/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 515 - (show annotations) (download) (as text)
Sat May 7 20:19:10 2005 UTC (18 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 49933 byte(s)
* src/gig.h, src/gig.cpp: implemented progress indicator callback mechanism
  for loading instruments and samples
* src/DLS.cpp: fixed File constructor which caused variable
  File::Instruments always to be zero
* src/RIFF.cpp: fixed method List::LoadSubChunks() which did not restore
  the original position within the body of the given list chunk

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28
29 #include <math.h>
30 #include <string.h>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 #if WORDS_BIGENDIAN
40 # define LIST_TYPE_3PRG 0x33707267
41 # define LIST_TYPE_3EWL 0x3365776C
42 # define CHUNK_ID_SMPL 0x736D706C
43 # define CHUNK_ID_3GIX 0x33676978
44 # define CHUNK_ID_3EWA 0x33657761
45 # define CHUNK_ID_3LNK 0x336C6E6B
46 # define CHUNK_ID_3EWG 0x33657767
47 # define CHUNK_ID_EWAV 0x65776176
48 #else // little endian
49 # define LIST_TYPE_3PRG 0x67727033
50 # define LIST_TYPE_3EWL 0x6C776533
51 # define CHUNK_ID_SMPL 0x6C706D73
52 # define CHUNK_ID_3GIX 0x78696733
53 # define CHUNK_ID_3EWA 0x61776533
54 # define CHUNK_ID_3LNK 0x6B6E6C33
55 # define CHUNK_ID_3EWG 0x67776533
56 # define CHUNK_ID_EWAV 0x76617765
57 #endif // WORDS_BIGENDIAN
58
59 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
60 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
61 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
62 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
63 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
64 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
65 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
66
67 /** Gigasampler specific classes and definitions */
68 namespace gig {
69
70 typedef std::string String;
71
72 /** Lower and upper limit of a range. */
73 struct range_t {
74 uint8_t low; ///< Low value of range.
75 uint8_t high; ///< High value of range.
76 };
77
78 /** Pointer address and size of a buffer. */
79 struct buffer_t {
80 void* pStart; ///< Points to the beginning of the buffer.
81 unsigned long Size; ///< Size of the actual data in the buffer in bytes.
82 unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
83 buffer_t() {
84 pStart = NULL;
85 Size = 0;
86 NullExtensionSize = 0;
87 }
88 };
89
90 /** Standard types of sample loops. */
91 typedef enum {
92 loop_type_normal = 0x00000000, ///< Loop forward (normal)
93 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
94 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
95 } loop_type_t;
96
97 /** Society of Motion Pictures and Television E time format. */
98 typedef enum {
99 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
100 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
101 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
102 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
103 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
104 } smpte_format_t;
105
106 /** Defines the shape of a function graph. */
107 typedef enum {
108 curve_type_nonlinear = 0,
109 curve_type_linear = 1,
110 curve_type_special = 2,
111 curve_type_unknown = 0xffffffff
112 } curve_type_t;
113
114 /** Dimensions allow to bypass one of the following controllers. */
115 typedef enum {
116 dim_bypass_ctrl_none,
117 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
118 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
119 } dim_bypass_ctrl_t;
120
121 /** Defines how LFO3 is controlled by. */
122 typedef enum {
123 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
124 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
125 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
126 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
127 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
128 } lfo3_ctrl_t;
129
130 /** Defines how LFO2 is controlled by. */
131 typedef enum {
132 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
133 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
134 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
135 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
136 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
137 } lfo2_ctrl_t;
138
139 /** Defines how LFO1 is controlled by. */
140 typedef enum {
141 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
142 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
143 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
144 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
145 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
146 } lfo1_ctrl_t;
147
148 /** Defines how the filter cutoff frequency is controlled by. */
149 typedef enum {
150 vcf_cutoff_ctrl_none = 0x00,
151 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
152 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
153 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
154 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
155 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
156 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
157 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
158 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
159 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
160 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
161 } vcf_cutoff_ctrl_t;
162
163 /** Defines how the filter resonance is controlled by. */
164 typedef enum {
165 vcf_res_ctrl_none = 0xffffffff,
166 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
167 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
168 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
169 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
170 } vcf_res_ctrl_t;
171
172 /**
173 * Defines a controller that has a certain contrained influence on a
174 * particular synthesis parameter (used to define attenuation controller,
175 * EG1 controller and EG2 controller).
176 *
177 * You should use the respective <i>typedef</i> (means either
178 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
179 */
180 struct leverage_ctrl_t {
181 typedef enum {
182 type_none = 0x00, ///< No controller defined
183 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
184 type_velocity = 0xff, ///< Key Velocity
185 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
186 } type_t;
187
188 type_t type; ///< Controller type
189 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
190 };
191
192 /**
193 * Defines controller influencing attenuation.
194 *
195 * @see leverage_ctrl_t
196 */
197 typedef leverage_ctrl_t attenuation_ctrl_t;
198
199 /**
200 * Defines controller influencing envelope generator 1.
201 *
202 * @see leverage_ctrl_t
203 */
204 typedef leverage_ctrl_t eg1_ctrl_t;
205
206 /**
207 * Defines controller influencing envelope generator 2.
208 *
209 * @see leverage_ctrl_t
210 */
211 typedef leverage_ctrl_t eg2_ctrl_t;
212
213 /**
214 * Defines the type of dimension, that is how the dimension zones (and
215 * thus how the dimension regions are selected by. The number of
216 * dimension zones is always a power of two. All dimensions can have up
217 * to 32 zones (except the layer dimension with only up to 8 zones and
218 * the samplechannel dimension which currently allows only 2 zones).
219 */
220 typedef enum {
221 dimension_none = 0x00, ///< Dimension not in use.
222 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
223 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
224 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).
225 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
226 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
227 dimension_keyboard = 0x85, ///< Dimension for keyswitching
228 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
229 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
230 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
231 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
232 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
233 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
234 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
235 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
236 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
237 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
238 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
239 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
240 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
241 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
242 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
243 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
244 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
245 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
246 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
247 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
248 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
249 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
250 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
251 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
252 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
253 } dimension_t;
254
255 /**
256 * Intended for internal usage: will be used to convert a dimension value
257 * into the corresponding dimension bit number.
258 */
259 typedef enum {
260 split_type_normal, ///< dimension value between 0-127, no custom range of zones
261 split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)
262 split_type_bit ///< dimension values are already the sought bit number
263 } split_type_t;
264
265 /** General dimension definition. */
266 struct dimension_def_t {
267 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
268 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
269 uint8_t zones; ///< Number of zones the dimension has.
270 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
271 range_t* ranges; ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).
272 unsigned int zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
273 };
274
275 /** Defines which frequencies are filtered by the VCF. */
276 typedef enum {
277 vcf_type_lowpass = 0x00,
278 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
279 vcf_type_bandpass = 0x01,
280 vcf_type_highpass = 0x02,
281 vcf_type_bandreject = 0x03
282 } vcf_type_t;
283
284 /**
285 * Defines the envelope of a crossfade.
286 *
287 * Note: The default value for crossfade points is 0,0,0,0. Layers with
288 * such a default value should be treated as if they would not have a
289 * crossfade.
290 */
291 struct crossfade_t {
292 #if WORDS_BIGENDIAN
293 uint8_t out_end; ///< End postition of fade out.
294 uint8_t out_start; ///< Start position of fade out.
295 uint8_t in_end; ///< End position of fade in.
296 uint8_t in_start; ///< Start position of fade in.
297 #else // little endian
298 uint8_t in_start; ///< Start position of fade in.
299 uint8_t in_end; ///< End position of fade in.
300 uint8_t out_start; ///< Start position of fade out.
301 uint8_t out_end; ///< End postition of fade out.
302 #endif // WORDS_BIGENDIAN
303 };
304
305 /** Reflects the current playback state for a sample. */
306 struct playback_state_t {
307 unsigned long position; ///< Current position within the sample.
308 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
309 unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
310 };
311
312 /**
313 * @brief Used for indicating the progress of a certain task.
314 *
315 * The function pointer argument has to be supplied with a valid
316 * function of the given signature which will then be called on
317 * progress changes. The float argument of the callback function will
318 * then reflect the current progress as a value between 0.0 and 1.0.
319 */
320 struct progress_t {
321 void (*callback)(float); ///< Callback function pointer which has to be assigned to a function for progress notification.
322 float __range_min;
323 float __range_max;
324 progress_t();
325 };
326
327 // just symbol prototyping
328 class File;
329 class Instrument;
330 class Sample;
331 class Region;
332
333 /** Encapsulates articulation information of a dimension region.
334 *
335 * Every Gigasampler Instrument has at least one dimension region
336 * (exactly then when it has no dimension defined).
337 *
338 * Gigasampler provides three Envelope Generators and Low Frequency
339 * Oscillators:
340 *
341 * - EG1 and LFO1, both controlling sample amplitude
342 * - EG2 and LFO2, both controlling filter cutoff frequency
343 * - EG3 and LFO3, both controlling sample pitch
344 */
345 class DimensionRegion : protected DLS::Sampler {
346 public:
347 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).
348 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
349 // Sample Amplitude EG/LFO
350 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
351 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
352 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
353 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
354 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
355 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
356 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
357 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
358 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
359 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
360 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
361 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
362 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
363 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
364 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
365 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
366 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
367 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
368 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
369 // Filter Cutoff Frequency EG/LFO
370 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
371 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
372 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
373 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
374 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
375 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
376 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
377 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
378 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
379 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
380 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
381 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
382 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
383 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
384 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
385 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
386 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
387 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
388 // Sample Pitch EG/LFO
389 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
390 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
391 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
392 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
393 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
394 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
395 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
396 // Filter
397 bool VCFEnabled; ///< If filter should be used.
398 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
399 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency.
400 uint8_t VCFCutoff; ///< Max. cutoff frequency.
401 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.
402 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).
403 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest
404 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
405 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
406 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
407 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
408 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
409 // Key Velocity Transformations
410 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
411 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
412 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)
413 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.
414 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4).
415 uint8_t ReleaseTriggerDecay; ///< 0 - 8
416 // Mix / Layer
417 crossfade_t Crossfade;
418 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
419 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
420 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
421 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
422 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
423 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
424 uint8_t AttenuationControllerThreshold;///< 0-127
425 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
426 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
427 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
428 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
429 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
430
431 // derived attributes from DLS::Sampler
432 DLS::Sampler::UnityNote;
433 DLS::Sampler::FineTune;
434 DLS::Sampler::Gain;
435 DLS::Sampler::SampleLoops;
436 DLS::Sampler::pSampleLoops;
437
438 // Methods
439 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
440 protected:
441 DimensionRegion(RIFF::List* _3ewl);
442 ~DimensionRegion();
443 friend class Region;
444 private:
445 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
446 _lev_ctrl_none = 0x00,
447 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
448 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
449 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
450 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
451 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
452 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
453 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
454 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
455 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
456 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
457 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
458 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
459 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
460 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
461 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
462 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
463 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
464 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
465 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
466 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
467 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
468 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
469 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
470 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
471 _lev_ctrl_velocity = 0xff ///< Key Velocity
472 } _lev_ctrl_t;
473 typedef std::map<uint32_t, double*> VelocityTableMap;
474
475 static uint Instances; ///< Number of DimensionRegion instances.
476 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
477 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
478
479 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
480 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
481 };
482
483 /** Encapsulates sample waves used for playback. */
484 class Sample : public DLS::Sample {
485 public:
486 uint16_t SampleGroup;
487 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
488 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
489 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).
490 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
491 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
492 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
493 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
494 uint32_t Loops; ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).
495 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
496 loop_type_t LoopType; ///< The type field defines how the waveform samples will be looped (only if Loops > 0).
497 uint32_t LoopStart; ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).
498 uint32_t LoopEnd; ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).
499 uint32_t LoopSize; ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.
500 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
501 uint32_t LoopPlayCount; ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).
502 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
503 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
504 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
505
506 // own methods
507 buffer_t LoadSampleData();
508 buffer_t LoadSampleData(unsigned long SampleCount);
509 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
510 buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
511 buffer_t GetCache();
512 // own static methods
513 static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
514 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
515 // overridden methods
516 void ReleaseSampleData();
517 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
518 unsigned long GetPos();
519 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
520 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer = NULL);
521 protected:
522 static unsigned int Instances; ///< Number of instances of class Sample.
523 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
524 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
525 unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
526 unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
527 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
528 unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
529 unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
530 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
531
532 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);
533 ~Sample();
534 /**
535 * Swaps the order of the data words in the given memory area
536 * with a granularity given by \a WordSize.
537 *
538 * @param pData - pointer to the memory area to be swapped
539 * @param AreaSize - size of the memory area to be swapped (in bytes)
540 * @param WordSize - size of the data words (in bytes)
541 */
542 inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {
543 switch (WordSize) { // TODO: unefficient
544 case 1: {
545 uint8_t* pDst = (uint8_t*) pData;
546 uint8_t cache;
547 unsigned long lo = 0, hi = AreaSize - 1;
548 for (; lo < hi; hi--, lo++) {
549 cache = pDst[lo];
550 pDst[lo] = pDst[hi];
551 pDst[hi] = cache;
552 }
553 break;
554 }
555 case 2: {
556 uint16_t* pDst = (uint16_t*) pData;
557 uint16_t cache;
558 unsigned long lo = 0, hi = (AreaSize >> 1) - 1;
559 for (; lo < hi; hi--, lo++) {
560 cache = pDst[lo];
561 pDst[lo] = pDst[hi];
562 pDst[hi] = cache;
563 }
564 break;
565 }
566 case 4: {
567 uint32_t* pDst = (uint32_t*) pData;
568 uint32_t cache;
569 unsigned long lo = 0, hi = (AreaSize >> 2) - 1;
570 for (; lo < hi; hi--, lo++) {
571 cache = pDst[lo];
572 pDst[lo] = pDst[hi];
573 pDst[hi] = cache;
574 }
575 break;
576 }
577 default: {
578 uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient
579 unsigned long lo = 0, hi = AreaSize - WordSize;
580 for (; lo < hi; hi -= WordSize, lo += WordSize) {
581 memcpy(pCache, (uint8_t*) pData + lo, WordSize);
582 memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);
583 memcpy((uint8_t*) pData + hi, pCache, WordSize);
584 }
585 delete[] pCache;
586 break;
587 }
588 }
589 }
590 inline long Min(long A, long B) {
591 return (A > B) ? B : A;
592 }
593 inline long Abs(long val) { return (val > 0) ? val : -val; }
594
595 // Guess size (in bytes) of a compressed sample
596 inline unsigned long GuessSize(unsigned long samples) {
597 // 16 bit: assume all frames are compressed - 1 byte
598 // per sample and 5 bytes header per 2048 samples
599
600 // 24 bit: assume next best compression rate - 1.5
601 // bytes per sample and 13 bytes header per 256
602 // samples
603 const unsigned long size =
604 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
605 : samples + (samples >> 10) * 5;
606 // Double for stereo and add one worst case sample
607 // frame
608 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
609 }
610
611 // Worst case amount of sample points that can be read with the
612 // given decompression buffer.
613 inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
614 return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
615 }
616 private:
617 void ScanCompressedSample();
618 friend class File;
619 friend class Region;
620 };
621
622 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
623 /** Defines <i>Region</i> information of an <i>Instrument</i>. */
624 class Region : public DLS::Region {
625 public:
626 unsigned int Dimensions; ///< Number of defined dimensions.
627 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits).
628 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains.
629 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).
630 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions.
631
632 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
633 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
634 Sample* GetSample();
635 protected:
636 uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
637
638 Region(Instrument* pInstrument, RIFF::List* rgnList);
639 void LoadDimensionRegions(RIFF::List* rgn);
640 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
641 ~Region();
642 friend class Instrument;
643 };
644
645 /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */
646 class Instrument : protected DLS::Instrument {
647 public:
648 // derived attributes from DLS::Resource
649 DLS::Resource::pInfo;
650 DLS::Resource::pDLSID;
651 // derived attributes from DLS::Instrument
652 DLS::Instrument::IsDrum;
653 DLS::Instrument::MIDIBank;
654 DLS::Instrument::MIDIBankCoarse;
655 DLS::Instrument::MIDIBankFine;
656 DLS::Instrument::MIDIProgram;
657 DLS::Instrument::Regions;
658 // own attributes
659 int32_t Attenuation; ///< in dB
660 uint16_t EffectSend;
661 int16_t FineTune; ///< in cents
662 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
663 bool PianoReleaseMode;
664 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
665
666
667 // derived methods from DLS::Resource
668 DLS::Resource::GetParent;
669 // overridden methods
670 Region* GetFirstRegion();
671 Region* GetNextRegion();
672 // own methods
673 Region* GetRegion(unsigned int Key);
674 protected:
675 Region** pRegions; ///< Pointer array to the regions
676 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
677 int RegionIndex;
678
679 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
680 ~Instrument();
681 friend class File;
682 };
683
684 // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)
685 /** Parses Gigasampler files and provides abstract access to the data. */
686 class File : protected DLS::File {
687 public:
688 // derived attributes from DLS::Resource
689 DLS::Resource::pInfo;
690 DLS::Resource::pDLSID;
691 // derived attributes from DLS::File
692 DLS::File::pVersion;
693 DLS::File::Instruments;
694
695 // derived methods from DLS::Resource
696 DLS::Resource::GetParent;
697 // overridden methods
698 File(RIFF::File* pRIFF);
699 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
700 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
701 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
702 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
703 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
704 ~File();
705 protected:
706 typedef std::list<Sample*> SampleList;
707 typedef std::list<Instrument*> InstrumentList;
708
709 SampleList* pSamples;
710 SampleList::iterator SamplesIterator;
711 InstrumentList* pInstruments;
712 InstrumentList::iterator InstrumentsIterator;
713
714 void LoadSamples(progress_t* pProgress = NULL);
715 void LoadInstruments(progress_t* pProgress = NULL);
716 friend class Region;
717 };
718
719 /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */
720 class Exception : public DLS::Exception {
721 public:
722 Exception(String Message);
723 void PrintMessage();
724 };
725
726 } // namespace gig
727
728 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC