/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3323 - (show annotations) (download) (as text)
Thu Jul 20 22:09:54 2017 UTC (11 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 91578 byte(s)
* gig.h/.cpp: Added new struct "eg_opt_t" and new class member variable
  "DimensionRegion::EGOptions" as an extension to the gig file format,
  which allows to override the default behavior of EGs' state machines.
* DLS.h: Got rid of C-style typedefs.
* src/tools/gigdump.cpp: Print the new EG behavior options.
* Bumped version (4.0.0.svn27).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #ifndef __has_feature
31 # define __has_feature(x) 0
32 #endif
33 #ifndef HAVE_RTTI
34 # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35 # define HAVE_RTTI 1
36 # else
37 # define HAVE_RTTI 0
38 # endif
39 #endif
40 #if HAVE_RTTI
41 # include <typeinfo>
42 #else
43 # warning No RTTI available!
44 #endif
45
46 #if WORDS_BIGENDIAN
47 # define LIST_TYPE_3PRG 0x33707267
48 # define LIST_TYPE_3EWL 0x3365776C
49 # define LIST_TYPE_3GRI 0x33677269
50 # define LIST_TYPE_3GNL 0x33676E6C
51 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 # define CHUNK_ID_3GIX 0x33676978
54 # define CHUNK_ID_3EWA 0x33657761
55 # define CHUNK_ID_3LNK 0x336C6E6B
56 # define CHUNK_ID_3EWG 0x33657767
57 # define CHUNK_ID_EWAV 0x65776176
58 # define CHUNK_ID_3GNM 0x33676E6D
59 # define CHUNK_ID_EINF 0x65696E66
60 # define CHUNK_ID_3CRC 0x33637263
61 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
62 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
63 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
64 # define CHUNK_ID_LSDE 0x4c534445 // own gig format extension
65 #else // little endian
66 # define LIST_TYPE_3PRG 0x67727033
67 # define LIST_TYPE_3EWL 0x6C776533
68 # define LIST_TYPE_3GRI 0x69726733
69 # define LIST_TYPE_3GNL 0x6C6E6733
70 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
71 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72 # define CHUNK_ID_3GIX 0x78696733
73 # define CHUNK_ID_3EWA 0x61776533
74 # define CHUNK_ID_3LNK 0x6B6E6C33
75 # define CHUNK_ID_3EWG 0x67776533
76 # define CHUNK_ID_EWAV 0x76617765
77 # define CHUNK_ID_3GNM 0x6D6E6733
78 # define CHUNK_ID_EINF 0x666E6965
79 # define CHUNK_ID_3CRC 0x63726333
80 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
81 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
82 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
83 # define CHUNK_ID_LSDE 0x4544534c // own gig format extension
84 #endif // WORDS_BIGENDIAN
85
86 #ifndef GIG_DECLARE_ENUM
87 # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88 #endif
89
90 // just symbol prototyping (since Serialization.h not included by default here)
91 namespace Serialization { class Archive; }
92
93 /** Gigasampler/GigaStudio specific classes and definitions */
94 namespace gig {
95
96 typedef std::string String;
97 typedef RIFF::progress_t progress_t;
98 typedef RIFF::file_offset_t file_offset_t;
99
100 /** Lower and upper limit of a range. */
101 struct range_t {
102 uint8_t low; ///< Low value of range.
103 uint8_t high; ///< High value of range.
104 };
105
106 /** Pointer address and size of a buffer. */
107 struct buffer_t {
108 void* pStart; ///< Points to the beginning of the buffer.
109 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
110 file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111 buffer_t() {
112 pStart = NULL;
113 Size = 0;
114 NullExtensionSize = 0;
115 }
116 };
117
118 /** Standard types of sample loops.
119 *
120 * @see enumCount(), enumKey(), enumKeys(), enumValue()
121 */
122 GIG_DECLARE_ENUM(loop_type_t,
123 loop_type_normal = 0x00000000, ///< Loop forward (normal)
124 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
125 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
126 );
127
128 /** Society of Motion Pictures and Television E time format.
129 *
130 * @see enumCount(), enumKey(), enumKeys(), enumValue()
131 */
132 GIG_DECLARE_ENUM(smpte_format_t,
133 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
134 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
135 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
136 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
137 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
138 );
139
140 /** Defines the shape of a function graph.
141 *
142 * @see enumCount(), enumKey(), enumKeys(), enumValue()
143 */
144 GIG_DECLARE_ENUM(curve_type_t,
145 curve_type_nonlinear = 0,
146 curve_type_linear = 1,
147 curve_type_special = 2,
148 curve_type_unknown = 0xffffffff
149 );
150
151 /** Dimensions allow to bypass one of the following controllers.
152 *
153 * @see enumCount(), enumKey(), enumKeys(), enumValue()
154 */
155 GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
156 dim_bypass_ctrl_none,
157 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
158 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
159 );
160
161 /** Defines how LFO3 is controlled by.
162 *
163 * @see enumCount(), enumKey(), enumKeys(), enumValue()
164 */
165 GIG_DECLARE_ENUM(lfo3_ctrl_t,
166 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
167 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
168 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
169 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
170 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
171 );
172
173 /** Defines how LFO2 is controlled by.
174 *
175 * @see enumCount(), enumKey(), enumKeys(), enumValue()
176 */
177 GIG_DECLARE_ENUM(lfo2_ctrl_t,
178 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
179 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
180 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
181 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
182 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
183 );
184
185 /** Defines how LFO1 is controlled by.
186 *
187 * @see enumCount(), enumKey(), enumKeys(), enumValue()
188 */
189 GIG_DECLARE_ENUM(lfo1_ctrl_t,
190 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
191 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
192 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
193 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
194 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
195 );
196
197 /** Defines how the filter cutoff frequency is controlled by.
198 *
199 * @see enumCount(), enumKey(), enumKeys(), enumValue()
200 */
201 GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
202 vcf_cutoff_ctrl_none = 0x00,
203 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
204 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
205 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
206 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
207 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
208 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
209 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
210 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
211 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
212 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
213 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
214 );
215
216 /** Defines how the filter resonance is controlled by.
217 *
218 * @see enumCount(), enumKey(), enumKeys(), enumValue()
219 */
220 GIG_DECLARE_ENUM(vcf_res_ctrl_t,
221 vcf_res_ctrl_none = 0xffffffff,
222 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
223 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
224 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
225 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
226 );
227
228 /**
229 * Defines a controller that has a certain contrained influence on a
230 * particular synthesis parameter (used to define attenuation controller,
231 * EG1 controller and EG2 controller).
232 *
233 * You should use the respective <i>typedef</i> (means either
234 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
235 */
236 struct leverage_ctrl_t {
237 /** Defines possible controllers.
238 *
239 * @see enumCount(), enumKey(), enumKeys(), enumValue()
240 */
241 GIG_DECLARE_ENUM(type_t,
242 type_none = 0x00, ///< No controller defined
243 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
244 type_velocity = 0xff, ///< Key Velocity
245 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
246 );
247
248 type_t type; ///< Controller type
249 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
250
251 void serialize(Serialization::Archive* archive);
252 };
253
254 /**
255 * Defines controller influencing attenuation.
256 *
257 * @see leverage_ctrl_t
258 */
259 typedef leverage_ctrl_t attenuation_ctrl_t;
260
261 /**
262 * Defines controller influencing envelope generator 1.
263 *
264 * @see leverage_ctrl_t
265 */
266 typedef leverage_ctrl_t eg1_ctrl_t;
267
268 /**
269 * Defines controller influencing envelope generator 2.
270 *
271 * @see leverage_ctrl_t
272 */
273 typedef leverage_ctrl_t eg2_ctrl_t;
274
275 /**
276 * Defines the type of dimension, that is how the dimension zones (and
277 * thus how the dimension regions are selected by. The number of
278 * dimension zones is always a power of two. All dimensions can have up
279 * to 32 zones (except the layer dimension with only up to 8 zones and
280 * the samplechannel dimension which currently allows only 2 zones).
281 *
282 * @see enumCount(), enumKey(), enumKeys(), enumValue()
283 */
284 GIG_DECLARE_ENUM(dimension_t,
285 dimension_none = 0x00, ///< Dimension not in use.
286 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
287 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
288 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
289 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
290 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
291 dimension_keyboard = 0x85, ///< Dimension for keyswitching
292 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
293 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
294 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
295 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
296 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
297 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
298 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
299 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
300 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
301 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
302 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
303 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
304 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
305 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
306 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
307 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
308 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
309 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
310 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
311 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
312 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
313 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
314 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
315 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
316 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
317 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
318 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
319 );
320
321 /**
322 * Intended for internal usage: will be used to convert a dimension value
323 * into the corresponding dimension bit number.
324 *
325 * @see enumCount(), enumKey(), enumKeys(), enumValue()
326 */
327 GIG_DECLARE_ENUM(split_type_t,
328 split_type_normal, ///< dimension value between 0-127
329 split_type_bit ///< dimension values are already the sought bit number
330 );
331
332 /** General dimension definition. */
333 struct dimension_def_t {
334 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
335 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
336 uint8_t zones; ///< Number of zones the dimension has.
337 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
338 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
339 };
340
341 /** Defines which frequencies are filtered by the VCF.
342 *
343 * @see enumCount(), enumKey(), enumKeys(), enumValue()
344 */
345 GIG_DECLARE_ENUM(vcf_type_t,
346 vcf_type_lowpass = 0x00,
347 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
348 vcf_type_bandpass = 0x01,
349 vcf_type_highpass = 0x02,
350 vcf_type_bandreject = 0x03
351 );
352
353 /**
354 * Defines the envelope of a crossfade.
355 *
356 * Note: The default value for crossfade points is 0,0,0,0. Layers with
357 * such a default value should be treated as if they would not have a
358 * crossfade.
359 */
360 struct crossfade_t {
361 #if WORDS_BIGENDIAN
362 uint8_t out_end; ///< End postition of fade out.
363 uint8_t out_start; ///< Start position of fade out.
364 uint8_t in_end; ///< End position of fade in.
365 uint8_t in_start; ///< Start position of fade in.
366 #else // little endian
367 uint8_t in_start; ///< Start position of fade in.
368 uint8_t in_end; ///< End position of fade in.
369 uint8_t out_start; ///< Start position of fade out.
370 uint8_t out_end; ///< End postition of fade out.
371 #endif // WORDS_BIGENDIAN
372
373 void serialize(Serialization::Archive* archive);
374 };
375
376 /** Reflects the current playback state for a sample. */
377 struct playback_state_t {
378 file_offset_t position; ///< Current position within the sample.
379 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
380 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
381 };
382
383 /**
384 * Defines behavior options for envelope generators.
385 *
386 * These options allow to override the precise default behavior of the
387 * envelope generators' state machines.
388 *
389 * @b Note: These EG options are an extension to the original gig file
390 * format, so these options are not available with the original
391 * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
392 * support these EG options!
393 *
394 * Adding these options to the original gig file format was necessary,
395 * because the precise state machine behavior of envelope generators of the
396 * gig format (and thus the default EG behavior if not explicitly overridden
397 * here) deviates from common, expected behavior of envelope generators in
398 * general, if i.e. compared with EGs of hardware synthesizers. For example
399 * with the gig format, the attack and decay stages will be aborted as soon
400 * as a note-off is received. Most other EG implementations in the industry
401 * however always run the attack and decay stages to their full duration,
402 * even if an early note-off arrives. The latter behavior is intentionally
403 * implemented in most other products, because it is required to resemble
404 * percussive sounds in a realistic manner.
405 */
406 struct eg_opt_t {
407 bool AttackCancel; ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
408 bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
409 bool DecayCancel; ///< Whether the "decay" stage is cancelled when receiving a note-off (default: @c true).
410 bool ReleaseCancel; ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
411
412 eg_opt_t();
413 void serialize(Serialization::Archive* archive);
414 };
415
416 // just symbol prototyping
417 class File;
418 class Instrument;
419 class Sample;
420 class Region;
421 class Group;
422 class Script;
423 class ScriptGroup;
424
425 /** @brief Encapsulates articulation informations of a dimension region.
426 *
427 * This is the most important data object of the Gigasampler / GigaStudio
428 * format. A DimensionRegion provides the link to the sample to be played
429 * and all required articulation informations to be interpreted for playing
430 * back the sample and processing it appropriately by the sampler software.
431 * Every Region of a Gigasampler Instrument has at least one dimension
432 * region (exactly then when the Region has no dimension defined). Many
433 * Regions though provide more than one DimensionRegion, which reflect
434 * different playing "cases". For example a different sample might be played
435 * if a certain pedal is pressed down, or if the note was triggered with
436 * different velocity.
437 *
438 * One instance of a DimensionRegion reflects exactly one particular case
439 * while playing an instrument (for instance "note between C3 and E3 was
440 * triggered AND note on velocity was between 20 and 42 AND modulation wheel
441 * controller is between 80 and 127). The DimensionRegion defines what to do
442 * under that one particular case, that is which sample to play back and how
443 * to play that sample back exactly and how to process it. So a
444 * DimensionRegion object is always linked to exactly one sample. It may
445 * however also link to no sample at all, for defining a "silence" case
446 * where nothing shall be played (for example when note on velocity was
447 * below 6).
448 *
449 * Note that a DimensionRegion object only defines "what to do", but it does
450 * not define "when to do it". To actually resolve which DimensionRegion to
451 * pick under which situation, you need to refer to the DimensionRegions'
452 * parent Region object. The Region object contains the necessary
453 * "Dimension" definitions, which in turn define which DimensionRegion is
454 * associated with which playing case exactly.
455 *
456 * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
457 * Low Frequency Oscillators:
458 *
459 * - EG1 and LFO1, both controlling sample amplitude
460 * - EG2 and LFO2, both controlling filter cutoff frequency
461 * - EG3 and LFO3, both controlling sample pitch
462 *
463 * Since the gig format was designed as extension to the DLS file format,
464 * this class is derived from the DLS::Sampler class. So also refer to
465 * DLS::Sampler for additional informations, class attributes and methods.
466 */
467 class DimensionRegion : protected DLS::Sampler {
468 public:
469 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
470 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
471 // Sample Amplitude EG/LFO
472 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
473 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
474 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
475 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
476 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
477 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
478 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
479 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
480 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
481 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
482 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
483 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
484 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
485 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
486 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
487 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
488 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
489 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
490 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
491 // Filter Cutoff Frequency EG/LFO
492 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
493 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
494 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
495 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
496 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
497 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
498 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
499 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
500 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
501 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
502 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
503 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
504 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
505 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
506 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
507 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
508 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
509 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
510 // Sample Pitch EG/LFO
511 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
512 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
513 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
514 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
515 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
516 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
517 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
518 // Filter
519 bool VCFEnabled; ///< If filter should be used.
520 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
521 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
522 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
523 uint8_t VCFCutoff; ///< Max. cutoff frequency.
524 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
525 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
526 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
527 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
528 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
529 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
530 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
531 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
532 // Key Velocity Transformations
533 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
534 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
535 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
536 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
537 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
538 uint8_t ReleaseTriggerDecay; ///< 0 - 8
539 // Mix / Layer
540 crossfade_t Crossfade;
541 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
542 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
543 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
544 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
545 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
546 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
547 uint8_t AttenuationControllerThreshold;///< 0-127
548 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
549 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
550 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
551 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
552 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
553 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
554 eg_opt_t EGOptions; ///< [gig extension]: Behavior options which should be used for all 3 envelope generators.
555
556 // derived attributes from DLS::Sampler
557 using DLS::Sampler::UnityNote;
558 using DLS::Sampler::FineTune;
559 using DLS::Sampler::Gain;
560 using DLS::Sampler::SampleLoops;
561 using DLS::Sampler::pSampleLoops;
562
563 // own methods
564 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
565 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
566 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
567 void SetVelocityResponseCurve(curve_type_t curve);
568 void SetVelocityResponseDepth(uint8_t depth);
569 void SetVelocityResponseCurveScaling(uint8_t scaling);
570 void SetReleaseVelocityResponseCurve(curve_type_t curve);
571 void SetReleaseVelocityResponseDepth(uint8_t depth);
572 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
573 void SetVCFVelocityCurve(curve_type_t curve);
574 void SetVCFVelocityDynamicRange(uint8_t range);
575 void SetVCFVelocityScale(uint8_t scaling);
576 Region* GetParent() const;
577 // derived methods
578 using DLS::Sampler::AddSampleLoop;
579 using DLS::Sampler::DeleteSampleLoop;
580 // overridden methods
581 virtual void SetGain(int32_t gain);
582 virtual void UpdateChunks(progress_t* pProgress);
583 virtual void CopyAssign(const DimensionRegion* orig);
584 protected:
585 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
586 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
587 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
588 ~DimensionRegion();
589 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
590 void serialize(Serialization::Archive* archive);
591 friend class Region;
592 friend class Serialization::Archive;
593 private:
594 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
595 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
596 _lev_ctrl_none = 0x00,
597 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
598 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
599 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
600 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
601 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
602 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
603 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
604 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
605 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
606 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
607 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
608 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
609 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
610 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
611 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
612 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
613 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
614 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
615 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
616 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
617 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
618 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
619 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
620 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
621 _lev_ctrl_velocity = 0xff, ///< Key Velocity
622
623 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
624 // (the assigned values here are their official MIDI CC number plus the highest bit set):
625 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
626
627 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
628 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
629 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
630 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
631 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
632 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
633
634 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
635 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
636
637 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
638 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
639 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
640 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
641 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
642 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
643 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
644 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
645 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
646 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
647 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
648 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
649
650 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
651 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
652 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
653 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
654 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
655 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
656 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
657 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
658 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
659 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
660 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
661 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
662
663 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
664 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
665 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
666 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
667
668 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
669 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
670
671 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
672 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
673
674 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
675 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
676 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
677 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
678 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
679 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
680 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
681 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
682 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
683 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
684 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
685 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
686 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
687 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
688 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
689 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
690 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
691 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
692 } _lev_ctrl_t;
693 typedef std::map<uint32_t, double*> VelocityTableMap;
694
695 static size_t Instances; ///< Number of DimensionRegion instances.
696 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
697 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
698 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
699 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
700 Region* pRegion;
701
702 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
703 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
704 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
705 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
706 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
707 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
708 };
709
710 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
711 *
712 * This class provides access to the actual audio sample data of a
713 * Gigasampler/GigaStudio file. Along to the actual sample data, it also
714 * provides access to the sample's meta informations like bit depth,
715 * sample rate, encoding type, but also loop informations. The latter may be
716 * used by instruments for resembling sounds with arbitary note lengths.
717 *
718 * In case you created a new sample with File::AddSample(), you should
719 * first update all attributes with the desired meta informations
720 * (amount of channels, bit depth, sample rate, etc.), then call
721 * Resize() with the desired sample size, followed by File::Save(), this
722 * will create the mandatory RIFF chunk which will hold the sample wave
723 * data and / or resize the file so you will be able to Write() the
724 * sample data directly to disk.
725 *
726 * @e Caution: for gig synthesis, most looping relevant information are
727 * retrieved from the respective DimensionRegon instead from the Sample
728 * itself. This was made for allowing different loop definitions for the
729 * same sample under different conditions.
730 *
731 * Since the gig format was designed as extension to the DLS file format,
732 * this class is derived from the DLS::Sample class. So also refer to
733 * DLS::Sample for additional informations, class attributes and methods.
734 */
735 class Sample : public DLS::Sample {
736 public:
737 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
738 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
739 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
740 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
741 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
742 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
743 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
744 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
745 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
746 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
747 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
748 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
749 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
750 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
751 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
752 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
753 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
754 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
755
756 // own methods
757 buffer_t LoadSampleData();
758 buffer_t LoadSampleData(file_offset_t SampleCount);
759 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
760 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
761 buffer_t GetCache();
762 // own static methods
763 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
764 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
765 // overridden methods
766 void ReleaseSampleData();
767 void Resize(file_offset_t NewSize);
768 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
769 file_offset_t GetPos() const;
770 file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
771 file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
772 file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
773 Group* GetGroup() const;
774 virtual void UpdateChunks(progress_t* pProgress);
775 void CopyAssignMeta(const Sample* orig);
776 void CopyAssignWave(const Sample* orig);
777 uint32_t GetWaveDataCRC32Checksum();
778 bool VerifyWaveData(uint32_t* pActually = NULL);
779 protected:
780 static size_t Instances; ///< Number of instances of class Sample.
781 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
782 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
783 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
784 file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
785 file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
786 file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
787 file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
788 file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
789 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
790 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
791 RIFF::Chunk* pCk3gix;
792 RIFF::Chunk* pCkSmpl;
793 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
794
795 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
796 ~Sample();
797 uint32_t CalculateWaveDataChecksum();
798
799 // Guess size (in bytes) of a compressed sample
800 inline file_offset_t GuessSize(file_offset_t samples) {
801 // 16 bit: assume all frames are compressed - 1 byte
802 // per sample and 5 bytes header per 2048 samples
803
804 // 24 bit: assume next best compression rate - 1.5
805 // bytes per sample and 13 bytes header per 256
806 // samples
807 const file_offset_t size =
808 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
809 : samples + (samples >> 10) * 5;
810 // Double for stereo and add one worst case sample
811 // frame
812 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
813 }
814
815 // Worst case amount of sample points that can be read with the
816 // given decompression buffer.
817 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
818 return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
819 }
820 private:
821 void ScanCompressedSample();
822 friend class File;
823 friend class Region;
824 friend class Group; // allow to modify protected member pGroup
825 };
826
827 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
828 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
829 *
830 * A Region reflects a consecutive area (key range) on the keyboard. The
831 * individual regions in the gig format may not overlap with other regions
832 * (of the same instrument that is). Further, in the gig format a Region is
833 * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
834 * itself does not provide the sample mapping or articulation informations
835 * used, even though the data structures of regions indeed provide such
836 * informations. The latter is however just of historical nature, because
837 * the gig file format was derived from the DLS file format.
838 *
839 * Each Region consists of at least one or more DimensionRegions. The actual
840 * amount of DimensionRegions depends on which kind of "dimensions" are
841 * defined for this region, and on the split / zone amount for each of those
842 * dimensions.
843 *
844 * Since the gig format was designed as extension to the DLS file format,
845 * this class is derived from the DLS::Region class. So also refer to
846 * DLS::Region for additional informations, class attributes and methods.
847 */
848 class Region : public DLS::Region {
849 public:
850 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
851 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
852 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
853 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
854 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
855
856 // own methods
857 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
858 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
859 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
860 Sample* GetSample();
861 void AddDimension(dimension_def_t* pDimDef);
862 void DeleteDimension(dimension_def_t* pDimDef);
863 dimension_def_t* GetDimensionDefinition(dimension_t type);
864 void DeleteDimensionZone(dimension_t type, int zone);
865 void SplitDimensionZone(dimension_t type, int zone);
866 void SetDimensionType(dimension_t oldType, dimension_t newType);
867 // overridden methods
868 virtual void SetKeyRange(uint16_t Low, uint16_t High);
869 virtual void UpdateChunks(progress_t* pProgress);
870 virtual void CopyAssign(const Region* orig);
871 protected:
872 Region(Instrument* pInstrument, RIFF::List* rgnList);
873 void LoadDimensionRegions(RIFF::List* rgn);
874 void UpdateVelocityTable();
875 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
876 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
877 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
878 ~Region();
879 friend class Instrument;
880 };
881
882 /** @brief Abstract base class for all MIDI rules.
883 *
884 * Note: Instead of using MIDI rules, we recommend you using real-time
885 * instrument scripts instead. Read about the reasons below.
886 *
887 * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
888 * introduced with GigaStudio 4 as an attempt to increase the power of
889 * potential user controls over sounds. At that point other samplers already
890 * supported certain powerful user control features, which were not possible
891 * with GigaStudio yet. For example triggering new notes by MIDI CC
892 * controller.
893 *
894 * Such extended features however were usually implemented by other samplers
895 * by requiring the sound designer to write an instrument script which the
896 * designer would then bundle with the respective instrument file. Such
897 * scripts are essentially text files, using a very specific programming
898 * language for the purpose of controlling the sampler in real-time. Since
899 * however musicians are not typically keen to writing such cumbersome
900 * script files, the GigaStudio designers decided to implement such extended
901 * features completely without instrument scripts. Instead they created a
902 * set of rules, which could be defined and altered conveniently by mouse
903 * clicks in GSt's instrument editor application. The downside of this
904 * overall approach however, was that those MIDI rules were very limited in
905 * practice. As sound designer you easily came across the possiblities such
906 * MIDI rules were able to offer.
907 *
908 * Due to such severe use case constraints, support for MIDI rules is quite
909 * limited in libgig. At the moment only the "Control Trigger", "Alternator"
910 * and the "Legato" MIDI rules are supported by libgig. Consequently the
911 * graphical instrument editor application gigedit just supports the
912 * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
913 * support any MIDI rule type at all and LinuxSampler probably will not
914 * support MIDI rules in future either.
915 *
916 * Instead of using MIDI rules, we introduced real-time instrument scripts
917 * as extension to the original GigaStudio file format. This script based
918 * solution is much more powerful than MIDI rules and is already supported
919 * by libgig, gigedit and LinuxSampler.
920 *
921 * @deprecated Just provided for backward compatiblity, use Script for new
922 * instruments instead.
923 */
924 class MidiRule {
925 public:
926 virtual ~MidiRule() { }
927 protected:
928 virtual void UpdateChunks(uint8_t* pData) const = 0;
929 friend class Instrument;
930 };
931
932 /** @brief MIDI rule for triggering notes by control change events.
933 *
934 * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
935 * control change events to the sampler.
936 *
937 * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
938 * by LinuxSampler. We recommend you using real-time instrument scripts
939 * instead. Read more about the details and reasons for this in the
940 * description of the MidiRule base class.
941 *
942 * @deprecated Just provided for backward compatiblity, use Script for new
943 * instruments instead. See description of MidiRule for details.
944 */
945 class MidiRuleCtrlTrigger : public MidiRule {
946 public:
947 uint8_t ControllerNumber; ///< MIDI controller number.
948 uint8_t Triggers; ///< Number of triggers.
949 struct trigger_t {
950 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
951 bool Descending; ///< If the change in CC value should be downwards.
952 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
953 uint8_t Key; ///< Key to trigger.
954 bool NoteOff; ///< If a note off should be triggered instead of a note on.
955 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
956 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
957 } pTriggers[32];
958
959 protected:
960 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
961 MidiRuleCtrlTrigger();
962 void UpdateChunks(uint8_t* pData) const;
963 friend class Instrument;
964 };
965
966 /** @brief MIDI rule for instruments with legato samples.
967 *
968 * A "Legato MIDI rule" allows playing instruments resembling the legato
969 * playing technique. In the past such legato articulations were tried to be
970 * simulated by pitching the samples of the instrument. However since
971 * usually a high amount of pitch is needed for legatos, this always sounded
972 * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
973 * approach. Instead of pitching the samples, it allows the sound designer
974 * to bundle separate, additional samples for the individual legato
975 * situations and the legato rules defined which samples to be played in
976 * which situation.
977 *
978 * Note: "Legato MIDI rules" are only supported by gigedit, but not
979 * by LinuxSampler. We recommend you using real-time instrument scripts
980 * instead. Read more about the details and reasons for this in the
981 * description of the MidiRule base class.
982 *
983 * @deprecated Just provided for backward compatiblity, use Script for new
984 * instruments instead. See description of MidiRule for details.
985 */
986 class MidiRuleLegato : public MidiRule {
987 public:
988 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
989 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
990 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
991 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
992 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
993 uint16_t ReleaseTime; ///< Release time
994 range_t KeyRange; ///< Key range for legato notes
995 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
996 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
997 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
998
999 protected:
1000 MidiRuleLegato(RIFF::Chunk* _3ewg);
1001 MidiRuleLegato();
1002 void UpdateChunks(uint8_t* pData) const;
1003 friend class Instrument;
1004 };
1005
1006 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1007 *
1008 * The instrument must be using the smartmidi dimension.
1009 *
1010 * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1011 * LinuxSampler. We recommend you using real-time instrument scripts
1012 * instead. Read more about the details and reasons for this in the
1013 * description of the MidiRule base class.
1014 *
1015 * @deprecated Just provided for backward compatiblity, use Script for new
1016 * instruments instead. See description of MidiRule for details.
1017 */
1018 class MidiRuleAlternator : public MidiRule {
1019 public:
1020 uint8_t Articulations; ///< Number of articulations in the instrument
1021 String pArticulations[32]; ///< Names of the articulations
1022
1023 range_t PlayRange; ///< Key range of the playable keys in the instrument
1024
1025 uint8_t Patterns; ///< Number of alternator patterns
1026 struct pattern_t {
1027 String Name; ///< Name of the pattern
1028 int Size; ///< Number of steps in the pattern
1029 const uint8_t& operator[](int i) const { /// Articulation to play
1030 return data[i];
1031 }
1032 uint8_t& operator[](int i) {
1033 return data[i];
1034 }
1035 private:
1036 uint8_t data[32];
1037 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1038
1039 typedef enum {
1040 selector_none,
1041 selector_key_switch,
1042 selector_controller
1043 } selector_t;
1044 selector_t Selector; ///< Method by which pattern is chosen
1045 range_t KeySwitchRange; ///< Key range for key switch selector
1046 uint8_t Controller; ///< CC number for controller selector
1047
1048 bool Polyphonic; ///< If alternator should step forward only when all notes are off
1049 bool Chained; ///< If all patterns should be chained together
1050
1051 protected:
1052 MidiRuleAlternator(RIFF::Chunk* _3ewg);
1053 MidiRuleAlternator();
1054 void UpdateChunks(uint8_t* pData) const;
1055 friend class Instrument;
1056 };
1057
1058 /** @brief A MIDI rule not yet implemented by libgig.
1059 *
1060 * This class is currently used as a place holder by libgig for MIDI rule
1061 * types which are not supported by libgig yet.
1062 *
1063 * Note: Support for missing MIDI rule types are probably never added to
1064 * libgig. We recommend you using real-time instrument scripts instead.
1065 * Read more about the details and reasons for this in the description of
1066 * the MidiRule base class.
1067 *
1068 * @deprecated Just provided for backward compatiblity, use Script for new
1069 * instruments instead. See description of MidiRule for details.
1070 */
1071 class MidiRuleUnknown : public MidiRule {
1072 protected:
1073 MidiRuleUnknown() { }
1074 void UpdateChunks(uint8_t* pData) const { }
1075 friend class Instrument;
1076 };
1077
1078 /** @brief Real-time instrument script (gig format extension).
1079 *
1080 * Real-time instrument scripts are user supplied small programs which can
1081 * be used by instrument designers to create custom behaviors and features
1082 * not available in the stock sampler engine. Features which might be very
1083 * exotic or specific for the respective instrument.
1084 *
1085 * This is an extension of the GigaStudio format, thus a feature which was
1086 * not available in the GigaStudio 4 software. It is currently only
1087 * supported by LinuxSampler and gigedit. Scripts will not load with the
1088 * original GigaStudio software.
1089 *
1090 * You find more informations about Instrument Scripts on the LinuxSampler
1091 * documentation site:
1092 *
1093 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1094 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1095 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1096 * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1097 */
1098 class Script {
1099 public:
1100 enum Encoding_t {
1101 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1102 };
1103 enum Compression_t {
1104 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1105 };
1106 enum Language_t {
1107 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1108 };
1109
1110 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1111 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1112 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1113 Language_t Language; ///< Programming language and dialect the script is written in.
1114 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1115
1116 String GetScriptAsText();
1117 void SetScriptAsText(const String& text);
1118 void SetGroup(ScriptGroup* pGroup);
1119 ScriptGroup* GetGroup() const;
1120 void CopyAssign(const Script* orig);
1121 protected:
1122 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1123 virtual ~Script();
1124 void UpdateChunks(progress_t* pProgress);
1125 void RemoveAllScriptReferences();
1126 friend class ScriptGroup;
1127 friend class Instrument;
1128 private:
1129 ScriptGroup* pGroup;
1130 RIFF::Chunk* pChunk; ///< 'Scri' chunk
1131 std::vector<uint8_t> data;
1132 uint32_t crc; ///< CRC-32 checksum of the raw script data
1133 };
1134
1135 /** @brief Group of instrument scripts (gig format extension).
1136 *
1137 * This class is simply used to sort a bunch of real-time instrument scripts
1138 * into individual groups. This allows instrument designers and script
1139 * developers to keep scripts in a certain order while working with a larger
1140 * amount of scripts in an instrument editor.
1141 *
1142 * This is an extension of the GigaStudio format, thus a feature which was
1143 * not available in the GigaStudio 4 software. It is currently only
1144 * supported by LinuxSampler and gigedit.
1145 */
1146 class ScriptGroup {
1147 public:
1148 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1149
1150 Script* GetScript(uint index);
1151 Script* AddScript();
1152 void DeleteScript(Script* pScript);
1153 protected:
1154 ScriptGroup(File* file, RIFF::List* lstRTIS);
1155 virtual ~ScriptGroup();
1156 void LoadScripts();
1157 void UpdateChunks(progress_t* pProgress);
1158 friend class Script;
1159 friend class File;
1160 private:
1161 File* pFile;
1162 RIFF::List* pList; ///< 'RTIS' list chunk
1163 std::list<Script*>* pScripts;
1164 };
1165
1166 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1167 *
1168 * This class provides access to Gigasampler/GigaStudio instruments
1169 * contained in .gig files. A gig instrument is merely a set of keyboard
1170 * ranges (called Region), plus some additional global informations about
1171 * the instrument. The major part of the actual instrument definition used
1172 * for the synthesis of the instrument is contained in the respective Region
1173 * object (or actually in the respective DimensionRegion object being, see
1174 * description of Region for details).
1175 *
1176 * Since the gig format was designed as extension to the DLS file format,
1177 * this class is derived from the DLS::Instrument class. So also refer to
1178 * DLS::Instrument for additional informations, class attributes and
1179 * methods.
1180 */
1181 class Instrument : protected DLS::Instrument {
1182 public:
1183 // derived attributes from DLS::Resource
1184 using DLS::Resource::pInfo;
1185 using DLS::Resource::pDLSID;
1186 // derived attributes from DLS::Instrument
1187 using DLS::Instrument::IsDrum;
1188 using DLS::Instrument::MIDIBank;
1189 using DLS::Instrument::MIDIBankCoarse;
1190 using DLS::Instrument::MIDIBankFine;
1191 using DLS::Instrument::MIDIProgram;
1192 using DLS::Instrument::Regions;
1193 // own attributes
1194 int32_t Attenuation; ///< in dB
1195 uint16_t EffectSend;
1196 int16_t FineTune; ///< in cents
1197 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1198 bool PianoReleaseMode;
1199 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1200
1201
1202 // derived methods from DLS::Resource
1203 using DLS::Resource::GetParent;
1204 // overridden methods
1205 Region* GetFirstRegion();
1206 Region* GetNextRegion();
1207 Region* AddRegion();
1208 void DeleteRegion(Region* pRegion);
1209 void MoveTo(Instrument* dst);
1210 virtual void UpdateChunks(progress_t* pProgress);
1211 virtual void CopyAssign(const Instrument* orig);
1212 // own methods
1213 Region* GetRegion(unsigned int Key);
1214 MidiRule* GetMidiRule(int i);
1215 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1216 MidiRuleLegato* AddMidiRuleLegato();
1217 MidiRuleAlternator* AddMidiRuleAlternator();
1218 void DeleteMidiRule(int i);
1219 // real-time instrument script methods
1220 Script* GetScriptOfSlot(uint index);
1221 void AddScriptSlot(Script* pScript, bool bypass = false);
1222 void SwapScriptSlots(uint index1, uint index2);
1223 void RemoveScriptSlot(uint index);
1224 void RemoveScript(Script* pScript);
1225 uint ScriptSlotCount() const;
1226 bool IsScriptSlotBypassed(uint index);
1227 void SetScriptSlotBypassed(uint index, bool bBypass);
1228 protected:
1229 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1230
1231 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1232 ~Instrument();
1233 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1234 void UpdateRegionKeyTable();
1235 void LoadScripts();
1236 void UpdateScriptFileOffsets();
1237 friend class File;
1238 friend class Region; // so Region can call UpdateRegionKeyTable()
1239 private:
1240 struct _ScriptPooolEntry {
1241 uint32_t fileOffset;
1242 bool bypass;
1243 };
1244 struct _ScriptPooolRef {
1245 Script* script;
1246 bool bypass;
1247 };
1248 MidiRule** pMidiRules;
1249 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1250 std::vector<_ScriptPooolRef>* pScriptRefs;
1251 };
1252
1253 /** @brief Group of Gigasampler samples
1254 *
1255 * Groups help to organize a huge collection of Gigasampler samples.
1256 * Groups are not concerned at all for the synthesis, but they help
1257 * sound library developers when working on complex instruments with an
1258 * instrument editor (as long as that instrument editor supports it ;-).
1259 *
1260 * A sample is always assigned to exactly one Group. This also means
1261 * there is always at least one Group in a .gig file, no matter if you
1262 * created one yet or not.
1263 */
1264 class Group {
1265 public:
1266 String Name; ///< Stores the name of this Group.
1267
1268 Sample* GetFirstSample();
1269 Sample* GetNextSample();
1270 void AddSample(Sample* pSample);
1271 protected:
1272 Group(File* file, RIFF::Chunk* ck3gnm);
1273 virtual ~Group();
1274 virtual void UpdateChunks(progress_t* pProgress);
1275 void MoveAll();
1276 friend class File;
1277 private:
1278 File* pFile;
1279 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1280 };
1281
1282 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1283 *
1284 * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1285 * with libgig. It allows you to open existing .gig files, modifying them
1286 * and saving them persistently either under the same file name or under a
1287 * different location.
1288 *
1289 * A .gig file is merely a monolithic file. That means samples and the
1290 * defintion of the virtual instruments are contained in the same file. A
1291 * .gig file contains an arbitrary amount of samples, and an arbitrary
1292 * amount of instruments which are referencing those samples. It is also
1293 * possible to store samples in .gig files not being referenced by any
1294 * instrument. This is not an error from the file format's point of view and
1295 * it is actually often used in practice during the design phase of new gig
1296 * instruments.
1297 *
1298 * So on toplevel of the gig file format you have:
1299 *
1300 * - A set of samples (see Sample).
1301 * - A set of virtual instruments (see Instrument).
1302 *
1303 * And as extension to the original GigaStudio format, we added:
1304 *
1305 * - Real-time instrument scripts (see Script).
1306 *
1307 * Note that the latter however is only supported by libgig, gigedit and
1308 * LinuxSampler. Scripts are not supported by the original GigaStudio
1309 * software.
1310 *
1311 * All released Gigasampler/GigaStudio file format versions are supported
1312 * (so from first Gigasampler version up to including GigaStudio 4).
1313 *
1314 * Since the gig format was designed as extension to the DLS file format,
1315 * this class is derived from the DLS::File class. So also refer to
1316 * DLS::File for additional informations, class attributes and methods.
1317 */
1318 class File : protected DLS::File {
1319 public:
1320 static const DLS::version_t VERSION_2;
1321 static const DLS::version_t VERSION_3;
1322
1323 // derived attributes from DLS::Resource
1324 using DLS::Resource::pInfo;
1325 using DLS::Resource::pDLSID;
1326 // derived attributes from DLS::File
1327 using DLS::File::pVersion;
1328 using DLS::File::Instruments;
1329
1330 // derived methods from DLS::Resource
1331 using DLS::Resource::GetParent;
1332 // derived methods from DLS::File
1333 using DLS::File::Save;
1334 using DLS::File::GetFileName;
1335 using DLS::File::SetFileName;
1336 // overridden methods
1337 File();
1338 File(RIFF::File* pRIFF);
1339 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1340 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1341 Sample* GetSample(uint index);
1342 Sample* AddSample();
1343 void DeleteSample(Sample* pSample);
1344 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1345 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1346 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1347 Instrument* AddInstrument();
1348 Instrument* AddDuplicateInstrument(const Instrument* orig);
1349 void DeleteInstrument(Instrument* pInstrument);
1350 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1351 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1352 Group* GetGroup(uint index);
1353 Group* GetGroup(String name);
1354 Group* AddGroup();
1355 void DeleteGroup(Group* pGroup);
1356 void DeleteGroupOnly(Group* pGroup);
1357 void SetAutoLoad(bool b);
1358 bool GetAutoLoad();
1359 void AddContentOf(File* pFile);
1360 ScriptGroup* GetScriptGroup(uint index);
1361 ScriptGroup* GetScriptGroup(const String& name);
1362 ScriptGroup* AddScriptGroup();
1363 void DeleteScriptGroup(ScriptGroup* pGroup);
1364 virtual ~File();
1365 virtual void UpdateChunks(progress_t* pProgress);
1366 protected:
1367 // overridden protected methods from DLS::File
1368 virtual void LoadSamples();
1369 virtual void LoadInstruments();
1370 virtual void LoadGroups();
1371 virtual void UpdateFileOffsets();
1372 // own protected methods
1373 virtual void LoadSamples(progress_t* pProgress);
1374 virtual void LoadInstruments(progress_t* pProgress);
1375 virtual void LoadScriptGroups();
1376 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1377 uint32_t GetSampleChecksum(Sample* pSample);
1378 uint32_t GetSampleChecksumByIndex(int index);
1379 bool VerifySampleChecksumTable();
1380 bool RebuildSampleChecksumTable();
1381 int GetWaveTableIndexOf(gig::Sample* pSample);
1382 friend class Region;
1383 friend class Sample;
1384 friend class Instrument;
1385 friend class Group; // so Group can access protected member pRIFF
1386 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1387 private:
1388 std::list<Group*>* pGroups;
1389 std::list<Group*>::iterator GroupsIterator;
1390 bool bAutoLoad;
1391 std::list<ScriptGroup*>* pScriptGroups;
1392 };
1393
1394 /**
1395 * Will be thrown whenever a gig specific error occurs while trying to
1396 * access a Gigasampler File. Note: In your application you should
1397 * better catch for RIFF::Exception rather than this one, except you
1398 * explicitly want to catch and handle gig::Exception, DLS::Exception
1399 * and RIFF::Exception independently, which usually shouldn't be
1400 * necessary though.
1401 */
1402 class Exception : public DLS::Exception {
1403 public:
1404 Exception(String format, ...);
1405 Exception(String format, va_list arg);
1406 void PrintMessage();
1407 protected:
1408 Exception();
1409 };
1410
1411 #if HAVE_RTTI
1412 size_t enumCount(const std::type_info& type);
1413 const char* enumKey(const std::type_info& type, size_t value);
1414 bool enumKey(const std::type_info& type, String key);
1415 const char** enumKeys(const std::type_info& type);
1416 #endif // HAVE_RTTI
1417 size_t enumCount(String typeName);
1418 const char* enumKey(String typeName, size_t value);
1419 bool enumKey(String typeName, String key);
1420 const char** enumKeys(String typeName);
1421 size_t enumValue(String key);
1422
1423 String libraryName();
1424 String libraryVersion();
1425
1426 } // namespace gig
1427
1428 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC