/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 11 by schoenebeck, Sun Nov 16 17:47:00 2003 UTC revision 2700 by schoenebeck, Mon Jan 12 23:22:29 2015 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2015 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
 #include <math.h>  
 #include <string.h>  
   
 /// Initial size of the sample buffer which is used for decompression of  
 /// compressed sample wave streams - this value should always be bigger than  
 /// the biggest sample piece expected to be read by the sampler engine,  
 /// otherwise the buffer size will be raised at runtime and thus the buffer  
 /// reallocated which is time consuming and unefficient.  
 #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  
29    
30  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
31  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
32  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
33  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
34    # define LIST_TYPE_3GNL 0x33676E6C
35    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
36    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
38  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
39  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
40  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
41  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
42    # define CHUNK_ID_3GNM  0x33676E6D
43    # define CHUNK_ID_EINF  0x65696E66
44    # define CHUNK_ID_3CRC  0x33637263
45    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
46    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
47    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
48  #else  // little endian  #else  // little endian
49  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
50  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
51  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
52    # define LIST_TYPE_3GNL 0x6C6E6733
53    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
54    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
55  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
56  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
57  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
58  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
59  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
60    # define CHUNK_ID_3GNM  0x6D6E6733
61    # define CHUNK_ID_EINF  0x666E6965
62    # define CHUNK_ID_3CRC  0x63726333
63    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
64    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
65    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
66  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
67    
68  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  /** Gigasampler/GigaStudio specific classes and definitions */
 #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))  
 #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))  
 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)  
 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)  
 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)  
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)  
   
 /** Gigasampler specific classes and definitions */  
69  namespace gig {  namespace gig {
70    
71      typedef std::string String;      typedef std::string String;
72        typedef RIFF::progress_t progress_t;
73    
74      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
75      struct range_t {      struct range_t {
# Line 80  namespace gig { Line 82  namespace gig {
82          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
83          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.
84          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
85            buffer_t() {
86                pStart            = NULL;
87                Size              = 0;
88                NullExtensionSize = 0;
89            }
90      };      };
91    
92      /** Standard types of sample loops. */      /** Standard types of sample loops. */
# Line 143  namespace gig { Line 150  namespace gig {
150      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by. */
151      typedef enum {      typedef enum {
152          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
153            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
154          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
155          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
156          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 164  namespace gig { Line 172  namespace gig {
172          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)
173      } vcf_res_ctrl_t;      } vcf_res_ctrl_t;
174    
175      /** Defines how attenuation (=gain / VCA) is controlled by. */      /**
176      typedef enum {       * Defines a controller that has a certain contrained influence on a
177          attenuation_ctrl_none              = 0x00,       * particular synthesis parameter (used to define attenuation controller,
178          attenuation_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)       * EG1 controller and EG2 controller).
179          attenuation_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)       *
180          attenuation_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)       * You should use the respective <i>typedef</i> (means either
181          attenuation_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
182          attenuation_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)       */
183          attenuation_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)      struct leverage_ctrl_t {
184          attenuation_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)          typedef enum {
185          attenuation_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)              type_none              = 0x00, ///< No controller defined
186          attenuation_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)              type_channelaftertouch = 0x2f, ///< Channel Key Pressure
187          attenuation_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)              type_velocity          = 0xff, ///< Key Velocity
188          attenuation_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'
189          attenuation_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)          } type_t;
190          attenuation_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)  
191          attenuation_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)          type_t type;              ///< Controller type
192          attenuation_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
193          attenuation_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)      };
194          attenuation_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)  
195          attenuation_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)      /**
196          attenuation_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)       * Defines controller influencing attenuation.
197          attenuation_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)       *
198          attenuation_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)       * @see leverage_ctrl_t
199          attenuation_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)       */
200          attenuation_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)      typedef leverage_ctrl_t attenuation_ctrl_t;
201          attenuation_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure  
202          attenuation_ctrl_velocity          = 0xff  ///< Key Velocity      /**
203      } attenuation_ctrl_t, eg1_ctrl_t, eg2_ctrl_t;       * Defines controller influencing envelope generator 1.
204         *
205         * @see leverage_ctrl_t
206         */
207        typedef leverage_ctrl_t eg1_ctrl_t;
208    
209        /**
210         * Defines controller influencing envelope generator 2.
211         *
212         * @see leverage_ctrl_t
213         */
214        typedef leverage_ctrl_t eg2_ctrl_t;
215    
216      /**      /**
217       * Defines the type of dimension, that is how the dimension zones (and       * Defines the type of dimension, that is how the dimension zones (and
# Line 205  namespace gig { Line 224  namespace gig {
224          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
225          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
226          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
227          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
228          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
229          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
230          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
231            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
232            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
233            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
234            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
235          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
236          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
237          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 239  namespace gig { Line 262  namespace gig {
262       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
263       */       */
264      typedef enum {      typedef enum {
265          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
266          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
267      } split_type_t;      } split_type_t;
268    
# Line 250  namespace gig { Line 272  namespace gig {
272          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
273          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
274          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
275          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
276      };      };
277    
278      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF. */
# Line 263  namespace gig { Line 284  namespace gig {
284          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
285      } vcf_type_t;      } vcf_type_t;
286    
287      /** Defines the envelope of a crossfade. */      /**
288         * Defines the envelope of a crossfade.
289         *
290         * Note: The default value for crossfade points is 0,0,0,0. Layers with
291         * such a default value should be treated as if they would not have a
292         * crossfade.
293         */
294      struct crossfade_t {      struct crossfade_t {
295          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
296          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
297          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
298          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
299          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
300            #else // little endian
301            uint8_t in_start;   ///< Start position of fade in.
302            uint8_t in_end;     ///< End position of fade in.
303            uint8_t out_start;  ///< Start position of fade out.
304            uint8_t out_end;    ///< End postition of fade out.
305          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
306      };      };
307    
308        /** Reflects the current playback state for a sample. */
309        struct playback_state_t {
310            unsigned long position;          ///< Current position within the sample.
311            bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
312            unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
313        };
314    
315      // just symbol prototyping      // just symbol prototyping
316      class File;      class File;
317      class Instrument;      class Instrument;
318      class Sample;      class Sample;
319        class Region;
320        class Group;
321        class Script;
322        class ScriptGroup;
323    
324      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
325       *       *
326       *  Every Gigasampler Instrument has at least one dimension region       * This is the most important data object of the Gigasampler / GigaStudio
327       *  (exactly then when it has no dimension defined).       * format. A DimensionRegion provides the link to the sample to be played
328         * and all required articulation informations to be interpreted for playing
329         * back the sample and processing it appropriately by the sampler software.
330         * Every Region of a Gigasampler Instrument has at least one dimension
331         * region (exactly then when the Region has no dimension defined). Many
332         * Regions though provide more than one DimensionRegion, which reflect
333         * different playing "cases". For example a different sample might be played
334         * if a certain pedal is pressed down, or if the note was triggered with
335         * different velocity.
336       *       *
337       *  Gigasampler provides three Envelope Generators and Low Frequency       * One instance of a DimensionRegion reflects exactly one particular case
338       *  Oscillators:       * while playing an instrument (for instance "note between C3 and E3 was
339         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
340         * controller is between 80 and 127). The DimensionRegion defines what to do
341         * under that one particular case, that is which sample to play back and how
342         * to play that sample back exactly and how to process it. So a
343         * DimensionRegion object is always linked to exactly one sample. It may
344         * however also link to no sample at all, for defining a "silence" case
345         * where nothing shall be played (for example when note on velocity was
346         * below 6).
347         *
348         * Note that a DimensionRegion object only defines "what to do", but it does
349         * not define "when to do it". To actually resolve which DimensionRegion to
350         * pick under which situation, you need to refer to the DimensionRegions'
351         * parent Region object. The Region object contains the necessary
352         * "Dimension" definitions, which in turn define which DimensionRegion is
353         * associated with which playing case exactly.
354         *
355         * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
356         * Low Frequency Oscillators:
357       *       *
358       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
359       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
360       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
361         *
362         * Since the gig format was designed as extension to the DLS file format,
363         * this class is derived from the DLS::Sampler class. So also refer to
364         * DLS::Sampler for additional informations, class attributes and methods.
365       */       */
366      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
367          public:          public:
368              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
369              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
370              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
371              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 310  namespace gig { Line 378  namespace gig {
378              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
379              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
380              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.
381              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time.              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
382              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time.              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
383              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time.              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
384              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
385              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
386              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
# Line 329  namespace gig { Line 397  namespace gig {
397              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).
398              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
399              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.
400              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time.              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
401              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time.              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
402              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time.              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
403              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
404              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
405              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
# Line 349  namespace gig { Line 417  namespace gig {
417              // Filter              // Filter
418              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
419              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
420              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
421                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
422              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
423              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
424              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
425              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
426              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
427              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
428              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
429              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
430              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
431              // Key Velocity Transformations              // Key Velocity Transformations
432              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude.              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
433              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
434              uint8_t            VelocityResponseCurveScaling;              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
435              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
436              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
437              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
438              // Mix / Layer              // Mix / Layer
439              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 372  namespace gig { Line 441  namespace gig {
441              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
442              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
443              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
444              attenuation_ctrl_t AttenuationControl;            ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).              attenuation_ctrl_t AttenuationController;         ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
445              bool               InvertAttenuationControl;      ///< Inverts the values coming from the defined Attenuation Controller.              bool               InvertAttenuationController;   ///< Inverts the values coming from the defined Attenuation Controller.
446              uint8_t            AttenuationControlTreshold;    ///< 0-127              uint8_t            AttenuationControllerThreshold;///< 0-127
447              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
448              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
449              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
450              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
451                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
452                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
453    
454              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
455              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
456              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
457              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
458              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
459              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
460    
461              DimensionRegion(RIFF::List* _3ewl);              // own methods
462                double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
463                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
464                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
465                void SetVelocityResponseCurve(curve_type_t curve);
466                void SetVelocityResponseDepth(uint8_t depth);
467                void SetVelocityResponseCurveScaling(uint8_t scaling);
468                void SetReleaseVelocityResponseCurve(curve_type_t curve);
469                void SetReleaseVelocityResponseDepth(uint8_t depth);
470                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
471                void SetVCFVelocityCurve(curve_type_t curve);
472                void SetVCFVelocityDynamicRange(uint8_t range);
473                void SetVCFVelocityScale(uint8_t scaling);
474                Region* GetParent() const;
475                // derived methods
476                using DLS::Sampler::AddSampleLoop;
477                using DLS::Sampler::DeleteSampleLoop;
478                // overridden methods
479                virtual void SetGain(int32_t gain);
480                virtual void UpdateChunks(progress_t* pProgress);
481                virtual void CopyAssign(const DimensionRegion* orig);
482            protected:
483                uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
484                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
485                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
486               ~DimensionRegion();
487                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
488                friend class Region;
489            private:
490                typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
491                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
492                    _lev_ctrl_none              = 0x00,
493                    _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
494                    _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
495                    _lev_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
496                    _lev_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
497                    _lev_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
498                    _lev_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
499                    _lev_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
500                    _lev_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
501                    _lev_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
502                    _lev_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
503                    _lev_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)
504                    _lev_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)
505                    _lev_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
506                    _lev_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)
507                    _lev_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
508                    _lev_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
509                    _lev_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
510                    _lev_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
511                    _lev_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
512                    _lev_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
513                    _lev_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
514                    _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
515                    _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
516                    _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
517                    _lev_ctrl_velocity          = 0xff, ///< Key Velocity
518    
519                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
520                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
521                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
522    
523                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
524                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
525                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
526                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
527                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
528                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
529    
530                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
531                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
532    
533                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
534                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
535                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
536                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
537                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
538                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
539                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
540                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
541                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
542                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
543                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
544                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
545    
546                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
547                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
548                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
549                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
550                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
551                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
552                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
553                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
554                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
555                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
556                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
557                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
558    
559                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
560                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
561                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
562                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
563    
564                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
565                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
566    
567                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
568                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
569    
570                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
571                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
572                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
573                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
574                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
575                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
576                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
577                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
578                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
579                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
580                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
581                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
582                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
583                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
584                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
585                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
586                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
587                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
588                } _lev_ctrl_t;
589                typedef std::map<uint32_t, double*> VelocityTableMap;
590    
591                static uint              Instances;                  ///< Number of DimensionRegion instances.
592                static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
593                double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
594                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
595                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
596                Region*                  pRegion;
597    
598                leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
599                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
600                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
601                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
602                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
603                double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
604      };      };
605    
606      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
607         *
608         * This class provides access to the actual audio sample data of a
609         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
610         * provides access to the sample's meta informations like bit depth,
611         * sample rate, encoding type, but also loop informations. The latter may be
612         * used by instruments for resembling sounds with arbitary note lengths.
613         *
614         * In case you created a new sample with File::AddSample(), you should
615         * first update all attributes with the desired meta informations
616         * (amount of channels, bit depth, sample rate, etc.), then call
617         * Resize() with the desired sample size, followed by File::Save(), this
618         * will create the mandatory RIFF chunk which will hold the sample wave
619         * data and / or resize the file so you will be able to Write() the
620         * sample data directly to disk.
621         *
622         * @e Caution: for gig synthesis, most looping relevant information are
623         * retrieved from the respective DimensionRegon instead from the Sample
624         * itself. This was made for allowing different loop definitions for the
625         * same sample under different conditions.
626         *
627         * Since the gig format was designed as extension to the DLS file format,
628         * this class is derived from the DLS::Sample class. So also refer to
629         * DLS::Sample for additional informations, class attributes and methods.
630         */
631      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
632          public:          public:
             uint16_t       SampleGroup;  
633              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
634              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
635              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
636              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
637              uint32_t       MIDIPitchFraction; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
638              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
639              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
640              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
641              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0).              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
642              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
643              uint32_t       LoopStart;         ///< The start value specifies the byte offset into the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
644              uint32_t       LoopEnd;           ///< The end value specifies the byte offset into the waveform data of the last sample to be played in the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
645              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
646              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
647                uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
648              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
649                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
650                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
651    
652              // own methods              // own methods
653              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
# Line 415  namespace gig { Line 655  namespace gig {
655              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
656              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
657              buffer_t      GetCache();              buffer_t      GetCache();
658                // own static methods
659                static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
660                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
661              // overridden methods              // overridden methods
662              void          ReleaseSampleData();              void          ReleaseSampleData();
663                void          Resize(int iNewSize);
664              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
665              unsigned long GetPos();              unsigned long GetPos() const;
666              unsigned long Read(void* pBuffer, unsigned long SampleCount);              unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
667                unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
668                unsigned long Write(void* pBuffer, unsigned long SampleCount);
669                Group*        GetGroup() const;
670                virtual void  UpdateChunks(progress_t* pProgress);
671                void CopyAssignMeta(const Sample* orig);
672                void CopyAssignWave(const Sample* orig);
673          protected:          protected:
674              static unsigned int  Instances;               ///< Number of instances of class Sample.              static unsigned int  Instances;               ///< Number of instances of class Sample.
675              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
676              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
677              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
678              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
679              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
680                unsigned long        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
681                unsigned long        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
682                unsigned long        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
683              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
684                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
685                RIFF::Chunk*         pCk3gix;
686                RIFF::Chunk*         pCkSmpl;
687                uint32_t             crc;                     ///< CRC-32 checksum of the raw sample data
688    
689              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
690             ~Sample();             ~Sample();
691    
692                // Guess size (in bytes) of a compressed sample
693                inline unsigned long GuessSize(unsigned long samples) {
694                    // 16 bit: assume all frames are compressed - 1 byte
695                    // per sample and 5 bytes header per 2048 samples
696    
697                    // 24 bit: assume next best compression rate - 1.5
698                    // bytes per sample and 13 bytes header per 256
699                    // samples
700                    const unsigned long size =
701                        BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
702                                       : samples + (samples >> 10) * 5;
703                    // Double for stereo and add one worst case sample
704                    // frame
705                    return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
706                }
707    
708                // Worst case amount of sample points that can be read with the
709                // given decompression buffer.
710                inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
711                    return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
712                }
713          private:          private:
714              void ScanCompressedSample();              void ScanCompressedSample();
715              friend class File;              friend class File;
716              friend class Region;              friend class Region;
717                friend class Group; // allow to modify protected member pGroup
718      };      };
719    
720      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
721      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
722         *
723         * A Region reflects a consecutive area (key range) on the keyboard. The
724         * individual regions in the gig format may not overlap with other regions
725         * (of the same instrument that is). Further, in the gig format a Region is
726         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
727         * itself does not provide the sample mapping or articulation informations
728         * used, even though the data structures of regions indeed provide such
729         * informations. The latter is however just of historical nature, because
730         * the gig file format was derived from the DLS file format.
731         *
732         * Each Region consists of at least one or more DimensionRegions. The actual
733         * amount of DimensionRegions depends on which kind of "dimensions" are
734         * defined for this region, and on the split / zone amount for each of those
735         * dimensions.
736         *
737         * Since the gig format was designed as extension to the DLS file format,
738         * this class is derived from the DLS::Region class. So also refer to
739         * DLS::Region for additional informations, class attributes and methods.
740         */
741      class Region : public DLS::Region {      class Region : public DLS::Region {
742          public:          public:
743              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
744              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
745              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
746              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
747                unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
748    
749              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              // own methods
750              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
751                DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
752                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
753              Sample*          GetSample();              Sample*          GetSample();
754                void             AddDimension(dimension_def_t* pDimDef);
755                void             DeleteDimension(dimension_def_t* pDimDef);
756                dimension_def_t* GetDimensionDefinition(dimension_t type);
757                void             DeleteDimensionZone(dimension_t type, int zone);
758                void             SplitDimensionZone(dimension_t type, int zone);
759                void             SetDimensionType(dimension_t oldType, dimension_t newType);
760                // overridden methods
761                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
762                virtual void     UpdateChunks(progress_t* pProgress);
763                virtual void     CopyAssign(const Region* orig);
764          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
765              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
766              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
767              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
768                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
769                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
770                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
771             ~Region();             ~Region();
772              friend class Instrument;              friend class Instrument;
773      };      };
774    
775      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
776         *
777         * Note: Instead of using MIDI rules, we recommend you using real-time
778         * instrument scripts instead. Read about the reasons below.
779         *
780         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
781         * introduced with GigaStudio 4 as an attempt to increase the power of
782         * potential user controls over sounds. At that point other samplers already
783         * supported certain powerful user control features, which were not possible
784         * with GigaStudio yet. For example triggering new notes by MIDI CC
785         * controller.
786         *
787         * Such extended features however were usually implemented by other samplers
788         * by requiring the sound designer to write an instrument script which the
789         * designer would then bundle with the respective instrument file. Such
790         * scripts are essentially text files, using a very specific programming
791         * language for the purpose of controlling the sampler in real-time. Since
792         * however musicians are not typically keen to writing such cumbersome
793         * script files, the GigaStudio designers decided to implement such extended
794         * features completely without instrument scripts. Instead they created a
795         * set of rules, which could be defined and altered conveniently by mouse
796         * clicks in GSt's instrument editor application. The downside of this
797         * overall approach however, was that those MIDI rules were very limited in
798         * practice. As sound designer you easily came across the possiblities such
799         * MIDI rules were able to offer.
800         *
801         * Due to such severe use case constraints, support for MIDI rules is quite
802         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
803         * and the "Legato" MIDI rules are supported by libgig. Consequently the
804         * graphical instrument editor application gigedit just supports the
805         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
806         * support any MIDI rule type at all and LinuxSampler probably will not
807         * support MIDI rules in future either.
808         *
809         * Instead of using MIDI rules, we introduced real-time instrument scripts
810         * as extension to the original GigaStudio file format. This script based
811         * solution is much more powerful than MIDI rules and is already supported
812         * by libgig, gigedit and LinuxSampler.
813         *
814         * @deprecated Just provided for backward compatiblity, use Script for new
815         *             instruments instead.
816         */
817        class MidiRule {
818            public:
819                virtual ~MidiRule() { }
820            protected:
821                virtual void UpdateChunks(uint8_t* pData) const = 0;
822                friend class Instrument;
823        };
824    
825        /** @brief MIDI rule for triggering notes by control change events.
826         *
827         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
828         * control change events to the sampler.
829         *
830         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
831         * by LinuxSampler. We recommend you using real-time instrument scripts
832         * instead. Read more about the details and reasons for this in the
833         * description of the MidiRule base class.
834         *
835         * @deprecated Just provided for backward compatiblity, use Script for new
836         *             instruments instead. See description of MidiRule for details.
837         */
838        class MidiRuleCtrlTrigger : public MidiRule {
839            public:
840                uint8_t ControllerNumber;   ///< MIDI controller number.
841                uint8_t Triggers;           ///< Number of triggers.
842                struct trigger_t {
843                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
844                    bool    Descending;     ///< If the change in CC value should be downwards.
845                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
846                    uint8_t Key;            ///< Key to trigger.
847                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
848                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
849                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
850                } pTriggers[32];
851    
852            protected:
853                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
854                MidiRuleCtrlTrigger();
855                void UpdateChunks(uint8_t* pData) const;
856                friend class Instrument;
857        };
858    
859        /** @brief MIDI rule for instruments with legato samples.
860         *
861         * A "Legato MIDI rule" allows playing instruments resembling the legato
862         * playing technique. In the past such legato articulations were tried to be
863         * simulated by pitching the samples of the instrument. However since
864         * usually a high amount of pitch is needed for legatos, this always sounded
865         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
866         * approach. Instead of pitching the samples, it allows the sound designer
867         * to bundle separate, additional samples for the individual legato
868         * situations and the legato rules defined which samples to be played in
869         * which situation.
870         *
871         * Note: "Legato MIDI rules" are only supported by gigedit, but not
872         * by LinuxSampler. We recommend you using real-time instrument scripts
873         * instead. Read more about the details and reasons for this in the
874         * description of the MidiRule base class.
875         *
876         * @deprecated Just provided for backward compatiblity, use Script for new
877         *             instruments instead. See description of MidiRule for details.
878         */
879        class MidiRuleLegato : public MidiRule {
880            public:
881                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
882                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
883                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
884                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
885                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
886                uint16_t ReleaseTime;      ///< Release time
887                range_t KeyRange;          ///< Key range for legato notes
888                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
889                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
890                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
891    
892            protected:
893                MidiRuleLegato(RIFF::Chunk* _3ewg);
894                MidiRuleLegato();
895                void UpdateChunks(uint8_t* pData) const;
896                friend class Instrument;
897        };
898    
899        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
900         *
901         * The instrument must be using the smartmidi dimension.
902         *
903         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
904         * LinuxSampler. We recommend you using real-time instrument scripts
905         * instead. Read more about the details and reasons for this in the
906         * description of the MidiRule base class.
907         *
908         * @deprecated Just provided for backward compatiblity, use Script for new
909         *             instruments instead. See description of MidiRule for details.
910         */
911        class MidiRuleAlternator : public MidiRule {
912            public:
913                uint8_t Articulations;     ///< Number of articulations in the instrument
914                String pArticulations[32]; ///< Names of the articulations
915    
916                range_t PlayRange;         ///< Key range of the playable keys in the instrument
917    
918                uint8_t Patterns;          ///< Number of alternator patterns
919                struct pattern_t {
920                    String Name;           ///< Name of the pattern
921                    int Size;              ///< Number of steps in the pattern
922                    const uint8_t& operator[](int i) const { /// Articulation to play
923                        return data[i];
924                    }
925                    uint8_t& operator[](int i) {
926                        return data[i];
927                    }
928                private:
929                    uint8_t data[32];
930                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
931    
932                typedef enum {
933                    selector_none,
934                    selector_key_switch,
935                    selector_controller
936                } selector_t;
937                selector_t Selector;       ///< Method by which pattern is chosen
938                range_t KeySwitchRange;    ///< Key range for key switch selector
939                uint8_t Controller;        ///< CC number for controller selector
940    
941                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
942                bool Chained;              ///< If all patterns should be chained together
943    
944            protected:
945                MidiRuleAlternator(RIFF::Chunk* _3ewg);
946                MidiRuleAlternator();
947                void UpdateChunks(uint8_t* pData) const;
948                friend class Instrument;
949        };
950    
951        /** @brief A MIDI rule not yet implemented by libgig.
952         *
953         * This class is currently used as a place holder by libgig for MIDI rule
954         * types which are not supported by libgig yet.
955         *
956         * Note: Support for missing MIDI rule types are probably never added to
957         * libgig. We recommend you using real-time instrument scripts instead.
958         * Read more about the details and reasons for this in the description of
959         * the MidiRule base class.
960         *
961         * @deprecated Just provided for backward compatiblity, use Script for new
962         *             instruments instead. See description of MidiRule for details.
963         */
964        class MidiRuleUnknown : public MidiRule {
965            protected:
966                MidiRuleUnknown() { }
967                void UpdateChunks(uint8_t* pData) const { }
968                friend class Instrument;
969        };
970    
971        /** @brief Real-time instrument script (gig format extension).
972         *
973         * Real-time instrument scripts are user supplied small programs which can
974         * be used by instrument designers to create custom behaviors and features
975         * not available in the stock sampler engine. Features which might be very
976         * exotic or specific for the respective instrument.
977         *
978         * This is an extension of the GigaStudio format, thus a feature which was
979         * not available in the GigaStudio 4 software. It is currently only
980         * supported by LinuxSampler and gigedit. Scripts will not load with the
981         * original GigaStudio software.
982         */
983        class Script {
984            public:
985                enum Encoding_t {
986                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
987                };
988                enum Compression_t {
989                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
990                };
991                enum Language_t {
992                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default).
993                };
994    
995                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
996                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
997                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
998                Language_t     Language;    ///< Programming language and dialect the script is written in.
999                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1000    
1001                String GetScriptAsText();
1002                void   SetScriptAsText(const String& text);
1003                void   SetGroup(ScriptGroup* pGroup);
1004                ScriptGroup* GetGroup() const;
1005            protected:
1006                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1007                virtual ~Script();
1008                void UpdateChunks(progress_t* pProgress);
1009                void RemoveAllScriptReferences();
1010                friend class ScriptGroup;
1011                friend class Instrument;
1012            private:
1013                ScriptGroup*          pGroup;
1014                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1015                std::vector<uint8_t>  data;
1016                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1017        };
1018    
1019        /** @brief Group of instrument scripts (gig format extension).
1020         *
1021         * This class is simply used to sort a bunch of real-time instrument scripts
1022         * into individual groups. This allows instrument designers and script
1023         * developers to keep scripts in a certain order while working with a larger
1024         * amount of scripts in an instrument editor.
1025         *
1026         * This is an extension of the GigaStudio format, thus a feature which was
1027         * not available in the GigaStudio 4 software. It is currently only
1028         * supported by LinuxSampler and gigedit.
1029         */
1030        class ScriptGroup {
1031            public:
1032                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1033    
1034                Script*  GetScript(uint index);
1035                Script*  AddScript();
1036                void     DeleteScript(Script* pScript);
1037            protected:
1038                ScriptGroup(File* file, RIFF::List* lstRTIS);
1039                virtual ~ScriptGroup();
1040                void LoadScripts();
1041                void UpdateChunks(progress_t* pProgress);
1042                friend class Script;
1043                friend class File;
1044            private:
1045                File*                pFile;
1046                RIFF::List*          pList; ///< 'RTIS' list chunk
1047                std::list<Script*>*  pScripts;
1048        };
1049    
1050        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1051         *
1052         * This class provides access to Gigasampler/GigaStudio instruments
1053         * contained in .gig files. A gig instrument is merely a set of keyboard
1054         * ranges (called Region), plus some additional global informations about
1055         * the instrument. The major part of the actual instrument definition used
1056         * for the synthesis of the instrument is contained in the respective Region
1057         * object (or actually in the respective DimensionRegion object being, see
1058         * description of Region for details).
1059         *
1060         * Since the gig format was designed as extension to the DLS file format,
1061         * this class is derived from the DLS::Instrument class. So also refer to
1062         * DLS::Instrument for additional informations, class attributes and
1063         * methods.
1064         */
1065      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1066          public:          public:
1067              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1068              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1069              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1070              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1071              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1072              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1073              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1074              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1075              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1076              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1077              // own attributes              // own attributes
1078              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1079              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 482  namespace gig { Line 1084  namespace gig {
1084    
1085    
1086              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1087              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1088              // overridden methods              // overridden methods
1089              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1090              Region*   GetNextRegion();              Region*   GetNextRegion();
1091                Region*   AddRegion();
1092                void      DeleteRegion(Region* pRegion);
1093                void      MoveTo(Instrument* dst);
1094                virtual void UpdateChunks(progress_t* pProgress);
1095                virtual void CopyAssign(const Instrument* orig);
1096              // own methods              // own methods
1097              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1098                MidiRule* GetMidiRule(int i);
1099                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1100                MidiRuleLegato*      AddMidiRuleLegato();
1101                MidiRuleAlternator*  AddMidiRuleAlternator();
1102                void      DeleteMidiRule(int i);
1103                // real-time instrument script methods
1104                Script*   GetScriptOfSlot(uint index);
1105                void      AddScriptSlot(Script* pScript, bool bypass = false);
1106                void      SwapScriptSlots(uint index1, uint index2);
1107                void      RemoveScriptSlot(uint index);
1108                void      RemoveScript(Script* pScript);
1109                uint      ScriptSlotCount() const;
1110                bool      IsScriptSlotBypassed(uint index);
1111                void      SetScriptSlotBypassed(uint index, bool bBypass);
1112          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1113              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1114    
1115              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1116             ~Instrument();             ~Instrument();
1117                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1118                void UpdateRegionKeyTable();
1119                void LoadScripts();
1120                void UpdateScriptFileOffsets();
1121                friend class File;
1122                friend class Region; // so Region can call UpdateRegionKeyTable()
1123            private:
1124                struct _ScriptPooolEntry {
1125                    uint32_t fileOffset;
1126                    bool     bypass;
1127                };
1128                struct _ScriptPooolRef {
1129                    Script*  script;
1130                    bool     bypass;
1131                };
1132                MidiRule** pMidiRules;
1133                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1134                std::vector<_ScriptPooolRef>* pScriptRefs;
1135        };
1136    
1137        /** @brief Group of Gigasampler samples
1138         *
1139         * Groups help to organize a huge collection of Gigasampler samples.
1140         * Groups are not concerned at all for the synthesis, but they help
1141         * sound library developers when working on complex instruments with an
1142         * instrument editor (as long as that instrument editor supports it ;-).
1143         *
1144         * A sample is always assigned to exactly one Group. This also means
1145         * there is always at least one Group in a .gig file, no matter if you
1146         * created one yet or not.
1147         */
1148        class Group {
1149            public:
1150                String Name; ///< Stores the name of this Group.
1151    
1152                Sample* GetFirstSample();
1153                Sample* GetNextSample();
1154                void AddSample(Sample* pSample);
1155            protected:
1156                Group(File* file, RIFF::Chunk* ck3gnm);
1157                virtual ~Group();
1158                virtual void UpdateChunks(progress_t* pProgress);
1159                void MoveAll();
1160              friend class File;              friend class File;
1161            private:
1162                File*        pFile;
1163                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1164      };      };
1165    
1166      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1167      /** Parses Gigasampler files and provides abstract access to the data. */       *
1168         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1169         * with libgig. It allows you to open existing .gig files, modifying them
1170         * and saving them persistently either under the same file name or under a
1171         * different location.
1172         *
1173         * A .gig file is merely a monolithic file. That means samples and the
1174         * defintion of the virtual instruments are contained in the same file. A
1175         * .gig file contains an arbitrary amount of samples, and an arbitrary
1176         * amount of instruments which are referencing those samples. It is also
1177         * possible to store samples in .gig files not being referenced by any
1178         * instrument. This is not an error from the file format's point of view and
1179         * it is actually often used in practice during the design phase of new gig
1180         * instruments.
1181         *
1182         * So on toplevel of the gig file format you have:
1183         *
1184         * - A set of samples (see Sample).
1185         * - A set of virtual instruments (see Instrument).
1186         *
1187         * And as extension to the original GigaStudio format, we added:
1188         *
1189         * - Real-time instrument scripts (see Script).
1190         *
1191         * Note that the latter however is only supported by libgig, gigedit and
1192         * LinuxSampler. Scripts are not supported by the original GigaStudio
1193         * software.
1194         *
1195         * All released Gigasampler/GigaStudio file format versions are supported
1196         * (so from first Gigasampler version up to including GigaStudio 4).
1197         *
1198         * Since the gig format was designed as extension to the DLS file format,
1199         * this class is derived from the DLS::File class. So also refer to
1200         * DLS::File for additional informations, class attributes and methods.
1201         */
1202      class File : protected DLS::File {      class File : protected DLS::File {
1203          public:          public:
1204                static const DLS::version_t VERSION_2;
1205                static const DLS::version_t VERSION_3;
1206    
1207              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1208              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1209              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1210              // derived attributes from DLS::File              // derived attributes from DLS::File
1211              DLS::File::pVersion;              using DLS::File::pVersion;
1212              DLS::File::Instruments;              using DLS::File::Instruments;
1213    
1214              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1215              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1216                // derived methods from DLS::File
1217                using DLS::File::Save;
1218                using DLS::File::GetFileName;
1219                using DLS::File::SetFileName;
1220              // overridden  methods              // overridden  methods
1221                File();
1222              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1223              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1224              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1225                Sample*     GetSample(uint index);
1226                Sample*     AddSample();
1227                void        DeleteSample(Sample* pSample);
1228              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1229              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1230             ~File() {};              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1231                Instrument* AddInstrument();
1232                Instrument* AddDuplicateInstrument(const Instrument* orig);
1233                void        DeleteInstrument(Instrument* pInstrument);
1234                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1235                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1236                Group*      GetGroup(uint index);
1237                Group*      GetGroup(String name);
1238                Group*      AddGroup();
1239                void        DeleteGroup(Group* pGroup);
1240                void        DeleteGroupOnly(Group* pGroup);
1241                void        SetAutoLoad(bool b);
1242                bool        GetAutoLoad();
1243                void        AddContentOf(File* pFile);
1244                ScriptGroup* GetScriptGroup(uint index);
1245                ScriptGroup* GetScriptGroup(const String& name);
1246                ScriptGroup* AddScriptGroup();
1247                void        DeleteScriptGroup(ScriptGroup* pGroup);
1248                virtual    ~File();
1249                virtual void UpdateChunks(progress_t* pProgress);
1250          protected:          protected:
1251              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1252              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1253                virtual void LoadInstruments();
1254              SampleList*              pSamples;              virtual void LoadGroups();
1255              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1256              InstrumentList*          pInstruments;              // own protected methods
1257              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1258                virtual void LoadInstruments(progress_t* pProgress);
1259              void LoadSamples();              virtual void LoadScriptGroups();
1260              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1261              friend class Region;              friend class Region;
1262                friend class Sample;
1263                friend class Instrument;
1264                friend class Group; // so Group can access protected member pRIFF
1265                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1266            private:
1267                std::list<Group*>*          pGroups;
1268                std::list<Group*>::iterator GroupsIterator;
1269                bool                        bAutoLoad;
1270                std::list<ScriptGroup*>*    pScriptGroups;
1271      };      };
1272    
1273      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1274         * Will be thrown whenever a gig specific error occurs while trying to
1275         * access a Gigasampler File. Note: In your application you should
1276         * better catch for RIFF::Exception rather than this one, except you
1277         * explicitly want to catch and handle gig::Exception, DLS::Exception
1278         * and RIFF::Exception independently, which usually shouldn't be
1279         * necessary though.
1280         */
1281      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1282          public:          public:
1283              Exception(String Message);              Exception(String Message);
1284              void PrintMessage();              void PrintMessage();
1285      };      };
1286    
1287        String libraryName();
1288        String libraryVersion();
1289    
1290  } // namespace gig  } // namespace gig
1291    
1292  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.11  
changed lines
  Added in v.2700

  ViewVC Help
Powered by ViewVC