/[svn]/linuxsampler/trunk/src/engines/AbstractEngine.cpp
ViewVC logotype

Annotation of /linuxsampler/trunk/src/engines/AbstractEngine.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2298 - (hide annotations) (download)
Fri Dec 9 17:04:24 2011 UTC (12 years, 4 months ago) by iliev
File size: 30266 byte(s)
* use different EQ effect instance for every voice

1 iliev 2012 /***************************************************************************
2     * *
3     * LinuxSampler - modular, streaming capable sampler *
4     * *
5     * Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck *
6 persson 2091 * Copyright (C) 2005-2008 Christian Schoenebeck *
7     * Copyright (C) 2009-2010 Christian Schoenebeck and Grigor Iliev *
8 iliev 2012 * *
9     * This program is free software; you can redistribute it and/or modify *
10     * it under the terms of the GNU General Public License as published by *
11     * the Free Software Foundation; either version 2 of the License, or *
12     * (at your option) any later version. *
13     * *
14     * This program is distributed in the hope that it will be useful, *
15     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17     * GNU General Public License for more details. *
18     * *
19     * You should have received a copy of the GNU General Public License *
20     * along with this program; if not, write to the Free Software *
21     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
22     * MA 02111-1307 USA *
23     ***************************************************************************/
24    
25     #include "AbstractEngine.h"
26     #include "AbstractEngineChannel.h"
27     #include "EngineFactory.h"
28     #include "../common/global_private.h"
29 iliev 2296 #include "../effects/EffectFactory.h"
30 iliev 2012
31     namespace LinuxSampler {
32    
33     //InstrumentResourceManager Engine::instruments;
34    
35     std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> > AbstractEngine::engines;
36    
37     /**
38     * Get an AbstractEngine object for the given AbstractEngineChannel and the
39     * given AudioOutputDevice. All engine channels which are connected to
40     * the same audio output device will use the same engine instance. This
41     * method will be called by an EngineChannel whenever it's
42     * connecting to an audio output device.
43     *
44     * @param pChannel - engine channel which acquires an engine object
45     * @param pDevice - the audio output device \a pChannel is connected to
46     */
47     AbstractEngine* AbstractEngine::AcquireEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
48     AbstractEngine* pEngine = NULL;
49     // check if there's already an engine for the given audio output device
50     std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> >::iterator it;
51     it = engines.find(pChannel->GetEngineFormat());
52     if (it != engines.end() && (*it).second.count(pDevice)) {
53     dmsg(4,("Using existing Engine.\n"));
54     pEngine = (*it).second[pDevice];
55    
56     // Disable the engine while the new engine channel is
57     // added and initialized. The engine will be enabled again
58     // in EngineChannel::Connect.
59     pEngine->DisableAndLock();
60     } else { // create a new engine (and disk thread) instance for the given audio output device
61     dmsg(4,("Creating new Engine.\n"));
62     pEngine = (AbstractEngine*) EngineFactory::Create(pChannel->EngineName());
63     pEngine->Connect(pDevice);
64     engines[pChannel->GetEngineFormat()][pDevice] = pEngine;
65     }
66     // register engine channel to the engine instance
67     pEngine->engineChannels.add(pChannel);
68     // remember index in the ArrayList
69     pChannel->iEngineIndexSelf = pEngine->engineChannels.size() - 1;
70     dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
71     return pEngine;
72     }
73    
74     AbstractEngine::AbstractEngine() {
75     pAudioOutputDevice = NULL;
76     pEventGenerator = NULL;
77     pSysexBuffer = new RingBuffer<uint8_t,false>(CONFIG_SYSEX_BUFFER_SIZE, 0);
78     pEventQueue = new RingBuffer<Event,false>(CONFIG_MAX_EVENTS_PER_FRAGMENT, 0);
79     pEventPool = new Pool<Event>(CONFIG_MAX_EVENTS_PER_FRAGMENT);
80     pGlobalEvents = new RTList<Event>(pEventPool);
81     FrameTime = 0;
82 persson 2091 RandomSeed = 0;
83 schoenebeck 2121 pDedicatedVoiceChannelLeft = pDedicatedVoiceChannelRight = NULL;
84 iliev 2012 }
85    
86     AbstractEngine::~AbstractEngine() {
87     if (pEventQueue) delete pEventQueue;
88     if (pEventPool) delete pEventPool;
89     if (pEventGenerator) delete pEventGenerator;
90     if (pGlobalEvents) delete pGlobalEvents;
91     if (pSysexBuffer) delete pSysexBuffer;
92 schoenebeck 2121 if (pDedicatedVoiceChannelLeft) delete pDedicatedVoiceChannelLeft;
93     if (pDedicatedVoiceChannelRight) delete pDedicatedVoiceChannelRight;
94 iliev 2012 Unregister();
95     }
96    
97     /**
98     * Once an engine channel is disconnected from an audio output device,
99     * it will immediately call this method to unregister itself from the
100     * engine instance and if that engine instance is not used by any other
101     * engine channel anymore, then that engine instance will be destroyed.
102     *
103     * @param pChannel - engine channel which wants to disconnect from it's
104     * engine instance
105     * @param pDevice - audio output device \a pChannel was connected to
106     */
107     void AbstractEngine::FreeEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
108     dmsg(4,("Disconnecting EngineChannel from Engine.\n"));
109     AbstractEngine* pEngine = engines[pChannel->GetEngineFormat()][pDevice];
110     // unregister EngineChannel from the Engine instance
111     pEngine->engineChannels.remove(pChannel);
112     // if the used Engine instance is not used anymore, then destroy it
113     if (pEngine->engineChannels.empty()) {
114     pDevice->Disconnect(pEngine);
115     engines[pChannel->GetEngineFormat()].erase(pDevice);
116     delete pEngine;
117     dmsg(4,("Destroying Engine.\n"));
118     }
119     else dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
120     }
121    
122     void AbstractEngine::Enable() {
123     dmsg(3,("AbstractEngine: enabling\n"));
124     EngineDisabled.PushAndUnlock(false, 2, 0, true); // set condition object 'EngineDisabled' to false (wait max. 2s)
125     dmsg(3,("AbstractEngine: enabled (val=%d)\n", EngineDisabled.GetUnsafe()));
126     }
127    
128     /**
129     * Temporarily stop the engine to not do anything. The engine will just be
130     * frozen during that time, that means after enabling it again it will
131     * continue where it was, with all its voices and playback state it had at
132     * the point of disabling. Notice that the engine's (audio) thread will
133     * continue to run, it just remains in an inactive loop during that time.
134     *
135     * If you need to be sure that all voices and disk streams are killed as
136     * well, use @c SuspendAll() instead.
137     *
138     * @see Enable(), SuspendAll()
139     */
140     void AbstractEngine::Disable() {
141     dmsg(3,("AbstractEngine: disabling\n"));
142     bool* pWasDisabled = EngineDisabled.PushAndUnlock(true, 2); // wait max. 2s
143     if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
144     }
145    
146     void AbstractEngine::DisableAndLock() {
147     dmsg(3,("AbstractEngine: disabling\n"));
148     bool* pWasDisabled = EngineDisabled.Push(true, 2); // wait max. 2s
149     if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
150     }
151    
152     /**
153     * Reset all voices and disk thread and clear input event queue and all
154     * control and status variables.
155     */
156     void AbstractEngine::Reset() {
157     DisableAndLock();
158     ResetInternal();
159     ResetScaleTuning();
160     Enable();
161     }
162    
163     /**
164     * Reset to normal, chromatic scale (means equal tempered).
165     */
166     void AbstractEngine::ResetScaleTuning() {
167     memset(&ScaleTuning[0], 0x00, 12);
168     }
169    
170     /**
171     * Copy all events from the engine's global input queue buffer to the
172     * engine's internal event list. This will be done at the beginning of
173     * each audio cycle (that is each RenderAudio() call) to distinguish
174     * all global events which have to be processed in the current audio
175     * cycle. These events are usually just SysEx messages. Every
176     * EngineChannel has it's own input event queue buffer and event list
177     * to handle common events like NoteOn, NoteOff and ControlChange
178     * events.
179     *
180     * @param Samples - number of sample points to be processed in the
181     * current audio cycle
182     */
183     void AbstractEngine::ImportEvents(uint Samples) {
184     RingBuffer<Event,false>::NonVolatileReader eventQueueReader = pEventQueue->get_non_volatile_reader();
185     Event* pEvent;
186     while (true) {
187     // get next event from input event queue
188     if (!(pEvent = eventQueueReader.pop())) break;
189     // if younger event reached, ignore that and all subsequent ones for now
190     if (pEvent->FragmentPos() >= Samples) {
191     eventQueueReader--;
192     dmsg(2,("Younger Event, pos=%d ,Samples=%d!\n",pEvent->FragmentPos(),Samples));
193     pEvent->ResetFragmentPos();
194     break;
195     }
196     // copy event to internal event list
197     if (pGlobalEvents->poolIsEmpty()) {
198     dmsg(1,("Event pool emtpy!\n"));
199     break;
200     }
201     *pGlobalEvents->allocAppend() = *pEvent;
202     }
203     eventQueueReader.free(); // free all copied events from input queue
204     }
205    
206     /**
207     * Clear all engine global event lists.
208     */
209     void AbstractEngine::ClearEventLists() {
210     pGlobalEvents->clear();
211     }
212    
213     /**
214     * Will be called in case the respective engine channel sports FX send
215     * channels. In this particular case, engine channel local buffers are
216     * used to render and mix all voices to. This method is responsible for
217     * copying the audio data from those local buffers to the master audio
218     * output channels as well as to the FX send audio output channels with
219     * their respective FX send levels.
220     *
221     * @param pEngineChannel - engine channel from which audio should be
222     * routed
223     * @param Samples - amount of sample points to be routed in
224     * this audio fragment cycle
225     */
226     void AbstractEngine::RouteAudio(EngineChannel* pEngineChannel, uint Samples) {
227     AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
228 schoenebeck 2121 AudioChannel* ppSource[2] = {
229     pChannel->pChannelLeft,
230     pChannel->pChannelRight
231     };
232 iliev 2012 // route dry signal
233     {
234     AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
235     AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
236 schoenebeck 2121 ppSource[0]->MixTo(pDstL, Samples);
237     ppSource[1]->MixTo(pDstR, Samples);
238 iliev 2012 }
239 schoenebeck 2121 // route FX send signal (wet)
240 iliev 2012 {
241     for (int iFxSend = 0; iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
242     FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
243 schoenebeck 2121 const bool success = RouteFxSend(pFxSend, ppSource, pFxSend->Level(), Samples);
244     if (!success) goto channel_cleanup;
245 iliev 2012 }
246     }
247     channel_cleanup:
248     // reset buffers with silence (zero out) for the next audio cycle
249 schoenebeck 2121 ppSource[0]->Clear();
250     ppSource[1]->Clear();
251 iliev 2012 }
252 schoenebeck 2121
253     /**
254     * Similar to RouteAudio(), but this method is even more special. It is
255     * only called by voices which have dedicated effect send(s) level(s). So
256     * such voices have to be routed separately apart from the other voices
257     * which can just be mixed together and routed afterwards in one turn.
258     */
259     void AbstractEngine::RouteDedicatedVoiceChannels(EngineChannel* pEngineChannel, optional<float> FxSendLevels[2], uint Samples) {
260     AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
261     AudioChannel* ppSource[2] = {
262     pDedicatedVoiceChannelLeft,
263     pDedicatedVoiceChannelRight
264     };
265     // route dry signal
266     {
267     AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
268     AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
269     ppSource[0]->MixTo(pDstL, Samples);
270     ppSource[1]->MixTo(pDstR, Samples);
271     }
272     // route FX send signals (wet)
273     // (we simply hard code the voices 'reverb send' to the 1st effect
274     // send bus, and the voioces 'chorus send' to the 2nd effect send bus)
275     {
276     for (int iFxSend = 0; iFxSend < 2 && iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
277     // no voice specific FX send level defined for this effect?
278     if (!FxSendLevels[iFxSend]) continue; // ignore this effect then
279    
280     FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
281     const bool success = RouteFxSend(pFxSend, ppSource, *FxSendLevels[iFxSend], Samples);
282     if (!success) goto channel_cleanup;
283     }
284     }
285     channel_cleanup:
286     // reset buffers with silence (zero out) for the next dedicated voice rendering/routing process
287     ppSource[0]->Clear();
288     ppSource[1]->Clear();
289     }
290    
291     /**
292     * Route the audio signal given by @a ppSource to the effect send bus
293     * defined by @a pFxSend (wet signal only).
294     *
295     * @param pFxSend - definition of effect send bus
296     * @param ppSource - the 2 channels of the audio signal to be routed
297     * @param FxSendLevel - the effect send level to by applied
298     * @param Samples - amount of sample points to be processed
299     * @returns true if signal was routed successfully, false on error
300     */
301     bool AbstractEngine::RouteFxSend(FxSend* pFxSend, AudioChannel* ppSource[2], float FxSendLevel, uint Samples) {
302     for (int iChan = 0; iChan < 2; ++iChan) {
303     const int iDstChan = pFxSend->DestinationChannel(iChan);
304     if (iDstChan < 0) {
305     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
306     return false; // error
307     }
308     AudioChannel* pDstChan = NULL;
309 schoenebeck 2137 if (pFxSend->DestinationEffectChain() >= 0) { // fx send routed to an internal send effect
310 schoenebeck 2121 EffectChain* pEffectChain =
311 iliev 2198 pAudioOutputDevice->SendEffectChainByID(
312 schoenebeck 2137 pFxSend->DestinationEffectChain()
313 schoenebeck 2121 );
314     if (!pEffectChain) {
315 schoenebeck 2137 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationEffectChain()));
316 schoenebeck 2121 return false; // error
317     }
318     Effect* pEffect =
319     pEffectChain->GetEffect(
320 schoenebeck 2137 pFxSend->DestinationEffectChainPosition()
321 schoenebeck 2121 );
322     if (!pEffect) {
323 schoenebeck 2137 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect %d of effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationEffectChainPosition(), pFxSend->DestinationEffectChain()));
324 schoenebeck 2121 return false; // error
325     }
326     pDstChan = pEffect->InputChannel(iDstChan);
327     } else { // FX send routed directly to an audio output channel
328     pDstChan = pAudioOutputDevice->Channel(iDstChan);
329     }
330     if (!pDstChan) {
331     dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
332     return false; // error
333     }
334     ppSource[iChan]->MixTo(pDstChan, Samples, FxSendLevel);
335     }
336     return true; // success
337     }
338 iliev 2012
339     /**
340     * Calculates the Roland GS sysex check sum.
341     *
342     * @param AddrReader - reader which currently points to the first GS
343     * command address byte of the GS sysex message in
344     * question
345     * @param DataSize - size of the GS message data (in bytes)
346     */
347     uint8_t AbstractEngine::GSCheckSum(const RingBuffer<uint8_t,false>::NonVolatileReader AddrReader, uint DataSize) {
348     RingBuffer<uint8_t,false>::NonVolatileReader reader = AddrReader;
349     uint bytes = 3 /*addr*/ + DataSize;
350     uint8_t addr_and_data[bytes];
351     reader.read(&addr_and_data[0], bytes);
352     uint8_t sum = 0;
353     for (uint i = 0; i < bytes; i++) sum += addr_and_data[i];
354     return 128 - sum % 128;
355     }
356    
357     /**
358     * Allows to tune each of the twelve semitones of an octave.
359     *
360     * @param ScaleTunes - detuning of all twelve semitones (in cents)
361     */
362     void AbstractEngine::AdjustScale(int8_t ScaleTunes[12]) {
363     memcpy(&this->ScaleTuning[0], &ScaleTunes[0], 12); //TODO: currently not sample accurate
364     }
365    
366     uint AbstractEngine::VoiceCount() {
367     return atomic_read(&ActiveVoiceCount);
368     }
369    
370     void AbstractEngine::SetVoiceCount(uint Count) {
371     atomic_set(&ActiveVoiceCount, Count);
372     }
373    
374     uint AbstractEngine::VoiceCountMax() {
375     return ActiveVoiceCountMax;
376     }
377    
378     /**
379     * Moves pitchbend event from the general (input) event list to the engine
380     * channel's event list. It will actually processed later by the
381     * respective voice.
382     *
383     * @param pEngineChannel - engine channel on which this event occured on
384     * @param itPitchbendEvent - absolute pitch value and time stamp of the event
385     */
386     void AbstractEngine::ProcessPitchbend(AbstractEngineChannel* pEngineChannel, Pool<Event>::Iterator& itPitchbendEvent) {
387     pEngineChannel->Pitch = itPitchbendEvent->Param.Pitch.Pitch; // store current pitch value
388     }
389    
390     void AbstractEngine::ProcessFxSendControllers (
391     AbstractEngineChannel* pEngineChannel,
392     Pool<Event>::Iterator& itControlChangeEvent
393     ) {
394     if (!pEngineChannel->fxSends.empty()) {
395     for (int iFxSend = 0; iFxSend < pEngineChannel->GetFxSendCount(); iFxSend++) {
396     FxSend* pFxSend = pEngineChannel->GetFxSend(iFxSend);
397     if (pFxSend->MidiController() == itControlChangeEvent->Param.CC.Controller) {
398     pFxSend->SetLevel(itControlChangeEvent->Param.CC.Value);
399     pFxSend->SetInfoChanged(true);
400     }
401     }
402     }
403     }
404    
405     /**
406     * Will be called by the MIDI input device whenever a MIDI system
407     * exclusive message has arrived.
408     *
409     * @param pData - pointer to sysex data
410     * @param Size - lenght of sysex data (in bytes)
411     * @param pSender - the MIDI input port on which the SysEx message was
412     * received
413     */
414     void AbstractEngine::SendSysex(void* pData, uint Size, MidiInputPort* pSender) {
415     Event event = pEventGenerator->CreateEvent();
416     event.Type = Event::type_sysex;
417     event.Param.Sysex.Size = Size;
418     event.pEngineChannel = NULL; // as Engine global event
419     event.pMidiInputPort = pSender;
420     if (pEventQueue->write_space() > 0) {
421     if (pSysexBuffer->write_space() >= Size) {
422     // copy sysex data to input buffer
423     uint toWrite = Size;
424     uint8_t* pPos = (uint8_t*) pData;
425     while (toWrite) {
426     const uint writeNow = RTMath::Min(toWrite, pSysexBuffer->write_space_to_end());
427     pSysexBuffer->write(pPos, writeNow);
428     toWrite -= writeNow;
429     pPos += writeNow;
430    
431     }
432     // finally place sysex event into input event queue
433     pEventQueue->push(&event);
434     }
435     else dmsg(1,("Engine: Sysex message too large (%d byte) for input buffer (%d byte)!",Size,CONFIG_SYSEX_BUFFER_SIZE));
436     }
437     else dmsg(1,("Engine: Input event queue full!"));
438     }
439    
440     /**
441     * Reacts on MIDI system exclusive messages.
442     *
443     * @param itSysexEvent - sysex data size and time stamp of the sysex event
444     */
445     void AbstractEngine::ProcessSysex(Pool<Event>::Iterator& itSysexEvent) {
446     RingBuffer<uint8_t,false>::NonVolatileReader reader = pSysexBuffer->get_non_volatile_reader();
447    
448     uint8_t exclusive_status, id;
449     if (!reader.pop(&exclusive_status)) goto free_sysex_data;
450     if (!reader.pop(&id)) goto free_sysex_data;
451     if (exclusive_status != 0xF0) goto free_sysex_data;
452    
453     switch (id) {
454     case 0x7f: { // (Realtime) Universal Sysex (GM Standard)
455     uint8_t sysex_channel, sub_id1, sub_id2, val_msb, val_lsb;;
456     if (!reader.pop(&sysex_channel)) goto free_sysex_data;
457     if (!reader.pop(&sub_id1)) goto free_sysex_data;
458     if (!reader.pop(&sub_id2)) goto free_sysex_data;
459     if (!reader.pop(&val_lsb)) goto free_sysex_data;
460     if (!reader.pop(&val_msb)) goto free_sysex_data;
461     //TODO: for now we simply ignore the sysex channel, seldom used anyway
462     switch (sub_id1) {
463     case 0x04: // Device Control
464     switch (sub_id2) {
465     case 0x01: { // Master Volume
466     const double volume =
467     double((uint(val_msb)<<7) | uint(val_lsb)) / 16383.0;
468     #if CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
469     // apply volume to all sampler channels that
470     // are connected to the same MIDI input port
471     // this sysex message arrived on
472     for (int i = 0; i < engineChannels.size(); ++i) {
473     EngineChannel* pEngineChannel = engineChannels[i];
474     if (pEngineChannel->GetMidiInputPort() ==
475     itSysexEvent->pMidiInputPort)
476     {
477     pEngineChannel->Volume(volume);
478     }
479     }
480     #else
481     // apply volume globally to the whole sampler
482     GLOBAL_VOLUME = volume;
483     #endif // CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
484     break;
485     }
486     }
487     break;
488     }
489     break;
490     }
491     case 0x41: { // Roland
492     dmsg(3,("Roland Sysex\n"));
493     uint8_t device_id, model_id, cmd_id;
494     if (!reader.pop(&device_id)) goto free_sysex_data;
495     if (!reader.pop(&model_id)) goto free_sysex_data;
496     if (!reader.pop(&cmd_id)) goto free_sysex_data;
497     if (model_id != 0x42 /*GS*/) goto free_sysex_data;
498     if (cmd_id != 0x12 /*DT1*/) goto free_sysex_data;
499    
500     // command address
501     uint8_t addr[3]; // 2 byte addr MSB, followed by 1 byte addr LSB)
502     const RingBuffer<uint8_t,false>::NonVolatileReader checksum_reader = reader; // so we can calculate the check sum later
503     if (reader.read(&addr[0], 3) != 3) goto free_sysex_data;
504     if (addr[0] == 0x40 && addr[1] == 0x00) { // System Parameters
505     dmsg(3,("\tSystem Parameter\n"));
506     if (addr[2] == 0x7f) { // GS reset
507     for (int i = 0; i < engineChannels.size(); ++i) {
508     AbstractEngineChannel* pEngineChannel
509     = static_cast<AbstractEngineChannel*>(engineChannels[i]);
510     if (pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort) {
511     KillAllVoices(pEngineChannel, itSysexEvent);
512     pEngineChannel->ResetControllers();
513     }
514     }
515     }
516     }
517     else if (addr[0] == 0x40 && addr[1] == 0x01) { // Common Parameters
518     dmsg(3,("\tCommon Parameter\n"));
519     }
520     else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x10) { // Part Parameters (1)
521     dmsg(3,("\tPart Parameter\n"));
522     switch (addr[2]) {
523     case 0x40: { // scale tuning
524     dmsg(3,("\t\tScale Tuning\n"));
525     uint8_t scale_tunes[12]; // detuning of all 12 semitones of an octave
526     if (reader.read(&scale_tunes[0], 12) != 12) goto free_sysex_data;
527     uint8_t checksum;
528     if (!reader.pop(&checksum)) goto free_sysex_data;
529     #if CONFIG_ASSERT_GS_SYSEX_CHECKSUM
530     if (GSCheckSum(checksum_reader, 12)) goto free_sysex_data;
531     #endif // CONFIG_ASSERT_GS_SYSEX_CHECKSUM
532     for (int i = 0; i < 12; i++) scale_tunes[i] -= 64;
533     AdjustScale((int8_t*) scale_tunes);
534     dmsg(3,("\t\t\tNew scale applied.\n"));
535     break;
536     }
537     case 0x15: { // chromatic / drumkit mode
538     dmsg(3,("\t\tMIDI Instrument Map Switch\n"));
539     uint8_t part = addr[1] & 0x0f;
540     uint8_t map;
541     if (!reader.pop(&map)) goto free_sysex_data;
542     for (int i = 0; i < engineChannels.size(); ++i) {
543     AbstractEngineChannel* pEngineChannel
544     = static_cast<AbstractEngineChannel*>(engineChannels[i]);
545     if (
546     (pEngineChannel->midiChannel == part ||
547     pEngineChannel->midiChannel == midi_chan_all) &&
548     pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort
549     ) {
550     try {
551     pEngineChannel->SetMidiInstrumentMap(map);
552     } catch (Exception e) {
553     dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d: %s\n", map, part, e.Message().c_str()));
554     goto free_sysex_data;
555     } catch (...) {
556     dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d (unknown exception)\n", map, part));
557     goto free_sysex_data;
558     }
559     }
560     }
561     dmsg(3,("\t\t\tApplied MIDI instrument map %d to part %d.\n", map, part));
562     break;
563     }
564     }
565     }
566     else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x20) { // Part Parameters (2)
567     }
568     else if (addr[0] == 0x41) { // Drum Setup Parameters
569     }
570     break;
571     }
572     }
573    
574     free_sysex_data: // finally free sysex data
575     pSysexBuffer->increment_read_ptr(itSysexEvent->Param.Sysex.Size);
576     }
577    
578     String AbstractEngine::GetFormatString(Format f) {
579     switch(f) {
580     case GIG: return "GIG";
581     case SF2: return "SF2";
582     case SFZ: return "SFZ";
583     default: return "UNKNOWN";
584     }
585     }
586    
587     String AbstractEngine::EngineName() {
588     return GetFormatString(GetEngineFormat());
589     }
590    
591     // static constant initializers
592     const AbstractEngine::FloatTable AbstractEngine::VolumeCurve(InitVolumeCurve());
593     const AbstractEngine::FloatTable AbstractEngine::PanCurve(InitPanCurve());
594     const AbstractEngine::FloatTable AbstractEngine::CrossfadeCurve(InitCrossfadeCurve());
595    
596     float* AbstractEngine::InitVolumeCurve() {
597     // line-segment approximation
598     const float segments[] = {
599     0, 0, 2, 0.0046, 16, 0.016, 31, 0.051, 45, 0.115, 54.5, 0.2,
600     64.5, 0.39, 74, 0.74, 92, 1.03, 114, 1.94, 119.2, 2.2, 127, 2.2
601     };
602     return InitCurve(segments);
603     }
604    
605     float* AbstractEngine::InitPanCurve() {
606     // line-segment approximation
607     const float segments[] = {
608     0, 0, 1, 0,
609     2, 0.05, 31.5, 0.7, 51, 0.851, 74.5, 1.12,
610     127, 1.41, 128, 1.41
611     };
612     return InitCurve(segments, 129);
613     }
614    
615     float* AbstractEngine::InitCrossfadeCurve() {
616     // line-segment approximation
617     const float segments[] = {
618     0, 0, 1, 0.03, 10, 0.1, 51, 0.58, 127, 1
619     };
620     return InitCurve(segments);
621     }
622    
623     float* AbstractEngine::InitCurve(const float* segments, int size) {
624     float* y = new float[size];
625     for (int x = 0 ; x < size ; x++) {
626     if (x > segments[2]) segments += 2;
627     y[x] = segments[1] + (x - segments[0]) *
628     (segments[3] - segments[1]) / (segments[2] - segments[0]);
629     }
630     return y;
631     }
632    
633     } // namespace LinuxSampler

  ViewVC Help
Powered by ViewVC