/*************************************************************************** * * * LinuxSampler - modular, streaming capable sampler * * * * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck * * Copyright (C) 2005 - 2007 Christian Schoenebeck * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * * MA 02111-1307 USA * ***************************************************************************/ #include #include "InstrumentResourceManager.h" #include "../InstrumentEditorFactory.h" // We need to know the maximum number of sample points which are going to // be processed for each render cycle of the audio output driver, to know // how much initial sample points we need to cache into RAM. If the given // sampler channel does not have an audio output device assigned yet // though, we simply use this default value. #define GIG_RESOURCE_MANAGER_DEFAULT_MAX_SAMPLES_PER_CYCLE 128 namespace LinuxSampler { namespace gig { // data stored as long as an instrument resource exists struct instr_entry_t { InstrumentManager::instrument_id_t ID; ::gig::File* pGig; uint MaxSamplesPerCycle; ///< if some engine requests an already allocated instrument with a higher value, we have to reallocate the instrument }; // some data needed for the libgig callback function struct progress_callback_arg_t { InstrumentResourceManager* pManager; InstrumentManager::instrument_id_t* pInstrumentKey; }; // we use this to react on events concerning an instrument on behalf of an instrument editor class InstrumentEditorProxy : public InstrumentConsumer { public: virtual void ResourceToBeUpdated(::gig::Instrument* pResource, void*& pUpdateArg) { //TODO: inform the instrument editor about the pending update } virtual void ResourceUpdated(::gig::Instrument* pOldResource, ::gig::Instrument* pNewResource, void* pUpdateArg) { //TODO:: inform the instrument editor about finished update } virtual void OnResourceProgress(float fProgress) { //TODO: inform the instrument editor about the progress of an update } // the instrument we borrowed on behalf of the editor ::gig::Instrument* pInstrument; }; /** * Callback function which will be called by libgig during loading of * instruments to inform about the current progress. Or to be more * specific; it will be called during the GetInstrument() call. * * @param pProgress - contains current progress value, pointer to the * InstrumentResourceManager instance and * instrument ID */ void InstrumentResourceManager::OnInstrumentLoadingProgress(::gig::progress_t* pProgress) { dmsg(7,("gig::InstrumentResourceManager: progress %f%", pProgress->factor)); progress_callback_arg_t* pArg = static_cast(pProgress->custom); // we randomly schedule 90% for the .gig file loading and the remaining 10% later for sample caching const float localProgress = 0.9f * pProgress->factor; pArg->pManager->DispatchResourceProgressEvent(*pArg->pInstrumentKey, localProgress); } std::vector InstrumentResourceManager::Instruments() { return Entries(); } InstrumentManager::mode_t InstrumentResourceManager::GetMode(const instrument_id_t& ID) { return static_cast(AvailabilityMode(ID)); } void InstrumentResourceManager::SetMode(const instrument_id_t& ID, InstrumentManager::mode_t Mode) { dmsg(2,("gig::InstrumentResourceManager: setting mode for %s (Index=%d) to %d\n",ID.FileName.c_str(),ID.Index,Mode)); SetAvailabilityMode(ID, static_cast::mode_t>(Mode)); } String InstrumentResourceManager::GetInstrumentName(instrument_id_t ID) { Lock(); ::gig::Instrument* pInstrument = Resource(ID, false); String res = (pInstrument) ? pInstrument->pInfo->Name : ""; Unlock(); return res; } String InstrumentResourceManager::GetInstrumentTypeName(instrument_id_t ID) { return ::gig::libraryName(); } String InstrumentResourceManager::GetInstrumentTypeVersion(instrument_id_t ID) { return ::gig::libraryVersion(); } void InstrumentResourceManager::LaunchInstrumentEditor(instrument_id_t ID) throw (InstrumentManagerException) { const String sDataType = GetInstrumentTypeName(ID); const String sDataVersion = GetInstrumentTypeVersion(ID); // find instrument editors capable to handle given instrument std::vector vEditors = InstrumentEditorFactory::MatchingEditors(sDataType, sDataVersion); if (!vEditors.size()) throw InstrumentManagerException( "There is no instrument editor capable to handle this instrument" ); // simply use the first editor in the result set dmsg(1,("Found matching editor '%s' for instrument ('%s', %d) having data structure ('%s','%s')\n", vEditors[0].c_str(), ID.FileName.c_str(), ID.Index, sDataType.c_str(), sDataVersion.c_str())); InstrumentEditor* pEditor = InstrumentEditorFactory::Create(vEditors[0]); // we want to know when you'll die X| (see OnInstrumentEditorQuit()) pEditor->AddListener(this); // create a proxy that reacts on notification on behalf of the editor InstrumentEditorProxy* pProxy = new InstrumentEditorProxy; // borrow the instrument on behalf of the instrument editor ::gig::Instrument* pInstrument = Borrow(ID, pProxy); // remember the proxy and instrument for this instrument editor pProxy->pInstrument = pInstrument; InstrumentEditorProxiesMutex.Lock(); InstrumentEditorProxies[pEditor] = pProxy; InstrumentEditorProxiesMutex.Unlock(); // launch the instrument editor for the given instrument pEditor->Launch(pInstrument, sDataType, sDataVersion); } /** * Will be called by the respective instrument editor once it left its * Main() loop. That way we can handle cleanup before its thread finally * dies. * * @param pSender - instrument editor that stops execution */ void InstrumentResourceManager::OnInstrumentEditorQuit(InstrumentEditor* pSender) { dmsg(1,("InstrumentResourceManager: instrument editor quit, doing cleanup\n")); // hand back instrument and free proxy InstrumentEditorProxiesMutex.Lock(); if (InstrumentEditorProxies.count(pSender)) { InstrumentEditorProxy* pProxy = dynamic_cast( InstrumentEditorProxies[pSender] ); InstrumentEditorProxies.erase(pSender); InstrumentEditorProxiesMutex.Unlock(); HandBack(pProxy->pInstrument, pProxy); if (pProxy) delete pProxy; } else { InstrumentEditorProxiesMutex.Unlock(); std::cerr << "Eeeek, could not find instrument editor proxy, this is a bug!\n" << std::flush; } // free the editor InstrumentEditorFactory::Destroy(pSender); } ::gig::Instrument* InstrumentResourceManager::Create(instrument_id_t Key, InstrumentConsumer* pConsumer, void*& pArg) { // get gig file from inernal gig file manager ::gig::File* pGig = Gigs.Borrow(Key.FileName, (GigConsumer*) Key.Index); // conversion kinda hackish :/ // we pass this to the progress callback mechanism of libgig progress_callback_arg_t callbackArg; callbackArg.pManager = this; callbackArg.pInstrumentKey = &Key; ::gig::progress_t progress; progress.callback = OnInstrumentLoadingProgress; progress.custom = &callbackArg; dmsg(1,("Loading gig instrument ('%s',%d)...",Key.FileName.c_str(),Key.Index)); ::gig::Instrument* pInstrument = pGig->GetInstrument(Key.Index, &progress); if (!pInstrument) { std::stringstream msg; msg << "There's no instrument with index " << Key.Index << "."; throw InstrumentManagerException(msg.str()); } pGig->GetFirstSample(); // just to force complete instrument loading dmsg(1,("OK\n")); // cache initial samples points (for actually needed samples) dmsg(1,("Caching initial samples...")); uint iRegion = 0; // just for progress calculation ::gig::Region* pRgn = pInstrument->GetFirstRegion(); while (pRgn) { // we randomly schedule 90% for the .gig file loading and the remaining 10% now for sample caching const float localProgress = 0.9f + 0.1f * (float) iRegion / (float) pInstrument->Regions; DispatchResourceProgressEvent(Key, localProgress); if (pRgn->GetSample() && !pRgn->GetSample()->GetCache().Size) { dmsg(2,("C")); CacheInitialSamples(pRgn->GetSample(), (gig::EngineChannel*) pConsumer); } for (uint i = 0; i < pRgn->DimensionRegions; i++) { CacheInitialSamples(pRgn->pDimensionRegions[i]->pSample, (gig::EngineChannel*) pConsumer); } pRgn = pInstrument->GetNextRegion(); iRegion++; } dmsg(1,("OK\n")); DispatchResourceProgressEvent(Key, 1.0f); // done; notify all consumers about progress 100% // we need the following for destruction later instr_entry_t* pEntry = new instr_entry_t; pEntry->ID.FileName = Key.FileName; pEntry->ID.Index = Key.Index; pEntry->pGig = pGig; gig::EngineChannel* pEngineChannel = dynamic_cast(pConsumer); // and we save this to check if we need to reallocate for a engine with higher value of 'MaxSamplesPerSecond' pEntry->MaxSamplesPerCycle = (!pEngineChannel) ? 0 /* don't care for instrument editors */ : (pEngineChannel->GetEngine()) ? dynamic_cast(pEngineChannel->GetEngine())->pAudioOutputDevice->MaxSamplesPerCycle() : GIG_RESOURCE_MANAGER_DEFAULT_MAX_SAMPLES_PER_CYCLE; pArg = pEntry; return pInstrument; } void InstrumentResourceManager::Destroy( ::gig::Instrument* pResource, void* pArg) { instr_entry_t* pEntry = (instr_entry_t*) pArg; // we don't need the .gig file here anymore Gigs.HandBack(pEntry->pGig, (GigConsumer*) pEntry->ID.Index); // conversion kinda hackish :/ delete pEntry; } void InstrumentResourceManager::OnBorrow(::gig::Instrument* pResource, InstrumentConsumer* pConsumer, void*& pArg) { instr_entry_t* pEntry = (instr_entry_t*) pArg; gig::EngineChannel* pEngineChannel = dynamic_cast(pConsumer); uint maxSamplesPerCycle = (pEngineChannel && pEngineChannel->GetEngine()) ? dynamic_cast(pEngineChannel->GetEngine())->pAudioOutputDevice->MaxSamplesPerCycle() : GIG_RESOURCE_MANAGER_DEFAULT_MAX_SAMPLES_PER_CYCLE; if (pEntry->MaxSamplesPerCycle < maxSamplesPerCycle) { Update(pResource, pConsumer); } } /** * Give back an instrument. This should be used instead of * HandBack if there are some dimension regions that are still in * use. (When an instrument is changed, the voices currently * playing is allowed to keep playing with the old instrument * until note off arrives. New notes will use the new instrument.) */ void InstrumentResourceManager::HandBackInstrument(::gig::Instrument* pResource, InstrumentConsumer* pConsumer, ::gig::DimensionRegion** dimRegionsInUse) { DimRegInfoMutex.Lock(); for (int i = 0 ; dimRegionsInUse[i] ; i++) { DimRegInfo[dimRegionsInUse[i]].refCount++; SampleRefCount[dimRegionsInUse[i]->pSample]++; } HandBack(pResource, pConsumer, true); DimRegInfoMutex.Unlock(); } /** * Give back a dimension region that belongs to an instrument that * was previously handed back. */ void InstrumentResourceManager::HandBackDimReg(::gig::DimensionRegion* pDimReg) { DimRegInfoMutex.Lock(); dimreg_info_t& dimRegInfo = DimRegInfo[pDimReg]; int dimRegRefCount = --dimRegInfo.refCount; int sampleRefCount = --SampleRefCount[pDimReg->pSample]; if (dimRegRefCount == 0) { ::gig::File* gig = dimRegInfo.file; ::RIFF::File* riff = dimRegInfo.riff; DimRegInfo.erase(pDimReg); // TODO: we could delete Region and Instrument here if // they have become unused if (sampleRefCount == 0) { SampleRefCount.erase(pDimReg->pSample); if (gig) { gig->DeleteSample(pDimReg->pSample); if (!gig->GetFirstSample()) { dmsg(2,("No more samples in use - freeing gig\n")); delete gig; delete riff; } } } } DimRegInfoMutex.Unlock(); } /** * Caches a certain size at the beginning of the given sample in RAM. If the * sample is very short, the whole sample will be loaded into RAM and thus * no disk streaming is needed for this sample. Caching an initial part of * samples is needed to compensate disk reading latency. * * @param pSample - points to the sample to be cached * @param pEngineChannel - pointer to Gig Engine Channel which caused this call */ void InstrumentResourceManager::CacheInitialSamples(::gig::Sample* pSample, gig::EngineChannel* pEngineChannel) { if (!pSample) { dmsg(4,("gig::InstrumentResourceManager: Skipping sample (pSample == NULL)\n")); return; } if (!pSample->SamplesTotal) return; // skip zero size samples if (pSample->SamplesTotal <= CONFIG_PRELOAD_SAMPLES) { // Sample is too short for disk streaming, so we load the whole // sample into RAM and place 'pAudioIO->FragmentSize << CONFIG_MAX_PITCH' // number of '0' samples (silence samples) behind the official buffer // border, to allow the interpolator do it's work even at the end of // the sample. const uint maxSamplesPerCycle = (pEngineChannel && pEngineChannel->GetEngine()) ? dynamic_cast(pEngineChannel->GetEngine())->pAudioOutputDevice->MaxSamplesPerCycle() : GIG_RESOURCE_MANAGER_DEFAULT_MAX_SAMPLES_PER_CYCLE; const uint neededSilenceSamples = (maxSamplesPerCycle << CONFIG_MAX_PITCH) + 3; const uint currentlyCachedSilenceSamples = pSample->GetCache().NullExtensionSize / pSample->FrameSize; if (currentlyCachedSilenceSamples < neededSilenceSamples) { dmsg(3,("Caching whole sample (sample name: \"%s\", sample size: %d)\n", pSample->pInfo->Name.c_str(), pSample->SamplesTotal)); ::gig::buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(neededSilenceSamples); dmsg(4,("Cached %d Bytes, %d silence bytes.\n", buf.Size, buf.NullExtensionSize)); } } else { // we only cache CONFIG_PRELOAD_SAMPLES and stream the other sample points from disk if (!pSample->GetCache().Size) pSample->LoadSampleData(CONFIG_PRELOAD_SAMPLES); } if (!pSample->GetCache().Size) std::cerr << "Unable to cache sample - maybe memory full!" << std::endl << std::flush; } // internal gig file manager ::gig::File* InstrumentResourceManager::GigResourceManager::Create(String Key, GigConsumer* pConsumer, void*& pArg) { dmsg(1,("Loading gig file \'%s\'...", Key.c_str())); ::RIFF::File* pRIFF = new ::RIFF::File(Key); ::gig::File* pGig = new ::gig::File(pRIFF); pArg = pRIFF; dmsg(1,("OK\n")); return pGig; } void InstrumentResourceManager::GigResourceManager::Destroy(::gig::File* pResource, void* pArg) { dmsg(1,("Freeing gig file from memory...")); // Delete as much as possible of the gig file. Some of the // dimension regions and samples may still be in use - these // will be deleted later by the HandBackDimReg function. bool deleteFile = true; ::gig::Instrument* nextInstrument; for (::gig::Instrument* instrument = pResource->GetFirstInstrument() ; instrument ; instrument = nextInstrument) { nextInstrument = pResource->GetNextInstrument(); bool deleteInstrument = true; ::gig::Region* nextRegion; for (::gig::Region *region = instrument->GetFirstRegion() ; region ; region = nextRegion) { nextRegion = instrument->GetNextRegion(); bool deleteRegion = true; for (int i = 0 ; i < region->DimensionRegions ; i++) { ::gig::DimensionRegion *d = region->pDimensionRegions[i]; std::map< ::gig::DimensionRegion*, dimreg_info_t>::iterator iter = parent->DimRegInfo.find(d); if (iter != parent->DimRegInfo.end()) { dimreg_info_t& dimRegInfo = (*iter).second; dimRegInfo.file = pResource; dimRegInfo.riff = (::RIFF::File*)pArg; deleteFile = deleteInstrument = deleteRegion = false; } } if (deleteRegion) instrument->DeleteRegion(region); } if (deleteInstrument) pResource->DeleteInstrument(instrument); } if (deleteFile) { delete pResource; delete (::RIFF::File*) pArg; } else { dmsg(2,("keeping some samples that are in use...")); ::gig::Sample* nextSample; for (::gig::Sample* sample = pResource->GetFirstSample() ; sample ; sample = nextSample) { nextSample = pResource->GetNextSample(); if (parent->SampleRefCount.find(sample) == parent->SampleRefCount.end()) { pResource->DeleteSample(sample); } } } dmsg(1,("OK\n")); } }} // namespace LinuxSampler::gig