/[svn]/linuxsampler/trunk/src/engines/AbstractEngine.cpp
ViewVC logotype

Contents of /linuxsampler/trunk/src/engines/AbstractEngine.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2091 - (show annotations) (download)
Sat May 15 09:02:31 2010 UTC (13 years, 10 months ago) by persson
File size: 27666 byte(s)
* sfz engine: reduced memory usage for sfz data

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck *
6 * Copyright (C) 2005-2008 Christian Schoenebeck *
7 * Copyright (C) 2009-2010 Christian Schoenebeck and Grigor Iliev *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the Free Software *
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
22 * MA 02111-1307 USA *
23 ***************************************************************************/
24
25 #include "AbstractEngine.h"
26 #include "AbstractEngineChannel.h"
27 #include "EngineFactory.h"
28 #include "../common/global_private.h"
29
30 namespace LinuxSampler {
31
32 //InstrumentResourceManager Engine::instruments;
33
34 std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> > AbstractEngine::engines;
35
36 /**
37 * Get an AbstractEngine object for the given AbstractEngineChannel and the
38 * given AudioOutputDevice. All engine channels which are connected to
39 * the same audio output device will use the same engine instance. This
40 * method will be called by an EngineChannel whenever it's
41 * connecting to an audio output device.
42 *
43 * @param pChannel - engine channel which acquires an engine object
44 * @param pDevice - the audio output device \a pChannel is connected to
45 */
46 AbstractEngine* AbstractEngine::AcquireEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
47 AbstractEngine* pEngine = NULL;
48 // check if there's already an engine for the given audio output device
49 std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> >::iterator it;
50 it = engines.find(pChannel->GetEngineFormat());
51 if (it != engines.end() && (*it).second.count(pDevice)) {
52 dmsg(4,("Using existing Engine.\n"));
53 pEngine = (*it).second[pDevice];
54
55 // Disable the engine while the new engine channel is
56 // added and initialized. The engine will be enabled again
57 // in EngineChannel::Connect.
58 pEngine->DisableAndLock();
59 } else { // create a new engine (and disk thread) instance for the given audio output device
60 dmsg(4,("Creating new Engine.\n"));
61 pEngine = (AbstractEngine*) EngineFactory::Create(pChannel->EngineName());
62 pEngine->Connect(pDevice);
63 engines[pChannel->GetEngineFormat()][pDevice] = pEngine;
64 }
65 // register engine channel to the engine instance
66 pEngine->engineChannels.add(pChannel);
67 // remember index in the ArrayList
68 pChannel->iEngineIndexSelf = pEngine->engineChannels.size() - 1;
69 dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
70 return pEngine;
71 }
72
73 AbstractEngine::AbstractEngine() {
74 pAudioOutputDevice = NULL;
75 pEventGenerator = NULL;
76 pSysexBuffer = new RingBuffer<uint8_t,false>(CONFIG_SYSEX_BUFFER_SIZE, 0);
77 pEventQueue = new RingBuffer<Event,false>(CONFIG_MAX_EVENTS_PER_FRAGMENT, 0);
78 pEventPool = new Pool<Event>(CONFIG_MAX_EVENTS_PER_FRAGMENT);
79 pGlobalEvents = new RTList<Event>(pEventPool);
80 FrameTime = 0;
81 RandomSeed = 0;
82 }
83
84 AbstractEngine::~AbstractEngine() {
85 if (pEventQueue) delete pEventQueue;
86 if (pEventPool) delete pEventPool;
87 if (pEventGenerator) delete pEventGenerator;
88 if (pGlobalEvents) delete pGlobalEvents;
89 if (pSysexBuffer) delete pSysexBuffer;
90 Unregister();
91 }
92
93 /**
94 * Once an engine channel is disconnected from an audio output device,
95 * it will immediately call this method to unregister itself from the
96 * engine instance and if that engine instance is not used by any other
97 * engine channel anymore, then that engine instance will be destroyed.
98 *
99 * @param pChannel - engine channel which wants to disconnect from it's
100 * engine instance
101 * @param pDevice - audio output device \a pChannel was connected to
102 */
103 void AbstractEngine::FreeEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
104 dmsg(4,("Disconnecting EngineChannel from Engine.\n"));
105 AbstractEngine* pEngine = engines[pChannel->GetEngineFormat()][pDevice];
106 // unregister EngineChannel from the Engine instance
107 pEngine->engineChannels.remove(pChannel);
108 // if the used Engine instance is not used anymore, then destroy it
109 if (pEngine->engineChannels.empty()) {
110 pDevice->Disconnect(pEngine);
111 engines[pChannel->GetEngineFormat()].erase(pDevice);
112 delete pEngine;
113 dmsg(4,("Destroying Engine.\n"));
114 }
115 else dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
116 }
117
118 void AbstractEngine::Enable() {
119 dmsg(3,("AbstractEngine: enabling\n"));
120 EngineDisabled.PushAndUnlock(false, 2, 0, true); // set condition object 'EngineDisabled' to false (wait max. 2s)
121 dmsg(3,("AbstractEngine: enabled (val=%d)\n", EngineDisabled.GetUnsafe()));
122 }
123
124 /**
125 * Temporarily stop the engine to not do anything. The engine will just be
126 * frozen during that time, that means after enabling it again it will
127 * continue where it was, with all its voices and playback state it had at
128 * the point of disabling. Notice that the engine's (audio) thread will
129 * continue to run, it just remains in an inactive loop during that time.
130 *
131 * If you need to be sure that all voices and disk streams are killed as
132 * well, use @c SuspendAll() instead.
133 *
134 * @see Enable(), SuspendAll()
135 */
136 void AbstractEngine::Disable() {
137 dmsg(3,("AbstractEngine: disabling\n"));
138 bool* pWasDisabled = EngineDisabled.PushAndUnlock(true, 2); // wait max. 2s
139 if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
140 }
141
142 void AbstractEngine::DisableAndLock() {
143 dmsg(3,("AbstractEngine: disabling\n"));
144 bool* pWasDisabled = EngineDisabled.Push(true, 2); // wait max. 2s
145 if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
146 }
147
148 /**
149 * Reset all voices and disk thread and clear input event queue and all
150 * control and status variables.
151 */
152 void AbstractEngine::Reset() {
153 DisableAndLock();
154 ResetInternal();
155 ResetScaleTuning();
156 Enable();
157 }
158
159 /**
160 * Reset to normal, chromatic scale (means equal tempered).
161 */
162 void AbstractEngine::ResetScaleTuning() {
163 memset(&ScaleTuning[0], 0x00, 12);
164 }
165
166 /**
167 * Copy all events from the engine's global input queue buffer to the
168 * engine's internal event list. This will be done at the beginning of
169 * each audio cycle (that is each RenderAudio() call) to distinguish
170 * all global events which have to be processed in the current audio
171 * cycle. These events are usually just SysEx messages. Every
172 * EngineChannel has it's own input event queue buffer and event list
173 * to handle common events like NoteOn, NoteOff and ControlChange
174 * events.
175 *
176 * @param Samples - number of sample points to be processed in the
177 * current audio cycle
178 */
179 void AbstractEngine::ImportEvents(uint Samples) {
180 RingBuffer<Event,false>::NonVolatileReader eventQueueReader = pEventQueue->get_non_volatile_reader();
181 Event* pEvent;
182 while (true) {
183 // get next event from input event queue
184 if (!(pEvent = eventQueueReader.pop())) break;
185 // if younger event reached, ignore that and all subsequent ones for now
186 if (pEvent->FragmentPos() >= Samples) {
187 eventQueueReader--;
188 dmsg(2,("Younger Event, pos=%d ,Samples=%d!\n",pEvent->FragmentPos(),Samples));
189 pEvent->ResetFragmentPos();
190 break;
191 }
192 // copy event to internal event list
193 if (pGlobalEvents->poolIsEmpty()) {
194 dmsg(1,("Event pool emtpy!\n"));
195 break;
196 }
197 *pGlobalEvents->allocAppend() = *pEvent;
198 }
199 eventQueueReader.free(); // free all copied events from input queue
200 }
201
202 /**
203 * Clear all engine global event lists.
204 */
205 void AbstractEngine::ClearEventLists() {
206 pGlobalEvents->clear();
207 }
208
209 /**
210 * Will be called in case the respective engine channel sports FX send
211 * channels. In this particular case, engine channel local buffers are
212 * used to render and mix all voices to. This method is responsible for
213 * copying the audio data from those local buffers to the master audio
214 * output channels as well as to the FX send audio output channels with
215 * their respective FX send levels.
216 *
217 * @param pEngineChannel - engine channel from which audio should be
218 * routed
219 * @param Samples - amount of sample points to be routed in
220 * this audio fragment cycle
221 */
222 void AbstractEngine::RouteAudio(EngineChannel* pEngineChannel, uint Samples) {
223 AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
224 // route dry signal
225 {
226 AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
227 AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
228 pChannel->pChannelLeft->MixTo(pDstL, Samples);
229 pChannel->pChannelRight->MixTo(pDstR, Samples);
230 }
231 // route FX send signal
232 {
233 for (int iFxSend = 0; iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
234 FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
235 for (int iChan = 0; iChan < 2; ++iChan) {
236 AudioChannel* pSource =
237 (iChan)
238 ? pChannel->pChannelRight
239 : pChannel->pChannelLeft;
240 const int iDstChan = pFxSend->DestinationChannel(iChan);
241 if (iDstChan < 0) {
242 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
243 goto channel_cleanup;
244 }
245 AudioChannel* pDstChan = NULL;
246 if (pFxSend->DestinationMasterEffectChain() >= 0) { // fx send routed to an internal master effect
247 EffectChain* pEffectChain =
248 pAudioOutputDevice->MasterEffectChain(
249 pFxSend->DestinationMasterEffectChain()
250 );
251 if (!pEffectChain) {
252 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationMasterEffectChain()));
253 goto channel_cleanup;
254 }
255 Effect* pEffect =
256 pEffectChain->GetEffect(
257 pFxSend->DestinationMasterEffect()
258 );
259 if (!pEffect) {
260 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect %d of effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationMasterEffect(), pFxSend->DestinationMasterEffectChain()));
261 goto channel_cleanup;
262 }
263 pDstChan = pEffect->InputChannel(iDstChan);
264 } else { // FX send routed directly to an audio output channel
265 pDstChan = pAudioOutputDevice->Channel(iDstChan);
266 }
267 if (!pDstChan) {
268 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
269 goto channel_cleanup;
270 }
271 pSource->MixTo(pDstChan, Samples, pFxSend->Level());
272 }
273 }
274 }
275 channel_cleanup:
276 // reset buffers with silence (zero out) for the next audio cycle
277 pChannel->pChannelLeft->Clear();
278 pChannel->pChannelRight->Clear();
279 }
280
281 /**
282 * Calculates the Roland GS sysex check sum.
283 *
284 * @param AddrReader - reader which currently points to the first GS
285 * command address byte of the GS sysex message in
286 * question
287 * @param DataSize - size of the GS message data (in bytes)
288 */
289 uint8_t AbstractEngine::GSCheckSum(const RingBuffer<uint8_t,false>::NonVolatileReader AddrReader, uint DataSize) {
290 RingBuffer<uint8_t,false>::NonVolatileReader reader = AddrReader;
291 uint bytes = 3 /*addr*/ + DataSize;
292 uint8_t addr_and_data[bytes];
293 reader.read(&addr_and_data[0], bytes);
294 uint8_t sum = 0;
295 for (uint i = 0; i < bytes; i++) sum += addr_and_data[i];
296 return 128 - sum % 128;
297 }
298
299 /**
300 * Allows to tune each of the twelve semitones of an octave.
301 *
302 * @param ScaleTunes - detuning of all twelve semitones (in cents)
303 */
304 void AbstractEngine::AdjustScale(int8_t ScaleTunes[12]) {
305 memcpy(&this->ScaleTuning[0], &ScaleTunes[0], 12); //TODO: currently not sample accurate
306 }
307
308 uint AbstractEngine::VoiceCount() {
309 return atomic_read(&ActiveVoiceCount);
310 }
311
312 void AbstractEngine::SetVoiceCount(uint Count) {
313 atomic_set(&ActiveVoiceCount, Count);
314 }
315
316 uint AbstractEngine::VoiceCountMax() {
317 return ActiveVoiceCountMax;
318 }
319
320 /**
321 * Moves pitchbend event from the general (input) event list to the engine
322 * channel's event list. It will actually processed later by the
323 * respective voice.
324 *
325 * @param pEngineChannel - engine channel on which this event occured on
326 * @param itPitchbendEvent - absolute pitch value and time stamp of the event
327 */
328 void AbstractEngine::ProcessPitchbend(AbstractEngineChannel* pEngineChannel, Pool<Event>::Iterator& itPitchbendEvent) {
329 pEngineChannel->Pitch = itPitchbendEvent->Param.Pitch.Pitch; // store current pitch value
330 }
331
332 void AbstractEngine::ProcessFxSendControllers (
333 AbstractEngineChannel* pEngineChannel,
334 Pool<Event>::Iterator& itControlChangeEvent
335 ) {
336 if (!pEngineChannel->fxSends.empty()) {
337 for (int iFxSend = 0; iFxSend < pEngineChannel->GetFxSendCount(); iFxSend++) {
338 FxSend* pFxSend = pEngineChannel->GetFxSend(iFxSend);
339 if (pFxSend->MidiController() == itControlChangeEvent->Param.CC.Controller) {
340 pFxSend->SetLevel(itControlChangeEvent->Param.CC.Value);
341 pFxSend->SetInfoChanged(true);
342 }
343 }
344 }
345 }
346
347 /**
348 * Will be called by the MIDI input device whenever a MIDI system
349 * exclusive message has arrived.
350 *
351 * @param pData - pointer to sysex data
352 * @param Size - lenght of sysex data (in bytes)
353 * @param pSender - the MIDI input port on which the SysEx message was
354 * received
355 */
356 void AbstractEngine::SendSysex(void* pData, uint Size, MidiInputPort* pSender) {
357 Event event = pEventGenerator->CreateEvent();
358 event.Type = Event::type_sysex;
359 event.Param.Sysex.Size = Size;
360 event.pEngineChannel = NULL; // as Engine global event
361 event.pMidiInputPort = pSender;
362 if (pEventQueue->write_space() > 0) {
363 if (pSysexBuffer->write_space() >= Size) {
364 // copy sysex data to input buffer
365 uint toWrite = Size;
366 uint8_t* pPos = (uint8_t*) pData;
367 while (toWrite) {
368 const uint writeNow = RTMath::Min(toWrite, pSysexBuffer->write_space_to_end());
369 pSysexBuffer->write(pPos, writeNow);
370 toWrite -= writeNow;
371 pPos += writeNow;
372
373 }
374 // finally place sysex event into input event queue
375 pEventQueue->push(&event);
376 }
377 else dmsg(1,("Engine: Sysex message too large (%d byte) for input buffer (%d byte)!",Size,CONFIG_SYSEX_BUFFER_SIZE));
378 }
379 else dmsg(1,("Engine: Input event queue full!"));
380 }
381
382 /**
383 * Reacts on MIDI system exclusive messages.
384 *
385 * @param itSysexEvent - sysex data size and time stamp of the sysex event
386 */
387 void AbstractEngine::ProcessSysex(Pool<Event>::Iterator& itSysexEvent) {
388 RingBuffer<uint8_t,false>::NonVolatileReader reader = pSysexBuffer->get_non_volatile_reader();
389
390 uint8_t exclusive_status, id;
391 if (!reader.pop(&exclusive_status)) goto free_sysex_data;
392 if (!reader.pop(&id)) goto free_sysex_data;
393 if (exclusive_status != 0xF0) goto free_sysex_data;
394
395 switch (id) {
396 case 0x7f: { // (Realtime) Universal Sysex (GM Standard)
397 uint8_t sysex_channel, sub_id1, sub_id2, val_msb, val_lsb;;
398 if (!reader.pop(&sysex_channel)) goto free_sysex_data;
399 if (!reader.pop(&sub_id1)) goto free_sysex_data;
400 if (!reader.pop(&sub_id2)) goto free_sysex_data;
401 if (!reader.pop(&val_lsb)) goto free_sysex_data;
402 if (!reader.pop(&val_msb)) goto free_sysex_data;
403 //TODO: for now we simply ignore the sysex channel, seldom used anyway
404 switch (sub_id1) {
405 case 0x04: // Device Control
406 switch (sub_id2) {
407 case 0x01: { // Master Volume
408 const double volume =
409 double((uint(val_msb)<<7) | uint(val_lsb)) / 16383.0;
410 #if CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
411 // apply volume to all sampler channels that
412 // are connected to the same MIDI input port
413 // this sysex message arrived on
414 for (int i = 0; i < engineChannels.size(); ++i) {
415 EngineChannel* pEngineChannel = engineChannels[i];
416 if (pEngineChannel->GetMidiInputPort() ==
417 itSysexEvent->pMidiInputPort)
418 {
419 pEngineChannel->Volume(volume);
420 }
421 }
422 #else
423 // apply volume globally to the whole sampler
424 GLOBAL_VOLUME = volume;
425 #endif // CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
426 break;
427 }
428 }
429 break;
430 }
431 break;
432 }
433 case 0x41: { // Roland
434 dmsg(3,("Roland Sysex\n"));
435 uint8_t device_id, model_id, cmd_id;
436 if (!reader.pop(&device_id)) goto free_sysex_data;
437 if (!reader.pop(&model_id)) goto free_sysex_data;
438 if (!reader.pop(&cmd_id)) goto free_sysex_data;
439 if (model_id != 0x42 /*GS*/) goto free_sysex_data;
440 if (cmd_id != 0x12 /*DT1*/) goto free_sysex_data;
441
442 // command address
443 uint8_t addr[3]; // 2 byte addr MSB, followed by 1 byte addr LSB)
444 const RingBuffer<uint8_t,false>::NonVolatileReader checksum_reader = reader; // so we can calculate the check sum later
445 if (reader.read(&addr[0], 3) != 3) goto free_sysex_data;
446 if (addr[0] == 0x40 && addr[1] == 0x00) { // System Parameters
447 dmsg(3,("\tSystem Parameter\n"));
448 if (addr[2] == 0x7f) { // GS reset
449 for (int i = 0; i < engineChannels.size(); ++i) {
450 AbstractEngineChannel* pEngineChannel
451 = static_cast<AbstractEngineChannel*>(engineChannels[i]);
452 if (pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort) {
453 KillAllVoices(pEngineChannel, itSysexEvent);
454 pEngineChannel->ResetControllers();
455 }
456 }
457 }
458 }
459 else if (addr[0] == 0x40 && addr[1] == 0x01) { // Common Parameters
460 dmsg(3,("\tCommon Parameter\n"));
461 }
462 else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x10) { // Part Parameters (1)
463 dmsg(3,("\tPart Parameter\n"));
464 switch (addr[2]) {
465 case 0x40: { // scale tuning
466 dmsg(3,("\t\tScale Tuning\n"));
467 uint8_t scale_tunes[12]; // detuning of all 12 semitones of an octave
468 if (reader.read(&scale_tunes[0], 12) != 12) goto free_sysex_data;
469 uint8_t checksum;
470 if (!reader.pop(&checksum)) goto free_sysex_data;
471 #if CONFIG_ASSERT_GS_SYSEX_CHECKSUM
472 if (GSCheckSum(checksum_reader, 12)) goto free_sysex_data;
473 #endif // CONFIG_ASSERT_GS_SYSEX_CHECKSUM
474 for (int i = 0; i < 12; i++) scale_tunes[i] -= 64;
475 AdjustScale((int8_t*) scale_tunes);
476 dmsg(3,("\t\t\tNew scale applied.\n"));
477 break;
478 }
479 case 0x15: { // chromatic / drumkit mode
480 dmsg(3,("\t\tMIDI Instrument Map Switch\n"));
481 uint8_t part = addr[1] & 0x0f;
482 uint8_t map;
483 if (!reader.pop(&map)) goto free_sysex_data;
484 for (int i = 0; i < engineChannels.size(); ++i) {
485 AbstractEngineChannel* pEngineChannel
486 = static_cast<AbstractEngineChannel*>(engineChannels[i]);
487 if (
488 (pEngineChannel->midiChannel == part ||
489 pEngineChannel->midiChannel == midi_chan_all) &&
490 pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort
491 ) {
492 try {
493 pEngineChannel->SetMidiInstrumentMap(map);
494 } catch (Exception e) {
495 dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d: %s\n", map, part, e.Message().c_str()));
496 goto free_sysex_data;
497 } catch (...) {
498 dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d (unknown exception)\n", map, part));
499 goto free_sysex_data;
500 }
501 }
502 }
503 dmsg(3,("\t\t\tApplied MIDI instrument map %d to part %d.\n", map, part));
504 break;
505 }
506 }
507 }
508 else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x20) { // Part Parameters (2)
509 }
510 else if (addr[0] == 0x41) { // Drum Setup Parameters
511 }
512 break;
513 }
514 }
515
516 free_sysex_data: // finally free sysex data
517 pSysexBuffer->increment_read_ptr(itSysexEvent->Param.Sysex.Size);
518 }
519
520 String AbstractEngine::GetFormatString(Format f) {
521 switch(f) {
522 case GIG: return "GIG";
523 case SF2: return "SF2";
524 case SFZ: return "SFZ";
525 default: return "UNKNOWN";
526 }
527 }
528
529 String AbstractEngine::EngineName() {
530 return GetFormatString(GetEngineFormat());
531 }
532
533 // static constant initializers
534 const AbstractEngine::FloatTable AbstractEngine::VolumeCurve(InitVolumeCurve());
535 const AbstractEngine::FloatTable AbstractEngine::PanCurve(InitPanCurve());
536 const AbstractEngine::FloatTable AbstractEngine::CrossfadeCurve(InitCrossfadeCurve());
537
538 float* AbstractEngine::InitVolumeCurve() {
539 // line-segment approximation
540 const float segments[] = {
541 0, 0, 2, 0.0046, 16, 0.016, 31, 0.051, 45, 0.115, 54.5, 0.2,
542 64.5, 0.39, 74, 0.74, 92, 1.03, 114, 1.94, 119.2, 2.2, 127, 2.2
543 };
544 return InitCurve(segments);
545 }
546
547 float* AbstractEngine::InitPanCurve() {
548 // line-segment approximation
549 const float segments[] = {
550 0, 0, 1, 0,
551 2, 0.05, 31.5, 0.7, 51, 0.851, 74.5, 1.12,
552 127, 1.41, 128, 1.41
553 };
554 return InitCurve(segments, 129);
555 }
556
557 float* AbstractEngine::InitCrossfadeCurve() {
558 // line-segment approximation
559 const float segments[] = {
560 0, 0, 1, 0.03, 10, 0.1, 51, 0.58, 127, 1
561 };
562 return InitCurve(segments);
563 }
564
565 float* AbstractEngine::InitCurve(const float* segments, int size) {
566 float* y = new float[size];
567 for (int x = 0 ; x < size ; x++) {
568 if (x > segments[2]) segments += 2;
569 y[x] = segments[1] + (x - segments[0]) *
570 (segments[3] - segments[1]) / (segments[2] - segments[0]);
571 }
572 return y;
573 }
574
575 } // namespace LinuxSampler

  ViewVC Help
Powered by ViewVC