/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2761 - (hide annotations) (download) (as text)
Sat May 2 11:25:44 2015 UTC (5 years, 11 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 86214 byte(s)
- gig.h: Just added links about Instrument Scripts to the respective
  articles on doc.linuxsampler.org.

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2699 * Copyright (C) 2003-2015 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 11 #if WORDS_BIGENDIAN
31 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
32     # define LIST_TYPE_3EWL 0x3365776C
33 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
34     # define LIST_TYPE_3GNL 0x33676E6C
35 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
36     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
38     # define CHUNK_ID_3EWA 0x33657761
39     # define CHUNK_ID_3LNK 0x336C6E6B
40     # define CHUNK_ID_3EWG 0x33657767
41     # define CHUNK_ID_EWAV 0x65776176
42 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
43 persson 1199 # define CHUNK_ID_EINF 0x65696E66
44     # define CHUNK_ID_3CRC 0x33637263
45 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
46     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
47     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
48 schoenebeck 2 #else // little endian
49     # define LIST_TYPE_3PRG 0x67727033
50     # define LIST_TYPE_3EWL 0x6C776533
51 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
52     # define LIST_TYPE_3GNL 0x6C6E6733
53 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
54     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
55 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
56     # define CHUNK_ID_3EWA 0x61776533
57     # define CHUNK_ID_3LNK 0x6B6E6C33
58     # define CHUNK_ID_3EWG 0x67776533
59     # define CHUNK_ID_EWAV 0x76617765
60 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
61 persson 1199 # define CHUNK_ID_EINF 0x666E6965
62     # define CHUNK_ID_3CRC 0x63726333
63 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
64     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
65     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
66 schoenebeck 2 #endif // WORDS_BIGENDIAN
67    
68 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
69 schoenebeck 2 namespace gig {
70    
71     typedef std::string String;
72 schoenebeck 2682 typedef RIFF::progress_t progress_t;
73 schoenebeck 2
74     /** Lower and upper limit of a range. */
75     struct range_t {
76     uint8_t low; ///< Low value of range.
77     uint8_t high; ///< High value of range.
78     };
79    
80     /** Pointer address and size of a buffer. */
81     struct buffer_t {
82     void* pStart; ///< Points to the beginning of the buffer.
83     unsigned long Size; ///< Size of the actual data in the buffer in bytes.
84     unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
85 schoenebeck 384 buffer_t() {
86     pStart = NULL;
87     Size = 0;
88     NullExtensionSize = 0;
89     }
90 schoenebeck 2 };
91    
92     /** Standard types of sample loops. */
93     typedef enum {
94     loop_type_normal = 0x00000000, ///< Loop forward (normal)
95     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
96     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
97     } loop_type_t;
98    
99     /** Society of Motion Pictures and Television E time format. */
100     typedef enum {
101     smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
102     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
103     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
104     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
105     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
106     } smpte_format_t;
107    
108     /** Defines the shape of a function graph. */
109     typedef enum {
110     curve_type_nonlinear = 0,
111     curve_type_linear = 1,
112     curve_type_special = 2,
113     curve_type_unknown = 0xffffffff
114     } curve_type_t;
115    
116     /** Dimensions allow to bypass one of the following controllers. */
117     typedef enum {
118     dim_bypass_ctrl_none,
119     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
120     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
121     } dim_bypass_ctrl_t;
122    
123     /** Defines how LFO3 is controlled by. */
124     typedef enum {
125     lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
126     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
127     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
128     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
129     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
130     } lfo3_ctrl_t;
131    
132     /** Defines how LFO2 is controlled by. */
133     typedef enum {
134     lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
135     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
136     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
137     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
138     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
139     } lfo2_ctrl_t;
140    
141     /** Defines how LFO1 is controlled by. */
142     typedef enum {
143     lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
144     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
145     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
146     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
147     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
148     } lfo1_ctrl_t;
149    
150     /** Defines how the filter cutoff frequency is controlled by. */
151     typedef enum {
152     vcf_cutoff_ctrl_none = 0x00,
153 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
154 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
155     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
156     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
157     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
158     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
159     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
160     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
161     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
162     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
163     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
164     } vcf_cutoff_ctrl_t;
165    
166     /** Defines how the filter resonance is controlled by. */
167     typedef enum {
168     vcf_res_ctrl_none = 0xffffffff,
169     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
170     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
171     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
172     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
173     } vcf_res_ctrl_t;
174 schoenebeck 55
175 schoenebeck 36 /**
176     * Defines a controller that has a certain contrained influence on a
177     * particular synthesis parameter (used to define attenuation controller,
178     * EG1 controller and EG2 controller).
179     *
180     * You should use the respective <i>typedef</i> (means either
181     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
182     */
183     struct leverage_ctrl_t {
184     typedef enum {
185     type_none = 0x00, ///< No controller defined
186     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
187     type_velocity = 0xff, ///< Key Velocity
188     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
189     } type_t;
190 schoenebeck 55
191 schoenebeck 36 type_t type; ///< Controller type
192     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
193     };
194 schoenebeck 55
195 schoenebeck 36 /**
196     * Defines controller influencing attenuation.
197     *
198     * @see leverage_ctrl_t
199     */
200     typedef leverage_ctrl_t attenuation_ctrl_t;
201 schoenebeck 55
202 schoenebeck 36 /**
203     * Defines controller influencing envelope generator 1.
204     *
205     * @see leverage_ctrl_t
206     */
207     typedef leverage_ctrl_t eg1_ctrl_t;
208 schoenebeck 55
209 schoenebeck 36 /**
210     * Defines controller influencing envelope generator 2.
211     *
212     * @see leverage_ctrl_t
213     */
214     typedef leverage_ctrl_t eg2_ctrl_t;
215 schoenebeck 2
216     /**
217     * Defines the type of dimension, that is how the dimension zones (and
218     * thus how the dimension regions are selected by. The number of
219     * dimension zones is always a power of two. All dimensions can have up
220     * to 32 zones (except the layer dimension with only up to 8 zones and
221     * the samplechannel dimension which currently allows only 2 zones).
222     */
223     typedef enum {
224     dimension_none = 0x00, ///< Dimension not in use.
225     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
226     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
227 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
228 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
229     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
230 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
231 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
232     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
233 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
234     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
235 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
236     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
237     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
238     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
239     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
240     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
241     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
242     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
243     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
244     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
245     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
246     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
247     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
248     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
249     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
250     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
251     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
252     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
253     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
254     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
255     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
256     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
257     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
258     } dimension_t;
259    
260     /**
261     * Intended for internal usage: will be used to convert a dimension value
262     * into the corresponding dimension bit number.
263     */
264     typedef enum {
265 persson 858 split_type_normal, ///< dimension value between 0-127
266 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
267     } split_type_t;
268    
269     /** General dimension definition. */
270     struct dimension_def_t {
271     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
272     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
273     uint8_t zones; ///< Number of zones the dimension has.
274     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
275 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
276 schoenebeck 2 };
277    
278     /** Defines which frequencies are filtered by the VCF. */
279     typedef enum {
280     vcf_type_lowpass = 0x00,
281     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
282     vcf_type_bandpass = 0x01,
283     vcf_type_highpass = 0x02,
284     vcf_type_bandreject = 0x03
285     } vcf_type_t;
286    
287 schoenebeck 345 /**
288     * Defines the envelope of a crossfade.
289     *
290     * Note: The default value for crossfade points is 0,0,0,0. Layers with
291     * such a default value should be treated as if they would not have a
292 schoenebeck 353 * crossfade.
293 schoenebeck 345 */
294 schoenebeck 2 struct crossfade_t {
295     #if WORDS_BIGENDIAN
296 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
297     uint8_t out_start; ///< Start position of fade out.
298     uint8_t in_end; ///< End position of fade in.
299 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
300 schoenebeck 345 #else // little endian
301     uint8_t in_start; ///< Start position of fade in.
302 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
303     uint8_t out_start; ///< Start position of fade out.
304     uint8_t out_end; ///< End postition of fade out.
305     #endif // WORDS_BIGENDIAN
306     };
307    
308 schoenebeck 24 /** Reflects the current playback state for a sample. */
309     struct playback_state_t {
310     unsigned long position; ///< Current position within the sample.
311     bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
312     unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
313     };
314    
315 schoenebeck 2 // just symbol prototyping
316     class File;
317     class Instrument;
318     class Sample;
319 capela 310 class Region;
320 schoenebeck 929 class Group;
321 schoenebeck 2584 class Script;
322     class ScriptGroup;
323 schoenebeck 2
324 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
325 schoenebeck 2 *
326 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
327     * format. A DimensionRegion provides the link to the sample to be played
328     * and all required articulation informations to be interpreted for playing
329     * back the sample and processing it appropriately by the sampler software.
330     * Every Region of a Gigasampler Instrument has at least one dimension
331     * region (exactly then when the Region has no dimension defined). Many
332     * Regions though provide more than one DimensionRegion, which reflect
333     * different playing "cases". For example a different sample might be played
334     * if a certain pedal is pressed down, or if the note was triggered with
335     * different velocity.
336 schoenebeck 2 *
337 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
338     * while playing an instrument (for instance "note between C3 and E3 was
339     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
340     * controller is between 80 and 127). The DimensionRegion defines what to do
341     * under that one particular case, that is which sample to play back and how
342     * to play that sample back exactly and how to process it. So a
343     * DimensionRegion object is always linked to exactly one sample. It may
344     * however also link to no sample at all, for defining a "silence" case
345     * where nothing shall be played (for example when note on velocity was
346     * below 6).
347 schoenebeck 2 *
348 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
349     * not define "when to do it". To actually resolve which DimensionRegion to
350     * pick under which situation, you need to refer to the DimensionRegions'
351     * parent Region object. The Region object contains the necessary
352     * "Dimension" definitions, which in turn define which DimensionRegion is
353     * associated with which playing case exactly.
354     *
355     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
356     * Low Frequency Oscillators:
357     *
358 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
359     * - EG2 and LFO2, both controlling filter cutoff frequency
360     * - EG3 and LFO3, both controlling sample pitch
361 schoenebeck 2699 *
362     * Since the gig format was designed as extension to the DLS file format,
363     * this class is derived from the DLS::Sampler class. So also refer to
364     * DLS::Sampler for additional informations, class attributes and methods.
365 schoenebeck 2 */
366     class DimensionRegion : protected DLS::Sampler {
367     public:
368 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
369 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
370     // Sample Amplitude EG/LFO
371     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
372     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
373     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
374     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
375     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
376     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
377     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
378     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
379     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
380     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
381 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
382     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
383     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
384 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
385     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
386     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
387     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
388     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
389     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
390     // Filter Cutoff Frequency EG/LFO
391     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
392     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
393     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
394     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
395     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
396     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
397     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
398     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
399     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
400 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
401     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
402     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
403 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
404     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
405     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
406     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
407     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
408     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
409     // Sample Pitch EG/LFO
410     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
411     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
412     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
413     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
414     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
415     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
416     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
417     // Filter
418     bool VCFEnabled; ///< If filter should be used.
419     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
420 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
421 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
422 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
423 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
424     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
425     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
426 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
427     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
428     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
429     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
430     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
431     // Key Velocity Transformations
432 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
433     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
434     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
435     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
436     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
437 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
438     // Mix / Layer
439     crossfade_t Crossfade;
440     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
441     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
442     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
443     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
444 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
445     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
446     uint8_t AttenuationControllerThreshold;///< 0-127
447 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
448     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
449     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
450     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
451 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
452 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
453 persson 406
454 schoenebeck 2 // derived attributes from DLS::Sampler
455 persson 2334 using DLS::Sampler::UnityNote;
456     using DLS::Sampler::FineTune;
457     using DLS::Sampler::Gain;
458     using DLS::Sampler::SampleLoops;
459     using DLS::Sampler::pSampleLoops;
460 schoenebeck 2
461 schoenebeck 809 // own methods
462 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
463 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
464 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
465 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
466     void SetVelocityResponseDepth(uint8_t depth);
467     void SetVelocityResponseCurveScaling(uint8_t scaling);
468     void SetReleaseVelocityResponseCurve(curve_type_t curve);
469     void SetReleaseVelocityResponseDepth(uint8_t depth);
470     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
471     void SetVCFVelocityCurve(curve_type_t curve);
472     void SetVCFVelocityDynamicRange(uint8_t range);
473     void SetVCFVelocityScale(uint8_t scaling);
474 schoenebeck 1316 Region* GetParent() const;
475 schoenebeck 1155 // derived methods
476 persson 2334 using DLS::Sampler::AddSampleLoop;
477     using DLS::Sampler::DeleteSampleLoop;
478 schoenebeck 809 // overridden methods
479 schoenebeck 1358 virtual void SetGain(int32_t gain);
480 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
481 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
482 schoenebeck 16 protected:
483 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
484 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
485 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
486 schoenebeck 16 ~DimensionRegion();
487 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
488 schoenebeck 16 friend class Region;
489     private:
490 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
491 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
492 schoenebeck 36 _lev_ctrl_none = 0x00,
493     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
494     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
495     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
496     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
497     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
498     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
499     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
500     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
501     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
502     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
503     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
504     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
505     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
506     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
507     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
508     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
509     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
510     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
511     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
512     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
513     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
514     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
515     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
516     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
517 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
518    
519     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
520     // (the assigned values here are their official MIDI CC number plus the highest bit set):
521     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
522    
523     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
524     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
525     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
526     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
527     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
528     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
529    
530     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
531     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
532    
533     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
534     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
535     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
536     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
537     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
538     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
539     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
540     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
541     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
542     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
543     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
544     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
545    
546     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
547     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
548     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
549     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
550     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
551     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
552     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
553     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
554     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
555     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
556     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
557     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
558    
559     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
560     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
561     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
562     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
563    
564     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
565     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
566    
567     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
568     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
569    
570     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
571     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
572     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
573     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
574     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
575     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
576     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
577     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
578     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
579     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
580     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
581     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
582     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
583     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
584     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
585     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
586     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
587     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
588 schoenebeck 55 } _lev_ctrl_t;
589 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
590    
591     static uint Instances; ///< Number of DimensionRegion instances.
592     static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
593     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
594 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
595 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
596 schoenebeck 1316 Region* pRegion;
597 schoenebeck 55
598 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
599 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
600 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
601     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
602 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
603 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
604 schoenebeck 2 };
605    
606 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
607 schoenebeck 809 *
608 schoenebeck 2699 * This class provides access to the actual audio sample data of a
609     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
610     * provides access to the sample's meta informations like bit depth,
611     * sample rate, encoding type, but also loop informations. The latter may be
612     * used by instruments for resembling sounds with arbitary note lengths.
613     *
614 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
615     * first update all attributes with the desired meta informations
616     * (amount of channels, bit depth, sample rate, etc.), then call
617     * Resize() with the desired sample size, followed by File::Save(), this
618     * will create the mandatory RIFF chunk which will hold the sample wave
619     * data and / or resize the file so you will be able to Write() the
620     * sample data directly to disk.
621 schoenebeck 1154 *
622     * @e Caution: for gig synthesis, most looping relevant information are
623     * retrieved from the respective DimensionRegon instead from the Sample
624     * itself. This was made for allowing different loop definitions for the
625     * same sample under different conditions.
626 schoenebeck 2699 *
627     * Since the gig format was designed as extension to the DLS file format,
628     * this class is derived from the DLS::Sample class. So also refer to
629     * DLS::Sample for additional informations, class attributes and methods.
630 schoenebeck 809 */
631 schoenebeck 2 class Sample : public DLS::Sample {
632     public:
633     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
634     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
635 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
636 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
637 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
638 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
639     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
640 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
641 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
642 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
643     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
644     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
645     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
646     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
647     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
648 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
649 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
650     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
651 schoenebeck 2
652     // own methods
653     buffer_t LoadSampleData();
654     buffer_t LoadSampleData(unsigned long SampleCount);
655     buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
656     buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
657     buffer_t GetCache();
658 schoenebeck 384 // own static methods
659     static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
660     static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
661 schoenebeck 2 // overridden methods
662     void ReleaseSampleData();
663 schoenebeck 809 void Resize(int iNewSize);
664 schoenebeck 2 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
665 schoenebeck 2482 unsigned long GetPos() const;
666 schoenebeck 384 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
667 persson 864 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
668 schoenebeck 809 unsigned long Write(void* pBuffer, unsigned long SampleCount);
669 schoenebeck 930 Group* GetGroup() const;
670 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
671 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
672     void CopyAssignWave(const Sample* orig);
673 schoenebeck 2 protected:
674     static unsigned int Instances; ///< Number of instances of class Sample.
675 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
676 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
677 schoenebeck 2 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
678     unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
679     unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
680 persson 365 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
681     unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
682     unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
683 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
684 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
685 schoenebeck 809 RIFF::Chunk* pCk3gix;
686     RIFF::Chunk* pCkSmpl;
687 schoenebeck 1381 uint32_t crc; ///< CRC-32 checksum of the raw sample data
688 schoenebeck 2
689 persson 666 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
690 schoenebeck 2 ~Sample();
691 persson 365
692     // Guess size (in bytes) of a compressed sample
693     inline unsigned long GuessSize(unsigned long samples) {
694     // 16 bit: assume all frames are compressed - 1 byte
695     // per sample and 5 bytes header per 2048 samples
696    
697     // 24 bit: assume next best compression rate - 1.5
698     // bytes per sample and 13 bytes header per 256
699     // samples
700     const unsigned long size =
701     BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
702     : samples + (samples >> 10) * 5;
703     // Double for stereo and add one worst case sample
704     // frame
705     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
706     }
707 schoenebeck 384
708     // Worst case amount of sample points that can be read with the
709     // given decompression buffer.
710     inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
711     return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
712     }
713 schoenebeck 2 private:
714     void ScanCompressedSample();
715     friend class File;
716     friend class Region;
717 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
718 schoenebeck 2 };
719    
720     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
721 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
722 schoenebeck 2547 *
723 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
724     * individual regions in the gig format may not overlap with other regions
725     * (of the same instrument that is). Further, in the gig format a Region is
726     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
727     * itself does not provide the sample mapping or articulation informations
728     * used, even though the data structures of regions indeed provide such
729     * informations. The latter is however just of historical nature, because
730     * the gig file format was derived from the DLS file format.
731 schoenebeck 2547 *
732     * Each Region consists of at least one or more DimensionRegions. The actual
733     * amount of DimensionRegions depends on which kind of "dimensions" are
734     * defined for this region, and on the split / zone amount for each of those
735     * dimensions.
736 schoenebeck 2699 *
737     * Since the gig format was designed as extension to the DLS file format,
738     * this class is derived from the DLS::Region class. So also refer to
739     * DLS::Region for additional informations, class attributes and methods.
740 schoenebeck 2547 */
741 schoenebeck 2 class Region : public DLS::Region {
742     public:
743 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
744 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
745 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
746 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
747 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
748 schoenebeck 2
749 schoenebeck 1335 // own methods
750 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
751     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
752 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
753 schoenebeck 2 Sample* GetSample();
754 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
755     void DeleteDimension(dimension_def_t* pDimDef);
756 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
757 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
758     void SplitDimensionZone(dimension_t type, int zone);
759 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
760 schoenebeck 1335 // overridden methods
761     virtual void SetKeyRange(uint16_t Low, uint16_t High);
762 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
763 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
764 schoenebeck 2 protected:
765     Region(Instrument* pInstrument, RIFF::List* rgnList);
766     void LoadDimensionRegions(RIFF::List* rgn);
767 persson 858 void UpdateVelocityTable();
768 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
769 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
770 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
771 schoenebeck 2 ~Region();
772     friend class Instrument;
773     };
774    
775 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
776     *
777     * Note: Instead of using MIDI rules, we recommend you using real-time
778     * instrument scripts instead. Read about the reasons below.
779     *
780     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
781     * introduced with GigaStudio 4 as an attempt to increase the power of
782     * potential user controls over sounds. At that point other samplers already
783     * supported certain powerful user control features, which were not possible
784     * with GigaStudio yet. For example triggering new notes by MIDI CC
785     * controller.
786     *
787     * Such extended features however were usually implemented by other samplers
788     * by requiring the sound designer to write an instrument script which the
789     * designer would then bundle with the respective instrument file. Such
790     * scripts are essentially text files, using a very specific programming
791     * language for the purpose of controlling the sampler in real-time. Since
792     * however musicians are not typically keen to writing such cumbersome
793     * script files, the GigaStudio designers decided to implement such extended
794     * features completely without instrument scripts. Instead they created a
795     * set of rules, which could be defined and altered conveniently by mouse
796     * clicks in GSt's instrument editor application. The downside of this
797     * overall approach however, was that those MIDI rules were very limited in
798     * practice. As sound designer you easily came across the possiblities such
799     * MIDI rules were able to offer.
800     *
801     * Due to such severe use case constraints, support for MIDI rules is quite
802     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
803     * and the "Legato" MIDI rules are supported by libgig. Consequently the
804     * graphical instrument editor application gigedit just supports the
805     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
806     * support any MIDI rule type at all and LinuxSampler probably will not
807     * support MIDI rules in future either.
808     *
809     * Instead of using MIDI rules, we introduced real-time instrument scripts
810     * as extension to the original GigaStudio file format. This script based
811     * solution is much more powerful than MIDI rules and is already supported
812     * by libgig, gigedit and LinuxSampler.
813     *
814     * @deprecated Just provided for backward compatiblity, use Script for new
815     * instruments instead.
816     */
817 persson 1627 class MidiRule {
818     public:
819     virtual ~MidiRule() { }
820 persson 2450 protected:
821     virtual void UpdateChunks(uint8_t* pData) const = 0;
822     friend class Instrument;
823 persson 1627 };
824    
825 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
826     *
827     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
828     * control change events to the sampler.
829     *
830     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
831     * by LinuxSampler. We recommend you using real-time instrument scripts
832     * instead. Read more about the details and reasons for this in the
833     * description of the MidiRule base class.
834     *
835     * @deprecated Just provided for backward compatiblity, use Script for new
836     * instruments instead. See description of MidiRule for details.
837     */
838 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
839     public:
840     uint8_t ControllerNumber; ///< MIDI controller number.
841     uint8_t Triggers; ///< Number of triggers.
842     struct trigger_t {
843     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
844     bool Descending; ///< If the change in CC value should be downwards.
845     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
846     uint8_t Key; ///< Key to trigger.
847     bool NoteOff; ///< If a note off should be triggered instead of a note on.
848     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
849     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
850     } pTriggers[32];
851    
852     protected:
853     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
854 persson 2450 MidiRuleCtrlTrigger();
855     void UpdateChunks(uint8_t* pData) const;
856 persson 1627 friend class Instrument;
857     };
858    
859 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
860     *
861     * A "Legato MIDI rule" allows playing instruments resembling the legato
862     * playing technique. In the past such legato articulations were tried to be
863     * simulated by pitching the samples of the instrument. However since
864     * usually a high amount of pitch is needed for legatos, this always sounded
865     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
866     * approach. Instead of pitching the samples, it allows the sound designer
867     * to bundle separate, additional samples for the individual legato
868     * situations and the legato rules defined which samples to be played in
869     * which situation.
870     *
871     * Note: "Legato MIDI rules" are only supported by gigedit, but not
872     * by LinuxSampler. We recommend you using real-time instrument scripts
873     * instead. Read more about the details and reasons for this in the
874     * description of the MidiRule base class.
875     *
876     * @deprecated Just provided for backward compatiblity, use Script for new
877     * instruments instead. See description of MidiRule for details.
878     */
879 persson 2450 class MidiRuleLegato : public MidiRule {
880     public:
881     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
882     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
883     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
884     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
885     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
886     uint16_t ReleaseTime; ///< Release time
887     range_t KeyRange; ///< Key range for legato notes
888     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
889     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
890     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
891    
892     protected:
893     MidiRuleLegato(RIFF::Chunk* _3ewg);
894     MidiRuleLegato();
895     void UpdateChunks(uint8_t* pData) const;
896     friend class Instrument;
897     };
898    
899 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
900     *
901     * The instrument must be using the smartmidi dimension.
902     *
903     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
904     * LinuxSampler. We recommend you using real-time instrument scripts
905     * instead. Read more about the details and reasons for this in the
906     * description of the MidiRule base class.
907     *
908     * @deprecated Just provided for backward compatiblity, use Script for new
909     * instruments instead. See description of MidiRule for details.
910     */
911 persson 2450 class MidiRuleAlternator : public MidiRule {
912     public:
913     uint8_t Articulations; ///< Number of articulations in the instrument
914     String pArticulations[32]; ///< Names of the articulations
915    
916     range_t PlayRange; ///< Key range of the playable keys in the instrument
917    
918     uint8_t Patterns; ///< Number of alternator patterns
919     struct pattern_t {
920     String Name; ///< Name of the pattern
921     int Size; ///< Number of steps in the pattern
922     const uint8_t& operator[](int i) const { /// Articulation to play
923     return data[i];
924     }
925     uint8_t& operator[](int i) {
926     return data[i];
927     }
928     private:
929     uint8_t data[32];
930     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
931    
932     typedef enum {
933     selector_none,
934     selector_key_switch,
935     selector_controller
936     } selector_t;
937     selector_t Selector; ///< Method by which pattern is chosen
938     range_t KeySwitchRange; ///< Key range for key switch selector
939     uint8_t Controller; ///< CC number for controller selector
940    
941     bool Polyphonic; ///< If alternator should step forward only when all notes are off
942     bool Chained; ///< If all patterns should be chained together
943    
944     protected:
945     MidiRuleAlternator(RIFF::Chunk* _3ewg);
946     MidiRuleAlternator();
947     void UpdateChunks(uint8_t* pData) const;
948     friend class Instrument;
949     };
950    
951 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
952     *
953     * This class is currently used as a place holder by libgig for MIDI rule
954     * types which are not supported by libgig yet.
955     *
956     * Note: Support for missing MIDI rule types are probably never added to
957     * libgig. We recommend you using real-time instrument scripts instead.
958     * Read more about the details and reasons for this in the description of
959     * the MidiRule base class.
960     *
961     * @deprecated Just provided for backward compatiblity, use Script for new
962     * instruments instead. See description of MidiRule for details.
963     */
964 persson 2450 class MidiRuleUnknown : public MidiRule {
965     protected:
966     MidiRuleUnknown() { }
967     void UpdateChunks(uint8_t* pData) const { }
968     friend class Instrument;
969     };
970    
971 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
972     *
973     * Real-time instrument scripts are user supplied small programs which can
974     * be used by instrument designers to create custom behaviors and features
975     * not available in the stock sampler engine. Features which might be very
976     * exotic or specific for the respective instrument.
977     *
978     * This is an extension of the GigaStudio format, thus a feature which was
979     * not available in the GigaStudio 4 software. It is currently only
980 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
981     * original GigaStudio software.
982 schoenebeck 2761 *
983     * You find more informations about Instrument Scripts on the LinuxSampler
984     * documentation site:
985     *
986     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
987     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
988     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
989     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
990 schoenebeck 2584 */
991     class Script {
992     public:
993     enum Encoding_t {
994     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
995     };
996     enum Compression_t {
997     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
998     };
999     enum Language_t {
1000     LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default).
1001     };
1002    
1003     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1004     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1005     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1006     Language_t Language; ///< Programming language and dialect the script is written in.
1007     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1008    
1009     String GetScriptAsText();
1010     void SetScriptAsText(const String& text);
1011     void SetGroup(ScriptGroup* pGroup);
1012 schoenebeck 2601 ScriptGroup* GetGroup() const;
1013 schoenebeck 2584 protected:
1014     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1015     virtual ~Script();
1016 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1017 schoenebeck 2584 void RemoveAllScriptReferences();
1018     friend class ScriptGroup;
1019     friend class Instrument;
1020     private:
1021     ScriptGroup* pGroup;
1022     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1023     std::vector<uint8_t> data;
1024     uint32_t crc; ///< CRC-32 checksum of the raw script data
1025     };
1026    
1027     /** @brief Group of instrument scripts (gig format extension).
1028     *
1029     * This class is simply used to sort a bunch of real-time instrument scripts
1030     * into individual groups. This allows instrument designers and script
1031     * developers to keep scripts in a certain order while working with a larger
1032     * amount of scripts in an instrument editor.
1033     *
1034     * This is an extension of the GigaStudio format, thus a feature which was
1035     * not available in the GigaStudio 4 software. It is currently only
1036     * supported by LinuxSampler and gigedit.
1037     */
1038     class ScriptGroup {
1039     public:
1040     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1041    
1042     Script* GetScript(uint index);
1043     Script* AddScript();
1044     void DeleteScript(Script* pScript);
1045     protected:
1046     ScriptGroup(File* file, RIFF::List* lstRTIS);
1047     virtual ~ScriptGroup();
1048     void LoadScripts();
1049 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1050 schoenebeck 2584 friend class Script;
1051     friend class File;
1052     private:
1053     File* pFile;
1054     RIFF::List* pList; ///< 'RTIS' list chunk
1055     std::list<Script*>* pScripts;
1056     };
1057    
1058 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1059     *
1060     * This class provides access to Gigasampler/GigaStudio instruments
1061     * contained in .gig files. A gig instrument is merely a set of keyboard
1062     * ranges (called Region), plus some additional global informations about
1063     * the instrument. The major part of the actual instrument definition used
1064     * for the synthesis of the instrument is contained in the respective Region
1065     * object (or actually in the respective DimensionRegion object being, see
1066     * description of Region for details).
1067     *
1068     * Since the gig format was designed as extension to the DLS file format,
1069     * this class is derived from the DLS::Instrument class. So also refer to
1070     * DLS::Instrument for additional informations, class attributes and
1071     * methods.
1072     */
1073 schoenebeck 2 class Instrument : protected DLS::Instrument {
1074     public:
1075     // derived attributes from DLS::Resource
1076 persson 2334 using DLS::Resource::pInfo;
1077     using DLS::Resource::pDLSID;
1078 schoenebeck 2 // derived attributes from DLS::Instrument
1079 persson 2334 using DLS::Instrument::IsDrum;
1080     using DLS::Instrument::MIDIBank;
1081     using DLS::Instrument::MIDIBankCoarse;
1082     using DLS::Instrument::MIDIBankFine;
1083     using DLS::Instrument::MIDIProgram;
1084     using DLS::Instrument::Regions;
1085 schoenebeck 2 // own attributes
1086     int32_t Attenuation; ///< in dB
1087     uint16_t EffectSend;
1088     int16_t FineTune; ///< in cents
1089     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1090     bool PianoReleaseMode;
1091     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1092    
1093    
1094     // derived methods from DLS::Resource
1095 persson 2334 using DLS::Resource::GetParent;
1096 schoenebeck 2 // overridden methods
1097     Region* GetFirstRegion();
1098     Region* GetNextRegion();
1099 schoenebeck 809 Region* AddRegion();
1100     void DeleteRegion(Region* pRegion);
1101 schoenebeck 2700 void MoveTo(Instrument* dst);
1102 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1103 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1104 schoenebeck 2 // own methods
1105     Region* GetRegion(unsigned int Key);
1106 persson 1678 MidiRule* GetMidiRule(int i);
1107 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1108     MidiRuleLegato* AddMidiRuleLegato();
1109     MidiRuleAlternator* AddMidiRuleAlternator();
1110     void DeleteMidiRule(int i);
1111 schoenebeck 2584 // real-time instrument script methods
1112     Script* GetScriptOfSlot(uint index);
1113     void AddScriptSlot(Script* pScript, bool bypass = false);
1114     void SwapScriptSlots(uint index1, uint index2);
1115     void RemoveScriptSlot(uint index);
1116     void RemoveScript(Script* pScript);
1117     uint ScriptSlotCount() const;
1118     bool IsScriptSlotBypassed(uint index);
1119     void SetScriptSlotBypassed(uint index, bool bBypass);
1120 schoenebeck 2 protected:
1121     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1122    
1123 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1124 schoenebeck 2 ~Instrument();
1125 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1126 schoenebeck 809 void UpdateRegionKeyTable();
1127 schoenebeck 2584 void LoadScripts();
1128 schoenebeck 2609 void UpdateScriptFileOffsets();
1129 schoenebeck 2 friend class File;
1130 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1131 persson 1627 private:
1132 schoenebeck 2584 struct _ScriptPooolEntry {
1133     uint32_t fileOffset;
1134     bool bypass;
1135     };
1136     struct _ScriptPooolRef {
1137     Script* script;
1138     bool bypass;
1139     };
1140 persson 1678 MidiRule** pMidiRules;
1141 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1142     std::vector<_ScriptPooolRef>* pScriptRefs;
1143 schoenebeck 2 };
1144    
1145 schoenebeck 2699 /** @brief Group of Gigasampler samples
1146 schoenebeck 929 *
1147 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1148 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1149     * sound library developers when working on complex instruments with an
1150     * instrument editor (as long as that instrument editor supports it ;-).
1151     *
1152 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1153     * there is always at least one Group in a .gig file, no matter if you
1154     * created one yet or not.
1155 schoenebeck 929 */
1156     class Group {
1157     public:
1158     String Name; ///< Stores the name of this Group.
1159 schoenebeck 930
1160     Sample* GetFirstSample();
1161     Sample* GetNextSample();
1162     void AddSample(Sample* pSample);
1163 schoenebeck 929 protected:
1164 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1165 schoenebeck 929 virtual ~Group();
1166 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1167 schoenebeck 930 void MoveAll();
1168 schoenebeck 929 friend class File;
1169     private:
1170 schoenebeck 930 File* pFile;
1171 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1172 schoenebeck 929 };
1173    
1174 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1175     *
1176     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1177     * with libgig. It allows you to open existing .gig files, modifying them
1178     * and saving them persistently either under the same file name or under a
1179     * different location.
1180     *
1181     * A .gig file is merely a monolithic file. That means samples and the
1182     * defintion of the virtual instruments are contained in the same file. A
1183     * .gig file contains an arbitrary amount of samples, and an arbitrary
1184     * amount of instruments which are referencing those samples. It is also
1185     * possible to store samples in .gig files not being referenced by any
1186     * instrument. This is not an error from the file format's point of view and
1187     * it is actually often used in practice during the design phase of new gig
1188     * instruments.
1189     *
1190     * So on toplevel of the gig file format you have:
1191     *
1192     * - A set of samples (see Sample).
1193     * - A set of virtual instruments (see Instrument).
1194     *
1195     * And as extension to the original GigaStudio format, we added:
1196     *
1197     * - Real-time instrument scripts (see Script).
1198     *
1199     * Note that the latter however is only supported by libgig, gigedit and
1200     * LinuxSampler. Scripts are not supported by the original GigaStudio
1201     * software.
1202     *
1203     * All released Gigasampler/GigaStudio file format versions are supported
1204     * (so from first Gigasampler version up to including GigaStudio 4).
1205     *
1206     * Since the gig format was designed as extension to the DLS file format,
1207     * this class is derived from the DLS::File class. So also refer to
1208     * DLS::File for additional informations, class attributes and methods.
1209     */
1210 schoenebeck 2 class File : protected DLS::File {
1211     public:
1212 persson 1199 static const DLS::version_t VERSION_2;
1213     static const DLS::version_t VERSION_3;
1214    
1215 schoenebeck 2 // derived attributes from DLS::Resource
1216 persson 2334 using DLS::Resource::pInfo;
1217     using DLS::Resource::pDLSID;
1218 schoenebeck 2 // derived attributes from DLS::File
1219 persson 2334 using DLS::File::pVersion;
1220     using DLS::File::Instruments;
1221 schoenebeck 2
1222     // derived methods from DLS::Resource
1223 persson 2334 using DLS::Resource::GetParent;
1224 schoenebeck 809 // derived methods from DLS::File
1225 persson 2334 using DLS::File::Save;
1226     using DLS::File::GetFileName;
1227 schoenebeck 2482 using DLS::File::SetFileName;
1228 schoenebeck 2 // overridden methods
1229 schoenebeck 809 File();
1230 schoenebeck 2 File(RIFF::File* pRIFF);
1231 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1232 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1233 schoenebeck 2482 Sample* GetSample(uint index);
1234 schoenebeck 809 Sample* AddSample();
1235     void DeleteSample(Sample* pSample);
1236 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1237 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1238 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1239 schoenebeck 809 Instrument* AddInstrument();
1240 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1241 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1242 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1243     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1244     Group* GetGroup(uint index);
1245 schoenebeck 2543 Group* GetGroup(String name);
1246 schoenebeck 929 Group* AddGroup();
1247     void DeleteGroup(Group* pGroup);
1248 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1249 schoenebeck 1524 void SetAutoLoad(bool b);
1250     bool GetAutoLoad();
1251 schoenebeck 2482 void AddContentOf(File* pFile);
1252 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1253     ScriptGroup* GetScriptGroup(const String& name);
1254     ScriptGroup* AddScriptGroup();
1255     void DeleteScriptGroup(ScriptGroup* pGroup);
1256 schoenebeck 929 virtual ~File();
1257 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1258 schoenebeck 2 protected:
1259 schoenebeck 823 // overridden protected methods from DLS::File
1260     virtual void LoadSamples();
1261     virtual void LoadInstruments();
1262 schoenebeck 929 virtual void LoadGroups();
1263 schoenebeck 2609 virtual void UpdateFileOffsets();
1264 schoenebeck 823 // own protected methods
1265     virtual void LoadSamples(progress_t* pProgress);
1266     virtual void LoadInstruments(progress_t* pProgress);
1267 schoenebeck 2584 virtual void LoadScriptGroups();
1268 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1269 schoenebeck 2 friend class Region;
1270 schoenebeck 929 friend class Sample;
1271 schoenebeck 2700 friend class Instrument;
1272 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1273 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1274 schoenebeck 929 private:
1275     std::list<Group*>* pGroups;
1276     std::list<Group*>::iterator GroupsIterator;
1277 schoenebeck 1524 bool bAutoLoad;
1278 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1279 schoenebeck 2 };
1280    
1281 schoenebeck 1093 /**
1282     * Will be thrown whenever a gig specific error occurs while trying to
1283     * access a Gigasampler File. Note: In your application you should
1284     * better catch for RIFF::Exception rather than this one, except you
1285     * explicitly want to catch and handle gig::Exception, DLS::Exception
1286     * and RIFF::Exception independently, which usually shouldn't be
1287     * necessary though.
1288     */
1289 schoenebeck 2 class Exception : public DLS::Exception {
1290     public:
1291     Exception(String Message);
1292     void PrintMessage();
1293     };
1294    
1295 schoenebeck 518 String libraryName();
1296     String libraryVersion();
1297    
1298 schoenebeck 2 } // namespace gig
1299    
1300     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC