit uncompressed
157 pSrc += currentframeoffset * 3;
158 while (copysamples) {
159 *pDst = get24(pSrc) >> shift;
160 pDst += dstStep;
161 pSrc += 3;
162 copysamples--;
163 }
164 break;
165
166 case 3: // 24 bit compressed to 16 bit
167 GET_PARAMS(params);
168 while (currentframeoffset) {
169 SKIP_ONE(get16(pSrc));
170 pSrc += 2;
171 currentframeoffset--;
172 }
173 while (copysamples) {
174 COPY_ONE(get16(pSrc));
175 pSrc += 2;
176 copysamples--;
177 }
178 break;
179
180 case 4: // 24 bit compressed to 12 bit
181 GET_PARAMS(params);
182 while (currentframeoffset > 1) {
183 SKIP_ONE(get12lo(pSrc));
184 SKIP_ONE(get12hi(pSrc));
185 pSrc += 3;
186 currentframeoffset -= 2;
187 }
188 if (currentframeoffset) {
189 SKIP_ONE(get12lo(pSrc));
190 currentframeoffset--;
191 if (copysamples) {
192 COPY_ONE(get12hi(pSrc));
193 pSrc += 3;
194 copysamples--;
195 }
196 }
197 while (copysamples > 1) {
198 COPY_ONE(get12lo(pSrc));
199 COPY_ONE(get12hi(pSrc));
200 pSrc += 3;
201 copysamples -= 2;
202 }
203 if (copysamples) {
204 COPY_ONE(get12lo(pSrc));
205 }
206 break;
207
208 case 5: // 24 bit compressed to 8 bit
209 GET_PARAMS(params);
210 while (currentframeoffset) {
211 SKIP_ONE(int8_t(*pSrc++));
212 currentframeoffset--;
213 }
214 while (copysamples) {
215 COPY_ONE(int8_t(*pSrc++));
216 copysamples--;
217 }
218 break;
219 }
220 }
221
222 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
223 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
224 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
225 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
226 }
227
228
229 // *************** Sample ***************
230 // *
231
232 unsigned int Sample::Instances = 0;
233 buffer_t Sample::InternalDecompressionBuffer;
234
235 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
236 Instances++;
237 FileNo = fileNo;
238
239 RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
240 if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
241 SampleGroup = _3gix->ReadInt16();
242
243 RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
244 if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
245 Manufacturer = smpl->ReadInt32();
246 Product = smpl->ReadInt32();
247 SamplePeriod = smpl->ReadInt32();
248 MIDIUnityNote = smpl->ReadInt32();
249 FineTune = smpl->ReadInt32();
250 smpl->Read(&SMPTEFormat, 1, 4);
251 SMPTEOffset = smpl->ReadInt32();
252 Loops = smpl->ReadInt32();
253 smpl->ReadInt32(); // manufByt
254 LoopID = smpl->ReadInt32();
255 smpl->Read(&LoopType, 1, 4);
256 LoopStart = smpl->ReadInt32();
257 LoopEnd = smpl->ReadInt32();
258 LoopFraction = smpl->ReadInt32();
259 LoopPlayCount = smpl->ReadInt32();
260
261 FrameTable = NULL;
262 SamplePos = 0;
263 RAMCache.Size = 0;
264 RAMCache.pStart = NULL;
265 RAMCache.NullExtensionSize = 0;
266
267 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
268
269 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
270 Compressed = ewav;
271 Dithered = false;
272 TruncatedBits = 0;
273 if (Compressed) {
274 uint32_t version = ewav->ReadInt32();
275 if (version == 3 && BitDepth == 24) {
276 Dithered = ewav->ReadInt32();
277 ewav->SetPos(Channels == 2 ? 84 : 64);
278 TruncatedBits = ewav->ReadInt32();
279 }
280 ScanCompressedSample();
281 }
282
283 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
284 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
285 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
286 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
287 }
288 FrameOffset = 0; // just for streaming compressed samples
289
290 LoopSize = LoopEnd - LoopStart;
291 }
292
293 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
294 void Sample::ScanCompressedSample() {
295 //TODO: we have to add some more scans here (e.g. determine compression rate)
296 this->SamplesTotal = 0;
297 std::list<unsigned long> frameOffsets;
298
299 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
300 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
301
302 // Scanning
303 pCkData->SetPos(0);
304 if (Channels == 2) { // Stereo
305 for (int i = 0 ; ; i++) {
306 // for 24 bit samples every 8:th frame offset is
307 // stored, to save some memory
308 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
309
310 const int mode_l = pCkData->ReadUint8();
311 const int mode_r = pCkData->ReadUint8();
312 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
313 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
314
315 if (pCkData->RemainingBytes() <= frameSize) {
316 SamplesInLastFrame =
317 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
318 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
319 SamplesTotal += SamplesInLastFrame;
320 break;
321 }
322 SamplesTotal += SamplesPerFrame;
323 pCkData->SetPos(frameSize, RIFF::stream_curpos);
324 }
325 }
326 else { // Mono
327 for (int i = 0 ; ; i++) {
328 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
329
330 const int mode = pCkData->ReadUint8();
331 if (mode > 5) throw gig::Exception("Unknown compression mode");
332 const unsigned long frameSize = bytesPerFrame[mode];
333
334 if (pCkData->RemainingBytes() <= frameSize) {
335 SamplesInLastFrame =
336 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
337 SamplesTotal += SamplesInLastFrame;
338 break;
339 }
340 SamplesTotal += SamplesPerFrame;
341 pCkData->SetPos(frameSize, RIFF::stream_curpos);
342 }
343 }
344 pCkData->SetPos(0);
345
346 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
347 if (FrameTable) delete[] FrameTable;
348 FrameTable = new unsigned long[frameOffsets.size()];
349 std::list<unsigned long>::iterator end = frameOffsets.end();
350 std::list<unsigned long>::iterator iter = frameOffsets.begin();
351 for (int i = 0; iter != end; i++, iter++) {
352 FrameTable[i] = *iter;
353 }
354 }
355
356 /**
357 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
358 * ReleaseSampleData() to free the memory if you don't need the cached
359 * sample data anymore.
360 *
361 * @returns buffer_t structure with start address and size of the buffer
362 * in bytes
363 * @see ReleaseSampleData(), Read(), SetPos()
364 */
365 buffer_t Sample::LoadSampleData() {
366 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
367 }
368
369 /**
370 * Reads (uncompresses if needed) and caches the first \a SampleCount
371 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
372 * memory space if you don't need the cached samples anymore. There is no
373 * guarantee that exactly \a SampleCount samples will be cached; this is
374 * not an error. The size will be eventually truncated e.g. to the
375 * beginning of a frame of a compressed sample. This is done for
376 * efficiency reasons while streaming the wave by your sampler engine
377 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
378 * that will be returned to determine the actual cached samples, but note
379 * that the size is given in bytes! You get the number of actually cached
380 * samples by dividing it by the frame size of the sample:
381 * @code
382 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
383 * long cachedsamples = buf.Size / pSample->FrameSize;
384 * @endcode
385 *
386 * @param SampleCount - number of sample points to load into RAM
387 * @returns buffer_t structure with start address and size of
388 * the cached sample data in bytes
389 * @see ReleaseSampleData(), Read(), SetPos()
390 */
391 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
392 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
393 }
394
395 /**
396 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
397 * ReleaseSampleData() to free the memory if you don't need the cached
398 * sample data anymore.
399 * The method will add \a NullSamplesCount silence samples past the
400 * official buffer end (this won't affect the 'Size' member of the
401 * buffer_t structure, that means 'Size' always reflects the size of the
402 * actual sample data, the buffer might be bigger though). Silence
403 * samples past the official buffer are needed for differential
404 * algorithms that always have to take subsequent samples into account
405 * (resampling/interpolation would be an important example) and avoids
406 * memory access faults in such cases.
407 *
408 * @param NullSamplesCount - number of silence samples the buffer should
409 * be extended past it's data end
410 * @returns buffer_t structure with start address and
411 * size of the buffer in bytes
412 * @see ReleaseSampleData(), Read(), SetPos()
413 */
414 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
415 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
416 }
417
418 /**
419 * Reads (uncompresses if needed) and caches the first \a SampleCount
420 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
421 * memory space if you don't need the cached samples anymore. There is no
422 * guarantee that exactly \a SampleCount samples will be cached; this is
423 * not an error. The size will be eventually truncated e.g. to the
424 * beginning of a frame of a compressed sample. This is done for
425 * efficiency reasons while streaming the wave by your sampler engine
426 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
427 * that will be returned to determine the actual cached samples, but note
428 * that the size is given in bytes! You get the number of actually cached
429 * samples by dividing it by the frame size of the sample:
430 * @code
431 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
432 * long cachedsamples = buf.Size / pSample->FrameSize;
433 * @endcode
434 * The method will add \a NullSamplesCount silence samples past the
435 * official buffer end (this won't affect the 'Size' member of the
436 * buffer_t structure, that means 'Size' always reflects the size of the
437 * actual sample data, the buffer might be bigger though). Silence
438 * samples past the official buffer are needed for differential
439 * algorithms that always have to take subsequent samples into account
440 * (resampling/interpolation would be an important example) and avoids
441 * memory access faults in such cases.
442 *
443 * @param SampleCount - number of sample points to load into RAM
444 * @param NullSamplesCount - number of silence samples the buffer should
445 * be extended past it's data end
446 * @returns buffer_t structure with start address and
447 * size of the cached sample data in bytes
448 * @see ReleaseSampleData(), Read(), SetPos()
449 */
450 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
451 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
452 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
453 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
454 RAMCache.pStart = new int8_t[allocationsize];
455 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
456 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
457 // fill the remaining buffer space with silence samples
458 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
459 return GetCache();
460 }
461
462 /**
463 * Returns current cached sample points. A buffer_t structure will be
464 * returned which contains address pointer to the begin of the cache and
465 * the size of the cached sample data in bytes. Use
466 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
467 * RAM.
468 *
469 * @returns buffer_t structure with current cached sample points
470 * @see LoadSampleData();
471 */
472 buffer_t Sample::GetCache() {
473 // return a copy of the buffer_t structure
474 buffer_t result;
475 result.Size = this->RAMCache.Size;
476 result.pStart = this->RAMCache.pStart;
477 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
478 return result;
479 }
480
481 /**
482 * Frees the cached sample from RAM if loaded with
483 * <i>LoadSampleData()</i> previously.
484 *
485 * @see LoadSampleData();
486 */
487 void Sample::ReleaseSampleData() {
488 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
489 RAMCache.pStart = NULL;
490 RAMCache.Size = 0;
491 }
492
493 /**
494 * Sets the position within the sample (in sample points, not in
495 * bytes). Use this method and <i>Read()</i> if you don't want to load
496 * the sample into RAM, thus for disk streaming.
497 *
498 * Although the original Gigasampler engine doesn't allow positioning
499 * within compressed samples, I decided to implement it. Even though
500 * the Gigasampler format doesn't allow to define loops for compressed
501 * samples at the moment, positioning within compressed samples might be
502 * interesting for some sampler engines though. The only drawback about
503 * my decision is that it takes longer to load compressed gig Files on
504 * startup, because it's neccessary to scan the samples for some
505 * mandatory informations. But I think as it doesn't affect the runtime
506 * efficiency, nobody will have a problem with that.
507 *
508 * @param SampleCount number of sample points to jump
509 * @param Whence optional: to which relation \a SampleCount refers
510 * to, if omited <i>RIFF::stream_start</i> is assumed
511 * @returns the new sample position
512 * @see Read()
513 */
514 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
515 if (Compressed) {
516 switch (Whence) {
517 case RIFF::stream_curpos:
518 this->SamplePos += SampleCount;
519 break;
520 case RIFF::stream_end:
521 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
522 break;
523 case RIFF::stream_backward:
524 this->SamplePos -= SampleCount;
525 break;
526 case RIFF::stream_start: default:
527 this->SamplePos = SampleCount;
528 break;
529 }
530 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
531
532 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
533 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
534 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
535 return this->SamplePos;
536 }
537 else { // not compressed
538 unsigned long orderedBytes = SampleCount * this->FrameSize;
539 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
540 return (result == orderedBytes) ? SampleCount
541 : result / this->FrameSize;
542 }
543 }
544
545 /**
546 * Returns the current position in the sample (in sample points).
547 */
548 unsigned long Sample::GetPos() {
549 if (Compressed) return SamplePos;
550 else return pCkData->GetPos() / FrameSize;
551 }
552
553 /**
554 * Reads \a SampleCount number of sample points from the position stored
555 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
556 * the position within the sample respectively, this method honors the
557 * looping informations of the sample (if any). The sample wave stream
558 * will be decompressed on the fly if using a compressed sample. Use this
559 * method if you don't want to load the sample into RAM, thus for disk
560 * streaming. All this methods needs to know to proceed with streaming
561 * for the next time you call this method is stored in \a pPlaybackState.
562 * You have to allocate and initialize the playback_state_t structure by
563 * yourself before you use it to stream a sample:
564 * @code
565 * gig::playback_state_t playbackstate;
566 * playbackstate.position = 0;
567 * playbackstate.reverse = false;
568 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
569 * @endcode
570 * You don't have to take care of things like if there is actually a loop
571 * defined or if the current read position is located within a loop area.
572 * The method already handles such cases by itself.
573 *
574 * <b>Caution:</b> If you are using more than one streaming thread, you
575 * have to use an external decompression buffer for <b>EACH</b>
576 * streaming thread to avoid race conditions and crashes!
577 *
578 * @param pBuffer destination buffer
579 * @param SampleCount number of sample points to read
580 * @param pPlaybackState will be used to store and reload the playback
581 * state for the next ReadAndLoop() call
582 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
583 * @returns number of successfully read sample points
584 * @see CreateDecompressionBuffer()
585 */
586 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
587 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
588 uint8_t* pDst = (uint8_t*) pBuffer;
589
590 SetPos(pPlaybackState->position); // recover position from the last time
591
592 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
593
594 switch (this->LoopType) {
595
596 case loop_type_bidirectional: { //TODO: not tested yet!
597 do {
598 // if not endless loop check if max. number of loop cycles have been passed
599 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
600
601 if (!pPlaybackState->reverse) { // forward playback
602 do {
603 samplestoloopend = this->LoopEnd - GetPos();
604 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
605 samplestoread -= readsamples;
606 totalreadsamples += readsamples;
607 if (readsamples == samplestoloopend) {
608 pPlaybackState->reverse = true;
609 break;
610 }
611 } while (samplestoread && readsamples);
612 }
613 else { // backward playback
614
615 // as we can only read forward from disk, we have to
616 // determine the end position within the loop first,
617 // read forward from that 'end' and finally after
618 // reading, swap all sample frames so it reflects
619 // backward playback
620
621 unsigned long swapareastart = totalreadsamples;
622 unsigned long loopoffset = GetPos() - this->LoopStart;
623 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
624 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
625
626 SetPos(reverseplaybackend);
627
628 // read samples for backward playback
629 do {
630 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
631 samplestoreadinloop -= readsamples;
632 samplestoread -= readsamples;
633 totalreadsamples += readsamples;
634 } while (samplestoreadinloop && readsamples);
635
636 SetPos(reverseplaybackend); // pretend we really read backwards
637
638 if (reverseplaybackend == this->LoopStart) {
639 pPlaybackState->loop_cycles_left--;
640 pPlaybackState->reverse = false;
641 }
642
643 // reverse the sample frames for backward playback
644 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
645 }
646 } while (samplestoread && readsamples);
647 break;
648 }
649
650 case loop_type_backward: { // TODO: not tested yet!
651 // forward playback (not entered the loop yet)
652 if (!pPlaybackState->reverse) do {
653 samplestoloopend = this->LoopEnd - GetPos();
654 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
655 samplestoread -= readsamples;
656 totalreadsamples += readsamples;
657 if (readsamples == samplestoloopend) {
658 pPlaybackState->reverse = true;
659 break;
660 }
661 } while (samplestoread && readsamples);
662
663 if (!samplestoread) break;
664
665 // as we can only read forward from disk, we have to
666 // determine the end position within the loop first,
667 // read forward from that 'end' and finally after
668 // reading, swap all sample frames so it reflects
669 // backward playback
670
671 unsigned long swapareastart = totalreadsamples;
672 unsigned long loopoffset = GetPos() - this->LoopStart;
673 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
674 : samplestoread;
675 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
676
677 SetPos(reverseplaybackend);
678
679 // read samples for backward playback
680 do {
681 // if not endless loop check if max. number of loop cycles have been passed
682 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
683 samplestoloopend = this->LoopEnd - GetPos();
684 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
685 samplestoreadinloop -= readsamples;
686 samplestoread -= readsamples;
687 totalreadsamples += readsamples;
688 if (readsamples == samplestoloopend) {
689 pPlaybackState->loop_cycles_left--;
690 SetPos(this->LoopStart);
691 }
692 } while (samplestoreadinloop && readsamples);
693
694 SetPos(reverseplaybackend); // pretend we really read backwards
695
696 // reverse the sample frames for backward playback
697 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
698 break;
699 }
700
701 default: case loop_type_normal: {
702 do {
703 // if not endless loop check if max. number of loop cycles have been passed
704 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
705 samplestoloopend = this->LoopEnd - GetPos();
706 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
707 samplestoread -= readsamples;
708 totalreadsamples += readsamples;
709 if (readsamples == samplestoloopend) {
710 pPlaybackState->loop_cycles_left--;
711 SetPos(this->LoopStart);
712 }
713 } while (samplestoread && readsamples);
714 break;
715 }
716 }
717 }
718
719 // read on without looping
720 if (samplestoread) do {
721 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
722 samplestoread -= readsamples;
723 totalreadsamples += readsamples;
724 } while (readsamples && samplestoread);
725
726 // store current position
727 pPlaybackState->position = GetPos();
728
729 return totalreadsamples;
730 }
731
732 /**
733 * Reads \a SampleCount number of sample points from the current
734 * position into the buffer pointed by \a pBuffer and increments the
735 * position within the sample. The sample wave stream will be
736 * decompressed on the fly if using a compressed sample. Use this method
737 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
738 * thus for disk streaming.
739 *
740 * <b>Caution:</b> If you are using more than one streaming thread, you
741 * have to use an external decompression buffer for <b>EACH</b>
742 * streaming thread to avoid race conditions and crashes!
743 *
744 * @param pBuffer destination buffer
745 * @param SampleCount number of sample points to read
746 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
747 * @returns number of successfully read sample points
748 * @see SetPos(), CreateDecompressionBuffer()
749 */
750 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
751 if (SampleCount == 0) return 0;
752 if (!Compressed) {
753 if (BitDepth == 24) {
754 // 24 bit sample. For now just truncate to 16 bit.
755 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
756 int16_t* pDst = static_cast<int16_t*>(pBuffer);
757 if (Channels == 2) { // Stereo
758 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
759 pSrc++;
760 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
761 *pDst++ = get16(pSrc);
762 pSrc += 3;
763 }
764 return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
765 }
766 else { // Mono
767 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
768 pSrc++;
769 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
770 *pDst++ = get16(pSrc);
771 pSrc += 3;
772 }
773 return pDst - static_cast<int16_t*>(pBuffer);
774 }
775 }
776 else { // 16 bit
777 // (pCkData->Read does endian correction)
778 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
779 : pCkData->Read(pBuffer, SampleCount, 2);
780 }
781 }
782 else {
783 if (this->SamplePos >= this->SamplesTotal) return 0;
784 //TODO: efficiency: maybe we should test for an average compression rate
785 unsigned long assumedsize = GuessSize(SampleCount),
786 remainingbytes = 0, // remaining bytes in the local buffer
787 remainingsamples = SampleCount,
788 copysamples, skipsamples,
789 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
790 this->FrameOffset = 0;
791
792 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
793
794 // if decompression buffer too small, then reduce amount of samples to read
795 if (pDecompressionBuffer->Size < assumedsize) {
796 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
797 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
798 remainingsamples = SampleCount;
799 assumedsize = GuessSize(SampleCount);
800 }
801
802 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
803 int16_t* pDst = static_cast<int16_t*>(pBuffer);
804 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
805
806 while (remainingsamples && remainingbytes) {
807 unsigned long framesamples = SamplesPerFrame;
808 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
809
810 int mode_l = *pSrc++, mode_r = 0;
811
812 if (Channels == 2) {
813 mode_r = *pSrc++;
814 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
815 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
816 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
817 if (remainingbytes < framebytes) { // last frame in sample
818 framesamples = SamplesInLastFrame;
819 if (mode_l == 4 && (framesamples & 1)) {
820 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
821 }
822 else {
823 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
824 }
825 }
826 }
827 else {
828 framebytes = bytesPerFrame[mode_l] + 1;
829 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
830 if (remainingbytes < framebytes) {
831 framesamples = SamplesInLastFrame;
832 }
833 }
834
835 // determine how many samples in this frame to skip and read
836 if (currentframeoffset + remainingsamples >= framesamples) {
837 if (currentframeoffset <= framesamples) {
838 copysamples = framesamples - currentframeoffset;
839 skipsamples = currentframeoffset;
840 }
841 else {
842 copysamples = 0;
843 skipsamples = framesamples;
844 }
845 }
846 else {
847 // This frame has enough data for pBuffer, but not
848 // all of the frame is needed. Set file position
849 // to start of this frame for next call to Read.
850 copysamples = remainingsamples;
851 skipsamples = currentframeoffset;
852 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
853 this->FrameOffset = currentframeoffset + copysamples;
854 }
855 remainingsamples -= copysamples;
856
857 if (remainingbytes > framebytes) {
858 remainingbytes -= framebytes;
859 if (remainingsamples == 0 &&
860 currentframeoffset + copysamples == framesamples) {
861 // This frame has enough data for pBuffer, and
862 // all of the frame is needed. Set file
863 // position to start of next frame for next
864 // call to Read. FrameOffset is 0.
865 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
866 }
867 }
868 else remainingbytes = 0;
869
870 currentframeoffset -= skipsamples;
871
872 if (copysamples == 0) {
873 // skip this frame
874 pSrc += framebytes - Channels;
875 }
876 else {
877 const unsigned char* const param_l = pSrc;
878 if (BitDepth == 24) {
879 if (mode_l != 2) pSrc += 12;
880
881 if (Channels == 2) { // Stereo
882 const unsigned char* const param_r = pSrc;
883 if (mode_r != 2) pSrc += 12;
884
885 Decompress24(mode_l, param_l, 2, pSrc, pDst,
886 skipsamples, copysamples, TruncatedBits);
887 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
888 skipsamples, copysamples, TruncatedBits);
889 pDst += copysamples << 1;
890 }
891 else { // Mono
892 Decompress24(mode_l, param_l, 1, pSrc, pDst,
893 skipsamples, copysamples, TruncatedBits);
894 pDst += copysamples;
895 }
896 }
897 else { // 16 bit
898 if (mode_l) pSrc += 4;
899
900 int step;
901 if (Channels == 2) { // Stereo
902 const unsigned char* const param_r = pSrc;
903 if (mode_r) pSrc += 4;
904
905 step = (2 - mode_l) + (2 - mode_r);
906 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
907 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
908 skipsamples, copysamples);
909 pDst += copysamples << 1;
910 }
911 else { // Mono
912 step = 2 - mode_l;
913 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
914 pDst += copysamples;
915 }
916 }
917 pSrc += nextFrameOffset;
918 }
919
920 // reload from disk to local buffer if needed
921 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
922 assumedsize = GuessSize(remainingsamples);
923 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
924 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
925 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
926 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
927 }
928 } // while
929
930 this->SamplePos += (SampleCount - remainingsamples);
931 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
932 return (SampleCount - remainingsamples);
933 }
934 }
935
936 /**
937 * Allocates a decompression buffer for streaming (compressed) samples
938 * with Sample::Read(). If you are using more than one streaming thread
939 * in your application you <b>HAVE</b> to create a decompression buffer
940 * for <b>EACH</b> of your streaming threads and provide it with the
941 * Sample::Read() call in order to avoid race conditions and crashes.
942 *
943 * You should free the memory occupied by the allocated buffer(s) once
944 * you don't need one of your streaming threads anymore by calling
945 * DestroyDecompressionBuffer().
946 *
947 * @param MaxReadSize - the maximum size (in sample points) you ever
948 * expect to read with one Read() call
949 * @returns allocated decompression buffer
950 * @see DestroyDecompressionBuffer()
951 */
952 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
953 buffer_t result;
954 const double worstCaseHeaderOverhead =
955 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
956 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
957 result.pStart = new int8_t[result.Size];
958 result.NullExtensionSize = 0;
959 return result;
960 }
961
962 /**
963 * Free decompression buffer, previously created with
964 * CreateDecompressionBuffer().
965 *
966 * @param DecompressionBuffer - previously allocated decompression
967 * buffer to free
968 */
969 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
970 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
971 delete[] (int8_t*) DecompressionBuffer.pStart;
972 DecompressionBuffer.pStart = NULL;
973 DecompressionBuffer.Size = 0;
974 DecompressionBuffer.NullExtensionSize = 0;
975 }
976 }
977
978 Sample::~Sample() {
979 Instances--;
980 if (!Instances && InternalDecompressionBuffer.Size) {
981 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
982 InternalDecompressionBuffer.pStart = NULL;
983 InternalDecompressionBuffer.Size = 0;
984 }
985 if (FrameTable) delete[] FrameTable;
986 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
987 }
988
989
990
991 // *************** DimensionRegion ***************
992 // *
993
994 uint DimensionRegion::Instances = 0;
995 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
996
997 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
998 Instances++;
999
1000 memcpy(&Crossfade, &SamplerOptions, 4);
1001 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1002
1003 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1004 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1005 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1006 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1007 _3ewa->ReadInt16(); // unknown
1008 LFO1InternalDepth = _3ewa->ReadUint16();
1009 _3ewa->ReadInt16(); // unknown
1010 LFO3InternalDepth = _3ewa->ReadInt16();
1011 _3ewa->ReadInt16(); // unknown
1012 LFO1ControlDepth = _3ewa->ReadUint16();
1013 _3ewa->ReadInt16(); // unknown
1014 LFO3ControlDepth = _3ewa->ReadInt16();
1015 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1016 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1017 _3ewa->ReadInt16(); // unknown
1018 EG1Sustain = _3ewa->ReadUint16();
1019 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1020 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1021 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1022 EG1ControllerInvert = eg1ctrloptions & 0x01;
1023 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1024 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1025 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1026 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1027 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1028 EG2ControllerInvert = eg2ctrloptions & 0x01;
1029 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1030 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1031 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1032 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1033 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1034 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1035 _3ewa->ReadInt16(); // unknown
1036 EG2Sustain = _3ewa->ReadUint16();
1037 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1038 _3ewa->ReadInt16(); // unknown
1039 LFO2ControlDepth = _3ewa->ReadUint16();
1040 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1041 _3ewa->ReadInt16(); // unknown
1042 LFO2InternalDepth = _3ewa->ReadUint16();
1043 int32_t eg1decay2 = _3ewa->ReadInt32();
1044 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1045 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1046 _3ewa->ReadInt16(); // unknown
1047 EG1PreAttack = _3ewa->ReadUint16();
1048 int32_t eg2decay2 = _3ewa->ReadInt32();
1049 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1050 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1051 _3ewa->ReadInt16(); // unknown
1052 EG2PreAttack = _3ewa->ReadUint16();
1053 uint8_t velocityresponse = _3ewa->ReadUint8();
1054 if (velocityresponse < 5) {
1055 VelocityResponseCurve = curve_type_nonlinear;
1056 VelocityResponseDepth = velocityresponse;
1057 }
1058 else if (velocityresponse < 10) {
1059 VelocityResponseCurve = curve_type_linear;
1060 VelocityResponseDepth = velocityresponse - 5;
1061 }
1062 else if (velocityresponse < 15) {
1063 VelocityResponseCurve = curve_type_special;
1064 VelocityResponseDepth = velocityresponse - 10;
1065 }
1066 else {
1067 VelocityResponseCurve = curve_type_unknown;
1068 VelocityResponseDepth = 0;
1069 }
1070 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1071 if (releasevelocityresponse < 5) {
1072 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1073 ReleaseVelocityResponseDepth = releasevelocityresponse;
1074 }
1075 else if (releasevelocityresponse < 10) {
1076 ReleaseVelocityResponseCurve = curve_type_linear;
1077 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1078 }
1079 else if (releasevelocityresponse < 15) {
1080 ReleaseVelocityResponseCurve = curve_type_special;
1081 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1082 }
1083 else {
1084 ReleaseVelocityResponseCurve = curve_type_unknown;
1085 ReleaseVelocityResponseDepth = 0;
1086 }
1087 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1088 AttenuationControllerThreshold = _3ewa->ReadInt8();
1089 _3ewa->ReadInt32(); // unknown
1090 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1091 _3ewa->ReadInt16(); // unknown
1092 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1093 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1094 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1095 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1096 else DimensionBypass = dim_bypass_ctrl_none;
1097 uint8_t pan = _3ewa->ReadUint8();
1098 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1099 SelfMask = _3ewa->ReadInt8() & 0x01;
1100 _3ewa->ReadInt8(); // unknown
1101 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1102 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1103 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1104 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1105 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1106 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1107 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1108 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1109 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1110 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1111 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1112 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1113 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1114 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1115 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1116 : vcf_res_ctrl_none;
1117 uint16_t eg3depth = _3ewa->ReadUint16();
1118 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1119 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1120 _3ewa->ReadInt16(); // unknown
1121 ChannelOffset = _3ewa->ReadUint8() / 4;
1122 uint8_t regoptions = _3ewa->ReadUint8();
1123 MSDecode = regoptions & 0x01; // bit 0
1124 SustainDefeat = regoptions & 0x02; // bit 1
1125 _3ewa->ReadInt16(); // unknown
1126 VelocityUpperLimit = _3ewa->ReadInt8();
1127 _3ewa->ReadInt8(); // unknown
1128 _3ewa->ReadInt16(); // unknown
1129 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1130 _3ewa->ReadInt8(); // unknown
1131 _3ewa->ReadInt8(); // unknown
1132 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1133 uint8_t vcfcutoff = _3ewa->ReadUint8();
1134 VCFEnabled = vcfcutoff & 0x80; // bit 7
1135 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1136 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1137 VCFVelocityScale = _3ewa->ReadUint8();
1138 _3ewa->ReadInt8(); // unknown
1139 uint8_t vcfresonance = _3ewa->ReadUint8();
1140 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1141 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1142 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1143 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1144 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1145 uint8_t vcfvelocity = _3ewa->ReadUint8();
1146 VCFVelocityDynamicRange = vcfvelocity % 5;
1147 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1148 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1149 if (VCFType == vcf_type_lowpass) {
1150 if (lfo3ctrl & 0x40) // bit 6
1151 VCFType = vcf_type_lowpassturbo;
1152 }
1153
1154 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1155 VelocityResponseDepth,
1156 VelocityResponseCurveScaling);
1157
1158 curve_type_t curveType = ReleaseVelocityResponseCurve;
1159 uint8_t depth = ReleaseVelocityResponseDepth;
1160
1161 // this models a strange behaviour or bug in GSt: two of the
1162 // velocity response curves for release time are not used even
1163 // if specified, instead another curve is chosen.
1164
1165 if ((curveType == curve_type_nonlinear && depth == 0) ||
1166 (curveType == curve_type_special && depth == 4)) {
1167 curveType = curve_type_nonlinear;
1168 depth = 3;
1169 }
1170 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1171
1172 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1173 }
1174
1175 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1176 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1177 {
1178 double* table;
1179 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1180 if (pVelocityTables->count(tableKey)) { // if key exists
1181 table = (*pVelocityTables)[tableKey];
1182 }
1183 else {
1184 table = CreateVelocityTable(curveType, depth, scaling);
1185 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1186 }
1187 return table;
1188 }
1189
1190 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1191 leverage_ctrl_t decodedcontroller;
1192 switch (EncodedController) {
1193 // special controller
1194 case _lev_ctrl_none:
1195 decodedcontroller.type = leverage_ctrl_t::type_none;
1196 decodedcontroller.controller_number = 0;
1197 break;
1198 case _lev_ctrl_velocity:
1199 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1200 decodedcontroller.controller_number = 0;
1201 break;
1202 case _lev_ctrl_channelaftertouch:
1203 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1204 decodedcontroller.controller_number = 0;
1205 break;
1206
1207 // ordinary MIDI control change controller
1208 case _lev_ctrl_modwheel:
1209 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1210 decodedcontroller.controller_number = 1;
1211 break;
1212 case _lev_ctrl_breath:
1213 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1214 decodedcontroller.controller_number = 2;
1215 break;
1216 case _lev_ctrl_foot:
1217 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1218 decodedcontroller.controller_number = 4;
1219 break;
1220 case _lev_ctrl_effect1:
1221 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1222 decodedcontroller.controller_number = 12;
1223 break;
1224 case _lev_ctrl_effect2:
1225 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1226 decodedcontroller.controller_number = 13;
1227 break;
1228 case _lev_ctrl_genpurpose1:
1229 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1230 decodedcontroller.controller_number = 16;
1231 break;
1232 case _lev_ctrl_genpurpose2:
1233 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1234 decodedcontroller.controller_number = 17;
1235 break;
1236 case _lev_ctrl_genpurpose3:
1237 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1238 decodedcontroller.controller_number = 18;
1239 break;
1240 case _lev_ctrl_genpurpose4:
1241 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1242 decodedcontroller.controller_number = 19;
1243 break;
1244 case _lev_ctrl_portamentotime:
1245 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1246 decodedcontroller.controller_number = 5;
1247 break;
1248 case _lev_ctrl_sustainpedal:
1249 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1250 decodedcontroller.controller_number = 64;
1251 break;
1252 case _lev_ctrl_portamento:
1253 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1254 decodedcontroller.controller_number = 65;
1255 break;
1256 case _lev_ctrl_sostenutopedal:
1257 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1258 decodedcontroller.controller_number = 66;
1259 break;
1260 case _lev_ctrl_softpedal:
1261 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1262 decodedcontroller.controller_number = 67;
1263 break;
1264 case _lev_ctrl_genpurpose5:
1265 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1266 decodedcontroller.controller_number = 80;
1267 break;
1268 case _lev_ctrl_genpurpose6:
1269 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1270 decodedcontroller.controller_number = 81;
1271 break;
1272 case _lev_ctrl_genpurpose7:
1273 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1274 decodedcontroller.controller_number = 82;
1275 break;
1276 case _lev_ctrl_genpurpose8:
1277 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1278 decodedcontroller.controller_number = 83;
1279 break;
1280 case _lev_ctrl_effect1depth:
1281 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1282 decodedcontroller.controller_number = 91;
1283 break;
1284 case _lev_ctrl_effect2depth:
1285 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1286 decodedcontroller.controller_number = 92;
1287 break;
1288 case _lev_ctrl_effect3depth:
1289 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1290 decodedcontroller.controller_number = 93;
1291 break;
1292 case _lev_ctrl_effect4depth:
1293 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1294 decodedcontroller.controller_number = 94;
1295 break;
1296 case _lev_ctrl_effect5depth:
1297 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1298 decodedcontroller.controller_number = 95;
1299 break;
1300
1301 // unknown controller type
1302 default:
1303 throw gig::Exception("Unknown leverage controller type.");
1304 }
1305 return decodedcontroller;
1306 }
1307
1308 DimensionRegion::~DimensionRegion() {
1309 Instances--;
1310 if (!Instances) {
1311 // delete the velocity->volume tables
1312 VelocityTableMap::iterator iter;
1313 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1314 double* pTable = iter->second;
1315 if (pTable) delete[] pTable;
1316 }
1317 pVelocityTables->clear();
1318 delete pVelocityTables;
1319 pVelocityTables = NULL;
1320 }
1321 }
1322
1323 /**
1324 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1325 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1326 * and VelocityResponseCurveScaling) involved are taken into account to
1327 * calculate the amplitude factor. Use this method when a key was
1328 * triggered to get the volume with which the sample should be played
1329 * back.
1330 *
1331 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1332 * @returns amplitude factor (between 0.0 and 1.0)
1333 */
1334 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1335 return pVelocityAttenuationTable[MIDIKeyVelocity];
1336 }
1337
1338 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1339 return pVelocityReleaseTable[MIDIKeyVelocity];
1340 }
1341
1342 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1343
1344 // line-segment approximations of the 15 velocity curves
1345
1346 // linear
1347 const int lin0[] = { 1, 1, 127, 127 };
1348 const int lin1[] = { 1, 21, 127, 127 };
1349 const int lin2[] = { 1, 45, 127, 127 };
1350 const int lin3[] = { 1, 74, 127, 127 };
1351 const int lin4[] = { 1, 127, 127, 127 };
1352
1353 // non-linear
1354 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
1355 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
1356 127, 127 };
1357 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
1358 127, 127 };
1359 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
1360 127, 127 };
1361 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
1362
1363 // special
1364 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
1365 113, 127, 127, 127 };
1366 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
1367 118, 127, 127, 127 };
1368 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
1369 85, 90, 91, 127, 127, 127 };
1370 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
1371 117, 127, 127, 127 };
1372 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
1373 127, 127 };
1374
1375 const int* const curves[] = { non0, non1, non2, non3, non4,
1376 lin0, lin1, lin2, lin3, lin4,
1377 spe0, spe1, spe2, spe3, spe4 };
1378
1379 double* const table = new double[128];
1380
1381 const int* curve = curves[curveType * 5 + depth];
1382 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
1383
1384 table[0] = 0;
1385 for (int x = 1 ; x < 128 ; x++) {
1386
1387 if (x > curve[2]) curve += 2;
1388 double y = curve[1] + (x - curve[0]) *
1389 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
1390 y = y / 127;
1391
1392 // Scale up for s > 20, down for s < 20. When
1393 // down-scaling, the curve still ends at 1.0.
1394 if (s < 20 && y >= 0.5)
1395 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
1396 else
1397 y = y * (s / 20.0);
1398 if (y > 1) y = 1;
1399
1400 table[x] = y;
1401 }
1402 return table;
1403 }
1404
1405
1406 // *************** Region ***************
1407 // *
1408
1409 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
1410 // Initialization
1411 Dimensions = 0;
1412 for (int i = 0; i < 256; i++) {
1413 pDimensionRegions[i] = NULL;
1414 }
1415 Layers = 1;
1416 File* file = (File*) GetParent()->GetParent();
1417 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
1418
1419 // Actual Loading
1420
1421 LoadDimensionRegions(rgnList);
1422
1423 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
1424 if (_3lnk) {
1425 DimensionRegions = _3lnk->ReadUint32();
1426 for (int i = 0; i < dimensionBits; i++) {
1427 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
1428 uint8_t bits = _3lnk->ReadUint8();
1429 if (dimension == dimension_none) { // inactive dimension
1430 pDimensionDefinitions[i].dimension = dimension_none;
1431 pDimensionDefinitions[i].bits = 0;
1432 pDimensionDefinitions[i].zones = 0;
1433 pDimensionDefinitions[i].split_type = split_type_bit;
1434 pDimensionDefinitions[i].ranges = NULL;
1435 pDimensionDefinitions[i].zone_size = 0;
1436 }
1437 else { // active dimension
1438 pDimensionDefinitions[i].dimension = dimension;
1439 pDimensionDefinitions[i].bits = bits;
1440 pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
1441 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
1442 dimension == dimension_samplechannel ||
1443 dimension == dimension_releasetrigger ||
1444 dimension == dimension_roundrobin ||
1445 dimension == dimension_random) ? split_type_bit
1446 : split_type_normal;
1447 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
1448 pDimensionDefinitions[i].zone_size =
1449 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
1450 : 0;
1451 Dimensions++;
1452
1453 // if this is a layer dimension, remember the amount of layers
1454 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
1455 }
1456 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
1457 }
1458
1459 // check velocity dimension (if there is one) for custom defined zone ranges
1460 for (uint i = 0; i < Dimensions; i++) {
1461 dimension_def_t* pDimDef = pDimensionDefinitions + i;
1462 if (pDimDef->dimension == dimension_velocity) {
1463 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
1464 // no custom defined ranges
1465 pDimDef->split_type = split_type_normal;
1466 pDimDef->ranges = NULL;
1467 }
1468 else { // custom defined ranges
1469 pDimDef->split_type = split_type_customvelocity;
1470 pDimDef->ranges = new range_t[pDimDef->zones];
1471 uint8_t bits[8] = { 0 };
1472 int previousUpperLimit = -1;
1473 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
1474 bits[i] = velocityZone;
1475 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
1476
1477 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
1478 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
1479 previousUpperLimit = pDimDef->ranges[velocityZone].high;
1480 // fill velocity table
1481 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
1482 VelocityTable[i] = velocityZone;
1483 }
1484 }
1485 }
1486 }
1487 }
1488
1489 // jump to start of the wave pool indices (if not already there)
1490 File* file = (File*) GetParent()->GetParent();
1491 if (file->pVersion && file->pVersion->major == 3)
1492 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
1493 else
1494 _3lnk->SetPos(44);
1495
1496 // load sample references
1497 for (uint i = 0; i < DimensionRegions; i++) {
1498 uint32_t wavepoolindex = _3lnk->ReadUint32();
1499 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
1500 }
1501 }
1502 else throw gig::Exception("Mandatory <3lnk> chunk not found.");
1503 }
1504
1505 void Region::LoadDimensionRegions(RIFF::List* rgn) {
1506 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
1507 if (_3prg) {
1508 int dimensionRegionNr = 0;
1509 RIFF::List* _3ewl = _3prg->GetFirstSubList();
1510 while (_3ewl) {
1511 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
1512 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
1513 dimensionRegionNr++;
1514 }
1515 _3ewl = _3prg->GetNextSubList();
1516 }
1517 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1518 }
1519 }
1520
1521 Region::~Region() {
1522 for (uint i = 0; i < Dimensions; i++) {
1523 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1524 }
1525 for (int i = 0; i < 256; i++) {
1526 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1527 }
1528 }
1529
1530 /**
1531 * Use this method in your audio engine to get the appropriate dimension
1532 * region with it's articulation data for the current situation. Just
1533 * call the method with the current MIDI controller values and you'll get
1534 * the DimensionRegion with the appropriate articulation data for the
1535 * current situation (for this Region of course only). To do that you'll
1536 * first have to look which dimensions with which controllers and in
1537 * which order are defined for this Region when you load the .gig file.
1538 * Special cases are e.g. layer or channel dimensions where you just put
1539 * in the index numbers instead of a MIDI controller value (means 0 for
1540 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1541 * etc.).
1542 *
1543 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
1544 * @returns adress to the DimensionRegion for the given situation
1545 * @see pDimensionDefinitions
1546 * @see Dimensions
1547 */
1548 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
1549 uint8_t bits[8] = { 0 };
1550 for (uint i = 0; i < Dimensions; i++) {
1551 bits[i] = DimValues[i];
1552 switch (pDimensionDefinitions[i].split_type) {
1553 case split_type_normal:
1554 bits[i] /= pDimensionDefinitions[i].zone_size;
1555 break;
1556 case split_type_customvelocity:
1557 bits[i] = VelocityTable[bits[i]];
1558 break;
1559 case split_type_bit: // the value is already the sought dimension bit number
1560 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
1561 bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
1562 break;
1563 }
1564 }
1565 return GetDimensionRegionByBit(bits);
1566 }
1567
1568 /**
1569 * Returns the appropriate DimensionRegion for the given dimension bit
1570 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1571 * instead of calling this method directly!
1572 *
1573 * @param DimBits Bit numbers for dimension 0 to 7
1574 * @returns adress to the DimensionRegion for the given dimension
1575 * bit numbers
1576 * @see GetDimensionRegionByValue()
1577 */
1578 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
1579 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
1580 << pDimensionDefinitions[5].bits | DimBits[5])
1581 << pDimensionDefinitions[4].bits | DimBits[4])
1582 << pDimensionDefinitions[3].bits | DimBits[3])
1583 << pDimensionDefinitions[2].bits | DimBits[2])
1584 << pDimensionDefinitions[1].bits | DimBits[1])
1585 << pDimensionDefinitions[0].bits | DimBits[0]];
1586 }
1587
1588 /**
1589 * Returns pointer address to the Sample referenced with this region.
1590 * This is the global Sample for the entire Region (not sure if this is
1591 * actually used by the Gigasampler engine - I would only use the Sample
1592 * referenced by the appropriate DimensionRegion instead of this sample).
1593 *
1594 * @returns address to Sample or NULL if there is no reference to a
1595 * sample saved in the .gig file
1596 */
1597 Sample* Region::GetSample() {
1598 if (pSample) return static_cast<gig::Sample*>(pSample);
1599 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1600 }
1601
1602 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
1603 if ((int32_t)WavePoolTableIndex == -1) return NULL;
1604 File* file = (File*) GetParent()->GetParent();
1605 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1606 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
1607 Sample* sample = file->GetFirstSample(pProgress);
1608 while (sample) {
1609 if (sample->ulWavePoolOffset == soughtoffset &&
1610 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
1611 sample = file->GetNextSample();
1612 }
1613 return NULL;
1614 }
1615
1616
1617
1618 // *************** Instrument ***************
1619 // *
1620
1621 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
1622 // Initialization
1623 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1624 RegionIndex = -1;
1625
1626 // Loading
1627 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1628 if (lart) {
1629 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1630 if (_3ewg) {
1631 EffectSend = _3ewg->ReadUint16();
1632 Attenuation = _3ewg->ReadInt32();
1633 FineTune = _3ewg->ReadInt16();
1634 PitchbendRange = _3ewg->ReadInt16();
1635 uint8_t dimkeystart = _3ewg->ReadUint8();
1636 PianoReleaseMode = dimkeystart & 0x01;
1637 DimensionKeyRange.low = dimkeystart >> 1;
1638 DimensionKeyRange.high = _3ewg->ReadUint8();
1639 }
1640 else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1641 }
1642 else throw gig::Exception("Mandatory <lart> list chunk not found.");
1643
1644 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1645 if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1646 pRegions = new Region*[Regions];
1647 for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;
1648 RIFF::List* rgn = lrgn->GetFirstSubList();
1649 unsigned int iRegion = 0;
1650 while (rgn) {
1651 if (rgn->GetListType() == LIST_TYPE_RGN) {
1652 __notify_progress(pProgress, (float) iRegion / (float) Regions);
1653 pRegions[iRegion] = new Region(this, rgn);
1654 iRegion++;
1655 }
1656 rgn = lrgn->GetNextSubList();
1657 }
1658
1659 // Creating Region Key Table for fast lookup
1660 for (uint iReg = 0; iReg < Regions; iReg++) {
1661 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1662 RegionKeyTable[iKey] = pRegions[iReg];
1663 }
1664 }
1665
1666 __notify_progress(pProgress, 1.0f); // notify done
1667 }
1668
1669 Instrument::~Instrument() {
1670 for (uint i = 0; i < Regions; i++) {
1671 if (pRegions) {
1672 if (pRegions[i]) delete (pRegions[i]);
1673 }
1674 }
1675 if (pRegions) delete[] pRegions;
1676 }
1677
1678 /**
1679 * Returns the appropriate Region for a triggered note.
1680 *
1681 * @param Key MIDI Key number of triggered note / key (0 - 127)
1682 * @returns pointer adress to the appropriate Region or NULL if there
1683 * there is no Region defined for the given \a Key
1684 */
1685 Region* Instrument::GetRegion(unsigned int Key) {
1686 if (!pRegions || Key > 127) return NULL;
1687 return RegionKeyTable[Key];
1688 /*for (int i = 0; i < Regions; i++) {
1689 if (Key <= pRegions[i]->KeyRange.high &&
1690 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1691 }
1692 return NULL;*/
1693 }
1694
1695 /**
1696 * Returns the first Region of the instrument. You have to call this
1697 * method once before you use GetNextRegion().
1698 *
1699 * @returns pointer address to first region or NULL if there is none
1700 * @see GetNextRegion()
1701 */
1702 Region* Instrument::GetFirstRegion() {
1703 if (!Regions) return NULL;
1704 RegionIndex = 1;
1705 return pRegions[0];
1706 }
1707
1708 /**
1709 * Returns the next Region of the instrument. You have to call
1710 * GetFirstRegion() once before you can use this method. By calling this
1711 * method multiple times it iterates through the available Regions.
1712 *
1713 * @returns pointer address to the next region or NULL if end reached
1714 * @see GetFirstRegion()
1715 */
1716 Region* Instrument::GetNextRegion() {
1717 if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;
1718 return pRegions[RegionIndex++];
1719 }
1720
1721
1722
1723 // *************** File ***************
1724 // *
1725
1726 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1727 pSamples = NULL;
1728 pInstruments = NULL;
1729 }
1730
1731 File::~File() {
1732 // free samples
1733 if (pSamples) {
1734 SamplesIterator = pSamples->begin();
1735 while (SamplesIterator != pSamples->end() ) {
1736 delete (*SamplesIterator);
1737 SamplesIterator++;
1738 }
1739 pSamples->clear();
1740 delete pSamples;
1741
1742 }
1743 // free instruments
1744 if (pInstruments) {
1745 InstrumentsIterator = pInstruments->begin();
1746 while (InstrumentsIterator != pInstruments->end() ) {
1747 delete (*InstrumentsIterator);
1748 InstrumentsIterator++;
1749 }
1750 pInstruments->clear();
1751 delete pInstruments;
1752 }
1753 // free extension files
1754 for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
1755 delete *i;
1756 }
1757
1758 Sample* File::GetFirstSample(progress_t* pProgress) {
1759 if (!pSamples) LoadSamples(pProgress);
1760 if (!pSamples) return NULL;
1761 SamplesIterator = pSamples->begin();
1762 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1763 }
1764
1765 Sample* File::GetNextSample() {
1766 if (!pSamples) return NULL;
1767 SamplesIterator++;
1768 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1769 }
1770
1771 void File::LoadSamples(progress_t* pProgress) {
1772 RIFF::File* file = pRIFF;
1773
1774 // just for progress calculation
1775 int iSampleIndex = 0;
1776 int iTotalSamples = WavePoolCount;
1777
1778 // check if samples should be loaded from extension files
1779 int lastFileNo = 0;
1780 for (int i = 0 ; i < WavePoolCount ; i++) {
1781 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
1782 }
1783 String name(pRIFF->Filename);
1784 int nameLen = pRIFF->Filename.length();
1785 char suffix[6];
1786 if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;
1787
1788 for (int fileNo = 0 ; ; ) {
1789 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
1790 if (wvpl) {
1791 unsigned long wvplFileOffset = wvpl->GetFilePos();
1792 RIFF::List* wave = wvpl->GetFirstSubList();
1793 while (wave) {
1794 if (wave->GetListType() == LIST_TYPE_WAVE) {
1795 // notify current progress
1796 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
1797 __notify_progress(pProgress, subprogress);
1798
1799 if (!pSamples) pSamples = new SampleList;
1800 unsigned long waveFileOffset = wave->GetFilePos();
1801 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
1802
1803 iSampleIndex++;
1804 }
1805 wave = wvpl->GetNextSubList();
1806 }
1807
1808 if (fileNo == lastFileNo) break;
1809
1810 // open extension file (*.gx01, *.gx02, ...)
1811 fileNo++;
1812 sprintf(suffix, ".gx%02d", fileNo);
1813 name.replace(nameLen, 5, suffix);
1814 file = new RIFF::File(name);
1815 ExtensionFiles.push_back(file);
1816 }
1817 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1818 }
1819
1820 __notify_progress(pProgress, 1.0); // notify done
1821 }
1822
1823 Instrument* File::GetFirstInstrument() {
1824 if (!pInstruments) LoadInstruments();
1825 if (!pInstruments) return NULL;
1826 InstrumentsIterator = pInstruments->begin();
1827 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1828 }
1829
1830 Instrument* File::GetNextInstrument() {
1831 if (!pInstruments) return NULL;
1832 InstrumentsIterator++;
1833 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1834 }
1835
1836 /**
1837 * Returns the instrument with the given index.
1838 *
1839 * @param index - number of the sought instrument (0..n)
1840 * @param pProgress - optional: callback function for progress notification
1841 * @returns sought instrument or NULL if there's no such instrument
1842 */
1843 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
1844 if (!pInstruments) {
1845 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
1846
1847 // sample loading subtask
1848 progress_t subprogress;
1849 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
1850 __notify_progress(&subprogress, 0.0f);
1851 GetFirstSample(&subprogress); // now force all samples to be loaded
1852 __notify_progress(&subprogress, 1.0f);
1853
1854 // instrument loading subtask
1855 if (pProgress && pProgress->callback) {
1856 subprogress.__range_min = subprogress.__range_max;
1857 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
1858 }
1859 __notify_progress(&subprogress, 0.0f);
1860 LoadInstruments(&subprogress);
1861 __notify_progress(&subprogress, 1.0f);
1862 }
1863 if (!pInstruments) return NULL;
1864 InstrumentsIterator = pInstruments->begin();
1865 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1866 if (i == index) return *InstrumentsIterator;
1867 InstrumentsIterator++;
1868 }
1869 return NULL;
1870 }
1871
1872 void File::LoadInstruments(progress_t* pProgress) {
1873 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1874 if (lstInstruments) {
1875 int iInstrumentIndex = 0;
1876 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1877 while (lstInstr) {
1878 if (lstInstr->GetListType() == LIST_TYPE_INS) {
1879 // notify current progress
1880 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
1881 __notify_progress(pProgress, localProgress);
1882
1883 // divide local progress into subprogress for loading current Instrument
1884 progress_t subprogress;
1885 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
1886
1887 if (!pInstruments) pInstruments = new InstrumentList;
1888 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
1889
1890 iInstrumentIndex++;
1891 }
1892 lstInstr = lstInstruments->GetNextSubList();
1893 }
1894 __notify_progress(pProgress, 1.0); // notify done
1895 }
1896 else throw gig::Exception("Mandatory <lins> list chunk not found.");
1897 }
1898
1899
1900
1901 // *************** Exception ***************
1902 // *
1903
1904 Exception::Exception(String Message) : DLS::Exception(Message) {
1905 }
1906
1907 void Exception::PrintMessage() {
1908 std::cout << "gig::Exception: " << Message << std::endl;
1909 }
1910
1911
1912 // *************** functions ***************
1913 // *
1914
1915 /**
1916 * Returns the name of this C++ library. This is usually "libgig" of
1917 * course. This call is equivalent to RIFF::libraryName() and
1918 * DLS::libraryName().
1919 */
1920 String libraryName() {
1921 return PACKAGE;
1922 }
1923
1924 /**
1925 * Returns version of this C++ library. This call is equivalent to
1926 * RIFF::libraryVersion() and DLS::libraryVersion().
1927 */
1928 String libraryVersion() {
1929 return VERSION;
1930 }
1931
1932 } // namespace gig

  ViewVC Help
Powered by ViewVC