/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3173 - (show annotations) (download) (as text)
Wed May 10 23:07:28 2017 UTC (6 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 89293 byte(s)
* Print compiler warning if no RTTI available.
* Serialization::DataType class: Implemented demangling C++ type
  names (for methods asLongDescr() and
  customTypeName(bool demangle=false)).
* gig.h: When there is no RTTI, only hide API functions which
  really require RTTI.
* Bumped version (4.0.0.svn21).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #ifndef __has_feature
31 # define __has_feature(x) 0
32 #endif
33 #ifndef HAVE_RTTI
34 # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35 # define HAVE_RTTI 1
36 # else
37 # define HAVE_RTTI 0
38 # endif
39 #endif
40 #if HAVE_RTTI
41 # include <typeinfo>
42 #else
43 # warning No RTTI available!
44 #endif
45
46 #if WORDS_BIGENDIAN
47 # define LIST_TYPE_3PRG 0x33707267
48 # define LIST_TYPE_3EWL 0x3365776C
49 # define LIST_TYPE_3GRI 0x33677269
50 # define LIST_TYPE_3GNL 0x33676E6C
51 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 # define CHUNK_ID_3GIX 0x33676978
54 # define CHUNK_ID_3EWA 0x33657761
55 # define CHUNK_ID_3LNK 0x336C6E6B
56 # define CHUNK_ID_3EWG 0x33657767
57 # define CHUNK_ID_EWAV 0x65776176
58 # define CHUNK_ID_3GNM 0x33676E6D
59 # define CHUNK_ID_EINF 0x65696E66
60 # define CHUNK_ID_3CRC 0x33637263
61 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
62 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
63 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
64 #else // little endian
65 # define LIST_TYPE_3PRG 0x67727033
66 # define LIST_TYPE_3EWL 0x6C776533
67 # define LIST_TYPE_3GRI 0x69726733
68 # define LIST_TYPE_3GNL 0x6C6E6733
69 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
70 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
71 # define CHUNK_ID_3GIX 0x78696733
72 # define CHUNK_ID_3EWA 0x61776533
73 # define CHUNK_ID_3LNK 0x6B6E6C33
74 # define CHUNK_ID_3EWG 0x67776533
75 # define CHUNK_ID_EWAV 0x76617765
76 # define CHUNK_ID_3GNM 0x6D6E6733
77 # define CHUNK_ID_EINF 0x666E6965
78 # define CHUNK_ID_3CRC 0x63726333
79 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
80 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
81 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
82 #endif // WORDS_BIGENDIAN
83
84 #ifndef GIG_DECLARE_ENUM
85 # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
86 #endif
87
88 // just symbol prototyping (since Serialization.h not included by default here)
89 namespace Serialization { class Archive; }
90
91 /** Gigasampler/GigaStudio specific classes and definitions */
92 namespace gig {
93
94 typedef std::string String;
95 typedef RIFF::progress_t progress_t;
96 typedef RIFF::file_offset_t file_offset_t;
97
98 /** Lower and upper limit of a range. */
99 struct range_t {
100 uint8_t low; ///< Low value of range.
101 uint8_t high; ///< High value of range.
102 };
103
104 /** Pointer address and size of a buffer. */
105 struct buffer_t {
106 void* pStart; ///< Points to the beginning of the buffer.
107 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
108 file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
109 buffer_t() {
110 pStart = NULL;
111 Size = 0;
112 NullExtensionSize = 0;
113 }
114 };
115
116 /** Standard types of sample loops.
117 *
118 * @see countEnum(), enumKey(), enumKeys(), enumValue()
119 */
120 GIG_DECLARE_ENUM(loop_type_t,
121 loop_type_normal = 0x00000000, ///< Loop forward (normal)
122 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
123 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
124 );
125
126 /** Society of Motion Pictures and Television E time format.
127 *
128 * @see countEnum(), enumKey(), enumKeys(), enumValue()
129 */
130 GIG_DECLARE_ENUM(smpte_format_t,
131 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
132 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
133 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
134 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
135 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
136 );
137
138 /** Defines the shape of a function graph.
139 *
140 * @see countEnum(), enumKey(), enumKeys(), enumValue()
141 */
142 GIG_DECLARE_ENUM(curve_type_t,
143 curve_type_nonlinear = 0,
144 curve_type_linear = 1,
145 curve_type_special = 2,
146 curve_type_unknown = 0xffffffff
147 );
148
149 /** Dimensions allow to bypass one of the following controllers.
150 *
151 * @see countEnum(), enumKey(), enumKeys(), enumValue()
152 */
153 GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
154 dim_bypass_ctrl_none,
155 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
156 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
157 );
158
159 /** Defines how LFO3 is controlled by.
160 *
161 * @see countEnum(), enumKey(), enumKeys(), enumValue()
162 */
163 GIG_DECLARE_ENUM(lfo3_ctrl_t,
164 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
165 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
166 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
167 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
168 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
169 );
170
171 /** Defines how LFO2 is controlled by.
172 *
173 * @see countEnum(), enumKey(), enumKeys(), enumValue()
174 */
175 GIG_DECLARE_ENUM(lfo2_ctrl_t,
176 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
177 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
178 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
179 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
180 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
181 );
182
183 /** Defines how LFO1 is controlled by.
184 *
185 * @see countEnum(), enumKey(), enumKeys(), enumValue()
186 */
187 GIG_DECLARE_ENUM(lfo1_ctrl_t,
188 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
189 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
190 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
191 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
192 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
193 );
194
195 /** Defines how the filter cutoff frequency is controlled by.
196 *
197 * @see countEnum(), enumKey(), enumKeys(), enumValue()
198 */
199 GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
200 vcf_cutoff_ctrl_none = 0x00,
201 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
202 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
203 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
204 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
205 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
206 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
207 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
208 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
209 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
210 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
211 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
212 );
213
214 /** Defines how the filter resonance is controlled by.
215 *
216 * @see countEnum(), enumKey(), enumKeys(), enumValue()
217 */
218 GIG_DECLARE_ENUM(vcf_res_ctrl_t,
219 vcf_res_ctrl_none = 0xffffffff,
220 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
221 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
222 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
223 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
224 );
225
226 /**
227 * Defines a controller that has a certain contrained influence on a
228 * particular synthesis parameter (used to define attenuation controller,
229 * EG1 controller and EG2 controller).
230 *
231 * You should use the respective <i>typedef</i> (means either
232 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
233 */
234 struct leverage_ctrl_t {
235 /** Defines possible controllers.
236 *
237 * @see countEnum(), enumKey(), enumKeys(), enumValue()
238 */
239 GIG_DECLARE_ENUM(type_t,
240 type_none = 0x00, ///< No controller defined
241 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
242 type_velocity = 0xff, ///< Key Velocity
243 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
244 );
245
246 type_t type; ///< Controller type
247 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
248
249 void serialize(Serialization::Archive* archive);
250 };
251
252 /**
253 * Defines controller influencing attenuation.
254 *
255 * @see leverage_ctrl_t
256 */
257 typedef leverage_ctrl_t attenuation_ctrl_t;
258
259 /**
260 * Defines controller influencing envelope generator 1.
261 *
262 * @see leverage_ctrl_t
263 */
264 typedef leverage_ctrl_t eg1_ctrl_t;
265
266 /**
267 * Defines controller influencing envelope generator 2.
268 *
269 * @see leverage_ctrl_t
270 */
271 typedef leverage_ctrl_t eg2_ctrl_t;
272
273 /**
274 * Defines the type of dimension, that is how the dimension zones (and
275 * thus how the dimension regions are selected by. The number of
276 * dimension zones is always a power of two. All dimensions can have up
277 * to 32 zones (except the layer dimension with only up to 8 zones and
278 * the samplechannel dimension which currently allows only 2 zones).
279 *
280 * @see countEnum(), enumKey(), enumKeys(), enumValue()
281 */
282 GIG_DECLARE_ENUM(dimension_t,
283 dimension_none = 0x00, ///< Dimension not in use.
284 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
285 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
286 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
287 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
288 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
289 dimension_keyboard = 0x85, ///< Dimension for keyswitching
290 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
291 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
292 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
293 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
294 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
295 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
296 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
297 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
298 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
299 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
300 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
301 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
302 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
303 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
304 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
305 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
306 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
307 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
308 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
309 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
310 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
311 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
312 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
313 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
314 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
315 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
316 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
317 );
318
319 /**
320 * Intended for internal usage: will be used to convert a dimension value
321 * into the corresponding dimension bit number.
322 *
323 * @see countEnum(), enumKey(), enumKeys(), enumValue()
324 */
325 GIG_DECLARE_ENUM(split_type_t,
326 split_type_normal, ///< dimension value between 0-127
327 split_type_bit ///< dimension values are already the sought bit number
328 );
329
330 /** General dimension definition. */
331 struct dimension_def_t {
332 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
333 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
334 uint8_t zones; ///< Number of zones the dimension has.
335 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
336 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
337 };
338
339 /** Defines which frequencies are filtered by the VCF.
340 *
341 * @see countEnum(), enumKey(), enumKeys(), enumValue()
342 */
343 GIG_DECLARE_ENUM(vcf_type_t,
344 vcf_type_lowpass = 0x00,
345 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
346 vcf_type_bandpass = 0x01,
347 vcf_type_highpass = 0x02,
348 vcf_type_bandreject = 0x03
349 );
350
351 /**
352 * Defines the envelope of a crossfade.
353 *
354 * Note: The default value for crossfade points is 0,0,0,0. Layers with
355 * such a default value should be treated as if they would not have a
356 * crossfade.
357 */
358 struct crossfade_t {
359 #if WORDS_BIGENDIAN
360 uint8_t out_end; ///< End postition of fade out.
361 uint8_t out_start; ///< Start position of fade out.
362 uint8_t in_end; ///< End position of fade in.
363 uint8_t in_start; ///< Start position of fade in.
364 #else // little endian
365 uint8_t in_start; ///< Start position of fade in.
366 uint8_t in_end; ///< End position of fade in.
367 uint8_t out_start; ///< Start position of fade out.
368 uint8_t out_end; ///< End postition of fade out.
369 #endif // WORDS_BIGENDIAN
370
371 void serialize(Serialization::Archive* archive);
372 };
373
374 /** Reflects the current playback state for a sample. */
375 struct playback_state_t {
376 file_offset_t position; ///< Current position within the sample.
377 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
378 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
379 };
380
381 // just symbol prototyping
382 class File;
383 class Instrument;
384 class Sample;
385 class Region;
386 class Group;
387 class Script;
388 class ScriptGroup;
389
390 /** @brief Encapsulates articulation informations of a dimension region.
391 *
392 * This is the most important data object of the Gigasampler / GigaStudio
393 * format. A DimensionRegion provides the link to the sample to be played
394 * and all required articulation informations to be interpreted for playing
395 * back the sample and processing it appropriately by the sampler software.
396 * Every Region of a Gigasampler Instrument has at least one dimension
397 * region (exactly then when the Region has no dimension defined). Many
398 * Regions though provide more than one DimensionRegion, which reflect
399 * different playing "cases". For example a different sample might be played
400 * if a certain pedal is pressed down, or if the note was triggered with
401 * different velocity.
402 *
403 * One instance of a DimensionRegion reflects exactly one particular case
404 * while playing an instrument (for instance "note between C3 and E3 was
405 * triggered AND note on velocity was between 20 and 42 AND modulation wheel
406 * controller is between 80 and 127). The DimensionRegion defines what to do
407 * under that one particular case, that is which sample to play back and how
408 * to play that sample back exactly and how to process it. So a
409 * DimensionRegion object is always linked to exactly one sample. It may
410 * however also link to no sample at all, for defining a "silence" case
411 * where nothing shall be played (for example when note on velocity was
412 * below 6).
413 *
414 * Note that a DimensionRegion object only defines "what to do", but it does
415 * not define "when to do it". To actually resolve which DimensionRegion to
416 * pick under which situation, you need to refer to the DimensionRegions'
417 * parent Region object. The Region object contains the necessary
418 * "Dimension" definitions, which in turn define which DimensionRegion is
419 * associated with which playing case exactly.
420 *
421 * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
422 * Low Frequency Oscillators:
423 *
424 * - EG1 and LFO1, both controlling sample amplitude
425 * - EG2 and LFO2, both controlling filter cutoff frequency
426 * - EG3 and LFO3, both controlling sample pitch
427 *
428 * Since the gig format was designed as extension to the DLS file format,
429 * this class is derived from the DLS::Sampler class. So also refer to
430 * DLS::Sampler for additional informations, class attributes and methods.
431 */
432 class DimensionRegion : protected DLS::Sampler {
433 public:
434 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
435 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
436 // Sample Amplitude EG/LFO
437 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
438 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
439 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
440 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
441 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
442 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
443 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
444 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
445 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
446 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
447 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
448 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
449 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
450 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
451 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
452 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
453 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
454 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
455 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
456 // Filter Cutoff Frequency EG/LFO
457 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
458 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
459 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
460 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
461 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
462 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
463 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
464 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
465 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
466 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
467 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
468 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
469 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
470 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
471 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
472 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
473 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
474 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
475 // Sample Pitch EG/LFO
476 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
477 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
478 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
479 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
480 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
481 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
482 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
483 // Filter
484 bool VCFEnabled; ///< If filter should be used.
485 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
486 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
487 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
488 uint8_t VCFCutoff; ///< Max. cutoff frequency.
489 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
490 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
491 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
492 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
493 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
494 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
495 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
496 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
497 // Key Velocity Transformations
498 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
499 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
500 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
501 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
502 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
503 uint8_t ReleaseTriggerDecay; ///< 0 - 8
504 // Mix / Layer
505 crossfade_t Crossfade;
506 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
507 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
508 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
509 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
510 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
511 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
512 uint8_t AttenuationControllerThreshold;///< 0-127
513 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
514 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
515 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
516 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
517 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
518 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
519
520 // derived attributes from DLS::Sampler
521 using DLS::Sampler::UnityNote;
522 using DLS::Sampler::FineTune;
523 using DLS::Sampler::Gain;
524 using DLS::Sampler::SampleLoops;
525 using DLS::Sampler::pSampleLoops;
526
527 // own methods
528 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
529 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
530 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
531 void SetVelocityResponseCurve(curve_type_t curve);
532 void SetVelocityResponseDepth(uint8_t depth);
533 void SetVelocityResponseCurveScaling(uint8_t scaling);
534 void SetReleaseVelocityResponseCurve(curve_type_t curve);
535 void SetReleaseVelocityResponseDepth(uint8_t depth);
536 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
537 void SetVCFVelocityCurve(curve_type_t curve);
538 void SetVCFVelocityDynamicRange(uint8_t range);
539 void SetVCFVelocityScale(uint8_t scaling);
540 Region* GetParent() const;
541 // derived methods
542 using DLS::Sampler::AddSampleLoop;
543 using DLS::Sampler::DeleteSampleLoop;
544 // overridden methods
545 virtual void SetGain(int32_t gain);
546 virtual void UpdateChunks(progress_t* pProgress);
547 virtual void CopyAssign(const DimensionRegion* orig);
548 protected:
549 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
550 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
551 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
552 ~DimensionRegion();
553 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
554 void serialize(Serialization::Archive* archive);
555 friend class Region;
556 friend class Serialization::Archive;
557 private:
558 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
559 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
560 _lev_ctrl_none = 0x00,
561 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
562 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
563 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
564 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
565 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
566 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
567 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
568 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
569 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
570 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
571 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
572 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
573 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
574 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
575 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
576 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
577 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
578 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
579 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
580 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
581 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
582 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
583 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
584 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
585 _lev_ctrl_velocity = 0xff, ///< Key Velocity
586
587 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
588 // (the assigned values here are their official MIDI CC number plus the highest bit set):
589 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
590
591 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
592 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
593 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
594 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
595 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
596 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
597
598 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
599 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
600
601 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
602 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
603 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
604 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
605 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
606 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
607 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
608 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
609 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
610 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
611 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
612 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
613
614 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
615 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
616 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
617 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
618 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
619 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
620 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
621 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
622 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
623 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
624 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
625 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
626
627 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
628 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
629 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
630 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
631
632 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
633 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
634
635 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
636 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
637
638 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
639 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
640 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
641 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
642 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
643 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
644 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
645 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
646 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
647 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
648 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
649 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
650 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
651 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
652 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
653 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
654 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
655 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
656 } _lev_ctrl_t;
657 typedef std::map<uint32_t, double*> VelocityTableMap;
658
659 static size_t Instances; ///< Number of DimensionRegion instances.
660 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
661 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
662 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
663 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
664 Region* pRegion;
665
666 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
667 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
668 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
669 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
670 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
671 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
672 };
673
674 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
675 *
676 * This class provides access to the actual audio sample data of a
677 * Gigasampler/GigaStudio file. Along to the actual sample data, it also
678 * provides access to the sample's meta informations like bit depth,
679 * sample rate, encoding type, but also loop informations. The latter may be
680 * used by instruments for resembling sounds with arbitary note lengths.
681 *
682 * In case you created a new sample with File::AddSample(), you should
683 * first update all attributes with the desired meta informations
684 * (amount of channels, bit depth, sample rate, etc.), then call
685 * Resize() with the desired sample size, followed by File::Save(), this
686 * will create the mandatory RIFF chunk which will hold the sample wave
687 * data and / or resize the file so you will be able to Write() the
688 * sample data directly to disk.
689 *
690 * @e Caution: for gig synthesis, most looping relevant information are
691 * retrieved from the respective DimensionRegon instead from the Sample
692 * itself. This was made for allowing different loop definitions for the
693 * same sample under different conditions.
694 *
695 * Since the gig format was designed as extension to the DLS file format,
696 * this class is derived from the DLS::Sample class. So also refer to
697 * DLS::Sample for additional informations, class attributes and methods.
698 */
699 class Sample : public DLS::Sample {
700 public:
701 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
702 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
703 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
704 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
705 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
706 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
707 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
708 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
709 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
710 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
711 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
712 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
713 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
714 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
715 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
716 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
717 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
718 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
719
720 // own methods
721 buffer_t LoadSampleData();
722 buffer_t LoadSampleData(file_offset_t SampleCount);
723 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
724 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
725 buffer_t GetCache();
726 // own static methods
727 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
728 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
729 // overridden methods
730 void ReleaseSampleData();
731 void Resize(file_offset_t NewSize);
732 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
733 file_offset_t GetPos() const;
734 file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
735 file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
736 file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
737 Group* GetGroup() const;
738 virtual void UpdateChunks(progress_t* pProgress);
739 void CopyAssignMeta(const Sample* orig);
740 void CopyAssignWave(const Sample* orig);
741 uint32_t GetWaveDataCRC32Checksum();
742 bool VerifyWaveData(uint32_t* pActually = NULL);
743 protected:
744 static size_t Instances; ///< Number of instances of class Sample.
745 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
746 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
747 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
748 file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
749 file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
750 file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
751 file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
752 file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
753 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
754 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
755 RIFF::Chunk* pCk3gix;
756 RIFF::Chunk* pCkSmpl;
757 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
758
759 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
760 ~Sample();
761 uint32_t CalculateWaveDataChecksum();
762
763 // Guess size (in bytes) of a compressed sample
764 inline file_offset_t GuessSize(file_offset_t samples) {
765 // 16 bit: assume all frames are compressed - 1 byte
766 // per sample and 5 bytes header per 2048 samples
767
768 // 24 bit: assume next best compression rate - 1.5
769 // bytes per sample and 13 bytes header per 256
770 // samples
771 const file_offset_t size =
772 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
773 : samples + (samples >> 10) * 5;
774 // Double for stereo and add one worst case sample
775 // frame
776 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
777 }
778
779 // Worst case amount of sample points that can be read with the
780 // given decompression buffer.
781 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
782 return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
783 }
784 private:
785 void ScanCompressedSample();
786 friend class File;
787 friend class Region;
788 friend class Group; // allow to modify protected member pGroup
789 };
790
791 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
792 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
793 *
794 * A Region reflects a consecutive area (key range) on the keyboard. The
795 * individual regions in the gig format may not overlap with other regions
796 * (of the same instrument that is). Further, in the gig format a Region is
797 * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
798 * itself does not provide the sample mapping or articulation informations
799 * used, even though the data structures of regions indeed provide such
800 * informations. The latter is however just of historical nature, because
801 * the gig file format was derived from the DLS file format.
802 *
803 * Each Region consists of at least one or more DimensionRegions. The actual
804 * amount of DimensionRegions depends on which kind of "dimensions" are
805 * defined for this region, and on the split / zone amount for each of those
806 * dimensions.
807 *
808 * Since the gig format was designed as extension to the DLS file format,
809 * this class is derived from the DLS::Region class. So also refer to
810 * DLS::Region for additional informations, class attributes and methods.
811 */
812 class Region : public DLS::Region {
813 public:
814 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
815 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
816 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
817 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
818 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
819
820 // own methods
821 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
822 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
823 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
824 Sample* GetSample();
825 void AddDimension(dimension_def_t* pDimDef);
826 void DeleteDimension(dimension_def_t* pDimDef);
827 dimension_def_t* GetDimensionDefinition(dimension_t type);
828 void DeleteDimensionZone(dimension_t type, int zone);
829 void SplitDimensionZone(dimension_t type, int zone);
830 void SetDimensionType(dimension_t oldType, dimension_t newType);
831 // overridden methods
832 virtual void SetKeyRange(uint16_t Low, uint16_t High);
833 virtual void UpdateChunks(progress_t* pProgress);
834 virtual void CopyAssign(const Region* orig);
835 protected:
836 Region(Instrument* pInstrument, RIFF::List* rgnList);
837 void LoadDimensionRegions(RIFF::List* rgn);
838 void UpdateVelocityTable();
839 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
840 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
841 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
842 ~Region();
843 friend class Instrument;
844 };
845
846 /** @brief Abstract base class for all MIDI rules.
847 *
848 * Note: Instead of using MIDI rules, we recommend you using real-time
849 * instrument scripts instead. Read about the reasons below.
850 *
851 * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
852 * introduced with GigaStudio 4 as an attempt to increase the power of
853 * potential user controls over sounds. At that point other samplers already
854 * supported certain powerful user control features, which were not possible
855 * with GigaStudio yet. For example triggering new notes by MIDI CC
856 * controller.
857 *
858 * Such extended features however were usually implemented by other samplers
859 * by requiring the sound designer to write an instrument script which the
860 * designer would then bundle with the respective instrument file. Such
861 * scripts are essentially text files, using a very specific programming
862 * language for the purpose of controlling the sampler in real-time. Since
863 * however musicians are not typically keen to writing such cumbersome
864 * script files, the GigaStudio designers decided to implement such extended
865 * features completely without instrument scripts. Instead they created a
866 * set of rules, which could be defined and altered conveniently by mouse
867 * clicks in GSt's instrument editor application. The downside of this
868 * overall approach however, was that those MIDI rules were very limited in
869 * practice. As sound designer you easily came across the possiblities such
870 * MIDI rules were able to offer.
871 *
872 * Due to such severe use case constraints, support for MIDI rules is quite
873 * limited in libgig. At the moment only the "Control Trigger", "Alternator"
874 * and the "Legato" MIDI rules are supported by libgig. Consequently the
875 * graphical instrument editor application gigedit just supports the
876 * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
877 * support any MIDI rule type at all and LinuxSampler probably will not
878 * support MIDI rules in future either.
879 *
880 * Instead of using MIDI rules, we introduced real-time instrument scripts
881 * as extension to the original GigaStudio file format. This script based
882 * solution is much more powerful than MIDI rules and is already supported
883 * by libgig, gigedit and LinuxSampler.
884 *
885 * @deprecated Just provided for backward compatiblity, use Script for new
886 * instruments instead.
887 */
888 class MidiRule {
889 public:
890 virtual ~MidiRule() { }
891 protected:
892 virtual void UpdateChunks(uint8_t* pData) const = 0;
893 friend class Instrument;
894 };
895
896 /** @brief MIDI rule for triggering notes by control change events.
897 *
898 * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
899 * control change events to the sampler.
900 *
901 * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
902 * by LinuxSampler. We recommend you using real-time instrument scripts
903 * instead. Read more about the details and reasons for this in the
904 * description of the MidiRule base class.
905 *
906 * @deprecated Just provided for backward compatiblity, use Script for new
907 * instruments instead. See description of MidiRule for details.
908 */
909 class MidiRuleCtrlTrigger : public MidiRule {
910 public:
911 uint8_t ControllerNumber; ///< MIDI controller number.
912 uint8_t Triggers; ///< Number of triggers.
913 struct trigger_t {
914 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
915 bool Descending; ///< If the change in CC value should be downwards.
916 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
917 uint8_t Key; ///< Key to trigger.
918 bool NoteOff; ///< If a note off should be triggered instead of a note on.
919 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
920 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
921 } pTriggers[32];
922
923 protected:
924 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
925 MidiRuleCtrlTrigger();
926 void UpdateChunks(uint8_t* pData) const;
927 friend class Instrument;
928 };
929
930 /** @brief MIDI rule for instruments with legato samples.
931 *
932 * A "Legato MIDI rule" allows playing instruments resembling the legato
933 * playing technique. In the past such legato articulations were tried to be
934 * simulated by pitching the samples of the instrument. However since
935 * usually a high amount of pitch is needed for legatos, this always sounded
936 * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
937 * approach. Instead of pitching the samples, it allows the sound designer
938 * to bundle separate, additional samples for the individual legato
939 * situations and the legato rules defined which samples to be played in
940 * which situation.
941 *
942 * Note: "Legato MIDI rules" are only supported by gigedit, but not
943 * by LinuxSampler. We recommend you using real-time instrument scripts
944 * instead. Read more about the details and reasons for this in the
945 * description of the MidiRule base class.
946 *
947 * @deprecated Just provided for backward compatiblity, use Script for new
948 * instruments instead. See description of MidiRule for details.
949 */
950 class MidiRuleLegato : public MidiRule {
951 public:
952 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
953 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
954 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
955 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
956 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
957 uint16_t ReleaseTime; ///< Release time
958 range_t KeyRange; ///< Key range for legato notes
959 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
960 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
961 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
962
963 protected:
964 MidiRuleLegato(RIFF::Chunk* _3ewg);
965 MidiRuleLegato();
966 void UpdateChunks(uint8_t* pData) const;
967 friend class Instrument;
968 };
969
970 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
971 *
972 * The instrument must be using the smartmidi dimension.
973 *
974 * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
975 * LinuxSampler. We recommend you using real-time instrument scripts
976 * instead. Read more about the details and reasons for this in the
977 * description of the MidiRule base class.
978 *
979 * @deprecated Just provided for backward compatiblity, use Script for new
980 * instruments instead. See description of MidiRule for details.
981 */
982 class MidiRuleAlternator : public MidiRule {
983 public:
984 uint8_t Articulations; ///< Number of articulations in the instrument
985 String pArticulations[32]; ///< Names of the articulations
986
987 range_t PlayRange; ///< Key range of the playable keys in the instrument
988
989 uint8_t Patterns; ///< Number of alternator patterns
990 struct pattern_t {
991 String Name; ///< Name of the pattern
992 int Size; ///< Number of steps in the pattern
993 const uint8_t& operator[](int i) const { /// Articulation to play
994 return data[i];
995 }
996 uint8_t& operator[](int i) {
997 return data[i];
998 }
999 private:
1000 uint8_t data[32];
1001 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1002
1003 typedef enum {
1004 selector_none,
1005 selector_key_switch,
1006 selector_controller
1007 } selector_t;
1008 selector_t Selector; ///< Method by which pattern is chosen
1009 range_t KeySwitchRange; ///< Key range for key switch selector
1010 uint8_t Controller; ///< CC number for controller selector
1011
1012 bool Polyphonic; ///< If alternator should step forward only when all notes are off
1013 bool Chained; ///< If all patterns should be chained together
1014
1015 protected:
1016 MidiRuleAlternator(RIFF::Chunk* _3ewg);
1017 MidiRuleAlternator();
1018 void UpdateChunks(uint8_t* pData) const;
1019 friend class Instrument;
1020 };
1021
1022 /** @brief A MIDI rule not yet implemented by libgig.
1023 *
1024 * This class is currently used as a place holder by libgig for MIDI rule
1025 * types which are not supported by libgig yet.
1026 *
1027 * Note: Support for missing MIDI rule types are probably never added to
1028 * libgig. We recommend you using real-time instrument scripts instead.
1029 * Read more about the details and reasons for this in the description of
1030 * the MidiRule base class.
1031 *
1032 * @deprecated Just provided for backward compatiblity, use Script for new
1033 * instruments instead. See description of MidiRule for details.
1034 */
1035 class MidiRuleUnknown : public MidiRule {
1036 protected:
1037 MidiRuleUnknown() { }
1038 void UpdateChunks(uint8_t* pData) const { }
1039 friend class Instrument;
1040 };
1041
1042 /** @brief Real-time instrument script (gig format extension).
1043 *
1044 * Real-time instrument scripts are user supplied small programs which can
1045 * be used by instrument designers to create custom behaviors and features
1046 * not available in the stock sampler engine. Features which might be very
1047 * exotic or specific for the respective instrument.
1048 *
1049 * This is an extension of the GigaStudio format, thus a feature which was
1050 * not available in the GigaStudio 4 software. It is currently only
1051 * supported by LinuxSampler and gigedit. Scripts will not load with the
1052 * original GigaStudio software.
1053 *
1054 * You find more informations about Instrument Scripts on the LinuxSampler
1055 * documentation site:
1056 *
1057 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1058 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1059 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1060 * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1061 */
1062 class Script {
1063 public:
1064 enum Encoding_t {
1065 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1066 };
1067 enum Compression_t {
1068 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1069 };
1070 enum Language_t {
1071 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1072 };
1073
1074 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1075 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1076 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1077 Language_t Language; ///< Programming language and dialect the script is written in.
1078 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1079
1080 String GetScriptAsText();
1081 void SetScriptAsText(const String& text);
1082 void SetGroup(ScriptGroup* pGroup);
1083 ScriptGroup* GetGroup() const;
1084 void CopyAssign(const Script* orig);
1085 protected:
1086 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1087 virtual ~Script();
1088 void UpdateChunks(progress_t* pProgress);
1089 void RemoveAllScriptReferences();
1090 friend class ScriptGroup;
1091 friend class Instrument;
1092 private:
1093 ScriptGroup* pGroup;
1094 RIFF::Chunk* pChunk; ///< 'Scri' chunk
1095 std::vector<uint8_t> data;
1096 uint32_t crc; ///< CRC-32 checksum of the raw script data
1097 };
1098
1099 /** @brief Group of instrument scripts (gig format extension).
1100 *
1101 * This class is simply used to sort a bunch of real-time instrument scripts
1102 * into individual groups. This allows instrument designers and script
1103 * developers to keep scripts in a certain order while working with a larger
1104 * amount of scripts in an instrument editor.
1105 *
1106 * This is an extension of the GigaStudio format, thus a feature which was
1107 * not available in the GigaStudio 4 software. It is currently only
1108 * supported by LinuxSampler and gigedit.
1109 */
1110 class ScriptGroup {
1111 public:
1112 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1113
1114 Script* GetScript(uint index);
1115 Script* AddScript();
1116 void DeleteScript(Script* pScript);
1117 protected:
1118 ScriptGroup(File* file, RIFF::List* lstRTIS);
1119 virtual ~ScriptGroup();
1120 void LoadScripts();
1121 void UpdateChunks(progress_t* pProgress);
1122 friend class Script;
1123 friend class File;
1124 private:
1125 File* pFile;
1126 RIFF::List* pList; ///< 'RTIS' list chunk
1127 std::list<Script*>* pScripts;
1128 };
1129
1130 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1131 *
1132 * This class provides access to Gigasampler/GigaStudio instruments
1133 * contained in .gig files. A gig instrument is merely a set of keyboard
1134 * ranges (called Region), plus some additional global informations about
1135 * the instrument. The major part of the actual instrument definition used
1136 * for the synthesis of the instrument is contained in the respective Region
1137 * object (or actually in the respective DimensionRegion object being, see
1138 * description of Region for details).
1139 *
1140 * Since the gig format was designed as extension to the DLS file format,
1141 * this class is derived from the DLS::Instrument class. So also refer to
1142 * DLS::Instrument for additional informations, class attributes and
1143 * methods.
1144 */
1145 class Instrument : protected DLS::Instrument {
1146 public:
1147 // derived attributes from DLS::Resource
1148 using DLS::Resource::pInfo;
1149 using DLS::Resource::pDLSID;
1150 // derived attributes from DLS::Instrument
1151 using DLS::Instrument::IsDrum;
1152 using DLS::Instrument::MIDIBank;
1153 using DLS::Instrument::MIDIBankCoarse;
1154 using DLS::Instrument::MIDIBankFine;
1155 using DLS::Instrument::MIDIProgram;
1156 using DLS::Instrument::Regions;
1157 // own attributes
1158 int32_t Attenuation; ///< in dB
1159 uint16_t EffectSend;
1160 int16_t FineTune; ///< in cents
1161 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1162 bool PianoReleaseMode;
1163 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1164
1165
1166 // derived methods from DLS::Resource
1167 using DLS::Resource::GetParent;
1168 // overridden methods
1169 Region* GetFirstRegion();
1170 Region* GetNextRegion();
1171 Region* AddRegion();
1172 void DeleteRegion(Region* pRegion);
1173 void MoveTo(Instrument* dst);
1174 virtual void UpdateChunks(progress_t* pProgress);
1175 virtual void CopyAssign(const Instrument* orig);
1176 // own methods
1177 Region* GetRegion(unsigned int Key);
1178 MidiRule* GetMidiRule(int i);
1179 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1180 MidiRuleLegato* AddMidiRuleLegato();
1181 MidiRuleAlternator* AddMidiRuleAlternator();
1182 void DeleteMidiRule(int i);
1183 // real-time instrument script methods
1184 Script* GetScriptOfSlot(uint index);
1185 void AddScriptSlot(Script* pScript, bool bypass = false);
1186 void SwapScriptSlots(uint index1, uint index2);
1187 void RemoveScriptSlot(uint index);
1188 void RemoveScript(Script* pScript);
1189 uint ScriptSlotCount() const;
1190 bool IsScriptSlotBypassed(uint index);
1191 void SetScriptSlotBypassed(uint index, bool bBypass);
1192 protected:
1193 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1194
1195 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1196 ~Instrument();
1197 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1198 void UpdateRegionKeyTable();
1199 void LoadScripts();
1200 void UpdateScriptFileOffsets();
1201 friend class File;
1202 friend class Region; // so Region can call UpdateRegionKeyTable()
1203 private:
1204 struct _ScriptPooolEntry {
1205 uint32_t fileOffset;
1206 bool bypass;
1207 };
1208 struct _ScriptPooolRef {
1209 Script* script;
1210 bool bypass;
1211 };
1212 MidiRule** pMidiRules;
1213 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1214 std::vector<_ScriptPooolRef>* pScriptRefs;
1215 };
1216
1217 /** @brief Group of Gigasampler samples
1218 *
1219 * Groups help to organize a huge collection of Gigasampler samples.
1220 * Groups are not concerned at all for the synthesis, but they help
1221 * sound library developers when working on complex instruments with an
1222 * instrument editor (as long as that instrument editor supports it ;-).
1223 *
1224 * A sample is always assigned to exactly one Group. This also means
1225 * there is always at least one Group in a .gig file, no matter if you
1226 * created one yet or not.
1227 */
1228 class Group {
1229 public:
1230 String Name; ///< Stores the name of this Group.
1231
1232 Sample* GetFirstSample();
1233 Sample* GetNextSample();
1234 void AddSample(Sample* pSample);
1235 protected:
1236 Group(File* file, RIFF::Chunk* ck3gnm);
1237 virtual ~Group();
1238 virtual void UpdateChunks(progress_t* pProgress);
1239 void MoveAll();
1240 friend class File;
1241 private:
1242 File* pFile;
1243 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1244 };
1245
1246 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1247 *
1248 * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1249 * with libgig. It allows you to open existing .gig files, modifying them
1250 * and saving them persistently either under the same file name or under a
1251 * different location.
1252 *
1253 * A .gig file is merely a monolithic file. That means samples and the
1254 * defintion of the virtual instruments are contained in the same file. A
1255 * .gig file contains an arbitrary amount of samples, and an arbitrary
1256 * amount of instruments which are referencing those samples. It is also
1257 * possible to store samples in .gig files not being referenced by any
1258 * instrument. This is not an error from the file format's point of view and
1259 * it is actually often used in practice during the design phase of new gig
1260 * instruments.
1261 *
1262 * So on toplevel of the gig file format you have:
1263 *
1264 * - A set of samples (see Sample).
1265 * - A set of virtual instruments (see Instrument).
1266 *
1267 * And as extension to the original GigaStudio format, we added:
1268 *
1269 * - Real-time instrument scripts (see Script).
1270 *
1271 * Note that the latter however is only supported by libgig, gigedit and
1272 * LinuxSampler. Scripts are not supported by the original GigaStudio
1273 * software.
1274 *
1275 * All released Gigasampler/GigaStudio file format versions are supported
1276 * (so from first Gigasampler version up to including GigaStudio 4).
1277 *
1278 * Since the gig format was designed as extension to the DLS file format,
1279 * this class is derived from the DLS::File class. So also refer to
1280 * DLS::File for additional informations, class attributes and methods.
1281 */
1282 class File : protected DLS::File {
1283 public:
1284 static const DLS::version_t VERSION_2;
1285 static const DLS::version_t VERSION_3;
1286
1287 // derived attributes from DLS::Resource
1288 using DLS::Resource::pInfo;
1289 using DLS::Resource::pDLSID;
1290 // derived attributes from DLS::File
1291 using DLS::File::pVersion;
1292 using DLS::File::Instruments;
1293
1294 // derived methods from DLS::Resource
1295 using DLS::Resource::GetParent;
1296 // derived methods from DLS::File
1297 using DLS::File::Save;
1298 using DLS::File::GetFileName;
1299 using DLS::File::SetFileName;
1300 // overridden methods
1301 File();
1302 File(RIFF::File* pRIFF);
1303 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1304 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1305 Sample* GetSample(uint index);
1306 Sample* AddSample();
1307 void DeleteSample(Sample* pSample);
1308 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1309 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1310 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1311 Instrument* AddInstrument();
1312 Instrument* AddDuplicateInstrument(const Instrument* orig);
1313 void DeleteInstrument(Instrument* pInstrument);
1314 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1315 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1316 Group* GetGroup(uint index);
1317 Group* GetGroup(String name);
1318 Group* AddGroup();
1319 void DeleteGroup(Group* pGroup);
1320 void DeleteGroupOnly(Group* pGroup);
1321 void SetAutoLoad(bool b);
1322 bool GetAutoLoad();
1323 void AddContentOf(File* pFile);
1324 ScriptGroup* GetScriptGroup(uint index);
1325 ScriptGroup* GetScriptGroup(const String& name);
1326 ScriptGroup* AddScriptGroup();
1327 void DeleteScriptGroup(ScriptGroup* pGroup);
1328 virtual ~File();
1329 virtual void UpdateChunks(progress_t* pProgress);
1330 protected:
1331 // overridden protected methods from DLS::File
1332 virtual void LoadSamples();
1333 virtual void LoadInstruments();
1334 virtual void LoadGroups();
1335 virtual void UpdateFileOffsets();
1336 // own protected methods
1337 virtual void LoadSamples(progress_t* pProgress);
1338 virtual void LoadInstruments(progress_t* pProgress);
1339 virtual void LoadScriptGroups();
1340 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1341 uint32_t GetSampleChecksum(Sample* pSample);
1342 uint32_t GetSampleChecksumByIndex(int index);
1343 bool VerifySampleChecksumTable();
1344 bool RebuildSampleChecksumTable();
1345 int GetWaveTableIndexOf(gig::Sample* pSample);
1346 friend class Region;
1347 friend class Sample;
1348 friend class Instrument;
1349 friend class Group; // so Group can access protected member pRIFF
1350 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1351 private:
1352 std::list<Group*>* pGroups;
1353 std::list<Group*>::iterator GroupsIterator;
1354 bool bAutoLoad;
1355 std::list<ScriptGroup*>* pScriptGroups;
1356 };
1357
1358 /**
1359 * Will be thrown whenever a gig specific error occurs while trying to
1360 * access a Gigasampler File. Note: In your application you should
1361 * better catch for RIFF::Exception rather than this one, except you
1362 * explicitly want to catch and handle gig::Exception, DLS::Exception
1363 * and RIFF::Exception independently, which usually shouldn't be
1364 * necessary though.
1365 */
1366 class Exception : public DLS::Exception {
1367 public:
1368 Exception(String Message);
1369 void PrintMessage();
1370 };
1371
1372 #if HAVE_RTTI
1373 size_t countEnum(const std::type_info& type);
1374 const char* enumKey(const std::type_info& type, size_t value);
1375 bool enumKey(const std::type_info& type, String key);
1376 const char** enumKeys(const std::type_info& type);
1377 #endif // HAVE_RTTI
1378 size_t countEnum(String typeName);
1379 const char* enumKey(String typeName, size_t value);
1380 bool enumKey(String typeName, String key);
1381 const char** enumKeys(String typeName);
1382 size_t enumValue(String key);
1383
1384 String libraryName();
1385 String libraryVersion();
1386
1387 } // namespace gig
1388
1389 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC