/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC revision 799 by persson, Sat Nov 5 10:59:37 2005 UTC
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
# Line 32  namespace LinuxSampler { namespace gig { Line 31  namespace LinuxSampler { namespace gig {
31    
32      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());
33    
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
34      float Voice::CalculateFilterCutoffCoeff() {      float Voice::CalculateFilterCutoffCoeff() {
35          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
36      }      }
37    
38      Voice::Voice() {      Voice::Voice() {
39          pEngine     = NULL;          pEngine     = NULL;
40          pDiskThread = NULL;          pDiskThread = NULL;
41          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
42          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
43          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
44          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
45          KeyGroup = 0;          KeyGroup = 0;
46          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
47          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 50  namespace LinuxSampler { namespace gig {
50          #else          #else
51          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
52          #endif          #endif
53          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
54    
55          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
56          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
57      }      }
58    
59      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
60          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
61          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
62          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
63      }      }
64    
65      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
66          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
67          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
68          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
69      }      }
# Line 184  namespace LinuxSampler { namespace gig { Line 139  namespace LinuxSampler { namespace gig {
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;
141    
142          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
143            Pos = pDimRgn->SampleStartOffset;
144    
145          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
146          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
# Line 194  namespace LinuxSampler { namespace gig { Line 150  namespace LinuxSampler { namespace gig {
150              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
151    
152              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
153              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pSample->Loops && pSample->LoopEnd <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
154    
155              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {
156                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
# Line 209  namespace LinuxSampler { namespace gig { Line 161  namespace LinuxSampler { namespace gig {
161          }          }
162          else { // RAM only voice          else { // RAM only voice
163              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
164              if (pSample->Loops) {              RAMLoop = (pSample->Loops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
165              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
166          }          }
167            if (RAMLoop) {
168                loop.uiTotalCycles = pSample->LoopPlayCount;
169                loop.uiCyclesLeft  = pSample->LoopPlayCount;
170                loop.uiStart       = pSample->LoopStart;
171                loop.uiEnd         = pSample->LoopEnd;
172                loop.uiSize        = pSample->LoopSize;
173            }
174    
175          // calculate initial pitch value          // calculate initial pitch value
176          {          {
177              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
178              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
179              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
180              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
181          }          }
182    
# Line 257  namespace LinuxSampler { namespace gig { Line 211  namespace LinuxSampler { namespace gig {
211              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
212              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
213    
214              pEG1->Trigger(pDimRgn->EG1PreAttack,              EG1.trigger(pDimRgn->EG1PreAttack,
215                            pDimRgn->EG1Attack * eg1attack,                          pDimRgn->EG1Attack * eg1attack,
216                            pDimRgn->EG1Hold,                          pDimRgn->EG1Hold,
217                            pSample->LoopStart,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
218                            pDimRgn->EG1Decay1 * eg1decay * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
219                            pDimRgn->EG1Decay2 * eg1decay * velrelease,                          pDimRgn->EG1InfiniteSustain,
220                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Sustain,
221                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Release * eg1release * velrelease,
222                            pDimRgn->EG1Release * eg1release * velrelease,                          velocityAttenuation,
223                            // the SSE synthesis implementation requires                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           // the vca start to be 16 byte aligned  
                           SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
                           Delay & 0xfffffffc : Delay,  
                           velocityAttenuation);  
224          }          }
225    
226    
# Line 299  namespace LinuxSampler { namespace gig { Line 249  namespace LinuxSampler { namespace gig {
249              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
250              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
251    
252              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
253                            pDimRgn->EG2Attack * eg2attack,                          pDimRgn->EG2Attack * eg2attack,
254                            false,                          false,
255                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
256                            pDimRgn->EG2Decay1 * eg2decay * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
257                            pDimRgn->EG2Decay2 * eg2decay * velrelease,                          pDimRgn->EG2InfiniteSustain,
258                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
259                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
260                            pDimRgn->EG2Release * eg2release * velrelease,                          velocityAttenuation,
261                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
262          }          }
263    
264    
265          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
266          {          {
267            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
268            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);            EG3.trigger(eg3depth, pDimRgn->EG3Attack, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
269          }          }
270    
271    
# Line 354  namespace LinuxSampler { namespace gig { Line 303  namespace LinuxSampler { namespace gig {
303                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
304                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
305              }              }
306              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) pLFO1->trigger(pDimRgn->LFO1Frequency,
307                                                 start_level_max,
308                                               lfo1_internal_depth,                                               lfo1_internal_depth,
309                                               pDimRgn->LFO1ControlDepth,                                               pDimRgn->LFO1ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO1->ExtController],  
310                                               pDimRgn->LFO1FlipPhase,                                               pDimRgn->LFO1FlipPhase,
311                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
312          }          }
313    
314    
# Line 398  namespace LinuxSampler { namespace gig { Line 346  namespace LinuxSampler { namespace gig {
346                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
347                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
348              }              }
349              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) pLFO2->trigger(pDimRgn->LFO2Frequency,
350                                                 start_level_max,
351                                               lfo2_internal_depth,                                               lfo2_internal_depth,
352                                               pDimRgn->LFO2ControlDepth,                                               pDimRgn->LFO2ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO2->ExtController],  
353                                               pDimRgn->LFO2FlipPhase,                                               pDimRgn->LFO2FlipPhase,
354                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
355          }          }
356    
357    
# Line 442  namespace LinuxSampler { namespace gig { Line 389  namespace LinuxSampler { namespace gig {
389                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
390                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
391              }              }
392              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) pLFO3->trigger(pDimRgn->LFO3Frequency,
393                                                 start_level_mid,
394                                               lfo3_internal_depth,                                               lfo3_internal_depth,
395                                               pDimRgn->LFO3ControlDepth,                                               pDimRgn->LFO3ControlDepth,
                                              pEngineChannel->ControllerTable[pLFO3->ExtController],  
396                                               false,                                               false,
397                                               pEngine->SampleRate,                                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                                              Delay);  
398          }          }
399    
400    
# Line 521  namespace LinuxSampler { namespace gig { Line 467  namespace LinuxSampler { namespace gig {
467              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
468    
469              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
470              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
471              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
472              #else // override filter type              #else // override filter type
473              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
474              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 532  namespace LinuxSampler { namespace gig { Line 478  namespace LinuxSampler { namespace gig {
478              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
479    
480              // calculate cutoff frequency              // calculate cutoff frequency
481              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
482              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
483                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
484              }              }
485              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
486    
487              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
488              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
489                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
490                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
491                    // VCFVelocityScale in this case means Minimum cutoff
492                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
493                }
494                else {
495                    cvalue = pDimRgn->VCFCutoff;
496                }
497                cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)
498                if (cutoff > 1.0) cutoff = 1.0;
499                cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
500                if (cutoff < 1.0) cutoff = 1.0;
501    
502                // calculate resonance
503                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance) * 0.00787f; // 0.0..1.0
504    
505              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff - 1.0;
506                VCFResonanceCtrl.fvalue = resonance;
507          }          }
508          else {          else {
509              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 570  namespace LinuxSampler { namespace gig { Line 527  namespace LinuxSampler { namespace gig {
527      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
528    
529          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
530          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
531    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
532          switch (this->PlaybackState) {          switch (this->PlaybackState) {
533    
534              case playback_state_init:              case playback_state_init:
# Line 617  namespace LinuxSampler { namespace gig { Line 543  namespace LinuxSampler { namespace gig {
543    
544                      if (DiskVoice) {                      if (DiskVoice) {
545                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
546                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
547                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
548                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
549                          }                          }
550                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
551                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
552                      }                      }
553                  }                  }
# Line 637  namespace LinuxSampler { namespace gig { Line 562  namespace LinuxSampler { namespace gig {
562                              KillImmediately();                              KillImmediately();
563                              return;                              return;
564                          }                          }
565                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
566                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
567                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
568                      }                      }
569    
# Line 659  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584                      // render current audio fragment                      // render current audio fragment
585                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
586    
587                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
588                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
589                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
590                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
591    
592                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
593                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 677  namespace LinuxSampler { namespace gig { Line 602  namespace LinuxSampler { namespace gig {
602                  break;                  break;
603          }          }
604    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
605          // Reset delay          // Reset delay
606          Delay = 0;          Delay = 0;
607    
608          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
609    
610          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
611          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
612      }      }
613    
614      /**      /**
# Line 696  namespace LinuxSampler { namespace gig { Line 616  namespace LinuxSampler { namespace gig {
616       *  suspended / not running.       *  suspended / not running.
617       */       */
618      void Voice::Reset() {      void Voice::Reset() {
619          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
620          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
621          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
622          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
623          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 711  namespace LinuxSampler { namespace gig { Line 628  namespace LinuxSampler { namespace gig {
628      }      }
629    
630      /**      /**
631       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
632       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
633       *       *
634       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
635         * @param End     - youngest time stamp where processing should be stopped
636       */       */
637      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
638            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
639                if (itEvent->Type == Event::type_release) {
640                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
641                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
642                } else if (itEvent->Type == Event::type_cancel_release) {
643                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
644                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
645                }
646            }
647        }
648    
649          // dispatch control change events      /**
650          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
651          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
652              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
653          }       * @param itEvent - iterator pointing to the next event to be processed
654          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
655              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
656                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
657                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
658                  }              if (itEvent->Type == Event::type_control_change &&
659                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
660                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
661                        processCutoffEvent(itEvent);
662                    }
663                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
664                        processResonanceEvent(itEvent);
665                  }                  }
666                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
667                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
668                  }                  }
669                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
670                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
671                  }                  }
672                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
673                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
674                  }                  }
675                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
676                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
677                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      processCrossFadeEvent(itEvent);
678                  }                  }
679                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
680                    processPitchEvent(itEvent);
681              }              }
682            }
683        }
684    
685        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
686            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
687            finalSynthesisParameters.fFinalPitch *= pitch;
688            PitchBend = pitch;
689        }
690    
691        void Voice::processCrossFadeEvent(RTList<Event>::Iterator& itEvent) {
692            CrossfadeVolume = CrossfadeAttenuation(itEvent->Param.CC.Value);
693            #if CONFIG_PROCESS_MUTED_CHANNELS
694            const float effectiveVolume = CrossfadeVolume * Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
695            #else
696            const float effectiveVolume = CrossfadeVolume * Volume * pEngineChannel->GlobalVolume;
697            #endif
698            fFinalVolume = effectiveVolume;
699        }
700    
701        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
702            int ccvalue = itEvent->Param.CC.Value;
703            if (VCFCutoffCtrl.value == ccvalue) return;
704            VCFCutoffCtrl.value == ccvalue;
705            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
706            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
707            float cutoff = CutoffBase * float(ccvalue) * 0.00787402f; // (1 / 127)
708            if (cutoff > 1.0) cutoff = 1.0;
709            cutoff = (cutoff < 0.5 ? cutoff * 4826 - 1 : cutoff * 5715 - 449);
710            if (cutoff < 1.0) cutoff = 1.0;
711    
712            VCFCutoffCtrl.fvalue = cutoff - 1.0; // needed for initialization of fFinalCutoff next time
713            fFinalCutoff = cutoff;
714        }
715    
716        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
717            // convert absolute controller value to differential
718            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
719            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
720            const float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0
721            fFinalResonance += resonancedelta;
722            // needed for initialization of parameter
723            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value * 0.00787f;
724        }
725    
726        /**
727         *  Synthesizes the current audio fragment for this voice.
728         *
729         *  @param Samples - number of sample points to be rendered in this audio
730         *                   fragment cycle
731         *  @param pSrc    - pointer to input sample data
732         *  @param Skip    - number of sample points to skip in output buffer
733         */
734        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
735            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pOutputLeft[Skip];
736            finalSynthesisParameters.pOutRight = &pEngineChannel->pOutputRight[Skip];
737            finalSynthesisParameters.pSrc      = pSrc;
738    
739              ++itCCEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
740            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
741    
742            if (Skip) { // skip events that happened before this voice was triggered
743                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
744                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
745          }          }
746    
747            uint killPos;
748            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
749    
750          // process pitch events          uint i = Skip;
751          {          while (i < Samples) {
752              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
753              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
754              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
755                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
756              }              #if CONFIG_PROCESS_MUTED_CHANNELS
757              // apply old pitchbend value until first pitch event occurs              fFinalVolume = this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);
758              if (this->PitchBend != 1.0) {              #else
759                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              fFinalVolume = this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume;
760                  for (uint i = Delay; i < end; i++) {              #endif
761                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;              fFinalCutoff    = VCFCutoffCtrl.fvalue;
762                  }              fFinalResonance = VCFResonanceCtrl.fvalue;
763    
764                // process MIDI control change and pitchbend events for this subfragment
765                processCCEvents(itCCEvent, iSubFragmentEnd);
766    
767                // process transition events (note on, note off & sustain pedal)
768                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
769    
770                // if the voice was killed in this subfragment switch EG1 to fade out stage
771                if (itKillEvent && killPos <= iSubFragmentEnd) {
772                    EG1.enterFadeOutStage();
773                    itKillEvent = Pool<Event>::Iterator();
774              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
775    
776                  itVCOEvent = itNextVCOEvent;              // process envelope generators
777                switch (EG1.getSegmentType()) {
778                    case EGADSR::segment_lin:
779                        fFinalVolume *= EG1.processLin();
780                        break;
781                    case EGADSR::segment_exp:
782                        fFinalVolume *= EG1.processExp();
783                        break;
784                    case EGADSR::segment_end:
785                        fFinalVolume *= EG1.getLevel();
786                        break; // noop
787              }              }
788              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
789                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
790                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
791                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
792                    case EGADSR::segment_exp:
793                        fFinalCutoff *= EG2.processExp();
794                        break;
795                    case EGADSR::segment_end:
796                        fFinalCutoff *= EG2.getLevel();
797                        break; // noop
798              }              }
799          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(EG3.render());
800    
801          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
802          {              if (bLFO1Enabled) fFinalVolume *= pLFO1->render();
803              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
804              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
805    
806                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
807                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
808                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
809                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff + 1.0, fFinalResonance, pEngine->SampleRate);
810              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
811    
812          // process filter cutoff events              // do we need resampling?
813          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
814              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
815              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
816              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
817                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
818    
819                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
820              }              finalSynthesisParameters.fFinalVolumeLeft  = fFinalVolume * PanLeft;
821              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time              finalSynthesisParameters.fFinalVolumeRight = fFinalVolume * PanRight;
822          }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
823    
824          // process filter resonance events              // render audio for one subfragment
825          {              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
826    
827                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
828    
829      /**              // increment envelopes' positions
830       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
831       *  
832       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
833       */                  if (pSample->Loops && Pos <= pSample->LoopStart && pSample->LoopStart < newPos) {
834      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
835                  }                  }
836    
837                    EG1.increment(1);
838                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
839              }              }
840                if (EG2.active()) {
841                    EG2.increment(1);
842                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
843                }
844                EG3.increment(1);
845                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
846    
847              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
848              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
849          }          }
850      }      }
851    
852      /**      /**
      *  Synthesizes the current audio fragment for this voice.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {  
         RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);  
     }  
   
     /**  
853       *  Immediately kill the voice. This method should not be used to kill       *  Immediately kill the voice. This method should not be used to kill
854       *  a normal, active voice, because it doesn't take care of things like       *  a normal, active voice, because it doesn't take care of things like
855       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing

Legend:
Removed from v.696  
changed lines
  Added in v.799

  ViewVC Help
Powered by ViewVC