/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 518 by schoenebeck, Sun May 8 16:19:34 2005 UTC revision 3198 by schoenebeck, Sun May 21 12:46:05 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
29    
30  #include <math.h>  #ifndef __has_feature
31  #include <string.h>  # define __has_feature(x) 0
32    #endif
33  /// Initial size of the sample buffer which is used for decompression of  #ifndef HAVE_RTTI
34  /// compressed sample wave streams - this value should always be bigger than  # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35  /// the biggest sample piece expected to be read by the sampler engine,  #  define HAVE_RTTI 1
36  /// otherwise the buffer size will be raised at runtime and thus the buffer  # else
37  /// reallocated which is time consuming and unefficient.  #  define HAVE_RTTI 0
38  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  # endif
39    #endif
40    #if HAVE_RTTI
41    # include <typeinfo>
42    #else
43    # warning No RTTI available!
44    #endif
45    
46  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
47  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
48  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
49  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
50    # define LIST_TYPE_3GNL 0x33676E6C
51    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
52    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
54  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
55  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
56  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
57  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
58    # define CHUNK_ID_3GNM  0x33676E6D
59    # define CHUNK_ID_EINF  0x65696E66
60    # define CHUNK_ID_3CRC  0x33637263
61    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
62    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
63    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
64  #else  // little endian  #else  // little endian
65  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
66  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
67  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
68    # define LIST_TYPE_3GNL 0x6C6E6733
69    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
70    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
71  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
72  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
73  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
74  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
75  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
76    # define CHUNK_ID_3GNM  0x6D6E6733
77    # define CHUNK_ID_EINF  0x666E6965
78    # define CHUNK_ID_3CRC  0x63726333
79    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
80    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
81    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
82  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
83    
84  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  #ifndef GIG_DECLARE_ENUM
85  #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
86  #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  #endif
87  #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
88  #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  // just symbol prototyping (since Serialization.h not included by default here)
89  #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  namespace Serialization { class Archive; }
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
90    
91  /** Gigasampler specific classes and definitions */  /** Gigasampler/GigaStudio specific classes and definitions */
92  namespace gig {  namespace gig {
93    
94      typedef std::string String;      typedef std::string String;
95        typedef RIFF::progress_t progress_t;
96        typedef RIFF::file_offset_t file_offset_t;
97    
98      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
99      struct range_t {      struct range_t {
# Line 78  namespace gig { Line 104  namespace gig {
104      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
105      struct buffer_t {      struct buffer_t {
106          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
107          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
108          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
109          buffer_t() {          buffer_t() {
110              pStart            = NULL;              pStart            = NULL;
111              Size              = 0;              Size              = 0;
# Line 87  namespace gig { Line 113  namespace gig {
113          }          }
114      };      };
115    
116      /** Standard types of sample loops. */      /** Standard types of sample loops.
117      typedef enum {       *
118         * @see enumCount(), enumKey(), enumKeys(), enumValue()
119         */
120        GIG_DECLARE_ENUM(loop_type_t,
121          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)
122          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)
123          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)
124      } loop_type_t;      );
125    
126      /** Society of Motion Pictures and Television E time format. */      /** Society of Motion Pictures and Television E time format.
127      typedef enum {       *
128         * @see enumCount(), enumKey(), enumKeys(), enumValue()
129         */
130        GIG_DECLARE_ENUM(smpte_format_t,
131          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset
132          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second
133          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second
134          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)
135          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second
136      } smpte_format_t;      );
137    
138      /** Defines the shape of a function graph. */      /** Defines the shape of a function graph.
139      typedef enum {       *
140         * @see enumCount(), enumKey(), enumKeys(), enumValue()
141         */
142        GIG_DECLARE_ENUM(curve_type_t,
143          curve_type_nonlinear = 0,          curve_type_nonlinear = 0,
144          curve_type_linear    = 1,          curve_type_linear    = 1,
145          curve_type_special   = 2,          curve_type_special   = 2,
146          curve_type_unknown   = 0xffffffff          curve_type_unknown   = 0xffffffff
147      } curve_type_t;      );
148    
149      /** Dimensions allow to bypass one of the following controllers. */      /** Dimensions allow to bypass one of the following controllers.
150      typedef enum {       *
151         * @see enumCount(), enumKey(), enumKeys(), enumValue()
152         */
153        GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
154          dim_bypass_ctrl_none,          dim_bypass_ctrl_none,
155          dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)          dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)
156          dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)          dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)
157      } dim_bypass_ctrl_t;      );
158    
159      /** Defines how LFO3 is controlled by. */      /** Defines how LFO3 is controlled by.
160      typedef enum {       *
161         * @see enumCount(), enumKey(), enumKeys(), enumValue()
162         */
163        GIG_DECLARE_ENUM(lfo3_ctrl_t,
164          lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.
165          lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
166          lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.          lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.
167          lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
168          lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.          lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.
169      } lfo3_ctrl_t;      );
170    
171      /** Defines how LFO2 is controlled by. */      /** Defines how LFO2 is controlled by.
172      typedef enum {       *
173         * @see enumCount(), enumKey(), enumKeys(), enumValue()
174         */
175        GIG_DECLARE_ENUM(lfo2_ctrl_t,
176          lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.
177          lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
178          lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.          lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.
179          lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
180          lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.          lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.
181      } lfo2_ctrl_t;      );
182    
183      /** Defines how LFO1 is controlled by. */      /** Defines how LFO1 is controlled by.
184      typedef enum {       *
185         * @see enumCount(), enumKey(), enumKeys(), enumValue()
186         */
187        GIG_DECLARE_ENUM(lfo1_ctrl_t,
188          lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.
189          lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
190          lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.          lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.
191          lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
192          lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.          lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.
193      } lfo1_ctrl_t;      );
194    
195      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by.
196      typedef enum {       *
197         * @see enumCount(), enumKey(), enumKeys(), enumValue()
198         */
199        GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
200          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
201            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
202          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
203          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
204          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 158  namespace gig { Line 209  namespace gig {
209          vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)          vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)
210          vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)          vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)
211          vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure          vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure
212      } vcf_cutoff_ctrl_t;      );
213    
214      /** Defines how the filter resonance is controlled by. */      /** Defines how the filter resonance is controlled by.
215      typedef enum {       *
216         * @see enumCount(), enumKey(), enumKeys(), enumValue()
217         */
218        GIG_DECLARE_ENUM(vcf_res_ctrl_t,
219          vcf_res_ctrl_none        = 0xffffffff,          vcf_res_ctrl_none        = 0xffffffff,
220          vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)          vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
221          vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)          vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
222          vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)          vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)
223          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)
224      } vcf_res_ctrl_t;      );
225    
226      /**      /**
227       * Defines a controller that has a certain contrained influence on a       * Defines a controller that has a certain contrained influence on a
# Line 178  namespace gig { Line 232  namespace gig {
232       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
233       */       */
234      struct leverage_ctrl_t {      struct leverage_ctrl_t {
235          typedef enum {          /** Defines possible controllers.
236             *
237             * @see enumCount(), enumKey(), enumKeys(), enumValue()
238             */
239            GIG_DECLARE_ENUM(type_t,
240              type_none              = 0x00, ///< No controller defined              type_none              = 0x00, ///< No controller defined
241              type_channelaftertouch = 0x2f, ///< Channel Key Pressure              type_channelaftertouch = 0x2f, ///< Channel Key Pressure
242              type_velocity          = 0xff, ///< Key Velocity              type_velocity          = 0xff, ///< Key Velocity
243              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'
244          } type_t;          );
245    
246          type_t type;              ///< Controller type          type_t type;              ///< Controller type
247          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
248    
249            void serialize(Serialization::Archive* archive);
250      };      };
251    
252      /**      /**
# Line 216  namespace gig { Line 276  namespace gig {
276       * dimension zones is always a power of two. All dimensions can have up       * dimension zones is always a power of two. All dimensions can have up
277       * to 32 zones (except the layer dimension with only up to 8 zones and       * to 32 zones (except the layer dimension with only up to 8 zones and
278       * the samplechannel dimension which currently allows only 2 zones).       * the samplechannel dimension which currently allows only 2 zones).
279         *
280         * @see enumCount(), enumKey(), enumKeys(), enumValue()
281       */       */
282      typedef enum {      GIG_DECLARE_ENUM(dimension_t,
283          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
284          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
285          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
286          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
287          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
288          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
289          dimension_keyboard          = 0x85, ///< Dimension for keyswitching          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
290          dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence          dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
291          dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order          dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
292            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
293            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
294          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
295          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
296          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 250  namespace gig { Line 314  namespace gig {
314          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
315          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
316          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)
317      } dimension_t;      );
318    
319      /**      /**
320       * Intended for internal usage: will be used to convert a dimension value       * Intended for internal usage: will be used to convert a dimension value
321       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
322         *
323         * @see enumCount(), enumKey(), enumKeys(), enumValue()
324       */       */
325      typedef enum {      GIG_DECLARE_ENUM(split_type_t,
326          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
327          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
328      } split_type_t;      );
329    
330      /** General dimension definition. */      /** General dimension definition. */
331      struct dimension_def_t {      struct dimension_def_t {
# Line 268  namespace gig { Line 333  namespace gig {
333          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
334          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
335          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
336          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
337      };      };
338    
339      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF.
340      typedef enum {       *
341         * @see enumCount(), enumKey(), enumKeys(), enumValue()
342         */
343        GIG_DECLARE_ENUM(vcf_type_t,
344          vcf_type_lowpass      = 0x00,          vcf_type_lowpass      = 0x00,
345          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
346          vcf_type_bandpass     = 0x01,          vcf_type_bandpass     = 0x01,
347          vcf_type_highpass     = 0x02,          vcf_type_highpass     = 0x02,
348          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
349      } vcf_type_t;      );
350    
351      /**      /**
352       * Defines the envelope of a crossfade.       * Defines the envelope of a crossfade.
# Line 300  namespace gig { Line 367  namespace gig {
367          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
368          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
369          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
370    
371            void serialize(Serialization::Archive* archive);
372      };      };
373    
374      /** Reflects the current playback state for a sample. */      /** Reflects the current playback state for a sample. */
375      struct playback_state_t {      struct playback_state_t {
376          unsigned long position;          ///< Current position within the sample.          file_offset_t position;          ///< Current position within the sample.
377          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
378          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
     };  
   
     /**  
      * @brief Used for indicating the progress of a certain task.  
      *  
      * The function pointer argument has to be supplied with a valid  
      * function of the given signature which will then be called on  
      * progress changes. An equivalent progress_t structure will be passed  
      * back as argument to the callback function on each progress change.  
      * The factor field of the supplied progress_t structure will then  
      * reflect the current progress as value between 0.0 and 1.0. You might  
      * want to use the custom field for data needed in your callback  
      * function.  
      */  
     struct progress_t {  
         void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.  
         float factor;                  ///< Reflects current progress as value between 0.0 and 1.0.  
         void* custom;                  ///< This pointer can be used for arbitrary data.  
         float __range_min;             ///< Only for internal usage, do not modify!  
         float __range_max;             ///< Only for internal usage, do not modify!  
         progress_t();  
379      };      };
380    
381      // just symbol prototyping      // just symbol prototyping
# Line 335  namespace gig { Line 383  namespace gig {
383      class Instrument;      class Instrument;
384      class Sample;      class Sample;
385      class Region;      class Region;
386        class Group;
387        class Script;
388        class ScriptGroup;
389    
390      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
391       *       *
392       *  Every Gigasampler Instrument has at least one dimension region       * This is the most important data object of the Gigasampler / GigaStudio
393       *  (exactly then when it has no dimension defined).       * format. A DimensionRegion provides the link to the sample to be played
394         * and all required articulation informations to be interpreted for playing
395         * back the sample and processing it appropriately by the sampler software.
396         * Every Region of a Gigasampler Instrument has at least one dimension
397         * region (exactly then when the Region has no dimension defined). Many
398         * Regions though provide more than one DimensionRegion, which reflect
399         * different playing "cases". For example a different sample might be played
400         * if a certain pedal is pressed down, or if the note was triggered with
401         * different velocity.
402       *       *
403       *  Gigasampler provides three Envelope Generators and Low Frequency       * One instance of a DimensionRegion reflects exactly one particular case
404       *  Oscillators:       * while playing an instrument (for instance "note between C3 and E3 was
405         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
406         * controller is between 80 and 127). The DimensionRegion defines what to do
407         * under that one particular case, that is which sample to play back and how
408         * to play that sample back exactly and how to process it. So a
409         * DimensionRegion object is always linked to exactly one sample. It may
410         * however also link to no sample at all, for defining a "silence" case
411         * where nothing shall be played (for example when note on velocity was
412         * below 6).
413         *
414         * Note that a DimensionRegion object only defines "what to do", but it does
415         * not define "when to do it". To actually resolve which DimensionRegion to
416         * pick under which situation, you need to refer to the DimensionRegions'
417         * parent Region object. The Region object contains the necessary
418         * "Dimension" definitions, which in turn define which DimensionRegion is
419         * associated with which playing case exactly.
420         *
421         * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
422         * Low Frequency Oscillators:
423       *       *
424       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
425       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
426       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
427         *
428         * Since the gig format was designed as extension to the DLS file format,
429         * this class is derived from the DLS::Sampler class. So also refer to
430         * DLS::Sampler for additional informations, class attributes and methods.
431       */       */
432      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
433          public:          public:
434              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
435              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
436              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
437              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 402  namespace gig { Line 483  namespace gig {
483              // Filter              // Filter
484              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
485              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
486              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
487                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
488              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
489              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
490              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
491              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
492              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
493              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
494              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
495              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
496              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
497              // Key Velocity Transformations              // Key Velocity Transformations
498              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
499              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
500              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
501              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
502              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
503              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
504              // Mix / Layer              // Mix / Layer
505              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 433  namespace gig { Line 515  namespace gig {
515              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
516              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
517              double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)              double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
518                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
519    
520              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
521              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
522              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
523              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
524              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
525              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
526    
527              // Methods              // own methods
528              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
529                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
530                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
531                void SetVelocityResponseCurve(curve_type_t curve);
532                void SetVelocityResponseDepth(uint8_t depth);
533                void SetVelocityResponseCurveScaling(uint8_t scaling);
534                void SetReleaseVelocityResponseCurve(curve_type_t curve);
535                void SetReleaseVelocityResponseDepth(uint8_t depth);
536                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
537                void SetVCFVelocityCurve(curve_type_t curve);
538                void SetVCFVelocityDynamicRange(uint8_t range);
539                void SetVCFVelocityScale(uint8_t scaling);
540                Region* GetParent() const;
541                // derived methods
542                using DLS::Sampler::AddSampleLoop;
543                using DLS::Sampler::DeleteSampleLoop;
544                // overridden methods
545                virtual void SetGain(int32_t gain);
546                virtual void UpdateChunks(progress_t* pProgress);
547                virtual void CopyAssign(const DimensionRegion* orig);
548          protected:          protected:
549              DimensionRegion(RIFF::List* _3ewl);              uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
550                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
551                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
552             ~DimensionRegion();             ~DimensionRegion();
553                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
554                void serialize(Serialization::Archive* archive);
555              friend class Region;              friend class Region;
556                friend class Serialization::Archive;
557          private:          private:
558              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
559                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
560                  _lev_ctrl_none              = 0x00,                  _lev_ctrl_none              = 0x00,
561                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
562                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
# Line 474  namespace gig { Line 582  namespace gig {
582                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
583                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
584                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
585                  _lev_ctrl_velocity          = 0xff  ///< Key Velocity                  _lev_ctrl_velocity          = 0xff, ///< Key Velocity
586    
587                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
588                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
589                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
590    
591                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
592                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
593                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
594                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
595                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
596                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
597    
598                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
599                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
600    
601                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
602                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
603                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
604                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
605                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
606                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
607                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
608                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
609                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
610                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
611                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
612                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
613    
614                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
615                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
616                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
617                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
618                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
619                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
620                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
621                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
622                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
623                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
624                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
625                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
626    
627                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
628                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
629                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
630                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
631    
632                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
633                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
634    
635                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
636                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
637    
638                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
639                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
640                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
641                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
642                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
643                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
644                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
645                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
646                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
647                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
648                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
649                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
650                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
651                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
652                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
653                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
654                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
655                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
656              } _lev_ctrl_t;              } _lev_ctrl_t;
657              typedef std::map<uint32_t, double*> VelocityTableMap;              typedef std::map<uint32_t, double*> VelocityTableMap;
658    
659              static uint              Instances;                  ///< Number of DimensionRegion instances.              static size_t            Instances;                  ///< Number of DimensionRegion instances.
660              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
661              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
662                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
663                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
664                Region*                  pRegion;
665    
666              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
667                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
668                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
669                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
670                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
671              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
672      };      };
673    
674      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
675         *
676         * This class provides access to the actual audio sample data of a
677         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
678         * provides access to the sample's meta informations like bit depth,
679         * sample rate, encoding type, but also loop informations. The latter may be
680         * used by instruments for resembling sounds with arbitary note lengths.
681         *
682         * In case you created a new sample with File::AddSample(), you should
683         * first update all attributes with the desired meta informations
684         * (amount of channels, bit depth, sample rate, etc.), then call
685         * Resize() with the desired sample size, followed by File::Save(), this
686         * will create the mandatory RIFF chunk which will hold the sample wave
687         * data and / or resize the file so you will be able to Write() the
688         * sample data directly to disk.
689         *
690         * @e Caution: for gig synthesis, most looping relevant information are
691         * retrieved from the respective DimensionRegon instead from the Sample
692         * itself. This was made for allowing different loop definitions for the
693         * same sample under different conditions.
694         *
695         * Since the gig format was designed as extension to the DLS file format,
696         * this class is derived from the DLS::Sample class. So also refer to
697         * DLS::Sample for additional informations, class attributes and methods.
698         */
699      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
700          public:          public:
             uint16_t       SampleGroup;  
701              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
702              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
703              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
704              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
705              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
706              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
707              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
708              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
709              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
710              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
711              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
712              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
713              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
714              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
715              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
716              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
717              uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)              uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
718              bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction              bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
719    
720              // own methods              // own methods
721              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
722              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
723              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
724              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
725              buffer_t      GetCache();              buffer_t      GetCache();
726              // own static methods              // own static methods
727              static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);              static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
728              static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);              static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
729              // overridden methods              // overridden methods
730              void          ReleaseSampleData();              void          ReleaseSampleData();
731              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
732              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
733              unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);              file_offset_t GetPos() const;
734              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer = NULL);              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
735                file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
736                file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
737                Group*        GetGroup() const;
738                virtual void  UpdateChunks(progress_t* pProgress);
739                void CopyAssignMeta(const Sample* orig);
740                void CopyAssignWave(const Sample* orig);
741                uint32_t GetWaveDataCRC32Checksum();
742                bool VerifyWaveData(uint32_t* pActually = NULL);
743          protected:          protected:
744              static unsigned int  Instances;               ///< Number of instances of class Sample.              static size_t        Instances;               ///< Number of instances of class Sample.
745              static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.              static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
746              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
747              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
748              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
749              unsigned long        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.              file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
750              unsigned long        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.              file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
751              unsigned long        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.              file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
752                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
753              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
754                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
755                RIFF::Chunk*         pCk3gix;
756                RIFF::Chunk*         pCkSmpl;
757                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
758    
759              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
760             ~Sample();             ~Sample();
761              /**              uint32_t CalculateWaveDataChecksum();
              * Swaps the order of the data words in the given memory area  
              * with a granularity given by \a WordSize.  
              *  
              * @param pData    - pointer to the memory area to be swapped  
              * @param AreaSize - size of the memory area to be swapped (in bytes)  
              * @param WordSize - size of the data words (in bytes)  
              */  
             inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {  
                 switch (WordSize) { // TODO: unefficient  
                     case 1: {  
                         uint8_t* pDst = (uint8_t*) pData;  
                         uint8_t  cache;  
                         unsigned long lo = 0, hi = AreaSize - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
             }  
             inline long Min(long A, long B) {  
                 return (A > B) ? B : A;  
             }  
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
762    
763              // Guess size (in bytes) of a compressed sample              // Guess size (in bytes) of a compressed sample
764              inline unsigned long GuessSize(unsigned long samples) {              inline file_offset_t GuessSize(file_offset_t samples) {
765                  // 16 bit: assume all frames are compressed - 1 byte                  // 16 bit: assume all frames are compressed - 1 byte
766                  // per sample and 5 bytes header per 2048 samples                  // per sample and 5 bytes header per 2048 samples
767    
768                  // 24 bit: assume next best compression rate - 1.5                  // 24 bit: assume next best compression rate - 1.5
769                  // bytes per sample and 13 bytes header per 256                  // bytes per sample and 13 bytes header per 256
770                  // samples                  // samples
771                  const unsigned long size =                  const file_offset_t size =
772                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
773                                     : samples + (samples >> 10) * 5;                                     : samples + (samples >> 10) * 5;
774                  // Double for stereo and add one worst case sample                  // Double for stereo and add one worst case sample
# Line 616  namespace gig { Line 778  namespace gig {
778    
779              // Worst case amount of sample points that can be read with the              // Worst case amount of sample points that can be read with the
780              // given decompression buffer.              // given decompression buffer.
781              inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {              inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
782                  return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);                  return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
783              }              }
784          private:          private:
785              void ScanCompressedSample();              void ScanCompressedSample();
786              friend class File;              friend class File;
787              friend class Region;              friend class Region;
788                friend class Group; // allow to modify protected member pGroup
789      };      };
790    
791      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
792      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
793         *
794         * A Region reflects a consecutive area (key range) on the keyboard. The
795         * individual regions in the gig format may not overlap with other regions
796         * (of the same instrument that is). Further, in the gig format a Region is
797         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
798         * itself does not provide the sample mapping or articulation informations
799         * used, even though the data structures of regions indeed provide such
800         * informations. The latter is however just of historical nature, because
801         * the gig file format was derived from the DLS file format.
802         *
803         * Each Region consists of at least one or more DimensionRegions. The actual
804         * amount of DimensionRegions depends on which kind of "dimensions" are
805         * defined for this region, and on the split / zone amount for each of those
806         * dimensions.
807         *
808         * Since the gig format was designed as extension to the DLS file format,
809         * this class is derived from the DLS::Region class. So also refer to
810         * DLS::Region for additional informations, class attributes and methods.
811         */
812      class Region : public DLS::Region {      class Region : public DLS::Region {
813          public:          public:
814              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
815              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
816              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
817              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
818              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions.              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
819    
820                // own methods
821              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
822              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
823                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
824              Sample*          GetSample();              Sample*          GetSample();
825                void             AddDimension(dimension_def_t* pDimDef);
826                void             DeleteDimension(dimension_def_t* pDimDef);
827                dimension_def_t* GetDimensionDefinition(dimension_t type);
828                void             DeleteDimensionZone(dimension_t type, int zone);
829                void             SplitDimensionZone(dimension_t type, int zone);
830                void             SetDimensionType(dimension_t oldType, dimension_t newType);
831                // overridden methods
832                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
833                virtual void     UpdateChunks(progress_t* pProgress);
834                virtual void     CopyAssign(const Region* orig);
835          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
836              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
837              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
838                void UpdateVelocityTable();
839              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
840                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
841                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
842             ~Region();             ~Region();
843              friend class Instrument;              friend class Instrument;
844      };      };
845    
846      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
847         *
848         * Note: Instead of using MIDI rules, we recommend you using real-time
849         * instrument scripts instead. Read about the reasons below.
850         *
851         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
852         * introduced with GigaStudio 4 as an attempt to increase the power of
853         * potential user controls over sounds. At that point other samplers already
854         * supported certain powerful user control features, which were not possible
855         * with GigaStudio yet. For example triggering new notes by MIDI CC
856         * controller.
857         *
858         * Such extended features however were usually implemented by other samplers
859         * by requiring the sound designer to write an instrument script which the
860         * designer would then bundle with the respective instrument file. Such
861         * scripts are essentially text files, using a very specific programming
862         * language for the purpose of controlling the sampler in real-time. Since
863         * however musicians are not typically keen to writing such cumbersome
864         * script files, the GigaStudio designers decided to implement such extended
865         * features completely without instrument scripts. Instead they created a
866         * set of rules, which could be defined and altered conveniently by mouse
867         * clicks in GSt's instrument editor application. The downside of this
868         * overall approach however, was that those MIDI rules were very limited in
869         * practice. As sound designer you easily came across the possiblities such
870         * MIDI rules were able to offer.
871         *
872         * Due to such severe use case constraints, support for MIDI rules is quite
873         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
874         * and the "Legato" MIDI rules are supported by libgig. Consequently the
875         * graphical instrument editor application gigedit just supports the
876         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
877         * support any MIDI rule type at all and LinuxSampler probably will not
878         * support MIDI rules in future either.
879         *
880         * Instead of using MIDI rules, we introduced real-time instrument scripts
881         * as extension to the original GigaStudio file format. This script based
882         * solution is much more powerful than MIDI rules and is already supported
883         * by libgig, gigedit and LinuxSampler.
884         *
885         * @deprecated Just provided for backward compatiblity, use Script for new
886         *             instruments instead.
887         */
888        class MidiRule {
889            public:
890                virtual ~MidiRule() { }
891            protected:
892                virtual void UpdateChunks(uint8_t* pData) const = 0;
893                friend class Instrument;
894        };
895    
896        /** @brief MIDI rule for triggering notes by control change events.
897         *
898         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
899         * control change events to the sampler.
900         *
901         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
902         * by LinuxSampler. We recommend you using real-time instrument scripts
903         * instead. Read more about the details and reasons for this in the
904         * description of the MidiRule base class.
905         *
906         * @deprecated Just provided for backward compatiblity, use Script for new
907         *             instruments instead. See description of MidiRule for details.
908         */
909        class MidiRuleCtrlTrigger : public MidiRule {
910            public:
911                uint8_t ControllerNumber;   ///< MIDI controller number.
912                uint8_t Triggers;           ///< Number of triggers.
913                struct trigger_t {
914                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
915                    bool    Descending;     ///< If the change in CC value should be downwards.
916                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
917                    uint8_t Key;            ///< Key to trigger.
918                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
919                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
920                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
921                } pTriggers[32];
922    
923            protected:
924                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
925                MidiRuleCtrlTrigger();
926                void UpdateChunks(uint8_t* pData) const;
927                friend class Instrument;
928        };
929    
930        /** @brief MIDI rule for instruments with legato samples.
931         *
932         * A "Legato MIDI rule" allows playing instruments resembling the legato
933         * playing technique. In the past such legato articulations were tried to be
934         * simulated by pitching the samples of the instrument. However since
935         * usually a high amount of pitch is needed for legatos, this always sounded
936         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
937         * approach. Instead of pitching the samples, it allows the sound designer
938         * to bundle separate, additional samples for the individual legato
939         * situations and the legato rules defined which samples to be played in
940         * which situation.
941         *
942         * Note: "Legato MIDI rules" are only supported by gigedit, but not
943         * by LinuxSampler. We recommend you using real-time instrument scripts
944         * instead. Read more about the details and reasons for this in the
945         * description of the MidiRule base class.
946         *
947         * @deprecated Just provided for backward compatiblity, use Script for new
948         *             instruments instead. See description of MidiRule for details.
949         */
950        class MidiRuleLegato : public MidiRule {
951            public:
952                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
953                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
954                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
955                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
956                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
957                uint16_t ReleaseTime;      ///< Release time
958                range_t KeyRange;          ///< Key range for legato notes
959                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
960                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
961                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
962    
963            protected:
964                MidiRuleLegato(RIFF::Chunk* _3ewg);
965                MidiRuleLegato();
966                void UpdateChunks(uint8_t* pData) const;
967                friend class Instrument;
968        };
969    
970        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
971         *
972         * The instrument must be using the smartmidi dimension.
973         *
974         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
975         * LinuxSampler. We recommend you using real-time instrument scripts
976         * instead. Read more about the details and reasons for this in the
977         * description of the MidiRule base class.
978         *
979         * @deprecated Just provided for backward compatiblity, use Script for new
980         *             instruments instead. See description of MidiRule for details.
981         */
982        class MidiRuleAlternator : public MidiRule {
983            public:
984                uint8_t Articulations;     ///< Number of articulations in the instrument
985                String pArticulations[32]; ///< Names of the articulations
986    
987                range_t PlayRange;         ///< Key range of the playable keys in the instrument
988    
989                uint8_t Patterns;          ///< Number of alternator patterns
990                struct pattern_t {
991                    String Name;           ///< Name of the pattern
992                    int Size;              ///< Number of steps in the pattern
993                    const uint8_t& operator[](int i) const { /// Articulation to play
994                        return data[i];
995                    }
996                    uint8_t& operator[](int i) {
997                        return data[i];
998                    }
999                private:
1000                    uint8_t data[32];
1001                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
1002    
1003                typedef enum {
1004                    selector_none,
1005                    selector_key_switch,
1006                    selector_controller
1007                } selector_t;
1008                selector_t Selector;       ///< Method by which pattern is chosen
1009                range_t KeySwitchRange;    ///< Key range for key switch selector
1010                uint8_t Controller;        ///< CC number for controller selector
1011    
1012                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
1013                bool Chained;              ///< If all patterns should be chained together
1014    
1015            protected:
1016                MidiRuleAlternator(RIFF::Chunk* _3ewg);
1017                MidiRuleAlternator();
1018                void UpdateChunks(uint8_t* pData) const;
1019                friend class Instrument;
1020        };
1021    
1022        /** @brief A MIDI rule not yet implemented by libgig.
1023         *
1024         * This class is currently used as a place holder by libgig for MIDI rule
1025         * types which are not supported by libgig yet.
1026         *
1027         * Note: Support for missing MIDI rule types are probably never added to
1028         * libgig. We recommend you using real-time instrument scripts instead.
1029         * Read more about the details and reasons for this in the description of
1030         * the MidiRule base class.
1031         *
1032         * @deprecated Just provided for backward compatiblity, use Script for new
1033         *             instruments instead. See description of MidiRule for details.
1034         */
1035        class MidiRuleUnknown : public MidiRule {
1036            protected:
1037                MidiRuleUnknown() { }
1038                void UpdateChunks(uint8_t* pData) const { }
1039                friend class Instrument;
1040        };
1041    
1042        /** @brief Real-time instrument script (gig format extension).
1043         *
1044         * Real-time instrument scripts are user supplied small programs which can
1045         * be used by instrument designers to create custom behaviors and features
1046         * not available in the stock sampler engine. Features which might be very
1047         * exotic or specific for the respective instrument.
1048         *
1049         * This is an extension of the GigaStudio format, thus a feature which was
1050         * not available in the GigaStudio 4 software. It is currently only
1051         * supported by LinuxSampler and gigedit. Scripts will not load with the
1052         * original GigaStudio software.
1053         *
1054         * You find more informations about Instrument Scripts on the LinuxSampler
1055         * documentation site:
1056         *
1057         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1058         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1059         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1060         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1061         */
1062        class Script {
1063            public:
1064                enum Encoding_t {
1065                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1066                };
1067                enum Compression_t {
1068                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1069                };
1070                enum Language_t {
1071                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1072                };
1073    
1074                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1075                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1076                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1077                Language_t     Language;    ///< Programming language and dialect the script is written in.
1078                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1079    
1080                String GetScriptAsText();
1081                void   SetScriptAsText(const String& text);
1082                void   SetGroup(ScriptGroup* pGroup);
1083                ScriptGroup* GetGroup() const;
1084                void   CopyAssign(const Script* orig);
1085            protected:
1086                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1087                virtual ~Script();
1088                void UpdateChunks(progress_t* pProgress);
1089                void RemoveAllScriptReferences();
1090                friend class ScriptGroup;
1091                friend class Instrument;
1092            private:
1093                ScriptGroup*          pGroup;
1094                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1095                std::vector<uint8_t>  data;
1096                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1097        };
1098    
1099        /** @brief Group of instrument scripts (gig format extension).
1100         *
1101         * This class is simply used to sort a bunch of real-time instrument scripts
1102         * into individual groups. This allows instrument designers and script
1103         * developers to keep scripts in a certain order while working with a larger
1104         * amount of scripts in an instrument editor.
1105         *
1106         * This is an extension of the GigaStudio format, thus a feature which was
1107         * not available in the GigaStudio 4 software. It is currently only
1108         * supported by LinuxSampler and gigedit.
1109         */
1110        class ScriptGroup {
1111            public:
1112                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1113    
1114                Script*  GetScript(uint index);
1115                Script*  AddScript();
1116                void     DeleteScript(Script* pScript);
1117            protected:
1118                ScriptGroup(File* file, RIFF::List* lstRTIS);
1119                virtual ~ScriptGroup();
1120                void LoadScripts();
1121                void UpdateChunks(progress_t* pProgress);
1122                friend class Script;
1123                friend class File;
1124            private:
1125                File*                pFile;
1126                RIFF::List*          pList; ///< 'RTIS' list chunk
1127                std::list<Script*>*  pScripts;
1128        };
1129    
1130        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1131         *
1132         * This class provides access to Gigasampler/GigaStudio instruments
1133         * contained in .gig files. A gig instrument is merely a set of keyboard
1134         * ranges (called Region), plus some additional global informations about
1135         * the instrument. The major part of the actual instrument definition used
1136         * for the synthesis of the instrument is contained in the respective Region
1137         * object (or actually in the respective DimensionRegion object being, see
1138         * description of Region for details).
1139         *
1140         * Since the gig format was designed as extension to the DLS file format,
1141         * this class is derived from the DLS::Instrument class. So also refer to
1142         * DLS::Instrument for additional informations, class attributes and
1143         * methods.
1144         */
1145      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1146          public:          public:
1147              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1148              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1149              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1150              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1151              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1152              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1153              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1154              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1155              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1156              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1157              // own attributes              // own attributes
1158              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1159              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 671  namespace gig { Line 1164  namespace gig {
1164    
1165    
1166              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1167              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1168              // overridden methods              // overridden methods
1169              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1170              Region*   GetNextRegion();              Region*   GetNextRegion();
1171                Region*   AddRegion();
1172                void      DeleteRegion(Region* pRegion);
1173                void      MoveTo(Instrument* dst);
1174                virtual void UpdateChunks(progress_t* pProgress);
1175                virtual void CopyAssign(const Instrument* orig);
1176              // own methods              // own methods
1177              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1178                MidiRule* GetMidiRule(int i);
1179                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1180                MidiRuleLegato*      AddMidiRuleLegato();
1181                MidiRuleAlternator*  AddMidiRuleAlternator();
1182                void      DeleteMidiRule(int i);
1183                // real-time instrument script methods
1184                Script*   GetScriptOfSlot(uint index);
1185                void      AddScriptSlot(Script* pScript, bool bypass = false);
1186                void      SwapScriptSlots(uint index1, uint index2);
1187                void      RemoveScriptSlot(uint index);
1188                void      RemoveScript(Script* pScript);
1189                uint      ScriptSlotCount() const;
1190                bool      IsScriptSlotBypassed(uint index);
1191                void      SetScriptSlotBypassed(uint index, bool bBypass);
1192          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1193              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1194    
1195              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1196             ~Instrument();             ~Instrument();
1197                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1198                void UpdateRegionKeyTable();
1199                void LoadScripts();
1200                void UpdateScriptFileOffsets();
1201                friend class File;
1202                friend class Region; // so Region can call UpdateRegionKeyTable()
1203            private:
1204                struct _ScriptPooolEntry {
1205                    uint32_t fileOffset;
1206                    bool     bypass;
1207                };
1208                struct _ScriptPooolRef {
1209                    Script*  script;
1210                    bool     bypass;
1211                };
1212                MidiRule** pMidiRules;
1213                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1214                std::vector<_ScriptPooolRef>* pScriptRefs;
1215        };
1216    
1217        /** @brief Group of Gigasampler samples
1218         *
1219         * Groups help to organize a huge collection of Gigasampler samples.
1220         * Groups are not concerned at all for the synthesis, but they help
1221         * sound library developers when working on complex instruments with an
1222         * instrument editor (as long as that instrument editor supports it ;-).
1223         *
1224         * A sample is always assigned to exactly one Group. This also means
1225         * there is always at least one Group in a .gig file, no matter if you
1226         * created one yet or not.
1227         */
1228        class Group {
1229            public:
1230                String Name; ///< Stores the name of this Group.
1231    
1232                Sample* GetFirstSample();
1233                Sample* GetNextSample();
1234                void AddSample(Sample* pSample);
1235            protected:
1236                Group(File* file, RIFF::Chunk* ck3gnm);
1237                virtual ~Group();
1238                virtual void UpdateChunks(progress_t* pProgress);
1239                void MoveAll();
1240              friend class File;              friend class File;
1241            private:
1242                File*        pFile;
1243                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1244      };      };
1245    
1246      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1247      /** Parses Gigasampler files and provides abstract access to the data. */       *
1248         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1249         * with libgig. It allows you to open existing .gig files, modifying them
1250         * and saving them persistently either under the same file name or under a
1251         * different location.
1252         *
1253         * A .gig file is merely a monolithic file. That means samples and the
1254         * defintion of the virtual instruments are contained in the same file. A
1255         * .gig file contains an arbitrary amount of samples, and an arbitrary
1256         * amount of instruments which are referencing those samples. It is also
1257         * possible to store samples in .gig files not being referenced by any
1258         * instrument. This is not an error from the file format's point of view and
1259         * it is actually often used in practice during the design phase of new gig
1260         * instruments.
1261         *
1262         * So on toplevel of the gig file format you have:
1263         *
1264         * - A set of samples (see Sample).
1265         * - A set of virtual instruments (see Instrument).
1266         *
1267         * And as extension to the original GigaStudio format, we added:
1268         *
1269         * - Real-time instrument scripts (see Script).
1270         *
1271         * Note that the latter however is only supported by libgig, gigedit and
1272         * LinuxSampler. Scripts are not supported by the original GigaStudio
1273         * software.
1274         *
1275         * All released Gigasampler/GigaStudio file format versions are supported
1276         * (so from first Gigasampler version up to including GigaStudio 4).
1277         *
1278         * Since the gig format was designed as extension to the DLS file format,
1279         * this class is derived from the DLS::File class. So also refer to
1280         * DLS::File for additional informations, class attributes and methods.
1281         */
1282      class File : protected DLS::File {      class File : protected DLS::File {
1283          public:          public:
1284                static const DLS::version_t VERSION_2;
1285                static const DLS::version_t VERSION_3;
1286    
1287              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1288              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1289              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1290              // derived attributes from DLS::File              // derived attributes from DLS::File
1291              DLS::File::pVersion;              using DLS::File::pVersion;
1292              DLS::File::Instruments;              using DLS::File::Instruments;
1293    
1294              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1295              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1296                // derived methods from DLS::File
1297                using DLS::File::Save;
1298                using DLS::File::GetFileName;
1299                using DLS::File::SetFileName;
1300              // overridden  methods              // overridden  methods
1301                File();
1302              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1303              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1304              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1305                Sample*     GetSample(uint index);
1306                Sample*     AddSample();
1307                void        DeleteSample(Sample* pSample);
1308              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1309              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1310              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1311             ~File();              Instrument* AddInstrument();
1312                Instrument* AddDuplicateInstrument(const Instrument* orig);
1313                void        DeleteInstrument(Instrument* pInstrument);
1314                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1315                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1316                Group*      GetGroup(uint index);
1317                Group*      GetGroup(String name);
1318                Group*      AddGroup();
1319                void        DeleteGroup(Group* pGroup);
1320                void        DeleteGroupOnly(Group* pGroup);
1321                void        SetAutoLoad(bool b);
1322                bool        GetAutoLoad();
1323                void        AddContentOf(File* pFile);
1324                ScriptGroup* GetScriptGroup(uint index);
1325                ScriptGroup* GetScriptGroup(const String& name);
1326                ScriptGroup* AddScriptGroup();
1327                void        DeleteScriptGroup(ScriptGroup* pGroup);
1328                virtual    ~File();
1329                virtual void UpdateChunks(progress_t* pProgress);
1330          protected:          protected:
1331              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1332              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1333                virtual void LoadInstruments();
1334              SampleList*              pSamples;              virtual void LoadGroups();
1335              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1336              InstrumentList*          pInstruments;              // own protected methods
1337              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1338                virtual void LoadInstruments(progress_t* pProgress);
1339              void LoadSamples(progress_t* pProgress = NULL);              virtual void LoadScriptGroups();
1340              void LoadInstruments(progress_t* pProgress = NULL);              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1341                uint32_t GetSampleChecksum(Sample* pSample);
1342                uint32_t GetSampleChecksumByIndex(int index);
1343                bool VerifySampleChecksumTable();
1344                bool RebuildSampleChecksumTable();
1345                int  GetWaveTableIndexOf(gig::Sample* pSample);
1346              friend class Region;              friend class Region;
1347                friend class Sample;
1348                friend class Instrument;
1349                friend class Group; // so Group can access protected member pRIFF
1350                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1351            private:
1352                std::list<Group*>*          pGroups;
1353                std::list<Group*>::iterator GroupsIterator;
1354                bool                        bAutoLoad;
1355                std::list<ScriptGroup*>*    pScriptGroups;
1356      };      };
1357    
1358      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1359         * Will be thrown whenever a gig specific error occurs while trying to
1360         * access a Gigasampler File. Note: In your application you should
1361         * better catch for RIFF::Exception rather than this one, except you
1362         * explicitly want to catch and handle gig::Exception, DLS::Exception
1363         * and RIFF::Exception independently, which usually shouldn't be
1364         * necessary though.
1365         */
1366      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1367          public:          public:
1368              Exception(String Message);              Exception(String format, ...);
1369                Exception(String format, va_list arg);
1370              void PrintMessage();              void PrintMessage();
1371            protected:
1372                Exception();
1373      };      };
1374    
1375    #if HAVE_RTTI
1376        size_t enumCount(const std::type_info& type);
1377        const char* enumKey(const std::type_info& type, size_t value);
1378        bool        enumKey(const std::type_info& type, String key);
1379        const char** enumKeys(const std::type_info& type);
1380    #endif // HAVE_RTTI
1381        size_t enumCount(String typeName);
1382        const char* enumKey(String typeName, size_t value);
1383        bool        enumKey(String typeName, String key);
1384        const char** enumKeys(String typeName);
1385        size_t enumValue(String key);
1386    
1387      String libraryName();      String libraryName();
1388      String libraryVersion();      String libraryVersion();
1389    

Legend:
Removed from v.518  
changed lines
  Added in v.3198

  ViewVC Help
Powered by ViewVC