/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3169 - (show annotations) (download) (as text)
Wed May 10 21:17:10 2017 UTC (6 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 89258 byte(s)
* src/gig.h: Added enum reflection API functions for
  retrieving enum declaration type information at
  runtime (countEnum(), enumKey(), enumKeys(),
  enumValue()).
* Archive: Added methods valueAsInt(), valueAsReal()
  and valueAsBool().
* Bumped version (4.0.0.svn20).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #ifndef __has_feature
31 # define __has_feature(x) 0
32 #endif
33 #ifndef HAVE_RTTI
34 # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35 # define HAVE_RTTI 1
36 # else
37 # define HAVE_RTTI 0
38 # endif
39 #endif
40 #if HAVE_RTTI
41 # include <typeinfo>
42 #endif
43
44 #if WORDS_BIGENDIAN
45 # define LIST_TYPE_3PRG 0x33707267
46 # define LIST_TYPE_3EWL 0x3365776C
47 # define LIST_TYPE_3GRI 0x33677269
48 # define LIST_TYPE_3GNL 0x33676E6C
49 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
50 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
51 # define CHUNK_ID_3GIX 0x33676978
52 # define CHUNK_ID_3EWA 0x33657761
53 # define CHUNK_ID_3LNK 0x336C6E6B
54 # define CHUNK_ID_3EWG 0x33657767
55 # define CHUNK_ID_EWAV 0x65776176
56 # define CHUNK_ID_3GNM 0x33676E6D
57 # define CHUNK_ID_EINF 0x65696E66
58 # define CHUNK_ID_3CRC 0x33637263
59 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
60 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
61 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
62 #else // little endian
63 # define LIST_TYPE_3PRG 0x67727033
64 # define LIST_TYPE_3EWL 0x6C776533
65 # define LIST_TYPE_3GRI 0x69726733
66 # define LIST_TYPE_3GNL 0x6C6E6733
67 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
68 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
69 # define CHUNK_ID_3GIX 0x78696733
70 # define CHUNK_ID_3EWA 0x61776533
71 # define CHUNK_ID_3LNK 0x6B6E6C33
72 # define CHUNK_ID_3EWG 0x67776533
73 # define CHUNK_ID_EWAV 0x76617765
74 # define CHUNK_ID_3GNM 0x6D6E6733
75 # define CHUNK_ID_EINF 0x666E6965
76 # define CHUNK_ID_3CRC 0x63726333
77 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
78 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
79 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
80 #endif // WORDS_BIGENDIAN
81
82 #ifndef GIG_DECLARE_ENUM
83 # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
84 #endif
85
86 // just symbol prototyping (since Serialization.h not included by default here)
87 namespace Serialization { class Archive; }
88
89 /** Gigasampler/GigaStudio specific classes and definitions */
90 namespace gig {
91
92 typedef std::string String;
93 typedef RIFF::progress_t progress_t;
94 typedef RIFF::file_offset_t file_offset_t;
95
96 /** Lower and upper limit of a range. */
97 struct range_t {
98 uint8_t low; ///< Low value of range.
99 uint8_t high; ///< High value of range.
100 };
101
102 /** Pointer address and size of a buffer. */
103 struct buffer_t {
104 void* pStart; ///< Points to the beginning of the buffer.
105 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
106 file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
107 buffer_t() {
108 pStart = NULL;
109 Size = 0;
110 NullExtensionSize = 0;
111 }
112 };
113
114 /** Standard types of sample loops.
115 *
116 * @see countEnum(), enumKey(), enumKeys(), enumValue()
117 */
118 GIG_DECLARE_ENUM(loop_type_t,
119 loop_type_normal = 0x00000000, ///< Loop forward (normal)
120 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
121 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
122 );
123
124 /** Society of Motion Pictures and Television E time format.
125 *
126 * @see countEnum(), enumKey(), enumKeys(), enumValue()
127 */
128 GIG_DECLARE_ENUM(smpte_format_t,
129 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
130 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
131 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
132 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
133 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
134 );
135
136 /** Defines the shape of a function graph.
137 *
138 * @see countEnum(), enumKey(), enumKeys(), enumValue()
139 */
140 GIG_DECLARE_ENUM(curve_type_t,
141 curve_type_nonlinear = 0,
142 curve_type_linear = 1,
143 curve_type_special = 2,
144 curve_type_unknown = 0xffffffff
145 );
146
147 /** Dimensions allow to bypass one of the following controllers.
148 *
149 * @see countEnum(), enumKey(), enumKeys(), enumValue()
150 */
151 GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
152 dim_bypass_ctrl_none,
153 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
154 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
155 );
156
157 /** Defines how LFO3 is controlled by.
158 *
159 * @see countEnum(), enumKey(), enumKeys(), enumValue()
160 */
161 GIG_DECLARE_ENUM(lfo3_ctrl_t,
162 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
163 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
164 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
165 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
166 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
167 );
168
169 /** Defines how LFO2 is controlled by.
170 *
171 * @see countEnum(), enumKey(), enumKeys(), enumValue()
172 */
173 GIG_DECLARE_ENUM(lfo2_ctrl_t,
174 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
175 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
176 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
177 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
178 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
179 );
180
181 /** Defines how LFO1 is controlled by.
182 *
183 * @see countEnum(), enumKey(), enumKeys(), enumValue()
184 */
185 GIG_DECLARE_ENUM(lfo1_ctrl_t,
186 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
187 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
188 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
189 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
190 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
191 );
192
193 /** Defines how the filter cutoff frequency is controlled by.
194 *
195 * @see countEnum(), enumKey(), enumKeys(), enumValue()
196 */
197 GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
198 vcf_cutoff_ctrl_none = 0x00,
199 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
200 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
201 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
202 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
203 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
204 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
205 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
206 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
207 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
208 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
209 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
210 );
211
212 /** Defines how the filter resonance is controlled by.
213 *
214 * @see countEnum(), enumKey(), enumKeys(), enumValue()
215 */
216 GIG_DECLARE_ENUM(vcf_res_ctrl_t,
217 vcf_res_ctrl_none = 0xffffffff,
218 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
219 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
220 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
221 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
222 );
223
224 /**
225 * Defines a controller that has a certain contrained influence on a
226 * particular synthesis parameter (used to define attenuation controller,
227 * EG1 controller and EG2 controller).
228 *
229 * You should use the respective <i>typedef</i> (means either
230 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
231 */
232 struct leverage_ctrl_t {
233 /** Defines possible controllers.
234 *
235 * @see countEnum(), enumKey(), enumKeys(), enumValue()
236 */
237 GIG_DECLARE_ENUM(type_t,
238 type_none = 0x00, ///< No controller defined
239 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
240 type_velocity = 0xff, ///< Key Velocity
241 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
242 );
243
244 type_t type; ///< Controller type
245 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
246
247 void serialize(Serialization::Archive* archive);
248 };
249
250 /**
251 * Defines controller influencing attenuation.
252 *
253 * @see leverage_ctrl_t
254 */
255 typedef leverage_ctrl_t attenuation_ctrl_t;
256
257 /**
258 * Defines controller influencing envelope generator 1.
259 *
260 * @see leverage_ctrl_t
261 */
262 typedef leverage_ctrl_t eg1_ctrl_t;
263
264 /**
265 * Defines controller influencing envelope generator 2.
266 *
267 * @see leverage_ctrl_t
268 */
269 typedef leverage_ctrl_t eg2_ctrl_t;
270
271 /**
272 * Defines the type of dimension, that is how the dimension zones (and
273 * thus how the dimension regions are selected by. The number of
274 * dimension zones is always a power of two. All dimensions can have up
275 * to 32 zones (except the layer dimension with only up to 8 zones and
276 * the samplechannel dimension which currently allows only 2 zones).
277 *
278 * @see countEnum(), enumKey(), enumKeys(), enumValue()
279 */
280 GIG_DECLARE_ENUM(dimension_t,
281 dimension_none = 0x00, ///< Dimension not in use.
282 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
283 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
284 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
285 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
286 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
287 dimension_keyboard = 0x85, ///< Dimension for keyswitching
288 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
289 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
290 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
291 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
292 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
293 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
294 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
295 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
296 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
297 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
298 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
299 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
300 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
301 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
302 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
303 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
304 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
305 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
306 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
307 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
308 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
309 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
310 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
311 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
312 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
313 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
314 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
315 );
316
317 /**
318 * Intended for internal usage: will be used to convert a dimension value
319 * into the corresponding dimension bit number.
320 *
321 * @see countEnum(), enumKey(), enumKeys(), enumValue()
322 */
323 GIG_DECLARE_ENUM(split_type_t,
324 split_type_normal, ///< dimension value between 0-127
325 split_type_bit ///< dimension values are already the sought bit number
326 );
327
328 /** General dimension definition. */
329 struct dimension_def_t {
330 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
331 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
332 uint8_t zones; ///< Number of zones the dimension has.
333 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
334 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
335 };
336
337 /** Defines which frequencies are filtered by the VCF.
338 *
339 * @see countEnum(), enumKey(), enumKeys(), enumValue()
340 */
341 GIG_DECLARE_ENUM(vcf_type_t,
342 vcf_type_lowpass = 0x00,
343 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
344 vcf_type_bandpass = 0x01,
345 vcf_type_highpass = 0x02,
346 vcf_type_bandreject = 0x03
347 );
348
349 /**
350 * Defines the envelope of a crossfade.
351 *
352 * Note: The default value for crossfade points is 0,0,0,0. Layers with
353 * such a default value should be treated as if they would not have a
354 * crossfade.
355 */
356 struct crossfade_t {
357 #if WORDS_BIGENDIAN
358 uint8_t out_end; ///< End postition of fade out.
359 uint8_t out_start; ///< Start position of fade out.
360 uint8_t in_end; ///< End position of fade in.
361 uint8_t in_start; ///< Start position of fade in.
362 #else // little endian
363 uint8_t in_start; ///< Start position of fade in.
364 uint8_t in_end; ///< End position of fade in.
365 uint8_t out_start; ///< Start position of fade out.
366 uint8_t out_end; ///< End postition of fade out.
367 #endif // WORDS_BIGENDIAN
368
369 void serialize(Serialization::Archive* archive);
370 };
371
372 /** Reflects the current playback state for a sample. */
373 struct playback_state_t {
374 file_offset_t position; ///< Current position within the sample.
375 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
376 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
377 };
378
379 // just symbol prototyping
380 class File;
381 class Instrument;
382 class Sample;
383 class Region;
384 class Group;
385 class Script;
386 class ScriptGroup;
387
388 /** @brief Encapsulates articulation informations of a dimension region.
389 *
390 * This is the most important data object of the Gigasampler / GigaStudio
391 * format. A DimensionRegion provides the link to the sample to be played
392 * and all required articulation informations to be interpreted for playing
393 * back the sample and processing it appropriately by the sampler software.
394 * Every Region of a Gigasampler Instrument has at least one dimension
395 * region (exactly then when the Region has no dimension defined). Many
396 * Regions though provide more than one DimensionRegion, which reflect
397 * different playing "cases". For example a different sample might be played
398 * if a certain pedal is pressed down, or if the note was triggered with
399 * different velocity.
400 *
401 * One instance of a DimensionRegion reflects exactly one particular case
402 * while playing an instrument (for instance "note between C3 and E3 was
403 * triggered AND note on velocity was between 20 and 42 AND modulation wheel
404 * controller is between 80 and 127). The DimensionRegion defines what to do
405 * under that one particular case, that is which sample to play back and how
406 * to play that sample back exactly and how to process it. So a
407 * DimensionRegion object is always linked to exactly one sample. It may
408 * however also link to no sample at all, for defining a "silence" case
409 * where nothing shall be played (for example when note on velocity was
410 * below 6).
411 *
412 * Note that a DimensionRegion object only defines "what to do", but it does
413 * not define "when to do it". To actually resolve which DimensionRegion to
414 * pick under which situation, you need to refer to the DimensionRegions'
415 * parent Region object. The Region object contains the necessary
416 * "Dimension" definitions, which in turn define which DimensionRegion is
417 * associated with which playing case exactly.
418 *
419 * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
420 * Low Frequency Oscillators:
421 *
422 * - EG1 and LFO1, both controlling sample amplitude
423 * - EG2 and LFO2, both controlling filter cutoff frequency
424 * - EG3 and LFO3, both controlling sample pitch
425 *
426 * Since the gig format was designed as extension to the DLS file format,
427 * this class is derived from the DLS::Sampler class. So also refer to
428 * DLS::Sampler for additional informations, class attributes and methods.
429 */
430 class DimensionRegion : protected DLS::Sampler {
431 public:
432 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
433 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
434 // Sample Amplitude EG/LFO
435 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
436 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
437 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
438 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
439 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
440 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
441 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
442 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
443 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
444 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
445 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
446 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
447 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
448 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
449 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
450 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
451 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
452 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
453 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
454 // Filter Cutoff Frequency EG/LFO
455 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
456 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
457 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
458 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
459 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
460 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
461 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
462 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
463 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
464 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
465 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
466 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
467 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
468 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
469 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
470 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
471 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
472 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
473 // Sample Pitch EG/LFO
474 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
475 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
476 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
477 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
478 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
479 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
480 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
481 // Filter
482 bool VCFEnabled; ///< If filter should be used.
483 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
484 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
485 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
486 uint8_t VCFCutoff; ///< Max. cutoff frequency.
487 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
488 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
489 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
490 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
491 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
492 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
493 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
494 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
495 // Key Velocity Transformations
496 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
497 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
498 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
499 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
500 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
501 uint8_t ReleaseTriggerDecay; ///< 0 - 8
502 // Mix / Layer
503 crossfade_t Crossfade;
504 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
505 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
506 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
507 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
508 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
509 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
510 uint8_t AttenuationControllerThreshold;///< 0-127
511 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
512 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
513 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
514 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
515 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
516 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
517
518 // derived attributes from DLS::Sampler
519 using DLS::Sampler::UnityNote;
520 using DLS::Sampler::FineTune;
521 using DLS::Sampler::Gain;
522 using DLS::Sampler::SampleLoops;
523 using DLS::Sampler::pSampleLoops;
524
525 // own methods
526 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
527 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
528 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
529 void SetVelocityResponseCurve(curve_type_t curve);
530 void SetVelocityResponseDepth(uint8_t depth);
531 void SetVelocityResponseCurveScaling(uint8_t scaling);
532 void SetReleaseVelocityResponseCurve(curve_type_t curve);
533 void SetReleaseVelocityResponseDepth(uint8_t depth);
534 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
535 void SetVCFVelocityCurve(curve_type_t curve);
536 void SetVCFVelocityDynamicRange(uint8_t range);
537 void SetVCFVelocityScale(uint8_t scaling);
538 Region* GetParent() const;
539 // derived methods
540 using DLS::Sampler::AddSampleLoop;
541 using DLS::Sampler::DeleteSampleLoop;
542 // overridden methods
543 virtual void SetGain(int32_t gain);
544 virtual void UpdateChunks(progress_t* pProgress);
545 virtual void CopyAssign(const DimensionRegion* orig);
546 protected:
547 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
548 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
549 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
550 ~DimensionRegion();
551 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
552 void serialize(Serialization::Archive* archive);
553 friend class Region;
554 friend class Serialization::Archive;
555 private:
556 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
557 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
558 _lev_ctrl_none = 0x00,
559 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
560 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
561 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
562 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
563 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
564 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
565 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
566 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
567 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
568 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
569 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
570 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
571 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
572 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
573 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
574 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
575 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
576 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
577 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
578 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
579 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
580 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
581 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
582 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
583 _lev_ctrl_velocity = 0xff, ///< Key Velocity
584
585 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
586 // (the assigned values here are their official MIDI CC number plus the highest bit set):
587 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
588
589 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
590 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
591 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
592 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
593 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
594 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
595
596 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
597 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
598
599 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
600 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
601 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
602 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
603 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
604 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
605 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
606 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
607 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
608 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
609 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
610 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
611
612 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
613 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
614 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
615 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
616 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
617 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
618 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
619 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
620 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
621 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
622 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
623 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
624
625 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
626 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
627 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
628 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
629
630 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
631 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
632
633 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
634 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
635
636 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
637 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
638 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
639 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
640 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
641 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
642 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
643 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
644 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
645 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
646 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
647 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
648 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
649 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
650 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
651 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
652 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
653 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
654 } _lev_ctrl_t;
655 typedef std::map<uint32_t, double*> VelocityTableMap;
656
657 static size_t Instances; ///< Number of DimensionRegion instances.
658 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
659 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
660 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
661 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
662 Region* pRegion;
663
664 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
665 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
666 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
667 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
668 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
669 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
670 };
671
672 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
673 *
674 * This class provides access to the actual audio sample data of a
675 * Gigasampler/GigaStudio file. Along to the actual sample data, it also
676 * provides access to the sample's meta informations like bit depth,
677 * sample rate, encoding type, but also loop informations. The latter may be
678 * used by instruments for resembling sounds with arbitary note lengths.
679 *
680 * In case you created a new sample with File::AddSample(), you should
681 * first update all attributes with the desired meta informations
682 * (amount of channels, bit depth, sample rate, etc.), then call
683 * Resize() with the desired sample size, followed by File::Save(), this
684 * will create the mandatory RIFF chunk which will hold the sample wave
685 * data and / or resize the file so you will be able to Write() the
686 * sample data directly to disk.
687 *
688 * @e Caution: for gig synthesis, most looping relevant information are
689 * retrieved from the respective DimensionRegon instead from the Sample
690 * itself. This was made for allowing different loop definitions for the
691 * same sample under different conditions.
692 *
693 * Since the gig format was designed as extension to the DLS file format,
694 * this class is derived from the DLS::Sample class. So also refer to
695 * DLS::Sample for additional informations, class attributes and methods.
696 */
697 class Sample : public DLS::Sample {
698 public:
699 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
700 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
701 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
702 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
703 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
704 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
705 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
706 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
707 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
708 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
709 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
710 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
711 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
712 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
713 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
714 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
715 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
716 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
717
718 // own methods
719 buffer_t LoadSampleData();
720 buffer_t LoadSampleData(file_offset_t SampleCount);
721 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
722 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
723 buffer_t GetCache();
724 // own static methods
725 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
726 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
727 // overridden methods
728 void ReleaseSampleData();
729 void Resize(file_offset_t NewSize);
730 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
731 file_offset_t GetPos() const;
732 file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
733 file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
734 file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
735 Group* GetGroup() const;
736 virtual void UpdateChunks(progress_t* pProgress);
737 void CopyAssignMeta(const Sample* orig);
738 void CopyAssignWave(const Sample* orig);
739 uint32_t GetWaveDataCRC32Checksum();
740 bool VerifyWaveData(uint32_t* pActually = NULL);
741 protected:
742 static size_t Instances; ///< Number of instances of class Sample.
743 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
744 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
745 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
746 file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
747 file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
748 file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
749 file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
750 file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
751 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
752 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
753 RIFF::Chunk* pCk3gix;
754 RIFF::Chunk* pCkSmpl;
755 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
756
757 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
758 ~Sample();
759 uint32_t CalculateWaveDataChecksum();
760
761 // Guess size (in bytes) of a compressed sample
762 inline file_offset_t GuessSize(file_offset_t samples) {
763 // 16 bit: assume all frames are compressed - 1 byte
764 // per sample and 5 bytes header per 2048 samples
765
766 // 24 bit: assume next best compression rate - 1.5
767 // bytes per sample and 13 bytes header per 256
768 // samples
769 const file_offset_t size =
770 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
771 : samples + (samples >> 10) * 5;
772 // Double for stereo and add one worst case sample
773 // frame
774 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
775 }
776
777 // Worst case amount of sample points that can be read with the
778 // given decompression buffer.
779 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
780 return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
781 }
782 private:
783 void ScanCompressedSample();
784 friend class File;
785 friend class Region;
786 friend class Group; // allow to modify protected member pGroup
787 };
788
789 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
790 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
791 *
792 * A Region reflects a consecutive area (key range) on the keyboard. The
793 * individual regions in the gig format may not overlap with other regions
794 * (of the same instrument that is). Further, in the gig format a Region is
795 * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
796 * itself does not provide the sample mapping or articulation informations
797 * used, even though the data structures of regions indeed provide such
798 * informations. The latter is however just of historical nature, because
799 * the gig file format was derived from the DLS file format.
800 *
801 * Each Region consists of at least one or more DimensionRegions. The actual
802 * amount of DimensionRegions depends on which kind of "dimensions" are
803 * defined for this region, and on the split / zone amount for each of those
804 * dimensions.
805 *
806 * Since the gig format was designed as extension to the DLS file format,
807 * this class is derived from the DLS::Region class. So also refer to
808 * DLS::Region for additional informations, class attributes and methods.
809 */
810 class Region : public DLS::Region {
811 public:
812 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
813 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
814 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
815 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
816 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
817
818 // own methods
819 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
820 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
821 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
822 Sample* GetSample();
823 void AddDimension(dimension_def_t* pDimDef);
824 void DeleteDimension(dimension_def_t* pDimDef);
825 dimension_def_t* GetDimensionDefinition(dimension_t type);
826 void DeleteDimensionZone(dimension_t type, int zone);
827 void SplitDimensionZone(dimension_t type, int zone);
828 void SetDimensionType(dimension_t oldType, dimension_t newType);
829 // overridden methods
830 virtual void SetKeyRange(uint16_t Low, uint16_t High);
831 virtual void UpdateChunks(progress_t* pProgress);
832 virtual void CopyAssign(const Region* orig);
833 protected:
834 Region(Instrument* pInstrument, RIFF::List* rgnList);
835 void LoadDimensionRegions(RIFF::List* rgn);
836 void UpdateVelocityTable();
837 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
838 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
839 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
840 ~Region();
841 friend class Instrument;
842 };
843
844 /** @brief Abstract base class for all MIDI rules.
845 *
846 * Note: Instead of using MIDI rules, we recommend you using real-time
847 * instrument scripts instead. Read about the reasons below.
848 *
849 * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
850 * introduced with GigaStudio 4 as an attempt to increase the power of
851 * potential user controls over sounds. At that point other samplers already
852 * supported certain powerful user control features, which were not possible
853 * with GigaStudio yet. For example triggering new notes by MIDI CC
854 * controller.
855 *
856 * Such extended features however were usually implemented by other samplers
857 * by requiring the sound designer to write an instrument script which the
858 * designer would then bundle with the respective instrument file. Such
859 * scripts are essentially text files, using a very specific programming
860 * language for the purpose of controlling the sampler in real-time. Since
861 * however musicians are not typically keen to writing such cumbersome
862 * script files, the GigaStudio designers decided to implement such extended
863 * features completely without instrument scripts. Instead they created a
864 * set of rules, which could be defined and altered conveniently by mouse
865 * clicks in GSt's instrument editor application. The downside of this
866 * overall approach however, was that those MIDI rules were very limited in
867 * practice. As sound designer you easily came across the possiblities such
868 * MIDI rules were able to offer.
869 *
870 * Due to such severe use case constraints, support for MIDI rules is quite
871 * limited in libgig. At the moment only the "Control Trigger", "Alternator"
872 * and the "Legato" MIDI rules are supported by libgig. Consequently the
873 * graphical instrument editor application gigedit just supports the
874 * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
875 * support any MIDI rule type at all and LinuxSampler probably will not
876 * support MIDI rules in future either.
877 *
878 * Instead of using MIDI rules, we introduced real-time instrument scripts
879 * as extension to the original GigaStudio file format. This script based
880 * solution is much more powerful than MIDI rules and is already supported
881 * by libgig, gigedit and LinuxSampler.
882 *
883 * @deprecated Just provided for backward compatiblity, use Script for new
884 * instruments instead.
885 */
886 class MidiRule {
887 public:
888 virtual ~MidiRule() { }
889 protected:
890 virtual void UpdateChunks(uint8_t* pData) const = 0;
891 friend class Instrument;
892 };
893
894 /** @brief MIDI rule for triggering notes by control change events.
895 *
896 * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
897 * control change events to the sampler.
898 *
899 * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
900 * by LinuxSampler. We recommend you using real-time instrument scripts
901 * instead. Read more about the details and reasons for this in the
902 * description of the MidiRule base class.
903 *
904 * @deprecated Just provided for backward compatiblity, use Script for new
905 * instruments instead. See description of MidiRule for details.
906 */
907 class MidiRuleCtrlTrigger : public MidiRule {
908 public:
909 uint8_t ControllerNumber; ///< MIDI controller number.
910 uint8_t Triggers; ///< Number of triggers.
911 struct trigger_t {
912 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
913 bool Descending; ///< If the change in CC value should be downwards.
914 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
915 uint8_t Key; ///< Key to trigger.
916 bool NoteOff; ///< If a note off should be triggered instead of a note on.
917 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
918 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
919 } pTriggers[32];
920
921 protected:
922 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
923 MidiRuleCtrlTrigger();
924 void UpdateChunks(uint8_t* pData) const;
925 friend class Instrument;
926 };
927
928 /** @brief MIDI rule for instruments with legato samples.
929 *
930 * A "Legato MIDI rule" allows playing instruments resembling the legato
931 * playing technique. In the past such legato articulations were tried to be
932 * simulated by pitching the samples of the instrument. However since
933 * usually a high amount of pitch is needed for legatos, this always sounded
934 * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
935 * approach. Instead of pitching the samples, it allows the sound designer
936 * to bundle separate, additional samples for the individual legato
937 * situations and the legato rules defined which samples to be played in
938 * which situation.
939 *
940 * Note: "Legato MIDI rules" are only supported by gigedit, but not
941 * by LinuxSampler. We recommend you using real-time instrument scripts
942 * instead. Read more about the details and reasons for this in the
943 * description of the MidiRule base class.
944 *
945 * @deprecated Just provided for backward compatiblity, use Script for new
946 * instruments instead. See description of MidiRule for details.
947 */
948 class MidiRuleLegato : public MidiRule {
949 public:
950 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
951 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
952 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
953 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
954 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
955 uint16_t ReleaseTime; ///< Release time
956 range_t KeyRange; ///< Key range for legato notes
957 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
958 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
959 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
960
961 protected:
962 MidiRuleLegato(RIFF::Chunk* _3ewg);
963 MidiRuleLegato();
964 void UpdateChunks(uint8_t* pData) const;
965 friend class Instrument;
966 };
967
968 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
969 *
970 * The instrument must be using the smartmidi dimension.
971 *
972 * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
973 * LinuxSampler. We recommend you using real-time instrument scripts
974 * instead. Read more about the details and reasons for this in the
975 * description of the MidiRule base class.
976 *
977 * @deprecated Just provided for backward compatiblity, use Script for new
978 * instruments instead. See description of MidiRule for details.
979 */
980 class MidiRuleAlternator : public MidiRule {
981 public:
982 uint8_t Articulations; ///< Number of articulations in the instrument
983 String pArticulations[32]; ///< Names of the articulations
984
985 range_t PlayRange; ///< Key range of the playable keys in the instrument
986
987 uint8_t Patterns; ///< Number of alternator patterns
988 struct pattern_t {
989 String Name; ///< Name of the pattern
990 int Size; ///< Number of steps in the pattern
991 const uint8_t& operator[](int i) const { /// Articulation to play
992 return data[i];
993 }
994 uint8_t& operator[](int i) {
995 return data[i];
996 }
997 private:
998 uint8_t data[32];
999 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1000
1001 typedef enum {
1002 selector_none,
1003 selector_key_switch,
1004 selector_controller
1005 } selector_t;
1006 selector_t Selector; ///< Method by which pattern is chosen
1007 range_t KeySwitchRange; ///< Key range for key switch selector
1008 uint8_t Controller; ///< CC number for controller selector
1009
1010 bool Polyphonic; ///< If alternator should step forward only when all notes are off
1011 bool Chained; ///< If all patterns should be chained together
1012
1013 protected:
1014 MidiRuleAlternator(RIFF::Chunk* _3ewg);
1015 MidiRuleAlternator();
1016 void UpdateChunks(uint8_t* pData) const;
1017 friend class Instrument;
1018 };
1019
1020 /** @brief A MIDI rule not yet implemented by libgig.
1021 *
1022 * This class is currently used as a place holder by libgig for MIDI rule
1023 * types which are not supported by libgig yet.
1024 *
1025 * Note: Support for missing MIDI rule types are probably never added to
1026 * libgig. We recommend you using real-time instrument scripts instead.
1027 * Read more about the details and reasons for this in the description of
1028 * the MidiRule base class.
1029 *
1030 * @deprecated Just provided for backward compatiblity, use Script for new
1031 * instruments instead. See description of MidiRule for details.
1032 */
1033 class MidiRuleUnknown : public MidiRule {
1034 protected:
1035 MidiRuleUnknown() { }
1036 void UpdateChunks(uint8_t* pData) const { }
1037 friend class Instrument;
1038 };
1039
1040 /** @brief Real-time instrument script (gig format extension).
1041 *
1042 * Real-time instrument scripts are user supplied small programs which can
1043 * be used by instrument designers to create custom behaviors and features
1044 * not available in the stock sampler engine. Features which might be very
1045 * exotic or specific for the respective instrument.
1046 *
1047 * This is an extension of the GigaStudio format, thus a feature which was
1048 * not available in the GigaStudio 4 software. It is currently only
1049 * supported by LinuxSampler and gigedit. Scripts will not load with the
1050 * original GigaStudio software.
1051 *
1052 * You find more informations about Instrument Scripts on the LinuxSampler
1053 * documentation site:
1054 *
1055 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1056 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1057 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1058 * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1059 */
1060 class Script {
1061 public:
1062 enum Encoding_t {
1063 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1064 };
1065 enum Compression_t {
1066 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1067 };
1068 enum Language_t {
1069 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1070 };
1071
1072 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1073 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1074 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1075 Language_t Language; ///< Programming language and dialect the script is written in.
1076 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1077
1078 String GetScriptAsText();
1079 void SetScriptAsText(const String& text);
1080 void SetGroup(ScriptGroup* pGroup);
1081 ScriptGroup* GetGroup() const;
1082 void CopyAssign(const Script* orig);
1083 protected:
1084 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1085 virtual ~Script();
1086 void UpdateChunks(progress_t* pProgress);
1087 void RemoveAllScriptReferences();
1088 friend class ScriptGroup;
1089 friend class Instrument;
1090 private:
1091 ScriptGroup* pGroup;
1092 RIFF::Chunk* pChunk; ///< 'Scri' chunk
1093 std::vector<uint8_t> data;
1094 uint32_t crc; ///< CRC-32 checksum of the raw script data
1095 };
1096
1097 /** @brief Group of instrument scripts (gig format extension).
1098 *
1099 * This class is simply used to sort a bunch of real-time instrument scripts
1100 * into individual groups. This allows instrument designers and script
1101 * developers to keep scripts in a certain order while working with a larger
1102 * amount of scripts in an instrument editor.
1103 *
1104 * This is an extension of the GigaStudio format, thus a feature which was
1105 * not available in the GigaStudio 4 software. It is currently only
1106 * supported by LinuxSampler and gigedit.
1107 */
1108 class ScriptGroup {
1109 public:
1110 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1111
1112 Script* GetScript(uint index);
1113 Script* AddScript();
1114 void DeleteScript(Script* pScript);
1115 protected:
1116 ScriptGroup(File* file, RIFF::List* lstRTIS);
1117 virtual ~ScriptGroup();
1118 void LoadScripts();
1119 void UpdateChunks(progress_t* pProgress);
1120 friend class Script;
1121 friend class File;
1122 private:
1123 File* pFile;
1124 RIFF::List* pList; ///< 'RTIS' list chunk
1125 std::list<Script*>* pScripts;
1126 };
1127
1128 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1129 *
1130 * This class provides access to Gigasampler/GigaStudio instruments
1131 * contained in .gig files. A gig instrument is merely a set of keyboard
1132 * ranges (called Region), plus some additional global informations about
1133 * the instrument. The major part of the actual instrument definition used
1134 * for the synthesis of the instrument is contained in the respective Region
1135 * object (or actually in the respective DimensionRegion object being, see
1136 * description of Region for details).
1137 *
1138 * Since the gig format was designed as extension to the DLS file format,
1139 * this class is derived from the DLS::Instrument class. So also refer to
1140 * DLS::Instrument for additional informations, class attributes and
1141 * methods.
1142 */
1143 class Instrument : protected DLS::Instrument {
1144 public:
1145 // derived attributes from DLS::Resource
1146 using DLS::Resource::pInfo;
1147 using DLS::Resource::pDLSID;
1148 // derived attributes from DLS::Instrument
1149 using DLS::Instrument::IsDrum;
1150 using DLS::Instrument::MIDIBank;
1151 using DLS::Instrument::MIDIBankCoarse;
1152 using DLS::Instrument::MIDIBankFine;
1153 using DLS::Instrument::MIDIProgram;
1154 using DLS::Instrument::Regions;
1155 // own attributes
1156 int32_t Attenuation; ///< in dB
1157 uint16_t EffectSend;
1158 int16_t FineTune; ///< in cents
1159 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1160 bool PianoReleaseMode;
1161 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1162
1163
1164 // derived methods from DLS::Resource
1165 using DLS::Resource::GetParent;
1166 // overridden methods
1167 Region* GetFirstRegion();
1168 Region* GetNextRegion();
1169 Region* AddRegion();
1170 void DeleteRegion(Region* pRegion);
1171 void MoveTo(Instrument* dst);
1172 virtual void UpdateChunks(progress_t* pProgress);
1173 virtual void CopyAssign(const Instrument* orig);
1174 // own methods
1175 Region* GetRegion(unsigned int Key);
1176 MidiRule* GetMidiRule(int i);
1177 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1178 MidiRuleLegato* AddMidiRuleLegato();
1179 MidiRuleAlternator* AddMidiRuleAlternator();
1180 void DeleteMidiRule(int i);
1181 // real-time instrument script methods
1182 Script* GetScriptOfSlot(uint index);
1183 void AddScriptSlot(Script* pScript, bool bypass = false);
1184 void SwapScriptSlots(uint index1, uint index2);
1185 void RemoveScriptSlot(uint index);
1186 void RemoveScript(Script* pScript);
1187 uint ScriptSlotCount() const;
1188 bool IsScriptSlotBypassed(uint index);
1189 void SetScriptSlotBypassed(uint index, bool bBypass);
1190 protected:
1191 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1192
1193 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1194 ~Instrument();
1195 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1196 void UpdateRegionKeyTable();
1197 void LoadScripts();
1198 void UpdateScriptFileOffsets();
1199 friend class File;
1200 friend class Region; // so Region can call UpdateRegionKeyTable()
1201 private:
1202 struct _ScriptPooolEntry {
1203 uint32_t fileOffset;
1204 bool bypass;
1205 };
1206 struct _ScriptPooolRef {
1207 Script* script;
1208 bool bypass;
1209 };
1210 MidiRule** pMidiRules;
1211 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1212 std::vector<_ScriptPooolRef>* pScriptRefs;
1213 };
1214
1215 /** @brief Group of Gigasampler samples
1216 *
1217 * Groups help to organize a huge collection of Gigasampler samples.
1218 * Groups are not concerned at all for the synthesis, but they help
1219 * sound library developers when working on complex instruments with an
1220 * instrument editor (as long as that instrument editor supports it ;-).
1221 *
1222 * A sample is always assigned to exactly one Group. This also means
1223 * there is always at least one Group in a .gig file, no matter if you
1224 * created one yet or not.
1225 */
1226 class Group {
1227 public:
1228 String Name; ///< Stores the name of this Group.
1229
1230 Sample* GetFirstSample();
1231 Sample* GetNextSample();
1232 void AddSample(Sample* pSample);
1233 protected:
1234 Group(File* file, RIFF::Chunk* ck3gnm);
1235 virtual ~Group();
1236 virtual void UpdateChunks(progress_t* pProgress);
1237 void MoveAll();
1238 friend class File;
1239 private:
1240 File* pFile;
1241 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1242 };
1243
1244 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1245 *
1246 * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1247 * with libgig. It allows you to open existing .gig files, modifying them
1248 * and saving them persistently either under the same file name or under a
1249 * different location.
1250 *
1251 * A .gig file is merely a monolithic file. That means samples and the
1252 * defintion of the virtual instruments are contained in the same file. A
1253 * .gig file contains an arbitrary amount of samples, and an arbitrary
1254 * amount of instruments which are referencing those samples. It is also
1255 * possible to store samples in .gig files not being referenced by any
1256 * instrument. This is not an error from the file format's point of view and
1257 * it is actually often used in practice during the design phase of new gig
1258 * instruments.
1259 *
1260 * So on toplevel of the gig file format you have:
1261 *
1262 * - A set of samples (see Sample).
1263 * - A set of virtual instruments (see Instrument).
1264 *
1265 * And as extension to the original GigaStudio format, we added:
1266 *
1267 * - Real-time instrument scripts (see Script).
1268 *
1269 * Note that the latter however is only supported by libgig, gigedit and
1270 * LinuxSampler. Scripts are not supported by the original GigaStudio
1271 * software.
1272 *
1273 * All released Gigasampler/GigaStudio file format versions are supported
1274 * (so from first Gigasampler version up to including GigaStudio 4).
1275 *
1276 * Since the gig format was designed as extension to the DLS file format,
1277 * this class is derived from the DLS::File class. So also refer to
1278 * DLS::File for additional informations, class attributes and methods.
1279 */
1280 class File : protected DLS::File {
1281 public:
1282 static const DLS::version_t VERSION_2;
1283 static const DLS::version_t VERSION_3;
1284
1285 // derived attributes from DLS::Resource
1286 using DLS::Resource::pInfo;
1287 using DLS::Resource::pDLSID;
1288 // derived attributes from DLS::File
1289 using DLS::File::pVersion;
1290 using DLS::File::Instruments;
1291
1292 // derived methods from DLS::Resource
1293 using DLS::Resource::GetParent;
1294 // derived methods from DLS::File
1295 using DLS::File::Save;
1296 using DLS::File::GetFileName;
1297 using DLS::File::SetFileName;
1298 // overridden methods
1299 File();
1300 File(RIFF::File* pRIFF);
1301 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1302 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1303 Sample* GetSample(uint index);
1304 Sample* AddSample();
1305 void DeleteSample(Sample* pSample);
1306 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1307 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1308 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1309 Instrument* AddInstrument();
1310 Instrument* AddDuplicateInstrument(const Instrument* orig);
1311 void DeleteInstrument(Instrument* pInstrument);
1312 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1313 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1314 Group* GetGroup(uint index);
1315 Group* GetGroup(String name);
1316 Group* AddGroup();
1317 void DeleteGroup(Group* pGroup);
1318 void DeleteGroupOnly(Group* pGroup);
1319 void SetAutoLoad(bool b);
1320 bool GetAutoLoad();
1321 void AddContentOf(File* pFile);
1322 ScriptGroup* GetScriptGroup(uint index);
1323 ScriptGroup* GetScriptGroup(const String& name);
1324 ScriptGroup* AddScriptGroup();
1325 void DeleteScriptGroup(ScriptGroup* pGroup);
1326 virtual ~File();
1327 virtual void UpdateChunks(progress_t* pProgress);
1328 protected:
1329 // overridden protected methods from DLS::File
1330 virtual void LoadSamples();
1331 virtual void LoadInstruments();
1332 virtual void LoadGroups();
1333 virtual void UpdateFileOffsets();
1334 // own protected methods
1335 virtual void LoadSamples(progress_t* pProgress);
1336 virtual void LoadInstruments(progress_t* pProgress);
1337 virtual void LoadScriptGroups();
1338 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1339 uint32_t GetSampleChecksum(Sample* pSample);
1340 uint32_t GetSampleChecksumByIndex(int index);
1341 bool VerifySampleChecksumTable();
1342 bool RebuildSampleChecksumTable();
1343 int GetWaveTableIndexOf(gig::Sample* pSample);
1344 friend class Region;
1345 friend class Sample;
1346 friend class Instrument;
1347 friend class Group; // so Group can access protected member pRIFF
1348 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1349 private:
1350 std::list<Group*>* pGroups;
1351 std::list<Group*>::iterator GroupsIterator;
1352 bool bAutoLoad;
1353 std::list<ScriptGroup*>* pScriptGroups;
1354 };
1355
1356 /**
1357 * Will be thrown whenever a gig specific error occurs while trying to
1358 * access a Gigasampler File. Note: In your application you should
1359 * better catch for RIFF::Exception rather than this one, except you
1360 * explicitly want to catch and handle gig::Exception, DLS::Exception
1361 * and RIFF::Exception independently, which usually shouldn't be
1362 * necessary though.
1363 */
1364 class Exception : public DLS::Exception {
1365 public:
1366 Exception(String Message);
1367 void PrintMessage();
1368 };
1369
1370 #if HAVE_RTTI
1371 size_t countEnum(const std::type_info& type);
1372 size_t countEnum(String typeName);
1373 const char* enumKey(const std::type_info& type, size_t value);
1374 const char* enumKey(String typeName, size_t value);
1375 bool enumKey(const std::type_info& type, String key);
1376 bool enumKey(String typeName, String key);
1377 const char** enumKeys(const std::type_info& type);
1378 const char** enumKeys(String typeName);
1379 size_t enumValue(String key);
1380 #endif // HAVE_RTTI
1381
1382 String libraryName();
1383 String libraryVersion();
1384
1385 } // namespace gig
1386
1387 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC