/[svn]/linuxsampler/tags/v0_1_0/src/voice.h
ViewVC logotype

Contents of /linuxsampler/tags/v0_1_0/src/voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 39 - (show annotations) (download) (as text)
Sun Mar 21 16:09:43 2004 UTC (20 years, 2 months ago) by schoenebeck
Original Path: linuxsampler/trunk/src/voice.h
File MIME type: text/x-c++hdr
File size: 14569 byte(s)
* implemented all three low frequency oscillators (LFO1 = volume,
  LFO2 = filter cutoff frequency, LFO3 = pitch) for accurate .gig playback

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003 by Benno Senoner and Christian Schoenebeck *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the Free Software *
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20 * MA 02111-1307 USA *
21 ***************************************************************************/
22
23 #ifndef __VOICE_H__
24 #define __VOICE_H__
25
26 #include "global.h"
27 #include "diskthread.h"
28 #include "ringbuffer.h"
29 #include "stream.h"
30 #include "gig.h"
31 #include "eg_vca.h"
32 #include "rtelmemorypool.h"
33 #include "audiothread.h"
34 #include "filter.h"
35 #include "lfo.h"
36
37 #define MAX_PITCH 4 //FIXME: at the moment in octaves, should be changed into semitones
38 #define USE_LINEAR_INTERPOLATION 1 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
39 #define ENABLE_FILTER 0 ///< if set to 0 then filter (VCF) code is ignored on compile time
40 #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution)
41 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
42
43 // Uncomment following line to override external cutoff controller
44 //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
45
46 // Uncomment following line to override external resonance controller
47 //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
48
49 // Uncomment following line to override filter type
50 //#define OVERRIDE_FILTER_TYPE gig::vcf_type_lowpass ///< either gig::vcf_type_lowpass, gig::vcf_type_bandpass or gig::vcf_type_highpass
51
52
53 /// Reflects a MIDI controller
54 struct midi_ctrl {
55 uint8_t controller; ///< MIDI control change controller number
56 uint8_t value; ///< Current MIDI controller value
57 float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
58 };
59
60 class Voice {
61 public:
62 // Attributes
63 int MIDIKey; ///< MIDI key number of the key that triggered the voice
64 uint ReleaseVelocity; ///< Reflects the release velocity value if a note-off command arrived for the voice.
65
66 // Static Attributes
67 static DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
68 static AudioThread* pEngine; ///< Pointer to the engine, to be able to access the event lists.
69
70 // Methods
71 Voice();
72 ~Voice();
73 void Kill();
74 void Render(uint Samples);
75 void Reset();
76 int Trigger(ModulationSystem::Event* pNoteOnEvent, int Pitch, gig::Instrument* pInstrument);
77 inline bool IsActive() { return Active; }
78 inline void SetOutputLeft(float* pOutput, uint MaxSamplesPerCycle) { this->pOutputLeft = pOutput; this->MaxSamplesPerCycle = MaxSamplesPerCycle; }
79 inline void SetOutputRight(float* pOutput, uint MaxSamplesPerCycle) { this->pOutputRight = pOutput; this->MaxSamplesPerCycle = MaxSamplesPerCycle; }
80 private:
81 // Types
82 enum playback_state_t {
83 playback_state_ram,
84 playback_state_disk,
85 playback_state_end
86 };
87
88 // Attributes
89 float Volume; ///< Volume level of the voice
90 float* pOutputLeft; ///< Audio output buffer (left channel)
91 float* pOutputRight; ///< Audio output buffer (right channel)
92 uint MaxSamplesPerCycle; ///< Size of each audio output buffer
93 double Pos; ///< Current playback position in sample
94 double Pitch; ///< Current pitch depth (number of sample points to move on with each render step)
95 gig::Sample* pSample; ///< Pointer to the sample to be played back
96 gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
97 bool Active; ///< If this voice object is currently in usage
98 playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
99 bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
100 Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
101 unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
102 bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
103 int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
104 uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
105 EG_VCA EG1;
106 GigFilter FilterLeft;
107 GigFilter FilterRight;
108 midi_ctrl VCFCutoffCtrl;
109 midi_ctrl VCFResonanceCtrl;
110 LFO* pLFO1;
111 LFO* pLFO2;
112 LFO* pLFO3;
113 ModulationSystem::Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
114
115 // Methods
116 void ProcessEvents(uint Samples);
117 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
118 void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
119 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, float& cutoff, float& resonance) {
120 int pos_int = double_to_int(this->Pos); // integer position
121 float pos_fract = this->Pos - pos_int; // fractional part of position
122 pos_int <<= 1;
123
124 #if ENABLE_FILTER
125 UpdateFilter_Stereo(cutoff + 20.0f, resonance); // 20Hz min.
126 #endif // ENABLE_FILTER
127
128 #if USE_LINEAR_INTERPOLATION
129 #if ENABLE_FILTER
130 // left channel
131 this->pOutputLeft[i] += this->FilterLeft.Apply(effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
132 // right channel
133 this->pOutputRight[i++] += this->FilterRight.Apply(effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
134 #else // no filter
135 // left channel
136 this->pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
137 // right channel
138 this->pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
139 #endif // ENABLE_FILTER
140 #else // polynomial interpolation
141 // calculate left channel
142 float xm1 = pSrc[pos_int];
143 float x0 = pSrc[pos_int+2];
144 float x1 = pSrc[pos_int+4];
145 float x2 = pSrc[pos_int+6];
146 float a = (3 * (x0 - x1) - xm1 + x2) / 2;
147 float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
148 float c = (x1 - xm1) / 2;
149 #if ENABLE_FILTER
150 this->pOutputLeft[i] += this->FilterLeft.Apply(effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
151 #else // no filter
152 this->pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
153 #endif // ENABLE_FILTER
154
155 //calculate right channel
156 xm1 = pSrc[pos_int+1];
157 x0 = pSrc[pos_int+3];
158 x1 = pSrc[pos_int+5];
159 x2 = pSrc[pos_int+7];
160 a = (3 * (x0 - x1) - xm1 + x2) / 2;
161 b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
162 c = (x1 - xm1) / 2;
163 #if ENABLE_FILTER
164 this->pOutputRight[i++] += this->FilterRight.Apply(effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
165 #else // no filter
166 this->pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
167 #endif // ENABLE_FILTER
168 #endif // USE_LINEAR_INTERPOLATION
169
170 this->Pos += pitch;
171 }
172 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, float& cutoff, float& resonance) {
173 int pos_int = double_to_int(this->Pos); // integer position
174 float pos_fract = this->Pos - pos_int; // fractional part of position
175
176 #if ENABLE_FILTER
177 UpdateFilter_Mono(cutoff + 20.0f, resonance); // 20Hz min.
178 #endif // ENABLE_FILTER
179
180 #if USE_LINEAR_INTERPOLATION
181 float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
182 #else // polynomial interpolation
183 float xm1 = pSrc[pos_int];
184 float x0 = pSrc[pos_int+1];
185 float x1 = pSrc[pos_int+2];
186 float x2 = pSrc[pos_int+3];
187 float a = (3 * (x0 - x1) - xm1 + x2) / 2;
188 float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
189 float c = (x1 - xm1) / 2;
190 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
191 #endif // USE_LINEAR_INTERPOLATION
192
193 #if ENABLE_FILTER
194 sample_point = this->FilterLeft.Apply(sample_point);
195 #endif // ENABLE_FILTER
196
197 this->pOutputLeft[i] += sample_point;
198 this->pOutputRight[i++] += sample_point;
199
200 this->Pos += pitch;
201 }
202 inline void UpdateFilter_Stereo(float cutoff, float& resonance) {
203 static int updatecounter = 0; // we update the filter all FILTER_UPDATE_PERIOD samples
204 if (!(++updatecounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
205 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
206 FilterRight.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
207 }
208 }
209 inline void UpdateFilter_Mono(float cutoff, float& resonance) {
210 static int updatecounter = 0; // we update the filter all FILTER_UPDATE_PERIOD samples
211 if (!(++updatecounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
212 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
213 }
214 }
215 inline void ForceUpdateFilter_Stereo(float cutoff, float& resonance) {
216 if (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance()) {
217 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
218 FilterRight.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
219 }
220 }
221 inline void ForceUpdateFilter_Mono(float cutoff, float& resonance) {
222 if (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance()) {
223 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
224 }
225 }
226 inline float Constrain(float ValueToCheck, float Min, float Max) {
227 if (ValueToCheck > Max) ValueToCheck = Max;
228 else if (ValueToCheck < Min) ValueToCheck = Min;
229 return ValueToCheck;
230 }
231 inline int double_to_int(double f) {
232 #if ARCH_X86
233 int i;
234 __asm__ ("fistl %0" : "=m"(i) : "st"(f - 0.5) );
235 return i;
236 #else
237 return (int) f;
238 #endif // ARCH_X86
239 }
240 };
241
242 #endif // __VOICE_H__

  ViewVC Help
Powered by ViewVC