/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 864 - (show annotations) (download) (as text)
Sun May 14 07:15:38 2006 UTC (12 years, 10 months ago) by persson
File MIME type: text/x-c++hdr
File size: 49050 byte(s)
* sample loop parameters are now taken from the DimensionRegion
  instead of the wave chunk
* keyswitching dimension is changed from split type "normal" to "bit"

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28
29 #if WORDS_BIGENDIAN
30 # define LIST_TYPE_3PRG 0x33707267
31 # define LIST_TYPE_3EWL 0x3365776C
32 # define CHUNK_ID_SMPL 0x736D706C
33 # define CHUNK_ID_3GIX 0x33676978
34 # define CHUNK_ID_3EWA 0x33657761
35 # define CHUNK_ID_3LNK 0x336C6E6B
36 # define CHUNK_ID_3EWG 0x33657767
37 # define CHUNK_ID_EWAV 0x65776176
38 #else // little endian
39 # define LIST_TYPE_3PRG 0x67727033
40 # define LIST_TYPE_3EWL 0x6C776533
41 # define CHUNK_ID_SMPL 0x6C706D73
42 # define CHUNK_ID_3GIX 0x78696733
43 # define CHUNK_ID_3EWA 0x61776533
44 # define CHUNK_ID_3LNK 0x6B6E6C33
45 # define CHUNK_ID_3EWG 0x67776533
46 # define CHUNK_ID_EWAV 0x76617765
47 #endif // WORDS_BIGENDIAN
48
49 /** Gigasampler specific classes and definitions */
50 namespace gig {
51
52 typedef std::string String;
53
54 /** Lower and upper limit of a range. */
55 struct range_t {
56 uint8_t low; ///< Low value of range.
57 uint8_t high; ///< High value of range.
58 };
59
60 /** Pointer address and size of a buffer. */
61 struct buffer_t {
62 void* pStart; ///< Points to the beginning of the buffer.
63 unsigned long Size; ///< Size of the actual data in the buffer in bytes.
64 unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
65 buffer_t() {
66 pStart = NULL;
67 Size = 0;
68 NullExtensionSize = 0;
69 }
70 };
71
72 /** Standard types of sample loops. */
73 typedef enum {
74 loop_type_normal = 0x00000000, ///< Loop forward (normal)
75 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
76 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
77 } loop_type_t;
78
79 /** Society of Motion Pictures and Television E time format. */
80 typedef enum {
81 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
82 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
83 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
84 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
85 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
86 } smpte_format_t;
87
88 /** Defines the shape of a function graph. */
89 typedef enum {
90 curve_type_nonlinear = 0,
91 curve_type_linear = 1,
92 curve_type_special = 2,
93 curve_type_unknown = 0xffffffff
94 } curve_type_t;
95
96 /** Dimensions allow to bypass one of the following controllers. */
97 typedef enum {
98 dim_bypass_ctrl_none,
99 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
100 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
101 } dim_bypass_ctrl_t;
102
103 /** Defines how LFO3 is controlled by. */
104 typedef enum {
105 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
106 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
107 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
108 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
109 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
110 } lfo3_ctrl_t;
111
112 /** Defines how LFO2 is controlled by. */
113 typedef enum {
114 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
115 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
116 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
117 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
118 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
119 } lfo2_ctrl_t;
120
121 /** Defines how LFO1 is controlled by. */
122 typedef enum {
123 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
124 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
125 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
126 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
127 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
128 } lfo1_ctrl_t;
129
130 /** Defines how the filter cutoff frequency is controlled by. */
131 typedef enum {
132 vcf_cutoff_ctrl_none = 0x00,
133 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
134 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
135 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
136 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
137 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
138 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
139 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
140 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
141 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
142 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
143 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
144 } vcf_cutoff_ctrl_t;
145
146 /** Defines how the filter resonance is controlled by. */
147 typedef enum {
148 vcf_res_ctrl_none = 0xffffffff,
149 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
150 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
151 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
152 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
153 } vcf_res_ctrl_t;
154
155 /**
156 * Defines a controller that has a certain contrained influence on a
157 * particular synthesis parameter (used to define attenuation controller,
158 * EG1 controller and EG2 controller).
159 *
160 * You should use the respective <i>typedef</i> (means either
161 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
162 */
163 struct leverage_ctrl_t {
164 typedef enum {
165 type_none = 0x00, ///< No controller defined
166 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
167 type_velocity = 0xff, ///< Key Velocity
168 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
169 } type_t;
170
171 type_t type; ///< Controller type
172 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
173 };
174
175 /**
176 * Defines controller influencing attenuation.
177 *
178 * @see leverage_ctrl_t
179 */
180 typedef leverage_ctrl_t attenuation_ctrl_t;
181
182 /**
183 * Defines controller influencing envelope generator 1.
184 *
185 * @see leverage_ctrl_t
186 */
187 typedef leverage_ctrl_t eg1_ctrl_t;
188
189 /**
190 * Defines controller influencing envelope generator 2.
191 *
192 * @see leverage_ctrl_t
193 */
194 typedef leverage_ctrl_t eg2_ctrl_t;
195
196 /**
197 * Defines the type of dimension, that is how the dimension zones (and
198 * thus how the dimension regions are selected by. The number of
199 * dimension zones is always a power of two. All dimensions can have up
200 * to 32 zones (except the layer dimension with only up to 8 zones and
201 * the samplechannel dimension which currently allows only 2 zones).
202 */
203 typedef enum {
204 dimension_none = 0x00, ///< Dimension not in use.
205 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
206 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
207 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).
208 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
209 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
210 dimension_keyboard = 0x85, ///< Dimension for keyswitching
211 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
212 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
213 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
214 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
215 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
216 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
217 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
218 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
219 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
220 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
221 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
222 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
223 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
224 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
225 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
226 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
227 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
228 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
229 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
230 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
231 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
232 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
233 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
234 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
235 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
236 } dimension_t;
237
238 /**
239 * Intended for internal usage: will be used to convert a dimension value
240 * into the corresponding dimension bit number.
241 */
242 typedef enum {
243 split_type_normal, ///< dimension value between 0-127
244 split_type_bit ///< dimension values are already the sought bit number
245 } split_type_t;
246
247 /** General dimension definition. */
248 struct dimension_def_t {
249 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
250 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
251 uint8_t zones; ///< Number of zones the dimension has.
252 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
253 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
254 };
255
256 /** Defines which frequencies are filtered by the VCF. */
257 typedef enum {
258 vcf_type_lowpass = 0x00,
259 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
260 vcf_type_bandpass = 0x01,
261 vcf_type_highpass = 0x02,
262 vcf_type_bandreject = 0x03
263 } vcf_type_t;
264
265 /**
266 * Defines the envelope of a crossfade.
267 *
268 * Note: The default value for crossfade points is 0,0,0,0. Layers with
269 * such a default value should be treated as if they would not have a
270 * crossfade.
271 */
272 struct crossfade_t {
273 #if WORDS_BIGENDIAN
274 uint8_t out_end; ///< End postition of fade out.
275 uint8_t out_start; ///< Start position of fade out.
276 uint8_t in_end; ///< End position of fade in.
277 uint8_t in_start; ///< Start position of fade in.
278 #else // little endian
279 uint8_t in_start; ///< Start position of fade in.
280 uint8_t in_end; ///< End position of fade in.
281 uint8_t out_start; ///< Start position of fade out.
282 uint8_t out_end; ///< End postition of fade out.
283 #endif // WORDS_BIGENDIAN
284 };
285
286 /** Reflects the current playback state for a sample. */
287 struct playback_state_t {
288 unsigned long position; ///< Current position within the sample.
289 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
290 unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
291 };
292
293 /**
294 * @brief Used for indicating the progress of a certain task.
295 *
296 * The function pointer argument has to be supplied with a valid
297 * function of the given signature which will then be called on
298 * progress changes. An equivalent progress_t structure will be passed
299 * back as argument to the callback function on each progress change.
300 * The factor field of the supplied progress_t structure will then
301 * reflect the current progress as value between 0.0 and 1.0. You might
302 * want to use the custom field for data needed in your callback
303 * function.
304 */
305 struct progress_t {
306 void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
307 float factor; ///< Reflects current progress as value between 0.0 and 1.0.
308 void* custom; ///< This pointer can be used for arbitrary data.
309 float __range_min; ///< Only for internal usage, do not modify!
310 float __range_max; ///< Only for internal usage, do not modify!
311 progress_t();
312 };
313
314 // just symbol prototyping
315 class File;
316 class Instrument;
317 class Sample;
318 class Region;
319
320 /** Encapsulates articulation information of a dimension region.
321 *
322 * Every Gigasampler Instrument has at least one dimension region
323 * (exactly then when it has no dimension defined).
324 *
325 * Gigasampler provides three Envelope Generators and Low Frequency
326 * Oscillators:
327 *
328 * - EG1 and LFO1, both controlling sample amplitude
329 * - EG2 and LFO2, both controlling filter cutoff frequency
330 * - EG3 and LFO3, both controlling sample pitch
331 */
332 class DimensionRegion : protected DLS::Sampler {
333 public:
334 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).
335 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
336 // Sample Amplitude EG/LFO
337 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
338 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
339 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
340 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
341 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
342 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
343 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
344 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
345 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
346 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
347 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
348 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
349 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
350 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
351 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
352 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
353 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
354 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
355 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
356 // Filter Cutoff Frequency EG/LFO
357 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
358 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
359 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
360 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
361 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
362 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
363 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
364 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
365 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
366 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
367 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
368 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
369 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
370 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
371 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
372 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
373 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
374 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
375 // Sample Pitch EG/LFO
376 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
377 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
378 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
379 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
380 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
381 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
382 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
383 // Filter
384 bool VCFEnabled; ///< If filter should be used.
385 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
386 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency.
387 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
388 uint8_t VCFCutoff; ///< Max. cutoff frequency.
389 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.
390 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff).
391 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest
392 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
393 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
394 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
395 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
396 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
397 // Key Velocity Transformations
398 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
399 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).
400 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)
401 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.
402 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4).
403 uint8_t ReleaseTriggerDecay; ///< 0 - 8
404 // Mix / Layer
405 crossfade_t Crossfade;
406 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
407 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
408 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
409 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
410 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
411 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
412 uint8_t AttenuationControllerThreshold;///< 0-127
413 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
414 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
415 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
416 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
417 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
418
419 // derived attributes from DLS::Sampler
420 DLS::Sampler::UnityNote;
421 DLS::Sampler::FineTune;
422 DLS::Sampler::Gain;
423 DLS::Sampler::SampleLoops;
424 DLS::Sampler::pSampleLoops;
425
426 // own methods
427 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
428 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
429 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
430 // overridden methods
431 virtual void UpdateChunks();
432 protected:
433 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
434 DimensionRegion(RIFF::List* _3ewl);
435 ~DimensionRegion();
436 friend class Region;
437 private:
438 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
439 _lev_ctrl_none = 0x00,
440 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
441 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
442 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
443 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
444 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
445 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
446 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
447 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
448 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
449 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
450 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
451 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
452 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
453 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
454 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
455 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
456 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
457 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
458 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
459 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
460 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
461 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
462 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
463 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
464 _lev_ctrl_velocity = 0xff ///< Key Velocity
465 } _lev_ctrl_t;
466 typedef std::map<uint32_t, double*> VelocityTableMap;
467
468 static uint Instances; ///< Number of DimensionRegion instances.
469 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
470 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
471 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
472 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
473
474 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
475 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
476 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
477 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
478 };
479
480 /** @brief Encapsulates sample waves used for playback.
481 *
482 * In case you created a new sample with File::AddSample(), you should
483 * first update all attributes with the desired meta informations
484 * (amount of channels, bit depth, sample rate, etc.), then call
485 * Resize() with the desired sample size, followed by File::Save(), this
486 * will create the mandatory RIFF chunk which will hold the sample wave
487 * data and / or resize the file so you will be able to Write() the
488 * sample data directly to disk.
489 */
490 class Sample : public DLS::Sample {
491 public:
492 uint16_t SampleGroup;
493 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
494 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
495 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
496 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
497 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
498 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
499 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
500 uint32_t Loops; ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).
501 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
502 loop_type_t LoopType; ///< The type field defines how the waveform samples will be looped (only if Loops > 0).
503 uint32_t LoopStart; ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).
504 uint32_t LoopEnd; ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).
505 uint32_t LoopSize; ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.
506 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
507 uint32_t LoopPlayCount; ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).
508 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
509 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
510 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
511
512 // own methods
513 buffer_t LoadSampleData();
514 buffer_t LoadSampleData(unsigned long SampleCount);
515 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
516 buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
517 buffer_t GetCache();
518 // own static methods
519 static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
520 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
521 // overridden methods
522 void ReleaseSampleData();
523 void Resize(int iNewSize);
524 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
525 unsigned long GetPos();
526 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
527 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
528 unsigned long Write(void* pBuffer, unsigned long SampleCount);
529 virtual void UpdateChunks();
530 protected:
531 static unsigned int Instances; ///< Number of instances of class Sample.
532 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
533 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
534 unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
535 unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
536 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
537 unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
538 unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
539 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
540 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
541 RIFF::Chunk* pCk3gix;
542 RIFF::Chunk* pCkSmpl;
543
544 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
545 ~Sample();
546
547 // Guess size (in bytes) of a compressed sample
548 inline unsigned long GuessSize(unsigned long samples) {
549 // 16 bit: assume all frames are compressed - 1 byte
550 // per sample and 5 bytes header per 2048 samples
551
552 // 24 bit: assume next best compression rate - 1.5
553 // bytes per sample and 13 bytes header per 256
554 // samples
555 const unsigned long size =
556 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
557 : samples + (samples >> 10) * 5;
558 // Double for stereo and add one worst case sample
559 // frame
560 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
561 }
562
563 // Worst case amount of sample points that can be read with the
564 // given decompression buffer.
565 inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
566 return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
567 }
568 private:
569 void ScanCompressedSample();
570 friend class File;
571 friend class Region;
572 };
573
574 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
575 /** Defines <i>Region</i> information of an <i>Instrument</i>. */
576 class Region : public DLS::Region {
577 public:
578 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
579 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension ot delete an existing one.
580 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
581 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension ot delete an existing one (which will create or delete the respective dimension region(s) automatically).
582 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
583
584 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
585 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
586 Sample* GetSample();
587 void AddDimension(dimension_def_t* pDimDef);
588 void DeleteDimension(dimension_def_t* pDimDef);
589 virtual void UpdateChunks();
590 protected:
591 Region(Instrument* pInstrument, RIFF::List* rgnList);
592 void LoadDimensionRegions(RIFF::List* rgn);
593 void UpdateVelocityTable();
594 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
595 ~Region();
596 friend class Instrument;
597 };
598
599 /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */
600 class Instrument : protected DLS::Instrument {
601 public:
602 // derived attributes from DLS::Resource
603 DLS::Resource::pInfo;
604 DLS::Resource::pDLSID;
605 // derived attributes from DLS::Instrument
606 DLS::Instrument::IsDrum;
607 DLS::Instrument::MIDIBank;
608 DLS::Instrument::MIDIBankCoarse;
609 DLS::Instrument::MIDIBankFine;
610 DLS::Instrument::MIDIProgram;
611 DLS::Instrument::Regions;
612 // own attributes
613 int32_t Attenuation; ///< in dB
614 uint16_t EffectSend;
615 int16_t FineTune; ///< in cents
616 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
617 bool PianoReleaseMode;
618 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
619
620
621 // derived methods from DLS::Resource
622 DLS::Resource::GetParent;
623 // overridden methods
624 Region* GetFirstRegion();
625 Region* GetNextRegion();
626 Region* AddRegion();
627 void DeleteRegion(Region* pRegion);
628 virtual void UpdateChunks();
629 // own methods
630 Region* GetRegion(unsigned int Key);
631 protected:
632 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
633
634 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
635 ~Instrument();
636 void UpdateRegionKeyTable();
637 friend class File;
638 };
639
640 // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)
641 /** Parses Gigasampler files and provides abstract access to the data. */
642 class File : protected DLS::File {
643 public:
644 // derived attributes from DLS::Resource
645 DLS::Resource::pInfo;
646 DLS::Resource::pDLSID;
647 // derived attributes from DLS::File
648 DLS::File::pVersion;
649 DLS::File::Instruments;
650
651 // derived methods from DLS::Resource
652 DLS::Resource::GetParent;
653 // derived methods from DLS::File
654 DLS::File::Save;
655 // overridden methods
656 File();
657 File(RIFF::File* pRIFF);
658 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
659 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
660 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
661 Sample* AddSample();
662 void DeleteSample(Sample* pSample);
663 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
664 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
665 Instrument* AddInstrument();
666 void DeleteInstrument(Instrument* pInstrument);
667 protected:
668 // overridden protected methods from DLS::File
669 virtual void LoadSamples();
670 virtual void LoadInstruments();
671 // own protected methods
672 virtual void LoadSamples(progress_t* pProgress);
673 virtual void LoadInstruments(progress_t* pProgress);
674 friend class Region;
675 };
676
677 /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */
678 class Exception : public DLS::Exception {
679 public:
680 Exception(String Message);
681 void PrintMessage();
682 };
683
684 String libraryName();
685 String libraryVersion();
686
687 } // namespace gig
688
689 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC