/[svn]/linuxsampler/trunk/src/engines/AbstractEngine.cpp
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/AbstractEngine.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2091 - (hide annotations) (download)
Sat May 15 09:02:31 2010 UTC (13 years, 11 months ago) by persson
File size: 27666 byte(s)
* sfz engine: reduced memory usage for sfz data

1 iliev 2012 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5     * Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck *
6 persson 2091 * Copyright (C) 2005-2008 Christian Schoenebeck *
7     * Copyright (C) 2009-2010 Christian Schoenebeck and Grigor Iliev *
8 iliev 2012 * *
9     * This program is free software; you can redistribute it and/or modify *
10     * it under the terms of the GNU General Public License as published by *
11     * the Free Software Foundation; either version 2 of the License, or *
12     * (at your option) any later version. *
13     * *
14     * This program is distributed in the hope that it will be useful, *
15     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17     * GNU General Public License for more details. *
18     * *
19     * You should have received a copy of the GNU General Public License *
20     * along with this program; if not, write to the Free Software *
21     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
22     * MA 02111-1307 USA *
23     ***************************************************************************/
24    
25     #include "AbstractEngine.h"
26     #include "AbstractEngineChannel.h"
27     #include "EngineFactory.h"
28     #include "../common/global_private.h"
29    
30     namespace LinuxSampler {
31    
32     //InstrumentResourceManager Engine::instruments;
33    
34     std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> > AbstractEngine::engines;
35    
36     /**
37     * Get an AbstractEngine object for the given AbstractEngineChannel and the
38     * given AudioOutputDevice. All engine channels which are connected to
39     * the same audio output device will use the same engine instance. This
40     * method will be called by an EngineChannel whenever it's
41     * connecting to an audio output device.
42     *
43     * @param pChannel - engine channel which acquires an engine object
44     * @param pDevice - the audio output device \a pChannel is connected to
45     */
46     AbstractEngine* AbstractEngine::AcquireEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
47     AbstractEngine* pEngine = NULL;
48     // check if there's already an engine for the given audio output device
49     std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> >::iterator it;
50     it = engines.find(pChannel->GetEngineFormat());
51     if (it != engines.end() && (*it).second.count(pDevice)) {
52     dmsg(4,("Using existing Engine.\n"));
53     pEngine = (*it).second[pDevice];
54    
55     // Disable the engine while the new engine channel is
56     // added and initialized. The engine will be enabled again
57     // in EngineChannel::Connect.
58     pEngine->DisableAndLock();
59     } else { // create a new engine (and disk thread) instance for the given audio output device
60     dmsg(4,("Creating new Engine.\n"));
61     pEngine = (AbstractEngine*) EngineFactory::Create(pChannel->EngineName());
62     pEngine->Connect(pDevice);
63     engines[pChannel->GetEngineFormat()][pDevice] = pEngine;
64     }
65     // register engine channel to the engine instance
66     pEngine->engineChannels.add(pChannel);
67     // remember index in the ArrayList
68     pChannel->iEngineIndexSelf = pEngine->engineChannels.size() - 1;
69     dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
70     return pEngine;
71     }
72    
73     AbstractEngine::AbstractEngine() {
74     pAudioOutputDevice = NULL;
75     pEventGenerator = NULL;
76     pSysexBuffer = new RingBuffer<uint8_t,false>(CONFIG_SYSEX_BUFFER_SIZE, 0);
77     pEventQueue = new RingBuffer<Event,false>(CONFIG_MAX_EVENTS_PER_FRAGMENT, 0);
78     pEventPool = new Pool<Event>(CONFIG_MAX_EVENTS_PER_FRAGMENT);
79     pGlobalEvents = new RTList<Event>(pEventPool);
80     FrameTime = 0;
81 persson 2091 RandomSeed = 0;
82 iliev 2012 }
83    
84     AbstractEngine::~AbstractEngine() {
85     if (pEventQueue) delete pEventQueue;
86     if (pEventPool) delete pEventPool;
87     if (pEventGenerator) delete pEventGenerator;
88     if (pGlobalEvents) delete pGlobalEvents;
89     if (pSysexBuffer) delete pSysexBuffer;
90     Unregister();
91     }
92    
93     /**
94     * Once an engine channel is disconnected from an audio output device,
95     * it will immediately call this method to unregister itself from the
96     * engine instance and if that engine instance is not used by any other
97     * engine channel anymore, then that engine instance will be destroyed.
98     *
99     * @param pChannel - engine channel which wants to disconnect from it's
100     * engine instance
101     * @param pDevice - audio output device \a pChannel was connected to
102     */
103     void AbstractEngine::FreeEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
104     dmsg(4,("Disconnecting EngineChannel from Engine.\n"));
105     AbstractEngine* pEngine = engines[pChannel->GetEngineFormat()][pDevice];
106     // unregister EngineChannel from the Engine instance
107     pEngine->engineChannels.remove(pChannel);
108     // if the used Engine instance is not used anymore, then destroy it
109     if (pEngine->engineChannels.empty()) {
110     pDevice->Disconnect(pEngine);
111     engines[pChannel->GetEngineFormat()].erase(pDevice);
112     delete pEngine;
113     dmsg(4,("Destroying Engine.\n"));
114     }
115     else dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
116     }
117    
118     void AbstractEngine::Enable() {
119     dmsg(3,("AbstractEngine: enabling\n"));
120     EngineDisabled.PushAndUnlock(false, 2, 0, true); // set condition object 'EngineDisabled' to false (wait max. 2s)
121     dmsg(3,("AbstractEngine: enabled (val=%d)\n", EngineDisabled.GetUnsafe()));
122     }
123    
124     /**
125     * Temporarily stop the engine to not do anything. The engine will just be
126     * frozen during that time, that means after enabling it again it will
127     * continue where it was, with all its voices and playback state it had at
128     * the point of disabling. Notice that the engine's (audio) thread will
129     * continue to run, it just remains in an inactive loop during that time.
130     *
131     * If you need to be sure that all voices and disk streams are killed as
132     * well, use @c SuspendAll() instead.
133     *
134     * @see Enable(), SuspendAll()
135     */
136     void AbstractEngine::Disable() {
137     dmsg(3,("AbstractEngine: disabling\n"));
138     bool* pWasDisabled = EngineDisabled.PushAndUnlock(true, 2); // wait max. 2s
139     if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
140     }
141    
142     void AbstractEngine::DisableAndLock() {
143     dmsg(3,("AbstractEngine: disabling\n"));
144     bool* pWasDisabled = EngineDisabled.Push(true, 2); // wait max. 2s
145     if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
146     }
147    
148     /**
149     * Reset all voices and disk thread and clear input event queue and all
150     * control and status variables.
151     */
152     void AbstractEngine::Reset() {
153     DisableAndLock();
154     ResetInternal();
155     ResetScaleTuning();
156     Enable();
157     }
158    
159     /**
160     * Reset to normal, chromatic scale (means equal tempered).
161     */
162     void AbstractEngine::ResetScaleTuning() {
163     memset(&ScaleTuning[0], 0x00, 12);
164     }
165    
166     /**
167     * Copy all events from the engine's global input queue buffer to the
168     * engine's internal event list. This will be done at the beginning of
169     * each audio cycle (that is each RenderAudio() call) to distinguish
170     * all global events which have to be processed in the current audio
171     * cycle. These events are usually just SysEx messages. Every
172     * EngineChannel has it's own input event queue buffer and event list
173     * to handle common events like NoteOn, NoteOff and ControlChange
174     * events.
175     *
176     * @param Samples - number of sample points to be processed in the
177     * current audio cycle
178     */
179     void AbstractEngine::ImportEvents(uint Samples) {
180     RingBuffer<Event,false>::NonVolatileReader eventQueueReader = pEventQueue->get_non_volatile_reader();
181     Event* pEvent;
182     while (true) {
183     // get next event from input event queue
184     if (!(pEvent = eventQueueReader.pop())) break;
185     // if younger event reached, ignore that and all subsequent ones for now
186     if (pEvent->FragmentPos() >= Samples) {
187     eventQueueReader--;
188     dmsg(2,("Younger Event, pos=%d ,Samples=%d!\n",pEvent->FragmentPos(),Samples));
189     pEvent->ResetFragmentPos();
190     break;
191     }
192     // copy event to internal event list
193     if (pGlobalEvents->poolIsEmpty()) {
194     dmsg(1,("Event pool emtpy!\n"));
195     break;
196     }
197     *pGlobalEvents->allocAppend() = *pEvent;
198     }
199     eventQueueReader.free(); // free all copied events from input queue
200     }
201    
202     /**
203     * Clear all engine global event lists.
204     */
205     void AbstractEngine::ClearEventLists() {
206     pGlobalEvents->clear();
207     }
208    
209     /**
210     * Will be called in case the respective engine channel sports FX send
211     * channels. In this particular case, engine channel local buffers are
212     * used to render and mix all voices to. This method is responsible for
213     * copying the audio data from those local buffers to the master audio
214     * output channels as well as to the FX send audio output channels with
215     * their respective FX send levels.
216     *
217     * @param pEngineChannel - engine channel from which audio should be
218     * routed
219     * @param Samples - amount of sample points to be routed in
220     * this audio fragment cycle
221     */
222     void AbstractEngine::RouteAudio(EngineChannel* pEngineChannel, uint Samples) {
223     AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
224     // route dry signal
225     {
226     AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
227     AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
228     pChannel->pChannelLeft->MixTo(pDstL, Samples);
229     pChannel->pChannelRight->MixTo(pDstR, Samples);
230     }
231     // route FX send signal
232     {
233     for (int iFxSend = 0; iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
234     FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
235     for (int iChan = 0; iChan < 2; ++iChan) {
236     AudioChannel* pSource =
237     (iChan)
238     ? pChannel->pChannelRight
239     : pChannel->pChannelLeft;
240     const int iDstChan = pFxSend->DestinationChannel(iChan);
241     if (iDstChan < 0) {
242     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
243     goto channel_cleanup;
244     }
245     AudioChannel* pDstChan = NULL;
246     if (pFxSend->DestinationMasterEffectChain() >= 0) { // fx send routed to an internal master effect
247     EffectChain* pEffectChain =
248     pAudioOutputDevice->MasterEffectChain(
249     pFxSend->DestinationMasterEffectChain()
250     );
251     if (!pEffectChain) {
252     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationMasterEffectChain()));
253     goto channel_cleanup;
254     }
255     Effect* pEffect =
256     pEffectChain->GetEffect(
257     pFxSend->DestinationMasterEffect()
258     );
259     if (!pEffect) {
260     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect %d of effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationMasterEffect(), pFxSend->DestinationMasterEffectChain()));
261     goto channel_cleanup;
262     }
263     pDstChan = pEffect->InputChannel(iDstChan);
264     } else { // FX send routed directly to an audio output channel
265     pDstChan = pAudioOutputDevice->Channel(iDstChan);
266     }
267     if (!pDstChan) {
268     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
269     goto channel_cleanup;
270     }
271     pSource->MixTo(pDstChan, Samples, pFxSend->Level());
272     }
273     }
274     }
275     channel_cleanup:
276     // reset buffers with silence (zero out) for the next audio cycle
277     pChannel->pChannelLeft->Clear();
278     pChannel->pChannelRight->Clear();
279     }
280    
281     /**
282     * Calculates the Roland GS sysex check sum.
283     *
284     * @param AddrReader - reader which currently points to the first GS
285     * command address byte of the GS sysex message in
286     * question
287     * @param DataSize - size of the GS message data (in bytes)
288     */
289     uint8_t AbstractEngine::GSCheckSum(const RingBuffer<uint8_t,false>::NonVolatileReader AddrReader, uint DataSize) {
290     RingBuffer<uint8_t,false>::NonVolatileReader reader = AddrReader;
291     uint bytes = 3 /*addr*/ + DataSize;
292     uint8_t addr_and_data[bytes];
293     reader.read(&addr_and_data[0], bytes);
294     uint8_t sum = 0;
295     for (uint i = 0; i < bytes; i++) sum += addr_and_data[i];
296     return 128 - sum % 128;
297     }
298    
299     /**
300     * Allows to tune each of the twelve semitones of an octave.
301     *
302     * @param ScaleTunes - detuning of all twelve semitones (in cents)
303     */
304     void AbstractEngine::AdjustScale(int8_t ScaleTunes[12]) {
305     memcpy(&this->ScaleTuning[0], &ScaleTunes[0], 12); //TODO: currently not sample accurate
306     }
307    
308     uint AbstractEngine::VoiceCount() {
309     return atomic_read(&ActiveVoiceCount);
310     }
311    
312     void AbstractEngine::SetVoiceCount(uint Count) {
313     atomic_set(&ActiveVoiceCount, Count);
314     }
315    
316     uint AbstractEngine::VoiceCountMax() {
317     return ActiveVoiceCountMax;
318     }
319    
320     /**
321     * Moves pitchbend event from the general (input) event list to the engine
322     * channel's event list. It will actually processed later by the
323     * respective voice.
324     *
325     * @param pEngineChannel - engine channel on which this event occured on
326     * @param itPitchbendEvent - absolute pitch value and time stamp of the event
327     */
328     void AbstractEngine::ProcessPitchbend(AbstractEngineChannel* pEngineChannel, Pool<Event>::Iterator& itPitchbendEvent) {
329     pEngineChannel->Pitch = itPitchbendEvent->Param.Pitch.Pitch; // store current pitch value
330     }
331    
332     void AbstractEngine::ProcessFxSendControllers (
333     AbstractEngineChannel* pEngineChannel,
334     Pool<Event>::Iterator& itControlChangeEvent
335     ) {
336     if (!pEngineChannel->fxSends.empty()) {
337     for (int iFxSend = 0; iFxSend < pEngineChannel->GetFxSendCount(); iFxSend++) {
338     FxSend* pFxSend = pEngineChannel->GetFxSend(iFxSend);
339     if (pFxSend->MidiController() == itControlChangeEvent->Param.CC.Controller) {
340     pFxSend->SetLevel(itControlChangeEvent->Param.CC.Value);
341     pFxSend->SetInfoChanged(true);
342     }
343     }
344     }
345     }
346    
347     /**
348     * Will be called by the MIDI input device whenever a MIDI system
349     * exclusive message has arrived.
350     *
351     * @param pData - pointer to sysex data
352     * @param Size - lenght of sysex data (in bytes)
353     * @param pSender - the MIDI input port on which the SysEx message was
354     * received
355     */
356     void AbstractEngine::SendSysex(void* pData, uint Size, MidiInputPort* pSender) {
357     Event event = pEventGenerator->CreateEvent();
358     event.Type = Event::type_sysex;
359     event.Param.Sysex.Size = Size;
360     event.pEngineChannel = NULL; // as Engine global event
361     event.pMidiInputPort = pSender;
362     if (pEventQueue->write_space() > 0) {
363     if (pSysexBuffer->write_space() >= Size) {
364     // copy sysex data to input buffer
365     uint toWrite = Size;
366     uint8_t* pPos = (uint8_t*) pData;
367     while (toWrite) {
368     const uint writeNow = RTMath::Min(toWrite, pSysexBuffer->write_space_to_end());
369     pSysexBuffer->write(pPos, writeNow);
370     toWrite -= writeNow;
371     pPos += writeNow;
372    
373     }
374     // finally place sysex event into input event queue
375     pEventQueue->push(&event);
376     }
377     else dmsg(1,("Engine: Sysex message too large (%d byte) for input buffer (%d byte)!",Size,CONFIG_SYSEX_BUFFER_SIZE));
378     }
379     else dmsg(1,("Engine: Input event queue full!"));
380     }
381    
382     /**
383     * Reacts on MIDI system exclusive messages.
384     *
385     * @param itSysexEvent - sysex data size and time stamp of the sysex event
386     */
387     void AbstractEngine::ProcessSysex(Pool<Event>::Iterator& itSysexEvent) {
388     RingBuffer<uint8_t,false>::NonVolatileReader reader = pSysexBuffer->get_non_volatile_reader();
389    
390     uint8_t exclusive_status, id;
391     if (!reader.pop(&exclusive_status)) goto free_sysex_data;
392     if (!reader.pop(&id)) goto free_sysex_data;
393     if (exclusive_status != 0xF0) goto free_sysex_data;
394    
395     switch (id) {
396     case 0x7f: { // (Realtime) Universal Sysex (GM Standard)
397     uint8_t sysex_channel, sub_id1, sub_id2, val_msb, val_lsb;;
398     if (!reader.pop(&sysex_channel)) goto free_sysex_data;
399     if (!reader.pop(&sub_id1)) goto free_sysex_data;
400     if (!reader.pop(&sub_id2)) goto free_sysex_data;
401     if (!reader.pop(&val_lsb)) goto free_sysex_data;
402     if (!reader.pop(&val_msb)) goto free_sysex_data;
403     //TODO: for now we simply ignore the sysex channel, seldom used anyway
404     switch (sub_id1) {
405     case 0x04: // Device Control
406     switch (sub_id2) {
407     case 0x01: { // Master Volume
408     const double volume =
409     double((uint(val_msb)<<7) | uint(val_lsb)) / 16383.0;
410     #if CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
411     // apply volume to all sampler channels that
412     // are connected to the same MIDI input port
413     // this sysex message arrived on
414     for (int i = 0; i < engineChannels.size(); ++i) {
415     EngineChannel* pEngineChannel = engineChannels[i];
416     if (pEngineChannel->GetMidiInputPort() ==
417     itSysexEvent->pMidiInputPort)
418     {
419     pEngineChannel->Volume(volume);
420     }
421     }
422     #else
423     // apply volume globally to the whole sampler
424     GLOBAL_VOLUME = volume;
425     #endif // CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
426     break;
427     }
428     }
429     break;
430     }
431     break;
432     }
433     case 0x41: { // Roland
434     dmsg(3,("Roland Sysex\n"));
435     uint8_t device_id, model_id, cmd_id;
436     if (!reader.pop(&device_id)) goto free_sysex_data;
437     if (!reader.pop(&model_id)) goto free_sysex_data;
438     if (!reader.pop(&cmd_id)) goto free_sysex_data;
439     if (model_id != 0x42 /*GS*/) goto free_sysex_data;
440     if (cmd_id != 0x12 /*DT1*/) goto free_sysex_data;
441    
442     // command address
443     uint8_t addr[3]; // 2 byte addr MSB, followed by 1 byte addr LSB)
444     const RingBuffer<uint8_t,false>::NonVolatileReader checksum_reader = reader; // so we can calculate the check sum later
445     if (reader.read(&addr[0], 3) != 3) goto free_sysex_data;
446     if (addr[0] == 0x40 && addr[1] == 0x00) { // System Parameters
447     dmsg(3,("\tSystem Parameter\n"));
448     if (addr[2] == 0x7f) { // GS reset
449     for (int i = 0; i < engineChannels.size(); ++i) {
450     AbstractEngineChannel* pEngineChannel
451     = static_cast<AbstractEngineChannel*>(engineChannels[i]);
452     if (pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort) {
453     KillAllVoices(pEngineChannel, itSysexEvent);
454     pEngineChannel->ResetControllers();
455     }
456     }
457     }
458     }
459     else if (addr[0] == 0x40 && addr[1] == 0x01) { // Common Parameters
460     dmsg(3,("\tCommon Parameter\n"));
461     }
462     else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x10) { // Part Parameters (1)
463     dmsg(3,("\tPart Parameter\n"));
464     switch (addr[2]) {
465     case 0x40: { // scale tuning
466     dmsg(3,("\t\tScale Tuning\n"));
467     uint8_t scale_tunes[12]; // detuning of all 12 semitones of an octave
468     if (reader.read(&scale_tunes[0], 12) != 12) goto free_sysex_data;
469     uint8_t checksum;
470     if (!reader.pop(&checksum)) goto free_sysex_data;
471     #if CONFIG_ASSERT_GS_SYSEX_CHECKSUM
472     if (GSCheckSum(checksum_reader, 12)) goto free_sysex_data;
473     #endif // CONFIG_ASSERT_GS_SYSEX_CHECKSUM
474     for (int i = 0; i < 12; i++) scale_tunes[i] -= 64;
475     AdjustScale((int8_t*) scale_tunes);
476     dmsg(3,("\t\t\tNew scale applied.\n"));
477     break;
478     }
479     case 0x15: { // chromatic / drumkit mode
480     dmsg(3,("\t\tMIDI Instrument Map Switch\n"));
481     uint8_t part = addr[1] & 0x0f;
482     uint8_t map;
483     if (!reader.pop(&map)) goto free_sysex_data;
484     for (int i = 0; i < engineChannels.size(); ++i) {
485     AbstractEngineChannel* pEngineChannel
486     = static_cast<AbstractEngineChannel*>(engineChannels[i]);
487     if (
488     (pEngineChannel->midiChannel == part ||
489     pEngineChannel->midiChannel == midi_chan_all) &&
490     pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort
491     ) {
492     try {
493     pEngineChannel->SetMidiInstrumentMap(map);
494     } catch (Exception e) {
495     dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d: %s\n", map, part, e.Message().c_str()));
496     goto free_sysex_data;
497     } catch (...) {
498     dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d (unknown exception)\n", map, part));
499     goto free_sysex_data;
500     }
501     }
502     }
503     dmsg(3,("\t\t\tApplied MIDI instrument map %d to part %d.\n", map, part));
504     break;
505     }
506     }
507     }
508     else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x20) { // Part Parameters (2)
509     }
510     else if (addr[0] == 0x41) { // Drum Setup Parameters
511     }
512     break;
513     }
514     }
515    
516     free_sysex_data: // finally free sysex data
517     pSysexBuffer->increment_read_ptr(itSysexEvent->Param.Sysex.Size);
518     }
519    
520     String AbstractEngine::GetFormatString(Format f) {
521     switch(f) {
522     case GIG: return "GIG";
523     case SF2: return "SF2";
524     case SFZ: return "SFZ";
525     default: return "UNKNOWN";
526     }
527     }
528    
529     String AbstractEngine::EngineName() {
530     return GetFormatString(GetEngineFormat());
531     }
532    
533     // static constant initializers
534     const AbstractEngine::FloatTable AbstractEngine::VolumeCurve(InitVolumeCurve());
535     const AbstractEngine::FloatTable AbstractEngine::PanCurve(InitPanCurve());
536     const AbstractEngine::FloatTable AbstractEngine::CrossfadeCurve(InitCrossfadeCurve());
537    
538     float* AbstractEngine::InitVolumeCurve() {
539     // line-segment approximation
540     const float segments[] = {
541     0, 0, 2, 0.0046, 16, 0.016, 31, 0.051, 45, 0.115, 54.5, 0.2,
542     64.5, 0.39, 74, 0.74, 92, 1.03, 114, 1.94, 119.2, 2.2, 127, 2.2
543     };
544     return InitCurve(segments);
545     }
546    
547     float* AbstractEngine::InitPanCurve() {
548     // line-segment approximation
549     const float segments[] = {
550     0, 0, 1, 0,
551     2, 0.05, 31.5, 0.7, 51, 0.851, 74.5, 1.12,
552     127, 1.41, 128, 1.41
553     };
554     return InitCurve(segments, 129);
555     }
556    
557     float* AbstractEngine::InitCrossfadeCurve() {
558     // line-segment approximation
559     const float segments[] = {
560     0, 0, 1, 0.03, 10, 0.1, 51, 0.58, 127, 1
561     };
562     return InitCurve(segments);
563     }
564    
565     float* AbstractEngine::InitCurve(const float* segments, int size) {
566     float* y = new float[size];
567     for (int x = 0 ; x < size ; x++) {
568     if (x > segments[2]) segments += 2;
569     y[x] = segments[1] + (x - segments[0]) *
570     (segments[3] - segments[1]) / (segments[2] - segments[0]);
571     }
572     return y;
573     }
574    
575     } // namespace LinuxSampler

  ViewVC Help
Powered by ViewVC