/[svn]/linuxsampler/trunk/src/engines/AbstractEngine.cpp
ViewVC logotype

Contents of /linuxsampler/trunk/src/engines/AbstractEngine.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2298 - (show annotations) (download)
Fri Dec 9 17:04:24 2011 UTC (12 years, 4 months ago) by iliev
File size: 30266 byte(s)
* use different EQ effect instance for every voice

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck *
6 * Copyright (C) 2005-2008 Christian Schoenebeck *
7 * Copyright (C) 2009-2010 Christian Schoenebeck and Grigor Iliev *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the Free Software *
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
22 * MA 02111-1307 USA *
23 ***************************************************************************/
24
25 #include "AbstractEngine.h"
26 #include "AbstractEngineChannel.h"
27 #include "EngineFactory.h"
28 #include "../common/global_private.h"
29 #include "../effects/EffectFactory.h"
30
31 namespace LinuxSampler {
32
33 //InstrumentResourceManager Engine::instruments;
34
35 std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> > AbstractEngine::engines;
36
37 /**
38 * Get an AbstractEngine object for the given AbstractEngineChannel and the
39 * given AudioOutputDevice. All engine channels which are connected to
40 * the same audio output device will use the same engine instance. This
41 * method will be called by an EngineChannel whenever it's
42 * connecting to an audio output device.
43 *
44 * @param pChannel - engine channel which acquires an engine object
45 * @param pDevice - the audio output device \a pChannel is connected to
46 */
47 AbstractEngine* AbstractEngine::AcquireEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
48 AbstractEngine* pEngine = NULL;
49 // check if there's already an engine for the given audio output device
50 std::map<AbstractEngine::Format, std::map<AudioOutputDevice*,AbstractEngine*> >::iterator it;
51 it = engines.find(pChannel->GetEngineFormat());
52 if (it != engines.end() && (*it).second.count(pDevice)) {
53 dmsg(4,("Using existing Engine.\n"));
54 pEngine = (*it).second[pDevice];
55
56 // Disable the engine while the new engine channel is
57 // added and initialized. The engine will be enabled again
58 // in EngineChannel::Connect.
59 pEngine->DisableAndLock();
60 } else { // create a new engine (and disk thread) instance for the given audio output device
61 dmsg(4,("Creating new Engine.\n"));
62 pEngine = (AbstractEngine*) EngineFactory::Create(pChannel->EngineName());
63 pEngine->Connect(pDevice);
64 engines[pChannel->GetEngineFormat()][pDevice] = pEngine;
65 }
66 // register engine channel to the engine instance
67 pEngine->engineChannels.add(pChannel);
68 // remember index in the ArrayList
69 pChannel->iEngineIndexSelf = pEngine->engineChannels.size() - 1;
70 dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
71 return pEngine;
72 }
73
74 AbstractEngine::AbstractEngine() {
75 pAudioOutputDevice = NULL;
76 pEventGenerator = NULL;
77 pSysexBuffer = new RingBuffer<uint8_t,false>(CONFIG_SYSEX_BUFFER_SIZE, 0);
78 pEventQueue = new RingBuffer<Event,false>(CONFIG_MAX_EVENTS_PER_FRAGMENT, 0);
79 pEventPool = new Pool<Event>(CONFIG_MAX_EVENTS_PER_FRAGMENT);
80 pGlobalEvents = new RTList<Event>(pEventPool);
81 FrameTime = 0;
82 RandomSeed = 0;
83 pDedicatedVoiceChannelLeft = pDedicatedVoiceChannelRight = NULL;
84 }
85
86 AbstractEngine::~AbstractEngine() {
87 if (pEventQueue) delete pEventQueue;
88 if (pEventPool) delete pEventPool;
89 if (pEventGenerator) delete pEventGenerator;
90 if (pGlobalEvents) delete pGlobalEvents;
91 if (pSysexBuffer) delete pSysexBuffer;
92 if (pDedicatedVoiceChannelLeft) delete pDedicatedVoiceChannelLeft;
93 if (pDedicatedVoiceChannelRight) delete pDedicatedVoiceChannelRight;
94 Unregister();
95 }
96
97 /**
98 * Once an engine channel is disconnected from an audio output device,
99 * it will immediately call this method to unregister itself from the
100 * engine instance and if that engine instance is not used by any other
101 * engine channel anymore, then that engine instance will be destroyed.
102 *
103 * @param pChannel - engine channel which wants to disconnect from it's
104 * engine instance
105 * @param pDevice - audio output device \a pChannel was connected to
106 */
107 void AbstractEngine::FreeEngine(AbstractEngineChannel* pChannel, AudioOutputDevice* pDevice) {
108 dmsg(4,("Disconnecting EngineChannel from Engine.\n"));
109 AbstractEngine* pEngine = engines[pChannel->GetEngineFormat()][pDevice];
110 // unregister EngineChannel from the Engine instance
111 pEngine->engineChannels.remove(pChannel);
112 // if the used Engine instance is not used anymore, then destroy it
113 if (pEngine->engineChannels.empty()) {
114 pDevice->Disconnect(pEngine);
115 engines[pChannel->GetEngineFormat()].erase(pDevice);
116 delete pEngine;
117 dmsg(4,("Destroying Engine.\n"));
118 }
119 else dmsg(4,("This Engine has now %d EngineChannels.\n",pEngine->engineChannels.size()));
120 }
121
122 void AbstractEngine::Enable() {
123 dmsg(3,("AbstractEngine: enabling\n"));
124 EngineDisabled.PushAndUnlock(false, 2, 0, true); // set condition object 'EngineDisabled' to false (wait max. 2s)
125 dmsg(3,("AbstractEngine: enabled (val=%d)\n", EngineDisabled.GetUnsafe()));
126 }
127
128 /**
129 * Temporarily stop the engine to not do anything. The engine will just be
130 * frozen during that time, that means after enabling it again it will
131 * continue where it was, with all its voices and playback state it had at
132 * the point of disabling. Notice that the engine's (audio) thread will
133 * continue to run, it just remains in an inactive loop during that time.
134 *
135 * If you need to be sure that all voices and disk streams are killed as
136 * well, use @c SuspendAll() instead.
137 *
138 * @see Enable(), SuspendAll()
139 */
140 void AbstractEngine::Disable() {
141 dmsg(3,("AbstractEngine: disabling\n"));
142 bool* pWasDisabled = EngineDisabled.PushAndUnlock(true, 2); // wait max. 2s
143 if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
144 }
145
146 void AbstractEngine::DisableAndLock() {
147 dmsg(3,("AbstractEngine: disabling\n"));
148 bool* pWasDisabled = EngineDisabled.Push(true, 2); // wait max. 2s
149 if (!pWasDisabled) dmsg(3,("AbstractEngine warning: Timeout waiting to disable engine.\n"));
150 }
151
152 /**
153 * Reset all voices and disk thread and clear input event queue and all
154 * control and status variables.
155 */
156 void AbstractEngine::Reset() {
157 DisableAndLock();
158 ResetInternal();
159 ResetScaleTuning();
160 Enable();
161 }
162
163 /**
164 * Reset to normal, chromatic scale (means equal tempered).
165 */
166 void AbstractEngine::ResetScaleTuning() {
167 memset(&ScaleTuning[0], 0x00, 12);
168 }
169
170 /**
171 * Copy all events from the engine's global input queue buffer to the
172 * engine's internal event list. This will be done at the beginning of
173 * each audio cycle (that is each RenderAudio() call) to distinguish
174 * all global events which have to be processed in the current audio
175 * cycle. These events are usually just SysEx messages. Every
176 * EngineChannel has it's own input event queue buffer and event list
177 * to handle common events like NoteOn, NoteOff and ControlChange
178 * events.
179 *
180 * @param Samples - number of sample points to be processed in the
181 * current audio cycle
182 */
183 void AbstractEngine::ImportEvents(uint Samples) {
184 RingBuffer<Event,false>::NonVolatileReader eventQueueReader = pEventQueue->get_non_volatile_reader();
185 Event* pEvent;
186 while (true) {
187 // get next event from input event queue
188 if (!(pEvent = eventQueueReader.pop())) break;
189 // if younger event reached, ignore that and all subsequent ones for now
190 if (pEvent->FragmentPos() >= Samples) {
191 eventQueueReader--;
192 dmsg(2,("Younger Event, pos=%d ,Samples=%d!\n",pEvent->FragmentPos(),Samples));
193 pEvent->ResetFragmentPos();
194 break;
195 }
196 // copy event to internal event list
197 if (pGlobalEvents->poolIsEmpty()) {
198 dmsg(1,("Event pool emtpy!\n"));
199 break;
200 }
201 *pGlobalEvents->allocAppend() = *pEvent;
202 }
203 eventQueueReader.free(); // free all copied events from input queue
204 }
205
206 /**
207 * Clear all engine global event lists.
208 */
209 void AbstractEngine::ClearEventLists() {
210 pGlobalEvents->clear();
211 }
212
213 /**
214 * Will be called in case the respective engine channel sports FX send
215 * channels. In this particular case, engine channel local buffers are
216 * used to render and mix all voices to. This method is responsible for
217 * copying the audio data from those local buffers to the master audio
218 * output channels as well as to the FX send audio output channels with
219 * their respective FX send levels.
220 *
221 * @param pEngineChannel - engine channel from which audio should be
222 * routed
223 * @param Samples - amount of sample points to be routed in
224 * this audio fragment cycle
225 */
226 void AbstractEngine::RouteAudio(EngineChannel* pEngineChannel, uint Samples) {
227 AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
228 AudioChannel* ppSource[2] = {
229 pChannel->pChannelLeft,
230 pChannel->pChannelRight
231 };
232 // route dry signal
233 {
234 AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
235 AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
236 ppSource[0]->MixTo(pDstL, Samples);
237 ppSource[1]->MixTo(pDstR, Samples);
238 }
239 // route FX send signal (wet)
240 {
241 for (int iFxSend = 0; iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
242 FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
243 const bool success = RouteFxSend(pFxSend, ppSource, pFxSend->Level(), Samples);
244 if (!success) goto channel_cleanup;
245 }
246 }
247 channel_cleanup:
248 // reset buffers with silence (zero out) for the next audio cycle
249 ppSource[0]->Clear();
250 ppSource[1]->Clear();
251 }
252
253 /**
254 * Similar to RouteAudio(), but this method is even more special. It is
255 * only called by voices which have dedicated effect send(s) level(s). So
256 * such voices have to be routed separately apart from the other voices
257 * which can just be mixed together and routed afterwards in one turn.
258 */
259 void AbstractEngine::RouteDedicatedVoiceChannels(EngineChannel* pEngineChannel, optional<float> FxSendLevels[2], uint Samples) {
260 AbstractEngineChannel* pChannel = static_cast<AbstractEngineChannel*>(pEngineChannel);
261 AudioChannel* ppSource[2] = {
262 pDedicatedVoiceChannelLeft,
263 pDedicatedVoiceChannelRight
264 };
265 // route dry signal
266 {
267 AudioChannel* pDstL = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelLeft);
268 AudioChannel* pDstR = pAudioOutputDevice->Channel(pChannel->AudioDeviceChannelRight);
269 ppSource[0]->MixTo(pDstL, Samples);
270 ppSource[1]->MixTo(pDstR, Samples);
271 }
272 // route FX send signals (wet)
273 // (we simply hard code the voices 'reverb send' to the 1st effect
274 // send bus, and the voioces 'chorus send' to the 2nd effect send bus)
275 {
276 for (int iFxSend = 0; iFxSend < 2 && iFxSend < pChannel->GetFxSendCount(); iFxSend++) {
277 // no voice specific FX send level defined for this effect?
278 if (!FxSendLevels[iFxSend]) continue; // ignore this effect then
279
280 FxSend* pFxSend = pChannel->GetFxSend(iFxSend);
281 const bool success = RouteFxSend(pFxSend, ppSource, *FxSendLevels[iFxSend], Samples);
282 if (!success) goto channel_cleanup;
283 }
284 }
285 channel_cleanup:
286 // reset buffers with silence (zero out) for the next dedicated voice rendering/routing process
287 ppSource[0]->Clear();
288 ppSource[1]->Clear();
289 }
290
291 /**
292 * Route the audio signal given by @a ppSource to the effect send bus
293 * defined by @a pFxSend (wet signal only).
294 *
295 * @param pFxSend - definition of effect send bus
296 * @param ppSource - the 2 channels of the audio signal to be routed
297 * @param FxSendLevel - the effect send level to by applied
298 * @param Samples - amount of sample points to be processed
299 * @returns true if signal was routed successfully, false on error
300 */
301 bool AbstractEngine::RouteFxSend(FxSend* pFxSend, AudioChannel* ppSource[2], float FxSendLevel, uint Samples) {
302 for (int iChan = 0; iChan < 2; ++iChan) {
303 const int iDstChan = pFxSend->DestinationChannel(iChan);
304 if (iDstChan < 0) {
305 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
306 return false; // error
307 }
308 AudioChannel* pDstChan = NULL;
309 if (pFxSend->DestinationEffectChain() >= 0) { // fx send routed to an internal send effect
310 EffectChain* pEffectChain =
311 pAudioOutputDevice->SendEffectChainByID(
312 pFxSend->DestinationEffectChain()
313 );
314 if (!pEffectChain) {
315 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationEffectChain()));
316 return false; // error
317 }
318 Effect* pEffect =
319 pEffectChain->GetEffect(
320 pFxSend->DestinationEffectChainPosition()
321 );
322 if (!pEffect) {
323 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination effect %d of effect chain %d", ((iChan) ? "R" : "L"), pFxSend->DestinationEffectChainPosition(), pFxSend->DestinationEffectChain()));
324 return false; // error
325 }
326 pDstChan = pEffect->InputChannel(iDstChan);
327 } else { // FX send routed directly to an audio output channel
328 pDstChan = pAudioOutputDevice->Channel(iDstChan);
329 }
330 if (!pDstChan) {
331 dmsg(1,("Engine::RouteAudio() Error: invalid FX send (%s) destination channel (%d->%d)", ((iChan) ? "R" : "L"), iChan, iDstChan));
332 return false; // error
333 }
334 ppSource[iChan]->MixTo(pDstChan, Samples, FxSendLevel);
335 }
336 return true; // success
337 }
338
339 /**
340 * Calculates the Roland GS sysex check sum.
341 *
342 * @param AddrReader - reader which currently points to the first GS
343 * command address byte of the GS sysex message in
344 * question
345 * @param DataSize - size of the GS message data (in bytes)
346 */
347 uint8_t AbstractEngine::GSCheckSum(const RingBuffer<uint8_t,false>::NonVolatileReader AddrReader, uint DataSize) {
348 RingBuffer<uint8_t,false>::NonVolatileReader reader = AddrReader;
349 uint bytes = 3 /*addr*/ + DataSize;
350 uint8_t addr_and_data[bytes];
351 reader.read(&addr_and_data[0], bytes);
352 uint8_t sum = 0;
353 for (uint i = 0; i < bytes; i++) sum += addr_and_data[i];
354 return 128 - sum % 128;
355 }
356
357 /**
358 * Allows to tune each of the twelve semitones of an octave.
359 *
360 * @param ScaleTunes - detuning of all twelve semitones (in cents)
361 */
362 void AbstractEngine::AdjustScale(int8_t ScaleTunes[12]) {
363 memcpy(&this->ScaleTuning[0], &ScaleTunes[0], 12); //TODO: currently not sample accurate
364 }
365
366 uint AbstractEngine::VoiceCount() {
367 return atomic_read(&ActiveVoiceCount);
368 }
369
370 void AbstractEngine::SetVoiceCount(uint Count) {
371 atomic_set(&ActiveVoiceCount, Count);
372 }
373
374 uint AbstractEngine::VoiceCountMax() {
375 return ActiveVoiceCountMax;
376 }
377
378 /**
379 * Moves pitchbend event from the general (input) event list to the engine
380 * channel's event list. It will actually processed later by the
381 * respective voice.
382 *
383 * @param pEngineChannel - engine channel on which this event occured on
384 * @param itPitchbendEvent - absolute pitch value and time stamp of the event
385 */
386 void AbstractEngine::ProcessPitchbend(AbstractEngineChannel* pEngineChannel, Pool<Event>::Iterator& itPitchbendEvent) {
387 pEngineChannel->Pitch = itPitchbendEvent->Param.Pitch.Pitch; // store current pitch value
388 }
389
390 void AbstractEngine::ProcessFxSendControllers (
391 AbstractEngineChannel* pEngineChannel,
392 Pool<Event>::Iterator& itControlChangeEvent
393 ) {
394 if (!pEngineChannel->fxSends.empty()) {
395 for (int iFxSend = 0; iFxSend < pEngineChannel->GetFxSendCount(); iFxSend++) {
396 FxSend* pFxSend = pEngineChannel->GetFxSend(iFxSend);
397 if (pFxSend->MidiController() == itControlChangeEvent->Param.CC.Controller) {
398 pFxSend->SetLevel(itControlChangeEvent->Param.CC.Value);
399 pFxSend->SetInfoChanged(true);
400 }
401 }
402 }
403 }
404
405 /**
406 * Will be called by the MIDI input device whenever a MIDI system
407 * exclusive message has arrived.
408 *
409 * @param pData - pointer to sysex data
410 * @param Size - lenght of sysex data (in bytes)
411 * @param pSender - the MIDI input port on which the SysEx message was
412 * received
413 */
414 void AbstractEngine::SendSysex(void* pData, uint Size, MidiInputPort* pSender) {
415 Event event = pEventGenerator->CreateEvent();
416 event.Type = Event::type_sysex;
417 event.Param.Sysex.Size = Size;
418 event.pEngineChannel = NULL; // as Engine global event
419 event.pMidiInputPort = pSender;
420 if (pEventQueue->write_space() > 0) {
421 if (pSysexBuffer->write_space() >= Size) {
422 // copy sysex data to input buffer
423 uint toWrite = Size;
424 uint8_t* pPos = (uint8_t*) pData;
425 while (toWrite) {
426 const uint writeNow = RTMath::Min(toWrite, pSysexBuffer->write_space_to_end());
427 pSysexBuffer->write(pPos, writeNow);
428 toWrite -= writeNow;
429 pPos += writeNow;
430
431 }
432 // finally place sysex event into input event queue
433 pEventQueue->push(&event);
434 }
435 else dmsg(1,("Engine: Sysex message too large (%d byte) for input buffer (%d byte)!",Size,CONFIG_SYSEX_BUFFER_SIZE));
436 }
437 else dmsg(1,("Engine: Input event queue full!"));
438 }
439
440 /**
441 * Reacts on MIDI system exclusive messages.
442 *
443 * @param itSysexEvent - sysex data size and time stamp of the sysex event
444 */
445 void AbstractEngine::ProcessSysex(Pool<Event>::Iterator& itSysexEvent) {
446 RingBuffer<uint8_t,false>::NonVolatileReader reader = pSysexBuffer->get_non_volatile_reader();
447
448 uint8_t exclusive_status, id;
449 if (!reader.pop(&exclusive_status)) goto free_sysex_data;
450 if (!reader.pop(&id)) goto free_sysex_data;
451 if (exclusive_status != 0xF0) goto free_sysex_data;
452
453 switch (id) {
454 case 0x7f: { // (Realtime) Universal Sysex (GM Standard)
455 uint8_t sysex_channel, sub_id1, sub_id2, val_msb, val_lsb;;
456 if (!reader.pop(&sysex_channel)) goto free_sysex_data;
457 if (!reader.pop(&sub_id1)) goto free_sysex_data;
458 if (!reader.pop(&sub_id2)) goto free_sysex_data;
459 if (!reader.pop(&val_lsb)) goto free_sysex_data;
460 if (!reader.pop(&val_msb)) goto free_sysex_data;
461 //TODO: for now we simply ignore the sysex channel, seldom used anyway
462 switch (sub_id1) {
463 case 0x04: // Device Control
464 switch (sub_id2) {
465 case 0x01: { // Master Volume
466 const double volume =
467 double((uint(val_msb)<<7) | uint(val_lsb)) / 16383.0;
468 #if CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
469 // apply volume to all sampler channels that
470 // are connected to the same MIDI input port
471 // this sysex message arrived on
472 for (int i = 0; i < engineChannels.size(); ++i) {
473 EngineChannel* pEngineChannel = engineChannels[i];
474 if (pEngineChannel->GetMidiInputPort() ==
475 itSysexEvent->pMidiInputPort)
476 {
477 pEngineChannel->Volume(volume);
478 }
479 }
480 #else
481 // apply volume globally to the whole sampler
482 GLOBAL_VOLUME = volume;
483 #endif // CONFIG_MASTER_VOLUME_SYSEX_BY_PORT
484 break;
485 }
486 }
487 break;
488 }
489 break;
490 }
491 case 0x41: { // Roland
492 dmsg(3,("Roland Sysex\n"));
493 uint8_t device_id, model_id, cmd_id;
494 if (!reader.pop(&device_id)) goto free_sysex_data;
495 if (!reader.pop(&model_id)) goto free_sysex_data;
496 if (!reader.pop(&cmd_id)) goto free_sysex_data;
497 if (model_id != 0x42 /*GS*/) goto free_sysex_data;
498 if (cmd_id != 0x12 /*DT1*/) goto free_sysex_data;
499
500 // command address
501 uint8_t addr[3]; // 2 byte addr MSB, followed by 1 byte addr LSB)
502 const RingBuffer<uint8_t,false>::NonVolatileReader checksum_reader = reader; // so we can calculate the check sum later
503 if (reader.read(&addr[0], 3) != 3) goto free_sysex_data;
504 if (addr[0] == 0x40 && addr[1] == 0x00) { // System Parameters
505 dmsg(3,("\tSystem Parameter\n"));
506 if (addr[2] == 0x7f) { // GS reset
507 for (int i = 0; i < engineChannels.size(); ++i) {
508 AbstractEngineChannel* pEngineChannel
509 = static_cast<AbstractEngineChannel*>(engineChannels[i]);
510 if (pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort) {
511 KillAllVoices(pEngineChannel, itSysexEvent);
512 pEngineChannel->ResetControllers();
513 }
514 }
515 }
516 }
517 else if (addr[0] == 0x40 && addr[1] == 0x01) { // Common Parameters
518 dmsg(3,("\tCommon Parameter\n"));
519 }
520 else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x10) { // Part Parameters (1)
521 dmsg(3,("\tPart Parameter\n"));
522 switch (addr[2]) {
523 case 0x40: { // scale tuning
524 dmsg(3,("\t\tScale Tuning\n"));
525 uint8_t scale_tunes[12]; // detuning of all 12 semitones of an octave
526 if (reader.read(&scale_tunes[0], 12) != 12) goto free_sysex_data;
527 uint8_t checksum;
528 if (!reader.pop(&checksum)) goto free_sysex_data;
529 #if CONFIG_ASSERT_GS_SYSEX_CHECKSUM
530 if (GSCheckSum(checksum_reader, 12)) goto free_sysex_data;
531 #endif // CONFIG_ASSERT_GS_SYSEX_CHECKSUM
532 for (int i = 0; i < 12; i++) scale_tunes[i] -= 64;
533 AdjustScale((int8_t*) scale_tunes);
534 dmsg(3,("\t\t\tNew scale applied.\n"));
535 break;
536 }
537 case 0x15: { // chromatic / drumkit mode
538 dmsg(3,("\t\tMIDI Instrument Map Switch\n"));
539 uint8_t part = addr[1] & 0x0f;
540 uint8_t map;
541 if (!reader.pop(&map)) goto free_sysex_data;
542 for (int i = 0; i < engineChannels.size(); ++i) {
543 AbstractEngineChannel* pEngineChannel
544 = static_cast<AbstractEngineChannel*>(engineChannels[i]);
545 if (
546 (pEngineChannel->midiChannel == part ||
547 pEngineChannel->midiChannel == midi_chan_all) &&
548 pEngineChannel->GetMidiInputPort() == itSysexEvent->pMidiInputPort
549 ) {
550 try {
551 pEngineChannel->SetMidiInstrumentMap(map);
552 } catch (Exception e) {
553 dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d: %s\n", map, part, e.Message().c_str()));
554 goto free_sysex_data;
555 } catch (...) {
556 dmsg(2,("\t\t\tCould not apply MIDI instrument map %d to part %d (unknown exception)\n", map, part));
557 goto free_sysex_data;
558 }
559 }
560 }
561 dmsg(3,("\t\t\tApplied MIDI instrument map %d to part %d.\n", map, part));
562 break;
563 }
564 }
565 }
566 else if (addr[0] == 0x40 && (addr[1] & 0xf0) == 0x20) { // Part Parameters (2)
567 }
568 else if (addr[0] == 0x41) { // Drum Setup Parameters
569 }
570 break;
571 }
572 }
573
574 free_sysex_data: // finally free sysex data
575 pSysexBuffer->increment_read_ptr(itSysexEvent->Param.Sysex.Size);
576 }
577
578 String AbstractEngine::GetFormatString(Format f) {
579 switch(f) {
580 case GIG: return "GIG";
581 case SF2: return "SF2";
582 case SFZ: return "SFZ";
583 default: return "UNKNOWN";
584 }
585 }
586
587 String AbstractEngine::EngineName() {
588 return GetFormatString(GetEngineFormat());
589 }
590
591 // static constant initializers
592 const AbstractEngine::FloatTable AbstractEngine::VolumeCurve(InitVolumeCurve());
593 const AbstractEngine::FloatTable AbstractEngine::PanCurve(InitPanCurve());
594 const AbstractEngine::FloatTable AbstractEngine::CrossfadeCurve(InitCrossfadeCurve());
595
596 float* AbstractEngine::InitVolumeCurve() {
597 // line-segment approximation
598 const float segments[] = {
599 0, 0, 2, 0.0046, 16, 0.016, 31, 0.051, 45, 0.115, 54.5, 0.2,
600 64.5, 0.39, 74, 0.74, 92, 1.03, 114, 1.94, 119.2, 2.2, 127, 2.2
601 };
602 return InitCurve(segments);
603 }
604
605 float* AbstractEngine::InitPanCurve() {
606 // line-segment approximation
607 const float segments[] = {
608 0, 0, 1, 0,
609 2, 0.05, 31.5, 0.7, 51, 0.851, 74.5, 1.12,
610 127, 1.41, 128, 1.41
611 };
612 return InitCurve(segments, 129);
613 }
614
615 float* AbstractEngine::InitCrossfadeCurve() {
616 // line-segment approximation
617 const float segments[] = {
618 0, 0, 1, 0.03, 10, 0.1, 51, 0.58, 127, 1
619 };
620 return InitCurve(segments);
621 }
622
623 float* AbstractEngine::InitCurve(const float* segments, int size) {
624 float* y = new float[size];
625 for (int x = 0 ; x < size ; x++) {
626 if (x > segments[2]) segments += 2;
627 y[x] = segments[1] + (x - segments[0]) *
628 (segments[3] - segments[1]) / (segments[2] - segments[0]);
629 }
630 return y;
631 }
632
633 } // namespace LinuxSampler

  ViewVC Help
Powered by ViewVC