/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2547 - (show annotations) (download) (as text)
Tue May 13 11:17:24 2014 UTC (6 years, 5 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 69769 byte(s)
* Fix: don't alter region pointer in gig::DimensionRegion::CopyAssign()
  (caused crash with the new "combine instruments" feature in gigedit).
* Added new method gig::Region::GetDimensionDefinition(dimension_t type).
* Added some more sanity checks in gig::Region::AddDimension().
* Added inline helper methods overlaps() for struct DLS::range_t.
* Added more API doc comments.
* Bumped version (3.3.0.svn10).


1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28
29 #if WORDS_BIGENDIAN
30 # define LIST_TYPE_3PRG 0x33707267
31 # define LIST_TYPE_3EWL 0x3365776C
32 # define LIST_TYPE_3GRI 0x33677269
33 # define LIST_TYPE_3GNL 0x33676E6C
34 # define CHUNK_ID_3GIX 0x33676978
35 # define CHUNK_ID_3EWA 0x33657761
36 # define CHUNK_ID_3LNK 0x336C6E6B
37 # define CHUNK_ID_3EWG 0x33657767
38 # define CHUNK_ID_EWAV 0x65776176
39 # define CHUNK_ID_3GNM 0x33676E6D
40 # define CHUNK_ID_EINF 0x65696E66
41 # define CHUNK_ID_3CRC 0x33637263
42 #else // little endian
43 # define LIST_TYPE_3PRG 0x67727033
44 # define LIST_TYPE_3EWL 0x6C776533
45 # define LIST_TYPE_3GRI 0x69726733
46 # define LIST_TYPE_3GNL 0x6C6E6733
47 # define CHUNK_ID_3GIX 0x78696733
48 # define CHUNK_ID_3EWA 0x61776533
49 # define CHUNK_ID_3LNK 0x6B6E6C33
50 # define CHUNK_ID_3EWG 0x67776533
51 # define CHUNK_ID_EWAV 0x76617765
52 # define CHUNK_ID_3GNM 0x6D6E6733
53 # define CHUNK_ID_EINF 0x666E6965
54 # define CHUNK_ID_3CRC 0x63726333
55 #endif // WORDS_BIGENDIAN
56
57 /** Gigasampler specific classes and definitions */
58 namespace gig {
59
60 typedef std::string String;
61
62 /** Lower and upper limit of a range. */
63 struct range_t {
64 uint8_t low; ///< Low value of range.
65 uint8_t high; ///< High value of range.
66 };
67
68 /** Pointer address and size of a buffer. */
69 struct buffer_t {
70 void* pStart; ///< Points to the beginning of the buffer.
71 unsigned long Size; ///< Size of the actual data in the buffer in bytes.
72 unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
73 buffer_t() {
74 pStart = NULL;
75 Size = 0;
76 NullExtensionSize = 0;
77 }
78 };
79
80 /** Standard types of sample loops. */
81 typedef enum {
82 loop_type_normal = 0x00000000, ///< Loop forward (normal)
83 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
84 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
85 } loop_type_t;
86
87 /** Society of Motion Pictures and Television E time format. */
88 typedef enum {
89 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
90 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
91 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
92 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
93 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
94 } smpte_format_t;
95
96 /** Defines the shape of a function graph. */
97 typedef enum {
98 curve_type_nonlinear = 0,
99 curve_type_linear = 1,
100 curve_type_special = 2,
101 curve_type_unknown = 0xffffffff
102 } curve_type_t;
103
104 /** Dimensions allow to bypass one of the following controllers. */
105 typedef enum {
106 dim_bypass_ctrl_none,
107 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
108 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
109 } dim_bypass_ctrl_t;
110
111 /** Defines how LFO3 is controlled by. */
112 typedef enum {
113 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
114 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
115 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
116 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
117 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
118 } lfo3_ctrl_t;
119
120 /** Defines how LFO2 is controlled by. */
121 typedef enum {
122 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
123 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
124 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
125 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
126 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
127 } lfo2_ctrl_t;
128
129 /** Defines how LFO1 is controlled by. */
130 typedef enum {
131 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
132 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
133 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
134 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
135 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
136 } lfo1_ctrl_t;
137
138 /** Defines how the filter cutoff frequency is controlled by. */
139 typedef enum {
140 vcf_cutoff_ctrl_none = 0x00,
141 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
142 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
143 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
144 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
145 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
146 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
147 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
148 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
149 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
150 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
151 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
152 } vcf_cutoff_ctrl_t;
153
154 /** Defines how the filter resonance is controlled by. */
155 typedef enum {
156 vcf_res_ctrl_none = 0xffffffff,
157 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
158 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
159 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
160 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
161 } vcf_res_ctrl_t;
162
163 /**
164 * Defines a controller that has a certain contrained influence on a
165 * particular synthesis parameter (used to define attenuation controller,
166 * EG1 controller and EG2 controller).
167 *
168 * You should use the respective <i>typedef</i> (means either
169 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
170 */
171 struct leverage_ctrl_t {
172 typedef enum {
173 type_none = 0x00, ///< No controller defined
174 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
175 type_velocity = 0xff, ///< Key Velocity
176 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
177 } type_t;
178
179 type_t type; ///< Controller type
180 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
181 };
182
183 /**
184 * Defines controller influencing attenuation.
185 *
186 * @see leverage_ctrl_t
187 */
188 typedef leverage_ctrl_t attenuation_ctrl_t;
189
190 /**
191 * Defines controller influencing envelope generator 1.
192 *
193 * @see leverage_ctrl_t
194 */
195 typedef leverage_ctrl_t eg1_ctrl_t;
196
197 /**
198 * Defines controller influencing envelope generator 2.
199 *
200 * @see leverage_ctrl_t
201 */
202 typedef leverage_ctrl_t eg2_ctrl_t;
203
204 /**
205 * Defines the type of dimension, that is how the dimension zones (and
206 * thus how the dimension regions are selected by. The number of
207 * dimension zones is always a power of two. All dimensions can have up
208 * to 32 zones (except the layer dimension with only up to 8 zones and
209 * the samplechannel dimension which currently allows only 2 zones).
210 */
211 typedef enum {
212 dimension_none = 0x00, ///< Dimension not in use.
213 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
214 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
215 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
216 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
217 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
218 dimension_keyboard = 0x85, ///< Dimension for keyswitching
219 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
220 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
221 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
222 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
223 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
224 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
225 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
226 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
227 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
228 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
229 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
230 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
231 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
232 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
233 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
234 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
235 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
236 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
237 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
238 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
239 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
240 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
241 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
242 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
243 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
244 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
245 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
246 } dimension_t;
247
248 /**
249 * Intended for internal usage: will be used to convert a dimension value
250 * into the corresponding dimension bit number.
251 */
252 typedef enum {
253 split_type_normal, ///< dimension value between 0-127
254 split_type_bit ///< dimension values are already the sought bit number
255 } split_type_t;
256
257 /** General dimension definition. */
258 struct dimension_def_t {
259 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
260 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
261 uint8_t zones; ///< Number of zones the dimension has.
262 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
263 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
264 };
265
266 /** Defines which frequencies are filtered by the VCF. */
267 typedef enum {
268 vcf_type_lowpass = 0x00,
269 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
270 vcf_type_bandpass = 0x01,
271 vcf_type_highpass = 0x02,
272 vcf_type_bandreject = 0x03
273 } vcf_type_t;
274
275 /**
276 * Defines the envelope of a crossfade.
277 *
278 * Note: The default value for crossfade points is 0,0,0,0. Layers with
279 * such a default value should be treated as if they would not have a
280 * crossfade.
281 */
282 struct crossfade_t {
283 #if WORDS_BIGENDIAN
284 uint8_t out_end; ///< End postition of fade out.
285 uint8_t out_start; ///< Start position of fade out.
286 uint8_t in_end; ///< End position of fade in.
287 uint8_t in_start; ///< Start position of fade in.
288 #else // little endian
289 uint8_t in_start; ///< Start position of fade in.
290 uint8_t in_end; ///< End position of fade in.
291 uint8_t out_start; ///< Start position of fade out.
292 uint8_t out_end; ///< End postition of fade out.
293 #endif // WORDS_BIGENDIAN
294 };
295
296 /** Reflects the current playback state for a sample. */
297 struct playback_state_t {
298 unsigned long position; ///< Current position within the sample.
299 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
300 unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
301 };
302
303 /**
304 * @brief Used for indicating the progress of a certain task.
305 *
306 * The function pointer argument has to be supplied with a valid
307 * function of the given signature which will then be called on
308 * progress changes. An equivalent progress_t structure will be passed
309 * back as argument to the callback function on each progress change.
310 * The factor field of the supplied progress_t structure will then
311 * reflect the current progress as value between 0.0 and 1.0. You might
312 * want to use the custom field for data needed in your callback
313 * function.
314 */
315 struct progress_t {
316 void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
317 float factor; ///< Reflects current progress as value between 0.0 and 1.0.
318 void* custom; ///< This pointer can be used for arbitrary data.
319 float __range_min; ///< Only for internal usage, do not modify!
320 float __range_max; ///< Only for internal usage, do not modify!
321 progress_t();
322 };
323
324 // just symbol prototyping
325 class File;
326 class Instrument;
327 class Sample;
328 class Region;
329 class Group;
330
331 /** @brief Encapsulates articulation information of a dimension region.
332 *
333 * Every Gigasampler Instrument has at least one dimension region
334 * (exactly then when it has no dimension defined).
335 *
336 * Gigasampler provides three Envelope Generators and Low Frequency
337 * Oscillators:
338 *
339 * - EG1 and LFO1, both controlling sample amplitude
340 * - EG2 and LFO2, both controlling filter cutoff frequency
341 * - EG3 and LFO3, both controlling sample pitch
342 */
343 class DimensionRegion : protected DLS::Sampler {
344 public:
345 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
346 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
347 // Sample Amplitude EG/LFO
348 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
349 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
350 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
351 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
352 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
353 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
354 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
355 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
356 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
357 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
358 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
359 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
360 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
361 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
362 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
363 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
364 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
365 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
366 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
367 // Filter Cutoff Frequency EG/LFO
368 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
369 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
370 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
371 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
372 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
373 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
374 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
375 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
376 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
377 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
378 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
379 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
380 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
381 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
382 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
383 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
384 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
385 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
386 // Sample Pitch EG/LFO
387 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
388 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
389 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
390 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
391 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
392 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
393 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
394 // Filter
395 bool VCFEnabled; ///< If filter should be used.
396 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
397 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
398 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
399 uint8_t VCFCutoff; ///< Max. cutoff frequency.
400 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
401 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
402 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
403 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
404 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
405 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
406 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
407 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
408 // Key Velocity Transformations
409 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
410 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
411 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
412 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
413 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
414 uint8_t ReleaseTriggerDecay; ///< 0 - 8
415 // Mix / Layer
416 crossfade_t Crossfade;
417 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
418 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
419 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
420 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
421 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
422 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
423 uint8_t AttenuationControllerThreshold;///< 0-127
424 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
425 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
426 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
427 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
428 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
429 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
430
431 // derived attributes from DLS::Sampler
432 using DLS::Sampler::UnityNote;
433 using DLS::Sampler::FineTune;
434 using DLS::Sampler::Gain;
435 using DLS::Sampler::SampleLoops;
436 using DLS::Sampler::pSampleLoops;
437
438 // own methods
439 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
440 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
441 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
442 void SetVelocityResponseCurve(curve_type_t curve);
443 void SetVelocityResponseDepth(uint8_t depth);
444 void SetVelocityResponseCurveScaling(uint8_t scaling);
445 void SetReleaseVelocityResponseCurve(curve_type_t curve);
446 void SetReleaseVelocityResponseDepth(uint8_t depth);
447 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
448 void SetVCFVelocityCurve(curve_type_t curve);
449 void SetVCFVelocityDynamicRange(uint8_t range);
450 void SetVCFVelocityScale(uint8_t scaling);
451 Region* GetParent() const;
452 // derived methods
453 using DLS::Sampler::AddSampleLoop;
454 using DLS::Sampler::DeleteSampleLoop;
455 // overridden methods
456 virtual void SetGain(int32_t gain);
457 virtual void UpdateChunks();
458 virtual void CopyAssign(const DimensionRegion* orig);
459 protected:
460 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
461 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
462 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
463 ~DimensionRegion();
464 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
465 friend class Region;
466 private:
467 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
468 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
469 _lev_ctrl_none = 0x00,
470 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
471 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
472 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
473 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
474 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
475 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
476 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
477 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
478 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
479 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
480 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
481 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
482 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
483 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
484 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
485 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
486 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
487 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
488 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
489 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
490 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
491 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
492 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
493 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
494 _lev_ctrl_velocity = 0xff, ///< Key Velocity
495
496 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
497 // (the assigned values here are their official MIDI CC number plus the highest bit set):
498 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
499
500 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
501 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
502 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
503 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
504 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
505 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
506
507 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
508 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
509
510 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
511 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
512 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
513 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
514 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
515 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
516 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
517 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
518 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
519 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
520 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
521 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
522
523 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
524 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
525 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
526 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
527 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
528 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
529 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
530 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
531 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
532 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
533 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
534 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
535
536 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
537 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
538 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
539 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
540
541 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
542 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
543
544 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
545 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
546
547 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
548 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
549 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
550 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
551 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
552 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
553 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
554 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
555 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
556 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
557 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
558 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
559 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
560 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
561 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
562 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
563 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
564 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
565 } _lev_ctrl_t;
566 typedef std::map<uint32_t, double*> VelocityTableMap;
567
568 static uint Instances; ///< Number of DimensionRegion instances.
569 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
570 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
571 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
572 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
573 Region* pRegion;
574
575 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
576 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
577 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
578 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
579 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
580 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
581 };
582
583 /** @brief Encapsulates sample waves used for playback.
584 *
585 * In case you created a new sample with File::AddSample(), you should
586 * first update all attributes with the desired meta informations
587 * (amount of channels, bit depth, sample rate, etc.), then call
588 * Resize() with the desired sample size, followed by File::Save(), this
589 * will create the mandatory RIFF chunk which will hold the sample wave
590 * data and / or resize the file so you will be able to Write() the
591 * sample data directly to disk.
592 *
593 * @e Caution: for gig synthesis, most looping relevant information are
594 * retrieved from the respective DimensionRegon instead from the Sample
595 * itself. This was made for allowing different loop definitions for the
596 * same sample under different conditions.
597 */
598 class Sample : public DLS::Sample {
599 public:
600 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
601 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
602 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
603 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
604 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
605 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
606 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
607 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
608 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
609 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
610 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
611 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
612 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
613 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
614 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
615 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
616 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
617 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
618
619 // own methods
620 buffer_t LoadSampleData();
621 buffer_t LoadSampleData(unsigned long SampleCount);
622 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
623 buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
624 buffer_t GetCache();
625 // own static methods
626 static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
627 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
628 // overridden methods
629 void ReleaseSampleData();
630 void Resize(int iNewSize);
631 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
632 unsigned long GetPos() const;
633 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
634 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
635 unsigned long Write(void* pBuffer, unsigned long SampleCount);
636 Group* GetGroup() const;
637 virtual void UpdateChunks();
638 void CopyAssignMeta(const Sample* orig);
639 void CopyAssignWave(const Sample* orig);
640 protected:
641 static unsigned int Instances; ///< Number of instances of class Sample.
642 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
643 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
644 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
645 unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
646 unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
647 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
648 unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
649 unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
650 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
651 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
652 RIFF::Chunk* pCk3gix;
653 RIFF::Chunk* pCkSmpl;
654 uint32_t crc; ///< CRC-32 checksum of the raw sample data
655
656 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
657 ~Sample();
658
659 // Guess size (in bytes) of a compressed sample
660 inline unsigned long GuessSize(unsigned long samples) {
661 // 16 bit: assume all frames are compressed - 1 byte
662 // per sample and 5 bytes header per 2048 samples
663
664 // 24 bit: assume next best compression rate - 1.5
665 // bytes per sample and 13 bytes header per 256
666 // samples
667 const unsigned long size =
668 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
669 : samples + (samples >> 10) * 5;
670 // Double for stereo and add one worst case sample
671 // frame
672 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
673 }
674
675 // Worst case amount of sample points that can be read with the
676 // given decompression buffer.
677 inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
678 return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
679 }
680 private:
681 void ScanCompressedSample();
682 friend class File;
683 friend class Region;
684 friend class Group; // allow to modify protected member pGroup
685 };
686
687 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
688 /** @brief Defines Region information of an Instrument.
689 *
690 * A Region reflects a consecutive area on the keyboard. The individual
691 * regions in the gig format may not overlap with other regions (of the same
692 * instrument). Further, in the gig format a Region is merely a container
693 * for DimensionRegions (a.k.a. "Cases"). The Region itself does not provide
694 * the sample mapping or articulation informations used, even though the
695 * data structures indeed provide such informations. The latter is however
696 * just of historical nature, because the gig format was derived from the
697 * DLS format.
698 *
699 * Each Region consists of at least one or more DimensionRegions. The actual
700 * amount of DimensionRegions depends on which kind of "dimensions" are
701 * defined for this region, and on the split / zone amount for each of those
702 * dimensions.
703 */
704 class Region : public DLS::Region {
705 public:
706 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
707 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
708 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
709 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
710 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
711
712 // own methods
713 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
714 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
715 Sample* GetSample();
716 void AddDimension(dimension_def_t* pDimDef);
717 void DeleteDimension(dimension_def_t* pDimDef);
718 dimension_def_t* GetDimensionDefinition(dimension_t type);
719 // overridden methods
720 virtual void SetKeyRange(uint16_t Low, uint16_t High);
721 virtual void UpdateChunks();
722 virtual void CopyAssign(const Region* orig);
723 protected:
724 Region(Instrument* pInstrument, RIFF::List* rgnList);
725 void LoadDimensionRegions(RIFF::List* rgn);
726 void UpdateVelocityTable();
727 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
728 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
729 ~Region();
730 friend class Instrument;
731 };
732
733 /** Abstract base class for all MIDI rules. */
734 class MidiRule {
735 public:
736 virtual ~MidiRule() { }
737 protected:
738 virtual void UpdateChunks(uint8_t* pData) const = 0;
739 friend class Instrument;
740 };
741
742 /** MIDI rule for triggering notes by control change events. */
743 class MidiRuleCtrlTrigger : public MidiRule {
744 public:
745 uint8_t ControllerNumber; ///< MIDI controller number.
746 uint8_t Triggers; ///< Number of triggers.
747 struct trigger_t {
748 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
749 bool Descending; ///< If the change in CC value should be downwards.
750 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
751 uint8_t Key; ///< Key to trigger.
752 bool NoteOff; ///< If a note off should be triggered instead of a note on.
753 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
754 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
755 } pTriggers[32];
756
757 protected:
758 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
759 MidiRuleCtrlTrigger();
760 void UpdateChunks(uint8_t* pData) const;
761 friend class Instrument;
762 };
763
764 /** MIDI rule for instruments with legato samples. */
765 class MidiRuleLegato : public MidiRule {
766 public:
767 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
768 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
769 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
770 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
771 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
772 uint16_t ReleaseTime; ///< Release time
773 range_t KeyRange; ///< Key range for legato notes
774 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
775 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
776 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
777
778 protected:
779 MidiRuleLegato(RIFF::Chunk* _3ewg);
780 MidiRuleLegato();
781 void UpdateChunks(uint8_t* pData) const;
782 friend class Instrument;
783 };
784
785 /** MIDI rule to automatically cycle through specified sequences of different articulations. The instrument must be using the smartmidi dimension. */
786 class MidiRuleAlternator : public MidiRule {
787 public:
788 uint8_t Articulations; ///< Number of articulations in the instrument
789 String pArticulations[32]; ///< Names of the articulations
790
791 range_t PlayRange; ///< Key range of the playable keys in the instrument
792
793 uint8_t Patterns; ///< Number of alternator patterns
794 struct pattern_t {
795 String Name; ///< Name of the pattern
796 int Size; ///< Number of steps in the pattern
797 const uint8_t& operator[](int i) const { /// Articulation to play
798 return data[i];
799 }
800 uint8_t& operator[](int i) {
801 return data[i];
802 }
803 private:
804 uint8_t data[32];
805 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
806
807 typedef enum {
808 selector_none,
809 selector_key_switch,
810 selector_controller
811 } selector_t;
812 selector_t Selector; ///< Method by which pattern is chosen
813 range_t KeySwitchRange; ///< Key range for key switch selector
814 uint8_t Controller; ///< CC number for controller selector
815
816 bool Polyphonic; ///< If alternator should step forward only when all notes are off
817 bool Chained; ///< If all patterns should be chained together
818
819 protected:
820 MidiRuleAlternator(RIFF::Chunk* _3ewg);
821 MidiRuleAlternator();
822 void UpdateChunks(uint8_t* pData) const;
823 friend class Instrument;
824 };
825
826 /** A MIDI rule not yet implemented by libgig. */
827 class MidiRuleUnknown : public MidiRule {
828 protected:
829 MidiRuleUnknown() { }
830 void UpdateChunks(uint8_t* pData) const { }
831 friend class Instrument;
832 };
833
834 /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */
835 class Instrument : protected DLS::Instrument {
836 public:
837 // derived attributes from DLS::Resource
838 using DLS::Resource::pInfo;
839 using DLS::Resource::pDLSID;
840 // derived attributes from DLS::Instrument
841 using DLS::Instrument::IsDrum;
842 using DLS::Instrument::MIDIBank;
843 using DLS::Instrument::MIDIBankCoarse;
844 using DLS::Instrument::MIDIBankFine;
845 using DLS::Instrument::MIDIProgram;
846 using DLS::Instrument::Regions;
847 // own attributes
848 int32_t Attenuation; ///< in dB
849 uint16_t EffectSend;
850 int16_t FineTune; ///< in cents
851 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
852 bool PianoReleaseMode;
853 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
854
855
856 // derived methods from DLS::Resource
857 using DLS::Resource::GetParent;
858 // overridden methods
859 Region* GetFirstRegion();
860 Region* GetNextRegion();
861 Region* AddRegion();
862 void DeleteRegion(Region* pRegion);
863 virtual void UpdateChunks();
864 virtual void CopyAssign(const Instrument* orig);
865 // own methods
866 Region* GetRegion(unsigned int Key);
867 MidiRule* GetMidiRule(int i);
868 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
869 MidiRuleLegato* AddMidiRuleLegato();
870 MidiRuleAlternator* AddMidiRuleAlternator();
871 void DeleteMidiRule(int i);
872 protected:
873 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
874
875 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
876 ~Instrument();
877 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
878 void UpdateRegionKeyTable();
879 friend class File;
880 friend class Region; // so Region can call UpdateRegionKeyTable()
881 private:
882 MidiRule** pMidiRules;
883 };
884
885 /** @brief Group of Gigasampler objects
886 *
887 * Groups help to organize a huge collection of Gigasampler objects.
888 * Groups are not concerned at all for the synthesis, but they help
889 * sound library developers when working on complex instruments with an
890 * instrument editor (as long as that instrument editor supports it ;-).
891 *
892 * At the moment, it seems as only samples can be grouped together in
893 * the Gigasampler format yet. If this is false in the meantime, please
894 * tell us !
895 *
896 * A sample is always assigned to exactly one Group. This also means
897 * there is always at least one Group in a .gig file, no matter if you
898 * created one yet or not.
899 */
900 class Group {
901 public:
902 String Name; ///< Stores the name of this Group.
903
904 Sample* GetFirstSample();
905 Sample* GetNextSample();
906 void AddSample(Sample* pSample);
907 protected:
908 Group(File* file, RIFF::Chunk* ck3gnm);
909 virtual ~Group();
910 virtual void UpdateChunks();
911 void MoveAll();
912 friend class File;
913 private:
914 File* pFile;
915 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
916 };
917
918 /** Parses Gigasampler files and provides abstract access to the data. */
919 class File : protected DLS::File {
920 public:
921 static const DLS::version_t VERSION_2;
922 static const DLS::version_t VERSION_3;
923
924 // derived attributes from DLS::Resource
925 using DLS::Resource::pInfo;
926 using DLS::Resource::pDLSID;
927 // derived attributes from DLS::File
928 using DLS::File::pVersion;
929 using DLS::File::Instruments;
930
931 // derived methods from DLS::Resource
932 using DLS::Resource::GetParent;
933 // derived methods from DLS::File
934 using DLS::File::Save;
935 using DLS::File::GetFileName;
936 using DLS::File::SetFileName;
937 // overridden methods
938 File();
939 File(RIFF::File* pRIFF);
940 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
941 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
942 Sample* GetSample(uint index);
943 Sample* AddSample();
944 void DeleteSample(Sample* pSample);
945 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
946 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
947 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
948 Instrument* AddInstrument();
949 Instrument* AddDuplicateInstrument(const Instrument* orig);
950 void DeleteInstrument(Instrument* pInstrument);
951 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
952 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
953 Group* GetGroup(uint index);
954 Group* GetGroup(String name);
955 Group* AddGroup();
956 void DeleteGroup(Group* pGroup);
957 void DeleteGroupOnly(Group* pGroup);
958 void SetAutoLoad(bool b);
959 bool GetAutoLoad();
960 void AddContentOf(File* pFile);
961 virtual ~File();
962 virtual void UpdateChunks();
963 protected:
964 // overridden protected methods from DLS::File
965 virtual void LoadSamples();
966 virtual void LoadInstruments();
967 virtual void LoadGroups();
968 // own protected methods
969 virtual void LoadSamples(progress_t* pProgress);
970 virtual void LoadInstruments(progress_t* pProgress);
971 void SetSampleChecksum(Sample* pSample, uint32_t crc);
972 friend class Region;
973 friend class Sample;
974 friend class Group; // so Group can access protected member pRIFF
975 private:
976 std::list<Group*>* pGroups;
977 std::list<Group*>::iterator GroupsIterator;
978 bool bAutoLoad;
979 };
980
981 /**
982 * Will be thrown whenever a gig specific error occurs while trying to
983 * access a Gigasampler File. Note: In your application you should
984 * better catch for RIFF::Exception rather than this one, except you
985 * explicitly want to catch and handle gig::Exception, DLS::Exception
986 * and RIFF::Exception independently, which usually shouldn't be
987 * necessary though.
988 */
989 class Exception : public DLS::Exception {
990 public:
991 Exception(String Message);
992 void PrintMessage();
993 };
994
995 String libraryName();
996 String libraryVersion();
997
998 } // namespace gig
999
1000 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC