/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1093 - (show annotations) (download) (as text)
Sun Mar 11 17:44:31 2007 UTC (17 years ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 52136 byte(s)
- minor API doc update

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28
29 #if WORDS_BIGENDIAN
30 # define LIST_TYPE_3PRG 0x33707267
31 # define LIST_TYPE_3EWL 0x3365776C
32 # define LIST_TYPE_3GRI 0x33677269
33 # define LIST_TYPE_3GNL 0x33676E6C
34 # define CHUNK_ID_SMPL 0x736D706C
35 # define CHUNK_ID_3GIX 0x33676978
36 # define CHUNK_ID_3EWA 0x33657761
37 # define CHUNK_ID_3LNK 0x336C6E6B
38 # define CHUNK_ID_3EWG 0x33657767
39 # define CHUNK_ID_EWAV 0x65776176
40 # define CHUNK_ID_3GNM 0x33676E6D
41 #else // little endian
42 # define LIST_TYPE_3PRG 0x67727033
43 # define LIST_TYPE_3EWL 0x6C776533
44 # define LIST_TYPE_3GRI 0x69726733
45 # define LIST_TYPE_3GNL 0x6C6E6733
46 # define CHUNK_ID_SMPL 0x6C706D73
47 # define CHUNK_ID_3GIX 0x78696733
48 # define CHUNK_ID_3EWA 0x61776533
49 # define CHUNK_ID_3LNK 0x6B6E6C33
50 # define CHUNK_ID_3EWG 0x67776533
51 # define CHUNK_ID_EWAV 0x76617765
52 # define CHUNK_ID_3GNM 0x6D6E6733
53 #endif // WORDS_BIGENDIAN
54
55 /** Gigasampler specific classes and definitions */
56 namespace gig {
57
58 typedef std::string String;
59
60 /** Lower and upper limit of a range. */
61 struct range_t {
62 uint8_t low; ///< Low value of range.
63 uint8_t high; ///< High value of range.
64 };
65
66 /** Pointer address and size of a buffer. */
67 struct buffer_t {
68 void* pStart; ///< Points to the beginning of the buffer.
69 unsigned long Size; ///< Size of the actual data in the buffer in bytes.
70 unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
71 buffer_t() {
72 pStart = NULL;
73 Size = 0;
74 NullExtensionSize = 0;
75 }
76 };
77
78 /** Standard types of sample loops. */
79 typedef enum {
80 loop_type_normal = 0x00000000, ///< Loop forward (normal)
81 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
82 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
83 } loop_type_t;
84
85 /** Society of Motion Pictures and Television E time format. */
86 typedef enum {
87 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
88 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
89 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
90 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
91 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
92 } smpte_format_t;
93
94 /** Defines the shape of a function graph. */
95 typedef enum {
96 curve_type_nonlinear = 0,
97 curve_type_linear = 1,
98 curve_type_special = 2,
99 curve_type_unknown = 0xffffffff
100 } curve_type_t;
101
102 /** Dimensions allow to bypass one of the following controllers. */
103 typedef enum {
104 dim_bypass_ctrl_none,
105 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
106 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
107 } dim_bypass_ctrl_t;
108
109 /** Defines how LFO3 is controlled by. */
110 typedef enum {
111 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
112 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
113 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
114 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
115 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
116 } lfo3_ctrl_t;
117
118 /** Defines how LFO2 is controlled by. */
119 typedef enum {
120 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
121 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
122 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
123 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
124 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
125 } lfo2_ctrl_t;
126
127 /** Defines how LFO1 is controlled by. */
128 typedef enum {
129 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
130 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
131 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
132 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
133 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
134 } lfo1_ctrl_t;
135
136 /** Defines how the filter cutoff frequency is controlled by. */
137 typedef enum {
138 vcf_cutoff_ctrl_none = 0x00,
139 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
140 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
141 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
142 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
143 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
144 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
145 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
146 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
147 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
148 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
149 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
150 } vcf_cutoff_ctrl_t;
151
152 /** Defines how the filter resonance is controlled by. */
153 typedef enum {
154 vcf_res_ctrl_none = 0xffffffff,
155 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
156 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
157 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
158 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
159 } vcf_res_ctrl_t;
160
161 /**
162 * Defines a controller that has a certain contrained influence on a
163 * particular synthesis parameter (used to define attenuation controller,
164 * EG1 controller and EG2 controller).
165 *
166 * You should use the respective <i>typedef</i> (means either
167 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
168 */
169 struct leverage_ctrl_t {
170 typedef enum {
171 type_none = 0x00, ///< No controller defined
172 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
173 type_velocity = 0xff, ///< Key Velocity
174 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
175 } type_t;
176
177 type_t type; ///< Controller type
178 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
179 };
180
181 /**
182 * Defines controller influencing attenuation.
183 *
184 * @see leverage_ctrl_t
185 */
186 typedef leverage_ctrl_t attenuation_ctrl_t;
187
188 /**
189 * Defines controller influencing envelope generator 1.
190 *
191 * @see leverage_ctrl_t
192 */
193 typedef leverage_ctrl_t eg1_ctrl_t;
194
195 /**
196 * Defines controller influencing envelope generator 2.
197 *
198 * @see leverage_ctrl_t
199 */
200 typedef leverage_ctrl_t eg2_ctrl_t;
201
202 /**
203 * Defines the type of dimension, that is how the dimension zones (and
204 * thus how the dimension regions are selected by. The number of
205 * dimension zones is always a power of two. All dimensions can have up
206 * to 32 zones (except the layer dimension with only up to 8 zones and
207 * the samplechannel dimension which currently allows only 2 zones).
208 */
209 typedef enum {
210 dimension_none = 0x00, ///< Dimension not in use.
211 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
212 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
213 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
214 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
215 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
216 dimension_keyboard = 0x85, ///< Dimension for keyswitching
217 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
218 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
219 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
220 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
221 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
222 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
223 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
224 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
225 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
226 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
227 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
228 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
229 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
230 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
231 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
232 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
233 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
234 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
235 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
236 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
237 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
238 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
239 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
240 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
241 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
242 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
243 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
244 } dimension_t;
245
246 /**
247 * Intended for internal usage: will be used to convert a dimension value
248 * into the corresponding dimension bit number.
249 */
250 typedef enum {
251 split_type_normal, ///< dimension value between 0-127
252 split_type_bit ///< dimension values are already the sought bit number
253 } split_type_t;
254
255 /** General dimension definition. */
256 struct dimension_def_t {
257 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
258 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
259 uint8_t zones; ///< Number of zones the dimension has.
260 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
261 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
262 };
263
264 /** Defines which frequencies are filtered by the VCF. */
265 typedef enum {
266 vcf_type_lowpass = 0x00,
267 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
268 vcf_type_bandpass = 0x01,
269 vcf_type_highpass = 0x02,
270 vcf_type_bandreject = 0x03
271 } vcf_type_t;
272
273 /**
274 * Defines the envelope of a crossfade.
275 *
276 * Note: The default value for crossfade points is 0,0,0,0. Layers with
277 * such a default value should be treated as if they would not have a
278 * crossfade.
279 */
280 struct crossfade_t {
281 #if WORDS_BIGENDIAN
282 uint8_t out_end; ///< End postition of fade out.
283 uint8_t out_start; ///< Start position of fade out.
284 uint8_t in_end; ///< End position of fade in.
285 uint8_t in_start; ///< Start position of fade in.
286 #else // little endian
287 uint8_t in_start; ///< Start position of fade in.
288 uint8_t in_end; ///< End position of fade in.
289 uint8_t out_start; ///< Start position of fade out.
290 uint8_t out_end; ///< End postition of fade out.
291 #endif // WORDS_BIGENDIAN
292 };
293
294 /** Reflects the current playback state for a sample. */
295 struct playback_state_t {
296 unsigned long position; ///< Current position within the sample.
297 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
298 unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
299 };
300
301 /**
302 * @brief Used for indicating the progress of a certain task.
303 *
304 * The function pointer argument has to be supplied with a valid
305 * function of the given signature which will then be called on
306 * progress changes. An equivalent progress_t structure will be passed
307 * back as argument to the callback function on each progress change.
308 * The factor field of the supplied progress_t structure will then
309 * reflect the current progress as value between 0.0 and 1.0. You might
310 * want to use the custom field for data needed in your callback
311 * function.
312 */
313 struct progress_t {
314 void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
315 float factor; ///< Reflects current progress as value between 0.0 and 1.0.
316 void* custom; ///< This pointer can be used for arbitrary data.
317 float __range_min; ///< Only for internal usage, do not modify!
318 float __range_max; ///< Only for internal usage, do not modify!
319 progress_t();
320 };
321
322 // just symbol prototyping
323 class File;
324 class Instrument;
325 class Sample;
326 class Region;
327 class Group;
328
329 /** @brief Encapsulates articulation information of a dimension region.
330 *
331 * Every Gigasampler Instrument has at least one dimension region
332 * (exactly then when it has no dimension defined).
333 *
334 * Gigasampler provides three Envelope Generators and Low Frequency
335 * Oscillators:
336 *
337 * - EG1 and LFO1, both controlling sample amplitude
338 * - EG2 and LFO2, both controlling filter cutoff frequency
339 * - EG3 and LFO3, both controlling sample pitch
340 */
341 class DimensionRegion : protected DLS::Sampler {
342 public:
343 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, otherwise the DimensionUpperLimts are used instead.
344 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
345 // Sample Amplitude EG/LFO
346 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
347 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
348 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
349 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
350 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
351 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
352 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
353 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
354 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
355 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
356 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
357 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
358 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
359 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
360 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
361 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
362 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
363 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
364 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
365 // Filter Cutoff Frequency EG/LFO
366 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
367 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
368 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
369 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
370 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
371 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
372 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
373 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
374 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
375 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
376 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
377 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
378 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
379 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
380 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
381 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
382 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
383 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
384 // Sample Pitch EG/LFO
385 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
386 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
387 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
388 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
389 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
390 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
391 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
392 // Filter
393 bool VCFEnabled; ///< If filter should be used.
394 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
395 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency.
396 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
397 uint8_t VCFCutoff; ///< Max. cutoff frequency.
398 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.
399 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff).
400 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest
401 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
402 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
403 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
404 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
405 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
406 // Key Velocity Transformations
407 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
408 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
409 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)
410 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.
411 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4).
412 uint8_t ReleaseTriggerDecay; ///< 0 - 8
413 // Mix / Layer
414 crossfade_t Crossfade;
415 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
416 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
417 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
418 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
419 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
420 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
421 uint8_t AttenuationControllerThreshold;///< 0-127
422 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
423 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
424 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
425 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
426 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
427 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region
428
429 // derived attributes from DLS::Sampler
430 DLS::Sampler::UnityNote;
431 DLS::Sampler::FineTune;
432 DLS::Sampler::Gain;
433 DLS::Sampler::SampleLoops;
434 DLS::Sampler::pSampleLoops;
435
436 // own methods
437 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
438 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
439 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
440 // overridden methods
441 virtual void UpdateChunks();
442 protected:
443 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
444 DimensionRegion(RIFF::List* _3ewl);
445 ~DimensionRegion();
446 friend class Region;
447 private:
448 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
449 _lev_ctrl_none = 0x00,
450 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
451 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
452 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
453 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
454 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
455 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
456 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
457 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
458 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
459 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
460 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
461 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
462 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
463 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
464 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
465 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
466 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
467 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
468 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
469 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
470 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
471 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
472 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
473 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
474 _lev_ctrl_velocity = 0xff ///< Key Velocity
475 } _lev_ctrl_t;
476 typedef std::map<uint32_t, double*> VelocityTableMap;
477
478 static uint Instances; ///< Number of DimensionRegion instances.
479 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
480 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
481 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
482 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
483
484 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
485 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
486 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
487 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
488 };
489
490 /** @brief Encapsulates sample waves used for playback.
491 *
492 * In case you created a new sample with File::AddSample(), you should
493 * first update all attributes with the desired meta informations
494 * (amount of channels, bit depth, sample rate, etc.), then call
495 * Resize() with the desired sample size, followed by File::Save(), this
496 * will create the mandatory RIFF chunk which will hold the sample wave
497 * data and / or resize the file so you will be able to Write() the
498 * sample data directly to disk.
499 */
500 class Sample : public DLS::Sample {
501 public:
502 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
503 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
504 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
505 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
506 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
507 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
508 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
509 uint32_t Loops; ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).
510 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
511 loop_type_t LoopType; ///< The type field defines how the waveform samples will be looped (only if Loops > 0).
512 uint32_t LoopStart; ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).
513 uint32_t LoopEnd; ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).
514 uint32_t LoopSize; ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.
515 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
516 uint32_t LoopPlayCount; ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).
517 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
518 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
519 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
520
521 // own methods
522 buffer_t LoadSampleData();
523 buffer_t LoadSampleData(unsigned long SampleCount);
524 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
525 buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
526 buffer_t GetCache();
527 // own static methods
528 static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
529 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
530 // overridden methods
531 void ReleaseSampleData();
532 void Resize(int iNewSize);
533 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
534 unsigned long GetPos();
535 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
536 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
537 unsigned long Write(void* pBuffer, unsigned long SampleCount);
538 Group* GetGroup() const;
539 virtual void UpdateChunks();
540 protected:
541 static unsigned int Instances; ///< Number of instances of class Sample.
542 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
543 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
544 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
545 unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
546 unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
547 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
548 unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
549 unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
550 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
551 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
552 RIFF::Chunk* pCk3gix;
553 RIFF::Chunk* pCkSmpl;
554
555 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
556 ~Sample();
557
558 // Guess size (in bytes) of a compressed sample
559 inline unsigned long GuessSize(unsigned long samples) {
560 // 16 bit: assume all frames are compressed - 1 byte
561 // per sample and 5 bytes header per 2048 samples
562
563 // 24 bit: assume next best compression rate - 1.5
564 // bytes per sample and 13 bytes header per 256
565 // samples
566 const unsigned long size =
567 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
568 : samples + (samples >> 10) * 5;
569 // Double for stereo and add one worst case sample
570 // frame
571 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
572 }
573
574 // Worst case amount of sample points that can be read with the
575 // given decompression buffer.
576 inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
577 return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
578 }
579 private:
580 void ScanCompressedSample();
581 friend class File;
582 friend class Region;
583 friend class Group; // allow to modify protected member pGroup
584 };
585
586 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
587 /** Defines <i>Region</i> information of an <i>Instrument</i>. */
588 class Region : public DLS::Region {
589 public:
590 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
591 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
592 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
593 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
594 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
595
596 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
597 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
598 Sample* GetSample();
599 void AddDimension(dimension_def_t* pDimDef);
600 void DeleteDimension(dimension_def_t* pDimDef);
601 virtual void UpdateChunks();
602 protected:
603 Region(Instrument* pInstrument, RIFF::List* rgnList);
604 void LoadDimensionRegions(RIFF::List* rgn);
605 void UpdateVelocityTable();
606 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
607 ~Region();
608 friend class Instrument;
609 };
610
611 /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */
612 class Instrument : protected DLS::Instrument {
613 public:
614 // derived attributes from DLS::Resource
615 DLS::Resource::pInfo;
616 DLS::Resource::pDLSID;
617 // derived attributes from DLS::Instrument
618 DLS::Instrument::IsDrum;
619 DLS::Instrument::MIDIBank;
620 DLS::Instrument::MIDIBankCoarse;
621 DLS::Instrument::MIDIBankFine;
622 DLS::Instrument::MIDIProgram;
623 DLS::Instrument::Regions;
624 // own attributes
625 int32_t Attenuation; ///< in dB
626 uint16_t EffectSend;
627 int16_t FineTune; ///< in cents
628 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
629 bool PianoReleaseMode;
630 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
631
632
633 // derived methods from DLS::Resource
634 DLS::Resource::GetParent;
635 // overridden methods
636 Region* GetFirstRegion();
637 Region* GetNextRegion();
638 Region* AddRegion();
639 void DeleteRegion(Region* pRegion);
640 virtual void UpdateChunks();
641 // own methods
642 Region* GetRegion(unsigned int Key);
643 protected:
644 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
645
646 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
647 ~Instrument();
648 void UpdateRegionKeyTable();
649 friend class File;
650 };
651
652 /** @brief Group of Gigasampler objects
653 *
654 * Groups help to organize a huge collection of Gigasampler objects.
655 * Groups are not concerned at all for the synthesis, but they help
656 * sound library developers when working on complex instruments with an
657 * instrument editor (as long as that instrument editor supports it ;-).
658 *
659 * At the moment, it seems as only samples can be grouped together in
660 * the Gigasampler format yet. If this is false in the meantime, please
661 * tell us !
662 *
663 * A sample is always assigned to exactly one Group. This also means
664 * there is always at least one Group in a .gig file, no matter if you
665 * created one yet or not.
666 */
667 class Group {
668 public:
669 String Name; ///< Stores the name of this Group.
670
671 Sample* GetFirstSample();
672 Sample* GetNextSample();
673 void AddSample(Sample* pSample);
674 protected:
675 Group(File* file, RIFF::Chunk* ck3gnm);
676 virtual ~Group();
677 virtual void UpdateChunks();
678 void MoveAll();
679 friend class File;
680 private:
681 File* pFile;
682 RIFF::Chunk* pNameChunk;
683 };
684
685 /** Parses Gigasampler files and provides abstract access to the data. */
686 class File : protected DLS::File {
687 public:
688 // derived attributes from DLS::Resource
689 DLS::Resource::pInfo;
690 DLS::Resource::pDLSID;
691 // derived attributes from DLS::File
692 DLS::File::pVersion;
693 DLS::File::Instruments;
694
695 // derived methods from DLS::Resource
696 DLS::Resource::GetParent;
697 // derived methods from DLS::File
698 DLS::File::Save;
699 // overridden methods
700 File();
701 File(RIFF::File* pRIFF);
702 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
703 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
704 Sample* AddSample();
705 void DeleteSample(Sample* pSample);
706 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
707 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
708 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
709 Instrument* AddInstrument();
710 void DeleteInstrument(Instrument* pInstrument);
711 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
712 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
713 Group* GetGroup(uint index);
714 Group* AddGroup();
715 void DeleteGroup(Group* pGroup);
716 void DeleteGroupOnly(Group* pGroup);
717 virtual ~File();
718 protected:
719 // overridden protected methods from DLS::File
720 virtual void LoadSamples();
721 virtual void LoadInstruments();
722 virtual void LoadGroups();
723 // own protected methods
724 virtual void LoadSamples(progress_t* pProgress);
725 virtual void LoadInstruments(progress_t* pProgress);
726 friend class Region;
727 friend class Sample;
728 friend class Group; // so Group can access protected member pRIFF
729 private:
730 std::list<Group*>* pGroups;
731 std::list<Group*>::iterator GroupsIterator;
732 };
733
734 /**
735 * Will be thrown whenever a gig specific error occurs while trying to
736 * access a Gigasampler File. Note: In your application you should
737 * better catch for RIFF::Exception rather than this one, except you
738 * explicitly want to catch and handle gig::Exception, DLS::Exception
739 * and RIFF::Exception independently, which usually shouldn't be
740 * necessary though.
741 */
742 class Exception : public DLS::Exception {
743 public:
744 Exception(String Message);
745 void PrintMessage();
746 };
747
748 String libraryName();
749 String libraryVersion();
750
751 } // namespace gig
752
753 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC