/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3657 - (hide annotations) (download) (as text)
Sat Dec 14 17:10:57 2019 UTC (4 years, 4 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 99043 byte(s)
* Compatibility fix (gig.cpp): GigaStudio 3 expects '3dnm' and '3ddp'
  RIFF chunks (original patch by Ivan Maguidhir).

* Bumped version (4.2.0.svn4).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3623 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 3169 #ifndef __has_feature
31     # define __has_feature(x) 0
32     #endif
33     #ifndef HAVE_RTTI
34     # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35     # define HAVE_RTTI 1
36     # else
37     # define HAVE_RTTI 0
38     # endif
39     #endif
40     #if HAVE_RTTI
41     # include <typeinfo>
42 schoenebeck 3173 #else
43     # warning No RTTI available!
44 schoenebeck 3169 #endif
45    
46 schoenebeck 11 #if WORDS_BIGENDIAN
47 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
48     # define LIST_TYPE_3EWL 0x3365776C
49 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
50     # define LIST_TYPE_3GNL 0x33676E6C
51 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 schoenebeck 3657 # define LIST_TYPE_3DNM 0x33646e6d
54 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
55     # define CHUNK_ID_3EWA 0x33657761
56     # define CHUNK_ID_3LNK 0x336C6E6B
57     # define CHUNK_ID_3EWG 0x33657767
58     # define CHUNK_ID_EWAV 0x65776176
59 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
60 persson 1199 # define CHUNK_ID_EINF 0x65696E66
61     # define CHUNK_ID_3CRC 0x33637263
62 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
63     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
64     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
65 schoenebeck 3323 # define CHUNK_ID_LSDE 0x4c534445 // own gig format extension
66 schoenebeck 3657 # define CHUNK_ID_3DDP 0x33646470
67 schoenebeck 2 #else // little endian
68     # define LIST_TYPE_3PRG 0x67727033
69     # define LIST_TYPE_3EWL 0x6C776533
70 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
71     # define LIST_TYPE_3GNL 0x6C6E6733
72 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
73     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
74 schoenebeck 3657 # define LIST_TYPE_3DNM 0x6d6e6433
75 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
76     # define CHUNK_ID_3EWA 0x61776533
77     # define CHUNK_ID_3LNK 0x6B6E6C33
78     # define CHUNK_ID_3EWG 0x67776533
79     # define CHUNK_ID_EWAV 0x76617765
80 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
81 persson 1199 # define CHUNK_ID_EINF 0x666E6965
82     # define CHUNK_ID_3CRC 0x63726333
83 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
84     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
85     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
86 schoenebeck 3323 # define CHUNK_ID_LSDE 0x4544534c // own gig format extension
87 schoenebeck 3657 # define CHUNK_ID_3DDP 0x70646433
88 schoenebeck 2 #endif // WORDS_BIGENDIAN
89    
90 schoenebeck 3169 #ifndef GIG_DECLARE_ENUM
91     # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
92     #endif
93    
94 schoenebeck 3140 // just symbol prototyping (since Serialization.h not included by default here)
95     namespace Serialization { class Archive; }
96    
97 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
98 schoenebeck 2 namespace gig {
99    
100     typedef std::string String;
101 schoenebeck 2682 typedef RIFF::progress_t progress_t;
102 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
103 schoenebeck 2
104     /** Lower and upper limit of a range. */
105     struct range_t {
106     uint8_t low; ///< Low value of range.
107     uint8_t high; ///< High value of range.
108     };
109    
110     /** Pointer address and size of a buffer. */
111     struct buffer_t {
112     void* pStart; ///< Points to the beginning of the buffer.
113 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
114     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
115 schoenebeck 384 buffer_t() {
116     pStart = NULL;
117     Size = 0;
118     NullExtensionSize = 0;
119     }
120 schoenebeck 2 };
121    
122 schoenebeck 3169 /** Standard types of sample loops.
123     *
124 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
125 schoenebeck 3169 */
126     GIG_DECLARE_ENUM(loop_type_t,
127 schoenebeck 3398 loop_type_normal = 0x00000000, /**< Loop forward (normal) */
128     loop_type_bidirectional = 0x00000001, /**< Alternating loop (forward/backward, also known as Ping Pong) */
129     loop_type_backward = 0x00000002 /**< Loop backward (reverse) */
130 schoenebeck 3169 );
131 schoenebeck 2
132 schoenebeck 3169 /** Society of Motion Pictures and Television E time format.
133     *
134 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
135 schoenebeck 3169 */
136     GIG_DECLARE_ENUM(smpte_format_t,
137 schoenebeck 3398 smpte_format_no_offset = 0x00000000, /**< no SMPTE offset */
138     smpte_format_24_frames = 0x00000018, /**< 24 frames per second */
139     smpte_format_25_frames = 0x00000019, /**< 25 frames per second */
140     smpte_format_30_frames_dropping = 0x0000001D, /**< 30 frames per second with frame dropping (30 drop) */
141     smpte_format_30_frames = 0x0000001E /**< 30 frames per second */
142 schoenebeck 3169 );
143 schoenebeck 2
144 schoenebeck 3169 /** Defines the shape of a function graph.
145     *
146 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
147 schoenebeck 3169 */
148     GIG_DECLARE_ENUM(curve_type_t,
149 schoenebeck 3398 curve_type_nonlinear = 0, /**< Non-linear curve type. */
150     curve_type_linear = 1, /**< Linear curve type. */
151     curve_type_special = 2, /**< Special curve type. */
152     curve_type_unknown = 0xffffffff /**< Unknown curve type. */
153 schoenebeck 3169 );
154 schoenebeck 2
155 schoenebeck 3623 /** Defines the wave form type used by an LFO (gig format extension).
156     *
157     * This is a gig format extension. The original Gigasampler/GigaStudio
158     * software always used a sine (sinus) wave form for all its 3 LFOs, so this
159     * was not configurable in the original gig format. Accordingly setting any
160     * other wave form than sine (sinus) will be ignored by the original
161     * Gigasampler/GigaStudio software.
162     *
163     * @see enumCount(), enumKey(), enumKeys(), enumValue()
164     */
165     GIG_DECLARE_ENUM(lfo_wave_t,
166     lfo_wave_sine = 0, /**< Sine (sinus) wave form (this is the default wave form). */
167     lfo_wave_triangle = 1, /**< Triangle wave form. */
168     lfo_wave_saw = 2, /**< Saw (up) wave form (saw down wave form can be achieved by flipping the phase). */
169     lfo_wave_square = 3, /**< Square wave form. */
170     );
171    
172 schoenebeck 3169 /** Dimensions allow to bypass one of the following controllers.
173     *
174 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
175 schoenebeck 3169 */
176     GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
177 schoenebeck 3398 dim_bypass_ctrl_none, /**< No controller bypass. */
178     dim_bypass_ctrl_94, /**< Effect 4 Depth (MIDI Controller 94) */
179     dim_bypass_ctrl_95 /**< Effect 5 Depth (MIDI Controller 95) */
180 schoenebeck 3169 );
181 schoenebeck 2
182 schoenebeck 3169 /** Defines how LFO3 is controlled by.
183     *
184 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
185 schoenebeck 3169 */
186     GIG_DECLARE_ENUM(lfo3_ctrl_t,
187 schoenebeck 3398 lfo3_ctrl_internal = 0x00, /**< Only internally controlled. */
188     lfo3_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
189     lfo3_ctrl_aftertouch = 0x02, /**< Only controlled by aftertouch controller. */
190     lfo3_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
191     lfo3_ctrl_internal_aftertouch = 0x04 /**< Controlled internally and by aftertouch controller. */
192 schoenebeck 3169 );
193 schoenebeck 2
194 schoenebeck 3169 /** Defines how LFO2 is controlled by.
195     *
196 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
197 schoenebeck 3169 */
198     GIG_DECLARE_ENUM(lfo2_ctrl_t,
199 schoenebeck 3398 lfo2_ctrl_internal = 0x00, /**< Only internally controlled. */
200     lfo2_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
201     lfo2_ctrl_foot = 0x02, /**< Only controlled by external foot controller. */
202     lfo2_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
203     lfo2_ctrl_internal_foot = 0x04 /**< Controlled internally and by external foot controller. */
204 schoenebeck 3169 );
205 schoenebeck 2
206 schoenebeck 3169 /** Defines how LFO1 is controlled by.
207     *
208 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
209 schoenebeck 3169 */
210     GIG_DECLARE_ENUM(lfo1_ctrl_t,
211 schoenebeck 3398 lfo1_ctrl_internal = 0x00, /**< Only internally controlled. */
212     lfo1_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
213     lfo1_ctrl_breath = 0x02, /**< Only controlled by external breath controller. */
214     lfo1_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
215     lfo1_ctrl_internal_breath = 0x04 /**< Controlled internally and by external breath controller. */
216 schoenebeck 3169 );
217 schoenebeck 2
218 schoenebeck 3169 /** Defines how the filter cutoff frequency is controlled by.
219     *
220 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
221 schoenebeck 3169 */
222     GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
223 schoenebeck 3398 vcf_cutoff_ctrl_none = 0x00, /**< No MIDI controller assigned for filter cutoff frequency. */
224     vcf_cutoff_ctrl_none2 = 0x01, /**< The difference between none and none2 is unknown */
225     vcf_cutoff_ctrl_modwheel = 0x81, /**< Modulation Wheel (MIDI Controller 1) */
226     vcf_cutoff_ctrl_effect1 = 0x8c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
227     vcf_cutoff_ctrl_effect2 = 0x8d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
228     vcf_cutoff_ctrl_breath = 0x82, /**< Breath Controller (Coarse, MIDI Controller 2) */
229     vcf_cutoff_ctrl_foot = 0x84, /**< Foot Pedal (Coarse, MIDI Controller 4) */
230     vcf_cutoff_ctrl_sustainpedal = 0xc0, /**< Sustain Pedal (MIDI Controller 64) */
231     vcf_cutoff_ctrl_softpedal = 0xc3, /**< Soft Pedal (MIDI Controller 67) */
232     vcf_cutoff_ctrl_genpurpose7 = 0xd2, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
233     vcf_cutoff_ctrl_genpurpose8 = 0xd3, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
234     vcf_cutoff_ctrl_aftertouch = 0x80 /**< Key Pressure */
235 schoenebeck 3169 );
236 schoenebeck 2
237 schoenebeck 3169 /** Defines how the filter resonance is controlled by.
238     *
239 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
240 schoenebeck 3169 */
241     GIG_DECLARE_ENUM(vcf_res_ctrl_t,
242 schoenebeck 3398 vcf_res_ctrl_none = 0xffffffff, /**< No MIDI controller assigned for filter resonance. */
243     vcf_res_ctrl_genpurpose3 = 0, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
244     vcf_res_ctrl_genpurpose4 = 1, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
245     vcf_res_ctrl_genpurpose5 = 2, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
246     vcf_res_ctrl_genpurpose6 = 3 /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
247 schoenebeck 3169 );
248 schoenebeck 55
249 schoenebeck 36 /**
250     * Defines a controller that has a certain contrained influence on a
251     * particular synthesis parameter (used to define attenuation controller,
252     * EG1 controller and EG2 controller).
253     *
254     * You should use the respective <i>typedef</i> (means either
255     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
256     */
257     struct leverage_ctrl_t {
258 schoenebeck 3169 /** Defines possible controllers.
259     *
260 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
261 schoenebeck 3169 */
262     GIG_DECLARE_ENUM(type_t,
263 schoenebeck 3398 type_none = 0x00, /**< No controller defined */
264     type_channelaftertouch = 0x2f, /**< Channel Key Pressure */
265     type_velocity = 0xff, /**< Key Velocity */
266     type_controlchange = 0xfe /**< Ordinary MIDI control change controller, see field 'controller_number' */
267 schoenebeck 3169 );
268 schoenebeck 55
269 schoenebeck 36 type_t type; ///< Controller type
270     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
271 schoenebeck 3138
272     void serialize(Serialization::Archive* archive);
273 schoenebeck 36 };
274 schoenebeck 55
275 schoenebeck 36 /**
276     * Defines controller influencing attenuation.
277     *
278     * @see leverage_ctrl_t
279     */
280     typedef leverage_ctrl_t attenuation_ctrl_t;
281 schoenebeck 55
282 schoenebeck 36 /**
283     * Defines controller influencing envelope generator 1.
284     *
285     * @see leverage_ctrl_t
286     */
287     typedef leverage_ctrl_t eg1_ctrl_t;
288 schoenebeck 55
289 schoenebeck 36 /**
290     * Defines controller influencing envelope generator 2.
291     *
292     * @see leverage_ctrl_t
293     */
294     typedef leverage_ctrl_t eg2_ctrl_t;
295 schoenebeck 2
296     /**
297     * Defines the type of dimension, that is how the dimension zones (and
298     * thus how the dimension regions are selected by. The number of
299     * dimension zones is always a power of two. All dimensions can have up
300     * to 32 zones (except the layer dimension with only up to 8 zones and
301     * the samplechannel dimension which currently allows only 2 zones).
302 schoenebeck 3169 *
303 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
304 schoenebeck 2 */
305 schoenebeck 3169 GIG_DECLARE_ENUM(dimension_t,
306 schoenebeck 3398 dimension_none = 0x00, /**< Dimension not in use. */
307     dimension_samplechannel = 0x80, /**< If used sample has more than one channel (thus is not mono). */
308     dimension_layer = 0x81, /**< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers). */
309     dimension_velocity = 0x82, /**< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined). */
310     dimension_channelaftertouch = 0x83, /**< Channel Key Pressure */
311     dimension_releasetrigger = 0x84, /**< Special dimension for triggering samples on releasing a key. */
312     dimension_keyboard = 0x85, /**< Dimension for keyswitching */
313     dimension_roundrobin = 0x86, /**< Different samples triggered each time a note is played, dimension regions selected in sequence */
314     dimension_random = 0x87, /**< Different samples triggered each time a note is played, random order */
315     dimension_smartmidi = 0x88, /**< For MIDI tools like legato and repetition mode */
316     dimension_roundrobinkeyboard = 0x89, /**< Different samples triggered each time a note is played, any key advances the counter */
317     dimension_modwheel = 0x01, /**< Modulation Wheel (MIDI Controller 1) */
318     dimension_breath = 0x02, /**< Breath Controller (Coarse, MIDI Controller 2) */
319     dimension_foot = 0x04, /**< Foot Pedal (Coarse, MIDI Controller 4) */
320     dimension_portamentotime = 0x05, /**< Portamento Time (Coarse, MIDI Controller 5) */
321     dimension_effect1 = 0x0c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
322     dimension_effect2 = 0x0d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
323     dimension_genpurpose1 = 0x10, /**< General Purpose Controller 1 (Slider, MIDI Controller 16) */
324     dimension_genpurpose2 = 0x11, /**< General Purpose Controller 2 (Slider, MIDI Controller 17) */
325     dimension_genpurpose3 = 0x12, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
326     dimension_genpurpose4 = 0x13, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
327     dimension_sustainpedal = 0x40, /**< Sustain Pedal (MIDI Controller 64) */
328     dimension_portamento = 0x41, /**< Portamento (MIDI Controller 65) */
329     dimension_sostenutopedal = 0x42, /**< Sostenuto Pedal (MIDI Controller 66) */
330     dimension_softpedal = 0x43, /**< Soft Pedal (MIDI Controller 67) */
331     dimension_genpurpose5 = 0x30, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
332     dimension_genpurpose6 = 0x31, /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
333     dimension_genpurpose7 = 0x32, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
334     dimension_genpurpose8 = 0x33, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
335     dimension_effect1depth = 0x5b, /**< Effect 1 Depth (MIDI Controller 91) */
336     dimension_effect2depth = 0x5c, /**< Effect 2 Depth (MIDI Controller 92) */
337     dimension_effect3depth = 0x5d, /**< Effect 3 Depth (MIDI Controller 93) */
338     dimension_effect4depth = 0x5e, /**< Effect 4 Depth (MIDI Controller 94) */
339     dimension_effect5depth = 0x5f /**< Effect 5 Depth (MIDI Controller 95) */
340 schoenebeck 3169 );
341 schoenebeck 2
342     /**
343     * Intended for internal usage: will be used to convert a dimension value
344     * into the corresponding dimension bit number.
345 schoenebeck 3169 *
346 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
347 schoenebeck 2 */
348 schoenebeck 3169 GIG_DECLARE_ENUM(split_type_t,
349 schoenebeck 3398 split_type_normal, /**< dimension value between 0-127 */
350     split_type_bit /**< dimension values are already the sought bit number */
351 schoenebeck 3169 );
352 schoenebeck 2
353     /** General dimension definition. */
354     struct dimension_def_t {
355     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
356     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
357     uint8_t zones; ///< Number of zones the dimension has.
358     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
359 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
360 schoenebeck 2 };
361    
362 schoenebeck 3645 /** Audio filter types.
363 schoenebeck 3169 *
364 schoenebeck 3645 * The first 5 filter types are the ones which exist in GigaStudio, and
365     * which are very accurately modeled on LinuxSampler side such that they
366     * would sound with LinuxSampler exactly as with GigaStudio.
367     *
368     * The other filter types listed here are extensions to the gig format and
369     * are LinuxSampler specific filter type implementations. Note that none of
370     * these are duplicates of the GigaStudio filter types. For instance
371     * @c vcf_type_lowpass (GigaStudio) and @c vcf_type_lowpass_2p
372     * (LinuxSampler) are both lowpass filters with 2 poles, however they do
373     * sound differently.
374     *
375 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
376 schoenebeck 3169 */
377     GIG_DECLARE_ENUM(vcf_type_t,
378 schoenebeck 3645 vcf_type_lowpass = 0x00, /**< Standard lowpass filter type (GigaStudio). */
379     vcf_type_lowpassturbo = 0xff, /**< More poles than normal lowpass (GigaStudio). */
380     vcf_type_bandpass = 0x01, /**< Bandpass filter type (GigaStudio). */
381     vcf_type_highpass = 0x02, /**< Highpass filter type (GigaStudio). */
382     vcf_type_bandreject = 0x03, /**< Band reject filter type (GigaStudio). */
383     vcf_type_lowpass_1p = 0x11, /**< [gig extension]: 1-pole lowpass filter type (LinuxSampler). */
384     vcf_type_lowpass_2p = 0x12, /**< [gig extension]: 2-pole lowpass filter type (LinuxSampler). */
385     vcf_type_lowpass_4p = 0x14, /**< [gig extension]: 4-pole lowpass filter type (LinuxSampler). */
386     vcf_type_lowpass_6p = 0x16, /**< [gig extension]: 6-pole lowpass filter type (LinuxSampler). */
387     vcf_type_highpass_1p = 0x21, /**< [gig extension]: 1-pole highpass filter type (LinuxSampler). */
388     vcf_type_highpass_2p = 0x22, /**< [gig extension]: 2-pole highpass filter type (LinuxSampler). */
389     vcf_type_highpass_4p = 0x24, /**< [gig extension]: 4-pole highpass filter type (LinuxSampler). */
390     vcf_type_highpass_6p = 0x26, /**< [gig extension]: 6-pole highpass filter type (LinuxSampler). */
391     vcf_type_bandpass_2p = 0x32, /**< [gig extension]: 2-pole bandpass filter type (LinuxSampler). */
392     vcf_type_bandreject_2p = 0x42 /**< [gig extension]: 2-pole bandreject filter type (LinuxSampler). */
393 schoenebeck 3169 );
394 schoenebeck 2
395 schoenebeck 345 /**
396     * Defines the envelope of a crossfade.
397     *
398     * Note: The default value for crossfade points is 0,0,0,0. Layers with
399     * such a default value should be treated as if they would not have a
400 schoenebeck 353 * crossfade.
401 schoenebeck 345 */
402 schoenebeck 2 struct crossfade_t {
403     #if WORDS_BIGENDIAN
404 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
405     uint8_t out_start; ///< Start position of fade out.
406     uint8_t in_end; ///< End position of fade in.
407 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
408 schoenebeck 345 #else // little endian
409     uint8_t in_start; ///< Start position of fade in.
410 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
411     uint8_t out_start; ///< Start position of fade out.
412     uint8_t out_end; ///< End postition of fade out.
413     #endif // WORDS_BIGENDIAN
414 schoenebeck 3138
415     void serialize(Serialization::Archive* archive);
416 schoenebeck 2 };
417    
418 schoenebeck 24 /** Reflects the current playback state for a sample. */
419     struct playback_state_t {
420 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
421 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
422 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
423 schoenebeck 24 };
424    
425 schoenebeck 3323 /**
426 schoenebeck 3324 * Defines behavior options for envelope generators (gig format extension).
427 schoenebeck 3323 *
428     * These options allow to override the precise default behavior of the
429     * envelope generators' state machines.
430     *
431     * @b Note: These EG options are an extension to the original gig file
432     * format, so these options are not available with the original
433     * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
434     * support these EG options!
435     *
436     * Adding these options to the original gig file format was necessary,
437     * because the precise state machine behavior of envelope generators of the
438     * gig format (and thus the default EG behavior if not explicitly overridden
439     * here) deviates from common, expected behavior of envelope generators in
440     * general, if i.e. compared with EGs of hardware synthesizers. For example
441     * with the gig format, the attack and decay stages will be aborted as soon
442     * as a note-off is received. Most other EG implementations in the industry
443     * however always run the attack and decay stages to their full duration,
444     * even if an early note-off arrives. The latter behavior is intentionally
445     * implemented in most other products, because it is required to resemble
446     * percussive sounds in a realistic manner.
447     */
448     struct eg_opt_t {
449     bool AttackCancel; ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
450     bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
451 schoenebeck 3324 bool Decay1Cancel; ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
452     bool Decay2Cancel; ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
453 schoenebeck 3323 bool ReleaseCancel; ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
454    
455     eg_opt_t();
456     void serialize(Serialization::Archive* archive);
457     };
458    
459 schoenebeck 3442 /** @brief Defines behaviour of release triggered sample(s) on sustain pedal up event.
460     *
461     * This option defines whether a sustain pedal up event (CC#64) would cause
462     * release triggered samples to be played (if any).
463     *
464     * @b Note: This option is an extension to the original gig file format,
465     * so this option is not available with the original Gigasampler/GigaStudio
466     * software! Currently only LinuxSampler and gigedit support this option!
467     *
468     * By default (which equals the original Gigasampler/GigaStudio behaviour)
469     * no release triggered samples are played if the sustain pedal is released.
470     * So usually in the gig format release triggered samples are only played
471     * on MIDI note-off events.
472     *
473     * @see enumCount(), enumKey(), enumKeys(), enumValue()
474     */
475     GIG_DECLARE_ENUM(sust_rel_trg_t,
476     sust_rel_trg_none = 0x00, /**< No release triggered sample(s) are played on sustain pedal up (default). */
477     sust_rel_trg_maxvelocity = 0x01, /**< Play release trigger sample(s) on sustain pedal up, and simply use 127 as MIDI velocity for playback. */
478 schoenebeck 3486 sust_rel_trg_keyvelocity = 0x02 /**< Play release trigger sample(s) on sustain pedal up, and use the key`s last MIDI note-on velocity for playback. */
479 schoenebeck 3442 );
480    
481 schoenebeck 2 // just symbol prototyping
482     class File;
483     class Instrument;
484     class Sample;
485 capela 310 class Region;
486 schoenebeck 929 class Group;
487 schoenebeck 2584 class Script;
488     class ScriptGroup;
489 schoenebeck 2
490 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
491 schoenebeck 2 *
492 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
493     * format. A DimensionRegion provides the link to the sample to be played
494     * and all required articulation informations to be interpreted for playing
495     * back the sample and processing it appropriately by the sampler software.
496     * Every Region of a Gigasampler Instrument has at least one dimension
497     * region (exactly then when the Region has no dimension defined). Many
498     * Regions though provide more than one DimensionRegion, which reflect
499     * different playing "cases". For example a different sample might be played
500     * if a certain pedal is pressed down, or if the note was triggered with
501     * different velocity.
502 schoenebeck 2 *
503 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
504     * while playing an instrument (for instance "note between C3 and E3 was
505     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
506     * controller is between 80 and 127). The DimensionRegion defines what to do
507     * under that one particular case, that is which sample to play back and how
508     * to play that sample back exactly and how to process it. So a
509     * DimensionRegion object is always linked to exactly one sample. It may
510     * however also link to no sample at all, for defining a "silence" case
511     * where nothing shall be played (for example when note on velocity was
512     * below 6).
513 schoenebeck 2 *
514 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
515     * not define "when to do it". To actually resolve which DimensionRegion to
516     * pick under which situation, you need to refer to the DimensionRegions'
517     * parent Region object. The Region object contains the necessary
518     * "Dimension" definitions, which in turn define which DimensionRegion is
519     * associated with which playing case exactly.
520     *
521     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
522     * Low Frequency Oscillators:
523     *
524 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
525     * - EG2 and LFO2, both controlling filter cutoff frequency
526     * - EG3 and LFO3, both controlling sample pitch
527 schoenebeck 2699 *
528     * Since the gig format was designed as extension to the DLS file format,
529     * this class is derived from the DLS::Sampler class. So also refer to
530     * DLS::Sampler for additional informations, class attributes and methods.
531 schoenebeck 2 */
532     class DimensionRegion : protected DLS::Sampler {
533     public:
534 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
535 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
536     // Sample Amplitude EG/LFO
537     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
538     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
539     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
540     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
541     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
542     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
543     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
544     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
545     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
546     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
547 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
548     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
549     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
550 schoenebeck 3623 lfo_wave_t LFO1WaveForm; ///< [gig extension]: The fundamental wave form to be used by the amplitude LFO, e.g. sine, triangle, saw, square (default: sine).
551 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
552 schoenebeck 3623 double LFO1Phase; ///< [gig extension]: Phase displacement of the amplitude LFO's wave form (0.0�� - 360.0��).
553 schoenebeck 2 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
554     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
555     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
556 schoenebeck 3623 bool LFO1FlipPhase; ///< Inverts the polarity of the sample amplitude LFO wave, so it flips the wave form vertically.
557 schoenebeck 2 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
558     // Filter Cutoff Frequency EG/LFO
559     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
560     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
561     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
562     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
563     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
564     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
565     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
566     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
567     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
568 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
569     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
570     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
571 schoenebeck 3623 lfo_wave_t LFO2WaveForm; ///< [gig extension]: The fundamental wave form to be used by the filter cutoff LFO, e.g. sine, triangle, saw, square (default: sine).
572 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
573 schoenebeck 3623 double LFO2Phase; ///< [gig extension]: Phase displacement of the filter cutoff LFO's wave form (0.0�� - 360.0��).
574 schoenebeck 2 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
575     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
576     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
577 schoenebeck 3623 bool LFO2FlipPhase; ///< Inverts the polarity of the filter cutoff LFO wave, so it flips the wave form vertically.
578 schoenebeck 2 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
579     // Sample Pitch EG/LFO
580     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
581     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
582 schoenebeck 3623 lfo_wave_t LFO3WaveForm; ///< [gig extension]: The fundamental wave form to be used by the pitch LFO, e.g. sine, triangle, saw, square (default: sine).
583 schoenebeck 2 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
584 schoenebeck 3623 double LFO3Phase; ///< [gig extension]: Phase displacement of the pitch LFO's wave form (0.0�� - 360.0��).
585 schoenebeck 2 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
586     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
587     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
588 schoenebeck 3623 bool LFO3FlipPhase; ///< [gig extension]: Inverts the polarity of the pitch LFO wave, so it flips the wave form vertically (@b NOTE: this setting for LFO3 is a gig format extension; flipping the polarity was only available for LFO1 and LFO2 in the original Gigasampler/GigaStudio software).
589 schoenebeck 2 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
590     // Filter
591     bool VCFEnabled; ///< If filter should be used.
592     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
593 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
594 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
595 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
596 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
597     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
598     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
599 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
600     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
601     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
602     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
603     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
604     // Key Velocity Transformations
605 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
606     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
607     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
608     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
609     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
610 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
611     // Mix / Layer
612     crossfade_t Crossfade;
613     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
614     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
615     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
616     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
617 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
618     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
619     uint8_t AttenuationControllerThreshold;///< 0-127
620 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
621     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
622     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
623     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
624 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
625 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
626 schoenebeck 3327 eg_opt_t EG1Options; ///< [gig extension]: Behavior options which should be used for envelope generator 1 (volume amplitude EG).
627     eg_opt_t EG2Options; ///< [gig extension]: Behavior options which should be used for envelope generator 2 (filter cutoff EG).
628 schoenebeck 3442 sust_rel_trg_t SustainReleaseTrigger; ///< [gig extension]: Whether a sustain pedal up event shall play release trigger sample.
629 schoenebeck 3446 bool NoNoteOffReleaseTrigger; ///< [gig extension]: If @c true then don't play a release trigger sample on MIDI note-off events.
630 persson 406
631 schoenebeck 2 // derived attributes from DLS::Sampler
632 persson 2334 using DLS::Sampler::UnityNote;
633     using DLS::Sampler::FineTune;
634     using DLS::Sampler::Gain;
635     using DLS::Sampler::SampleLoops;
636     using DLS::Sampler::pSampleLoops;
637 schoenebeck 2
638 schoenebeck 809 // own methods
639 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
640 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
641 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
642 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
643     void SetVelocityResponseDepth(uint8_t depth);
644     void SetVelocityResponseCurveScaling(uint8_t scaling);
645     void SetReleaseVelocityResponseCurve(curve_type_t curve);
646     void SetReleaseVelocityResponseDepth(uint8_t depth);
647     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
648     void SetVCFVelocityCurve(curve_type_t curve);
649     void SetVCFVelocityDynamicRange(uint8_t range);
650     void SetVCFVelocityScale(uint8_t scaling);
651 schoenebeck 1316 Region* GetParent() const;
652 schoenebeck 1155 // derived methods
653 persson 2334 using DLS::Sampler::AddSampleLoop;
654     using DLS::Sampler::DeleteSampleLoop;
655 schoenebeck 809 // overridden methods
656 schoenebeck 3478 virtual void SetGain(int32_t gain) OVERRIDE;
657     virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
658 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
659 schoenebeck 16 protected:
660 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
661 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
662 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
663 schoenebeck 16 ~DimensionRegion();
664 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
665 schoenebeck 3138 void serialize(Serialization::Archive* archive);
666 schoenebeck 16 friend class Region;
667 schoenebeck 3138 friend class Serialization::Archive;
668 schoenebeck 16 private:
669 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
670 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
671 schoenebeck 36 _lev_ctrl_none = 0x00,
672     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
673     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
674     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
675     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
676     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
677     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
678     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
679     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
680     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
681     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
682     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
683     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
684     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
685     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
686     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
687     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
688     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
689     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
690     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
691     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
692     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
693     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
694     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
695     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
696 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
697    
698     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
699     // (the assigned values here are their official MIDI CC number plus the highest bit set):
700     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
701    
702     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
703     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
704     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
705     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
706     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
707     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
708    
709     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
710     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
711    
712     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
713     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
714     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
715     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
716     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
717     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
718     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
719     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
720     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
721     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
722     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
723     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
724    
725     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
726     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
727     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
728     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
729     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
730     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
731     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
732     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
733     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
734     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
735     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
736     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
737    
738     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
739     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
740     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
741     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
742    
743     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
744     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
745    
746     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
747     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
748    
749     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
750     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
751     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
752     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
753     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
754     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
755     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
756     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
757     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
758     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
759     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
760     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
761     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
762     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
763     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
764     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
765     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
766     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
767 schoenebeck 55 } _lev_ctrl_t;
768 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
769    
770 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
771 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
772     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
773 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
774 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
775 schoenebeck 1316 Region* pRegion;
776 schoenebeck 55
777 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
778 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
779 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
780     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
781 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
782 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
783 schoenebeck 3623 bool UsesAnyGigFormatExtension() const;
784 schoenebeck 2 };
785    
786 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
787 schoenebeck 809 *
788 schoenebeck 2699 * This class provides access to the actual audio sample data of a
789     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
790     * provides access to the sample's meta informations like bit depth,
791     * sample rate, encoding type, but also loop informations. The latter may be
792     * used by instruments for resembling sounds with arbitary note lengths.
793     *
794 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
795     * first update all attributes with the desired meta informations
796     * (amount of channels, bit depth, sample rate, etc.), then call
797     * Resize() with the desired sample size, followed by File::Save(), this
798     * will create the mandatory RIFF chunk which will hold the sample wave
799     * data and / or resize the file so you will be able to Write() the
800     * sample data directly to disk.
801 schoenebeck 1154 *
802     * @e Caution: for gig synthesis, most looping relevant information are
803     * retrieved from the respective DimensionRegon instead from the Sample
804     * itself. This was made for allowing different loop definitions for the
805     * same sample under different conditions.
806 schoenebeck 2699 *
807     * Since the gig format was designed as extension to the DLS file format,
808     * this class is derived from the DLS::Sample class. So also refer to
809     * DLS::Sample for additional informations, class attributes and methods.
810 schoenebeck 809 */
811 schoenebeck 2 class Sample : public DLS::Sample {
812     public:
813     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
814     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
815 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
816 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
817 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
818 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
819     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
820 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
821 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
822 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
823     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
824     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
825     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
826     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
827     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
828 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
829 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
830     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
831 schoenebeck 2
832     // own methods
833     buffer_t LoadSampleData();
834 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
835 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
836 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
837 schoenebeck 2 buffer_t GetCache();
838 schoenebeck 384 // own static methods
839 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
840 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
841 schoenebeck 2 // overridden methods
842     void ReleaseSampleData();
843 schoenebeck 2922 void Resize(file_offset_t NewSize);
844 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
845     file_offset_t GetPos() const;
846     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
847     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
848     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
849 schoenebeck 930 Group* GetGroup() const;
850 schoenebeck 3478 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
851 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
852     void CopyAssignWave(const Sample* orig);
853 schoenebeck 2989 uint32_t GetWaveDataCRC32Checksum();
854     bool VerifyWaveData(uint32_t* pActually = NULL);
855 schoenebeck 2 protected:
856 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
857 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
858 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
859 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
860     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
861     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
862     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
863     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
864     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
865 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
866 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
867 schoenebeck 809 RIFF::Chunk* pCk3gix;
868     RIFF::Chunk* pCkSmpl;
869 schoenebeck 2989 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
870 schoenebeck 2
871 schoenebeck 2989 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
872 schoenebeck 2 ~Sample();
873 schoenebeck 2985 uint32_t CalculateWaveDataChecksum();
874 persson 365
875     // Guess size (in bytes) of a compressed sample
876 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
877 persson 365 // 16 bit: assume all frames are compressed - 1 byte
878     // per sample and 5 bytes header per 2048 samples
879    
880     // 24 bit: assume next best compression rate - 1.5
881     // bytes per sample and 13 bytes header per 256
882     // samples
883 schoenebeck 2912 const file_offset_t size =
884 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
885     : samples + (samples >> 10) * 5;
886     // Double for stereo and add one worst case sample
887     // frame
888     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
889     }
890 schoenebeck 384
891     // Worst case amount of sample points that can be read with the
892     // given decompression buffer.
893 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
894     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
895 schoenebeck 384 }
896 schoenebeck 2 private:
897     void ScanCompressedSample();
898     friend class File;
899     friend class Region;
900 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
901 schoenebeck 2 };
902    
903     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
904 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
905 schoenebeck 2547 *
906 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
907     * individual regions in the gig format may not overlap with other regions
908     * (of the same instrument that is). Further, in the gig format a Region is
909     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
910     * itself does not provide the sample mapping or articulation informations
911     * used, even though the data structures of regions indeed provide such
912     * informations. The latter is however just of historical nature, because
913     * the gig file format was derived from the DLS file format.
914 schoenebeck 2547 *
915     * Each Region consists of at least one or more DimensionRegions. The actual
916     * amount of DimensionRegions depends on which kind of "dimensions" are
917     * defined for this region, and on the split / zone amount for each of those
918     * dimensions.
919 schoenebeck 2699 *
920     * Since the gig format was designed as extension to the DLS file format,
921     * this class is derived from the DLS::Region class. So also refer to
922     * DLS::Region for additional informations, class attributes and methods.
923 schoenebeck 2547 */
924 schoenebeck 2 class Region : public DLS::Region {
925     public:
926 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
927 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
928 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
929 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
930 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
931 schoenebeck 2
932 schoenebeck 1335 // own methods
933 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
934     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
935 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
936 schoenebeck 2 Sample* GetSample();
937 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
938     void DeleteDimension(dimension_def_t* pDimDef);
939 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
940 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
941     void SplitDimensionZone(dimension_t type, int zone);
942 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
943 schoenebeck 1335 // overridden methods
944 schoenebeck 3478 virtual void SetKeyRange(uint16_t Low, uint16_t High) OVERRIDE;
945     virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
946 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
947 schoenebeck 2 protected:
948     Region(Instrument* pInstrument, RIFF::List* rgnList);
949     void LoadDimensionRegions(RIFF::List* rgn);
950 persson 858 void UpdateVelocityTable();
951 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
952 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
953 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
954 schoenebeck 2 ~Region();
955     friend class Instrument;
956     };
957    
958 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
959     *
960     * Note: Instead of using MIDI rules, we recommend you using real-time
961     * instrument scripts instead. Read about the reasons below.
962     *
963     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
964     * introduced with GigaStudio 4 as an attempt to increase the power of
965     * potential user controls over sounds. At that point other samplers already
966     * supported certain powerful user control features, which were not possible
967     * with GigaStudio yet. For example triggering new notes by MIDI CC
968     * controller.
969     *
970     * Such extended features however were usually implemented by other samplers
971     * by requiring the sound designer to write an instrument script which the
972     * designer would then bundle with the respective instrument file. Such
973     * scripts are essentially text files, using a very specific programming
974     * language for the purpose of controlling the sampler in real-time. Since
975     * however musicians are not typically keen to writing such cumbersome
976     * script files, the GigaStudio designers decided to implement such extended
977     * features completely without instrument scripts. Instead they created a
978     * set of rules, which could be defined and altered conveniently by mouse
979     * clicks in GSt's instrument editor application. The downside of this
980     * overall approach however, was that those MIDI rules were very limited in
981     * practice. As sound designer you easily came across the possiblities such
982     * MIDI rules were able to offer.
983     *
984     * Due to such severe use case constraints, support for MIDI rules is quite
985     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
986     * and the "Legato" MIDI rules are supported by libgig. Consequently the
987     * graphical instrument editor application gigedit just supports the
988     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
989     * support any MIDI rule type at all and LinuxSampler probably will not
990     * support MIDI rules in future either.
991     *
992     * Instead of using MIDI rules, we introduced real-time instrument scripts
993     * as extension to the original GigaStudio file format. This script based
994     * solution is much more powerful than MIDI rules and is already supported
995     * by libgig, gigedit and LinuxSampler.
996     *
997     * @deprecated Just provided for backward compatiblity, use Script for new
998     * instruments instead.
999     */
1000 persson 1627 class MidiRule {
1001     public:
1002     virtual ~MidiRule() { }
1003 persson 2450 protected:
1004     virtual void UpdateChunks(uint8_t* pData) const = 0;
1005     friend class Instrument;
1006 persson 1627 };
1007    
1008 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
1009     *
1010     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
1011     * control change events to the sampler.
1012     *
1013     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
1014     * by LinuxSampler. We recommend you using real-time instrument scripts
1015     * instead. Read more about the details and reasons for this in the
1016     * description of the MidiRule base class.
1017     *
1018     * @deprecated Just provided for backward compatiblity, use Script for new
1019     * instruments instead. See description of MidiRule for details.
1020     */
1021 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
1022     public:
1023     uint8_t ControllerNumber; ///< MIDI controller number.
1024     uint8_t Triggers; ///< Number of triggers.
1025     struct trigger_t {
1026     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
1027     bool Descending; ///< If the change in CC value should be downwards.
1028     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
1029     uint8_t Key; ///< Key to trigger.
1030     bool NoteOff; ///< If a note off should be triggered instead of a note on.
1031     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
1032     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
1033     } pTriggers[32];
1034    
1035     protected:
1036     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
1037 persson 2450 MidiRuleCtrlTrigger();
1038 schoenebeck 3478 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1039 persson 1627 friend class Instrument;
1040     };
1041    
1042 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
1043     *
1044     * A "Legato MIDI rule" allows playing instruments resembling the legato
1045     * playing technique. In the past such legato articulations were tried to be
1046     * simulated by pitching the samples of the instrument. However since
1047     * usually a high amount of pitch is needed for legatos, this always sounded
1048     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
1049     * approach. Instead of pitching the samples, it allows the sound designer
1050     * to bundle separate, additional samples for the individual legato
1051     * situations and the legato rules defined which samples to be played in
1052     * which situation.
1053     *
1054     * Note: "Legato MIDI rules" are only supported by gigedit, but not
1055     * by LinuxSampler. We recommend you using real-time instrument scripts
1056     * instead. Read more about the details and reasons for this in the
1057     * description of the MidiRule base class.
1058     *
1059     * @deprecated Just provided for backward compatiblity, use Script for new
1060     * instruments instead. See description of MidiRule for details.
1061     */
1062 persson 2450 class MidiRuleLegato : public MidiRule {
1063     public:
1064     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
1065     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
1066     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
1067     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
1068     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
1069     uint16_t ReleaseTime; ///< Release time
1070     range_t KeyRange; ///< Key range for legato notes
1071     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
1072     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
1073     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
1074    
1075     protected:
1076     MidiRuleLegato(RIFF::Chunk* _3ewg);
1077     MidiRuleLegato();
1078 schoenebeck 3478 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1079 persson 2450 friend class Instrument;
1080     };
1081    
1082 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1083     *
1084     * The instrument must be using the smartmidi dimension.
1085     *
1086     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1087     * LinuxSampler. We recommend you using real-time instrument scripts
1088     * instead. Read more about the details and reasons for this in the
1089     * description of the MidiRule base class.
1090     *
1091     * @deprecated Just provided for backward compatiblity, use Script for new
1092     * instruments instead. See description of MidiRule for details.
1093     */
1094 persson 2450 class MidiRuleAlternator : public MidiRule {
1095     public:
1096     uint8_t Articulations; ///< Number of articulations in the instrument
1097     String pArticulations[32]; ///< Names of the articulations
1098    
1099     range_t PlayRange; ///< Key range of the playable keys in the instrument
1100    
1101     uint8_t Patterns; ///< Number of alternator patterns
1102     struct pattern_t {
1103     String Name; ///< Name of the pattern
1104     int Size; ///< Number of steps in the pattern
1105     const uint8_t& operator[](int i) const { /// Articulation to play
1106     return data[i];
1107     }
1108     uint8_t& operator[](int i) {
1109     return data[i];
1110     }
1111     private:
1112     uint8_t data[32];
1113     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1114    
1115     typedef enum {
1116     selector_none,
1117     selector_key_switch,
1118     selector_controller
1119     } selector_t;
1120     selector_t Selector; ///< Method by which pattern is chosen
1121     range_t KeySwitchRange; ///< Key range for key switch selector
1122     uint8_t Controller; ///< CC number for controller selector
1123    
1124     bool Polyphonic; ///< If alternator should step forward only when all notes are off
1125     bool Chained; ///< If all patterns should be chained together
1126    
1127     protected:
1128     MidiRuleAlternator(RIFF::Chunk* _3ewg);
1129     MidiRuleAlternator();
1130 schoenebeck 3478 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1131 persson 2450 friend class Instrument;
1132     };
1133    
1134 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
1135     *
1136     * This class is currently used as a place holder by libgig for MIDI rule
1137     * types which are not supported by libgig yet.
1138     *
1139     * Note: Support for missing MIDI rule types are probably never added to
1140     * libgig. We recommend you using real-time instrument scripts instead.
1141     * Read more about the details and reasons for this in the description of
1142     * the MidiRule base class.
1143     *
1144     * @deprecated Just provided for backward compatiblity, use Script for new
1145     * instruments instead. See description of MidiRule for details.
1146     */
1147 persson 2450 class MidiRuleUnknown : public MidiRule {
1148     protected:
1149     MidiRuleUnknown() { }
1150 schoenebeck 3478 void UpdateChunks(uint8_t* pData) const OVERRIDE { }
1151 persson 2450 friend class Instrument;
1152     };
1153    
1154 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
1155     *
1156     * Real-time instrument scripts are user supplied small programs which can
1157     * be used by instrument designers to create custom behaviors and features
1158     * not available in the stock sampler engine. Features which might be very
1159     * exotic or specific for the respective instrument.
1160     *
1161     * This is an extension of the GigaStudio format, thus a feature which was
1162     * not available in the GigaStudio 4 software. It is currently only
1163 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
1164     * original GigaStudio software.
1165 schoenebeck 2761 *
1166     * You find more informations about Instrument Scripts on the LinuxSampler
1167     * documentation site:
1168     *
1169     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1170     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1171     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1172     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1173 schoenebeck 2584 */
1174 schoenebeck 3478 class Script : protected DLS::Storage {
1175 schoenebeck 2584 public:
1176     enum Encoding_t {
1177     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1178     };
1179     enum Compression_t {
1180     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1181     };
1182     enum Language_t {
1183 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1184 schoenebeck 2584 };
1185    
1186     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1187     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1188     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1189     Language_t Language; ///< Programming language and dialect the script is written in.
1190     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1191    
1192     String GetScriptAsText();
1193     void SetScriptAsText(const String& text);
1194     void SetGroup(ScriptGroup* pGroup);
1195 schoenebeck 2601 ScriptGroup* GetGroup() const;
1196 schoenebeck 3117 void CopyAssign(const Script* orig);
1197 schoenebeck 2584 protected:
1198     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1199     virtual ~Script();
1200 schoenebeck 3478 void UpdateChunks(progress_t* pProgress) OVERRIDE;
1201     void DeleteChunks() OVERRIDE;
1202 schoenebeck 2584 void RemoveAllScriptReferences();
1203     friend class ScriptGroup;
1204     friend class Instrument;
1205     private:
1206     ScriptGroup* pGroup;
1207     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1208     std::vector<uint8_t> data;
1209     uint32_t crc; ///< CRC-32 checksum of the raw script data
1210     };
1211    
1212     /** @brief Group of instrument scripts (gig format extension).
1213     *
1214     * This class is simply used to sort a bunch of real-time instrument scripts
1215     * into individual groups. This allows instrument designers and script
1216     * developers to keep scripts in a certain order while working with a larger
1217     * amount of scripts in an instrument editor.
1218     *
1219     * This is an extension of the GigaStudio format, thus a feature which was
1220     * not available in the GigaStudio 4 software. It is currently only
1221     * supported by LinuxSampler and gigedit.
1222     */
1223 schoenebeck 3478 class ScriptGroup : protected DLS::Storage {
1224 schoenebeck 2584 public:
1225     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1226    
1227     Script* GetScript(uint index);
1228     Script* AddScript();
1229     void DeleteScript(Script* pScript);
1230     protected:
1231     ScriptGroup(File* file, RIFF::List* lstRTIS);
1232     virtual ~ScriptGroup();
1233     void LoadScripts();
1234 schoenebeck 3478 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1235     virtual void DeleteChunks() OVERRIDE;
1236 schoenebeck 2584 friend class Script;
1237     friend class File;
1238     private:
1239     File* pFile;
1240     RIFF::List* pList; ///< 'RTIS' list chunk
1241     std::list<Script*>* pScripts;
1242     };
1243    
1244 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1245     *
1246     * This class provides access to Gigasampler/GigaStudio instruments
1247     * contained in .gig files. A gig instrument is merely a set of keyboard
1248     * ranges (called Region), plus some additional global informations about
1249     * the instrument. The major part of the actual instrument definition used
1250     * for the synthesis of the instrument is contained in the respective Region
1251     * object (or actually in the respective DimensionRegion object being, see
1252     * description of Region for details).
1253     *
1254     * Since the gig format was designed as extension to the DLS file format,
1255     * this class is derived from the DLS::Instrument class. So also refer to
1256     * DLS::Instrument for additional informations, class attributes and
1257     * methods.
1258     */
1259 schoenebeck 2 class Instrument : protected DLS::Instrument {
1260     public:
1261     // derived attributes from DLS::Resource
1262 persson 2334 using DLS::Resource::pInfo;
1263     using DLS::Resource::pDLSID;
1264 schoenebeck 2 // derived attributes from DLS::Instrument
1265 persson 2334 using DLS::Instrument::IsDrum;
1266     using DLS::Instrument::MIDIBank;
1267     using DLS::Instrument::MIDIBankCoarse;
1268     using DLS::Instrument::MIDIBankFine;
1269     using DLS::Instrument::MIDIProgram;
1270     using DLS::Instrument::Regions;
1271 schoenebeck 2 // own attributes
1272     int32_t Attenuation; ///< in dB
1273     uint16_t EffectSend;
1274     int16_t FineTune; ///< in cents
1275     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1276     bool PianoReleaseMode;
1277     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1278    
1279    
1280     // derived methods from DLS::Resource
1281 persson 2334 using DLS::Resource::GetParent;
1282 schoenebeck 2 // overridden methods
1283     Region* GetFirstRegion();
1284     Region* GetNextRegion();
1285 schoenebeck 809 Region* AddRegion();
1286     void DeleteRegion(Region* pRegion);
1287 schoenebeck 2700 void MoveTo(Instrument* dst);
1288 schoenebeck 3478 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1289 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1290 schoenebeck 2 // own methods
1291     Region* GetRegion(unsigned int Key);
1292 persson 1678 MidiRule* GetMidiRule(int i);
1293 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1294     MidiRuleLegato* AddMidiRuleLegato();
1295     MidiRuleAlternator* AddMidiRuleAlternator();
1296     void DeleteMidiRule(int i);
1297 schoenebeck 2584 // real-time instrument script methods
1298     Script* GetScriptOfSlot(uint index);
1299     void AddScriptSlot(Script* pScript, bool bypass = false);
1300     void SwapScriptSlots(uint index1, uint index2);
1301     void RemoveScriptSlot(uint index);
1302     void RemoveScript(Script* pScript);
1303     uint ScriptSlotCount() const;
1304     bool IsScriptSlotBypassed(uint index);
1305     void SetScriptSlotBypassed(uint index, bool bBypass);
1306 schoenebeck 2 protected:
1307     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1308    
1309 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1310 schoenebeck 2 ~Instrument();
1311 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1312 schoenebeck 809 void UpdateRegionKeyTable();
1313 schoenebeck 2584 void LoadScripts();
1314 schoenebeck 2609 void UpdateScriptFileOffsets();
1315 schoenebeck 2 friend class File;
1316 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1317 persson 1627 private:
1318 schoenebeck 2584 struct _ScriptPooolEntry {
1319     uint32_t fileOffset;
1320     bool bypass;
1321     };
1322     struct _ScriptPooolRef {
1323     Script* script;
1324     bool bypass;
1325     };
1326 persson 1678 MidiRule** pMidiRules;
1327 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1328     std::vector<_ScriptPooolRef>* pScriptRefs;
1329 schoenebeck 2 };
1330    
1331 schoenebeck 2699 /** @brief Group of Gigasampler samples
1332 schoenebeck 929 *
1333 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1334 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1335     * sound library developers when working on complex instruments with an
1336     * instrument editor (as long as that instrument editor supports it ;-).
1337     *
1338 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1339     * there is always at least one Group in a .gig file, no matter if you
1340     * created one yet or not.
1341 schoenebeck 929 */
1342 schoenebeck 3478 class Group : public DLS::Storage {
1343 schoenebeck 929 public:
1344     String Name; ///< Stores the name of this Group.
1345 schoenebeck 930
1346     Sample* GetFirstSample();
1347     Sample* GetNextSample();
1348     void AddSample(Sample* pSample);
1349 schoenebeck 929 protected:
1350 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1351 schoenebeck 929 virtual ~Group();
1352 schoenebeck 3478 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1353     virtual void DeleteChunks() OVERRIDE;
1354 schoenebeck 930 void MoveAll();
1355 schoenebeck 929 friend class File;
1356     private:
1357 schoenebeck 930 File* pFile;
1358 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1359 schoenebeck 929 };
1360    
1361 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1362     *
1363     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1364     * with libgig. It allows you to open existing .gig files, modifying them
1365     * and saving them persistently either under the same file name or under a
1366     * different location.
1367     *
1368     * A .gig file is merely a monolithic file. That means samples and the
1369     * defintion of the virtual instruments are contained in the same file. A
1370     * .gig file contains an arbitrary amount of samples, and an arbitrary
1371     * amount of instruments which are referencing those samples. It is also
1372     * possible to store samples in .gig files not being referenced by any
1373     * instrument. This is not an error from the file format's point of view and
1374     * it is actually often used in practice during the design phase of new gig
1375     * instruments.
1376     *
1377     * So on toplevel of the gig file format you have:
1378     *
1379     * - A set of samples (see Sample).
1380     * - A set of virtual instruments (see Instrument).
1381     *
1382     * And as extension to the original GigaStudio format, we added:
1383     *
1384     * - Real-time instrument scripts (see Script).
1385     *
1386     * Note that the latter however is only supported by libgig, gigedit and
1387     * LinuxSampler. Scripts are not supported by the original GigaStudio
1388     * software.
1389     *
1390     * All released Gigasampler/GigaStudio file format versions are supported
1391     * (so from first Gigasampler version up to including GigaStudio 4).
1392     *
1393     * Since the gig format was designed as extension to the DLS file format,
1394     * this class is derived from the DLS::File class. So also refer to
1395     * DLS::File for additional informations, class attributes and methods.
1396     */
1397 schoenebeck 2 class File : protected DLS::File {
1398     public:
1399 persson 1199 static const DLS::version_t VERSION_2;
1400     static const DLS::version_t VERSION_3;
1401 schoenebeck 3440 static const DLS::version_t VERSION_4;
1402 persson 1199
1403 schoenebeck 2 // derived attributes from DLS::Resource
1404 persson 2334 using DLS::Resource::pInfo;
1405     using DLS::Resource::pDLSID;
1406 schoenebeck 2 // derived attributes from DLS::File
1407 persson 2334 using DLS::File::pVersion;
1408     using DLS::File::Instruments;
1409 schoenebeck 2
1410     // derived methods from DLS::Resource
1411 persson 2334 using DLS::Resource::GetParent;
1412 schoenebeck 809 // derived methods from DLS::File
1413 persson 2334 using DLS::File::Save;
1414     using DLS::File::GetFileName;
1415 schoenebeck 2482 using DLS::File::SetFileName;
1416 schoenebeck 3481 using DLS::File::GetRiffFile;
1417 schoenebeck 2 // overridden methods
1418 schoenebeck 809 File();
1419 schoenebeck 2 File(RIFF::File* pRIFF);
1420 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1421 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1422 schoenebeck 2482 Sample* GetSample(uint index);
1423 schoenebeck 809 Sample* AddSample();
1424 schoenebeck 3414 size_t CountSamples();
1425 schoenebeck 809 void DeleteSample(Sample* pSample);
1426 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1427 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1428 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1429 schoenebeck 809 Instrument* AddInstrument();
1430 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1431 schoenebeck 3414 size_t CountInstruments();
1432 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1433 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1434     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1435     Group* GetGroup(uint index);
1436 schoenebeck 2543 Group* GetGroup(String name);
1437 schoenebeck 929 Group* AddGroup();
1438     void DeleteGroup(Group* pGroup);
1439 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1440 schoenebeck 1524 void SetAutoLoad(bool b);
1441     bool GetAutoLoad();
1442 schoenebeck 2482 void AddContentOf(File* pFile);
1443 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1444     ScriptGroup* GetScriptGroup(const String& name);
1445     ScriptGroup* AddScriptGroup();
1446     void DeleteScriptGroup(ScriptGroup* pGroup);
1447 schoenebeck 929 virtual ~File();
1448 schoenebeck 3478 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1449 schoenebeck 2 protected:
1450 schoenebeck 823 // overridden protected methods from DLS::File
1451 schoenebeck 3478 virtual void LoadSamples() OVERRIDE;
1452     virtual void LoadInstruments() OVERRIDE;
1453 schoenebeck 929 virtual void LoadGroups();
1454 schoenebeck 3478 virtual void UpdateFileOffsets() OVERRIDE;
1455 schoenebeck 823 // own protected methods
1456     virtual void LoadSamples(progress_t* pProgress);
1457     virtual void LoadInstruments(progress_t* pProgress);
1458 schoenebeck 2584 virtual void LoadScriptGroups();
1459 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1460 schoenebeck 2985 uint32_t GetSampleChecksum(Sample* pSample);
1461 schoenebeck 2989 uint32_t GetSampleChecksumByIndex(int index);
1462 schoenebeck 2985 bool VerifySampleChecksumTable();
1463     bool RebuildSampleChecksumTable();
1464     int GetWaveTableIndexOf(gig::Sample* pSample);
1465 schoenebeck 2 friend class Region;
1466 schoenebeck 929 friend class Sample;
1467 schoenebeck 2700 friend class Instrument;
1468 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1469 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1470 schoenebeck 929 private:
1471     std::list<Group*>* pGroups;
1472     std::list<Group*>::iterator GroupsIterator;
1473 schoenebeck 1524 bool bAutoLoad;
1474 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1475 schoenebeck 2 };
1476    
1477 schoenebeck 1093 /**
1478     * Will be thrown whenever a gig specific error occurs while trying to
1479     * access a Gigasampler File. Note: In your application you should
1480     * better catch for RIFF::Exception rather than this one, except you
1481     * explicitly want to catch and handle gig::Exception, DLS::Exception
1482     * and RIFF::Exception independently, which usually shouldn't be
1483     * necessary though.
1484     */
1485 schoenebeck 2 class Exception : public DLS::Exception {
1486     public:
1487 schoenebeck 3198 Exception(String format, ...);
1488     Exception(String format, va_list arg);
1489 schoenebeck 2 void PrintMessage();
1490 schoenebeck 3198 protected:
1491     Exception();
1492 schoenebeck 2 };
1493    
1494 schoenebeck 3169 #if HAVE_RTTI
1495 schoenebeck 3181 size_t enumCount(const std::type_info& type);
1496 schoenebeck 3173 const char* enumKey(const std::type_info& type, size_t value);
1497     bool enumKey(const std::type_info& type, String key);
1498     const char** enumKeys(const std::type_info& type);
1499     #endif // HAVE_RTTI
1500 schoenebeck 3181 size_t enumCount(String typeName);
1501 schoenebeck 3169 const char* enumKey(String typeName, size_t value);
1502     bool enumKey(String typeName, String key);
1503     const char** enumKeys(String typeName);
1504     size_t enumValue(String key);
1505    
1506 schoenebeck 518 String libraryName();
1507     String libraryVersion();
1508    
1509 schoenebeck 2 } // namespace gig
1510    
1511     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC