/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 729 by persson, Tue Jul 26 11:18:46 2005 UTC revision 3721 by schoenebeck, Mon Jan 20 15:10:05 2020 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 Christian Schoenebeck and Grigor Iliev             *
8     *   Copyright (C) 2010 - 2017 Christian Schoenebeck and Andreas Persson   *
9   *                                                                         *   *                                                                         *
10   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
11   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 23 
23   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
24   ***************************************************************************/   ***************************************************************************/
25    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
26  #include "../../common/Features.h"  #include "../../common/Features.h"
27  #include "Synthesizer.h"  #include "Synthesizer.h"
28    #include "Profiler.h"
29    #include "Engine.h"
30    #include "EngineChannel.h"
31    
32  #include "Voice.h"  #include "Voice.h"
33    
34  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
35    
36      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      // sanity checks: fromGigLfoWave() assumes equally mapped enums
37        static_assert(int64_t(::gig::lfo_wave_sine) == int64_t(LFO::wave_sine),
38      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
39        static_assert(int64_t(::gig::lfo_wave_triangle) == int64_t(LFO::wave_triangle),
40      float Voice::CalculateFilterCutoffCoeff() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
41          return log(CONFIG_FILTER_CUTOFF_MAX / CONFIG_FILTER_CUTOFF_MIN);      static_assert(int64_t(::gig::lfo_wave_saw) == int64_t(LFO::wave_saw),
42      }                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
43        static_assert(int64_t(::gig::lfo_wave_square) == int64_t(LFO::wave_square),
44      int Voice::CalculateFilterUpdateMask() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
45          if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
46          int power_of_two;      // converts ::gig::lfo_wave_t (libgig) -> LFO::wave_t (LinuxSampler)
47          for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);      inline LFO::wave_t fromGigLfoWave(::gig::lfo_wave_t wave) {
48          return (1 << power_of_two) - 1;          // simply assuming equally mapped enums on both sides
49            return static_cast<LFO::wave_t>(wave);
50        }
51    
52        // Returns true for GigaStudio's original filter types (which are resembled
53        // by LS very accurately with same frequency response and patch settings
54        // behaviour), false for our own LS specific filter implementation types.
55        constexpr bool isGStFilterType(::gig::vcf_type_t type) {
56            return type == ::gig::vcf_type_lowpass ||
57                   type == ::gig::vcf_type_lowpassturbo ||
58                   type == ::gig::vcf_type_bandpass ||
59                   type == ::gig::vcf_type_highpass ||
60                   type == ::gig::vcf_type_bandreject;
61      }      }
62    
63      Voice::Voice() {      Voice::Voice() {
64          pEngine     = NULL;          pEngine = NULL;
65          pDiskThread = NULL;          pEG1 = &EG1;
66          PlaybackState = playback_state_end;          pEG2 = &EG2;
         pEG1   = NULL;  
         pEG2   = NULL;  
         pEG3   = NULL;  
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
         KeyGroup = 0;  
         SynthesisMode = 0; // set all mode bits to 0 first  
         // select synthesis implementation (currently either pure C++ or MMX+SSE(1))  
         #if CONFIG_ASM && ARCH_X86  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());  
         #else  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);  
         #endif  
         SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);  
   
         FilterLeft.Reset();  
         FilterRight.Reset();  
67      }      }
68    
69      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetEngine(Engine* pEngine) {  
         this->pEngine = pEngine;  
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
         this->pDiskThread = pEngine->pDiskThread;  
         dmsg(6,("Voice::SetEngine()\n"));  
70      }      }
71    
72      /**      EngineChannel* Voice::GetGigEngineChannel() {
73       *  Initializes and triggers the voice, a disk stream will be launched if          return static_cast<EngineChannel*>(pEngineChannel);
74       *  needed.      }
      *  
      *  @param pEngineChannel - engine channel on which this voice was ordered  
      *  @param itNoteOnEvent  - event that caused triggering of this voice  
      *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)  
      *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data  
      *  @param VoiceType      - type of this voice  
      *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of  
      *  @returns 0 on success, a value < 0 if the voice wasn't triggered  
      *           (either due to an error or e.g. because no region is  
      *           defined for the given key)  
      */  
     int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {  
         this->pEngineChannel = pEngineChannel;  
         this->pDimRgn        = pDimRgn;  
   
         #if CONFIG_DEVMODE  
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging  
             dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));  
         }  
         #endif // CONFIG_DEVMODE  
   
         Type            = VoiceType;  
         MIDIKey         = itNoteOnEvent->Param.Note.Key;  
         PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet  
         Delay           = itNoteOnEvent->FragmentPos();  
         itTriggerEvent  = itNoteOnEvent;  
         itKillEvent     = Pool<Event>::Iterator();  
         KeyGroup        = iKeyGroup;  
         pSample         = pDimRgn->pSample; // sample won't change until the voice is finished  
   
         // calculate volume  
         const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
         Volume *= pDimRgn->SampleAttenuation;  
   
         // the volume of release triggered samples depends on note length  
         if (Type == type_release_trigger) {  
             float noteLength = float(pEngine->FrameTime + Delay -  
                                      pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;  
             float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;  
             if (attenuation <= 0) return -1;  
             Volume *= attenuation;  
         }  
   
         // select channel mode (mono or stereo)  
         SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);  
   
         // get starting crossfade volume level  
         switch (pDimRgn->AttenuationController.type) {  
             case ::gig::attenuation_ctrl_t::type_channelaftertouch:  
                 CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet  
                 break;  
             case ::gig::attenuation_ctrl_t::type_velocity:  
                 CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);  
                 break;  
             case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate  
                 CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);  
                 break;  
             case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined  
             default:  
                 CrossfadeVolume = 1.0f;  
         }  
   
         PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;  
         PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;  
   
         Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
   
         // Check if the sample needs disk streaming or is too short for that  
         long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;  
         DiskVoice          = cachedsamples < pSample->SamplesTotal;  
75    
76          if (DiskVoice) { // voice to be streamed from disk      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
77              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)          Engine* engine = static_cast<Engine*>(pEngine);
78            this->pEngine     = engine;
79            this->pDiskThread = engine->pDiskThread;
80            dmsg(6,("Voice::SetEngine()\n"));
81        }
82    
83              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample      Voice::SampleInfo Voice::GetSampleInfo() {
84              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {          SampleInfo si;
85                  RAMLoop        = true;          si.SampleRate       = pSample->SamplesPerSecond;
86                  LoopCyclesLeft = pSample->LoopPlayCount;          si.ChannelCount     = pSample->Channels;
87              }          si.FrameSize        = pSample->FrameSize;
88              else RAMLoop = false;          si.BitDepth         = pSample->BitDepth;
89            si.TotalFrameCount  = (uint)pSample->SamplesTotal;
90    
91              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {          si.HasLoops       = pRegion->SampleLoops;
92                  dmsg(1,("Disk stream order failed!\n"));          si.LoopStart      = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopStart  : 0;
93                  KillImmediately();          si.LoopLength     = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopLength : 0;
94                  return -1;          si.LoopPlayCount  = pSample->LoopPlayCount;
95              }          si.Unpitched      = !pRegion->PitchTrack;
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             if (pSample->Loops) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));  
         }  
96    
97            return si;
98        }
99    
100          // calculate initial pitch value      Voice::RegionInfo Voice::GetRegionInfo() {
101          {          RegionInfo ri;
102              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];          ri.UnityNote = pRegion->UnityNote;
103              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;          ri.FineTune  = pRegion->FineTune;
104              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));          ri.Pan       = pRegion->Pan;
105              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents          ri.SampleStartOffset = pRegion->SampleStartOffset;
         }  
   
         // the length of the decay and release curves are dependent on the velocity  
         const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);  
   
         // setup EG 1 (VCA EG)  
         {  
             // get current value of EG1 controller  
             double eg1controllervalue;  
             switch (pDimRgn->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
106    
107              // calculate influence of EG1 controller on EG1's parameters          ri.EG2PreAttack        = pRegion->EG2PreAttack;
108              // (eg1attack is different from the others)          ri.EG2Attack           = pRegion->EG2Attack;
109              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?          ri.EG2Decay1           = pRegion->EG2Decay1;
110                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?          ri.EG2Decay2           = pRegion->EG2Decay2;
111                                        1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;          ri.EG2Sustain          = pRegion->EG2Sustain;
112              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;          ri.EG2InfiniteSustain  = pRegion->EG2InfiniteSustain;
113              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;          ri.EG2Release          = pRegion->EG2Release;
   
             pEG1->Trigger(pDimRgn->EG1PreAttack,  
                           pDimRgn->EG1Attack * eg1attack,  
                           pDimRgn->EG1Hold,  
                           pSample->LoopStart,  
                           pDimRgn->EG1Decay1 * eg1decay * velrelease,  
                           pDimRgn->EG1Decay2 * eg1decay * velrelease,  
                           pDimRgn->EG1InfiniteSustain,  
                           pDimRgn->EG1Sustain,  
                           pDimRgn->EG1Release * eg1release * velrelease,  
                           // the SSE synthesis implementation requires  
                           // the vca start to be 16 byte aligned  
                           SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
                           Delay & 0xfffffffc : Delay,  
                           velocityAttenuation);  
         }  
114    
115            ri.EG3Attack     = pRegion->EG3Attack;
116            ri.EG3Depth      = pRegion->EG3Depth;
117            ri.VCFEnabled    = pRegion->VCFEnabled;
118            ri.VCFType       = Filter::vcf_type_t(pRegion->VCFType);
119            ri.VCFResonance  = pRegion->VCFResonance;
120    
121          // setup EG 2 (VCF Cutoff EG)          ri.ReleaseTriggerDecay = 0.01053 * (256 >> pRegion->ReleaseTriggerDecay);
         {  
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pDimRgn->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
122    
123              // calculate influence of EG2 controller on EG2's parameters          return ri;
124              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;      }
             double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;  
             double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;  
   
             pEG2->Trigger(pDimRgn->EG2PreAttack,  
                           pDimRgn->EG2Attack * eg2attack,  
                           false,  
                           pSample->LoopStart,  
                           pDimRgn->EG2Decay1 * eg2decay * velrelease,  
                           pDimRgn->EG2Decay2 * eg2decay * velrelease,  
                           pDimRgn->EG2InfiniteSustain,  
                           pDimRgn->EG2Sustain,  
                           pDimRgn->EG2Release * eg2release * velrelease,  
                           Delay,  
                           velocityAttenuation);  
         }  
125    
126        Voice::InstrumentInfo Voice::GetInstrumentInfo() {
127            InstrumentInfo ii;
128            ii.FineTune = GetGigEngineChannel()->pInstrument->FineTune;
129            ii.PitchbendRange = GetGigEngineChannel()->pInstrument->PitchbendRange;
130    
131          // setup EG 3 (VCO EG)          return ii;
132          {      }
           double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);  
           pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);  
         }  
133    
134        double Voice::GetSampleAttenuation() {
135            return pRegion->SampleAttenuation;
136        }
137    
138          // setup LFO 1 (VCA LFO)      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
139          {          return pRegion->GetVelocityAttenuation(MIDIKeyVelocity);
140              uint16_t lfo1_internal_depth;      }
             switch (pDimRgn->LFO1Controller) {  
                 case ::gig::lfo1_ctrl_internal:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = (lfo1_internal_depth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
                     bLFO1Enabled         = false;  
             }  
             if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                                              lfo1_internal_depth,  
                                              pDimRgn->LFO1ControlDepth,  
                                              pEngineChannel->ControllerTable[pLFO1->ExtController],  
                                              pDimRgn->LFO1FlipPhase,  
                                              pEngine->SampleRate,  
                                              Delay);  
         }  
141    
142        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
143            return pRegion->GetVelocityRelease(MIDIKeyVelocity);
144        }
145    
146          // setup LFO 2 (VCF Cutoff LFO)      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
147          {          if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
148              uint16_t lfo2_internal_depth;              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
149              switch (pDimRgn->LFO2Controller) {                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
150                  case ::gig::lfo2_ctrl_internal:                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = (lfo2_internal_depth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_modwheel:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
                     bLFO2Enabled         = false;  
151              }              }
             if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                                              lfo2_internal_depth,  
                                              pDimRgn->LFO2ControlDepth,  
                                              pEngineChannel->ControllerTable[pLFO2->ExtController],  
                                              pDimRgn->LFO2FlipPhase,  
                                              pEngine->SampleRate,  
                                              Delay);  
152          }          }
153        }
154    
155        void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
156          // setup LFO 3 (VCO LFO)          if (itEvent->Type == Event::type_channel_pressure) { // if (valid) MIDI channel pressure (aftertouch) event
157          {              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_channelaftertouch) {
158              uint16_t lfo3_internal_depth;                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.ChannelPressure.Value)]);
             switch (pDimRgn->LFO3Controller) {  
                 case ::gig::lfo3_ctrl_internal:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = (lfo3_internal_depth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet  
                     bLFO3Enabled         = false; // see TODO comment in line above  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet  
                     bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
                     bLFO3Enabled         = false;  
159              }              }
             if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                                              lfo3_internal_depth,  
                                              pDimRgn->LFO3ControlDepth,  
                                              pEngineChannel->ControllerTable[pLFO3->ExtController],  
                                              false,  
                                              pEngine->SampleRate,  
                                              Delay);  
160          }          }
161        }
162    
163        void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
164            // Not used so far
165        }
166    
167          #if CONFIG_FORCE_FILTER      uint8_t Voice::MinCutoff() const {
168          const bool bUseFilter = true;          // If there's a cutoff controller defined then VCFVelocityScale means
169          #else // use filter only if instrument file told so          // "minimum cutoff". If there is no MIDI controller defined for cutoff
170          const bool bUseFilter = pDimRgn->VCFEnabled;          // then VCFVelocityScale is already taken into account on libgig side
171          #endif // CONFIG_FORCE_FILTER          // instead by call to pRegion->GetVelocityCutoff(MIDIKeyVelocity).
172          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          return pRegion->VCFVelocityScale;
173          if (bUseFilter) {      }
             #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // CONFIG_OVERRIDE_CUTOFF_CTRL  
   
             #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL  
             VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // CONFIG_OVERRIDE_RESONANCE_CTRL  
   
             #ifndef CONFIG_OVERRIDE_FILTER_TYPE  
             FilterLeft.SetType(pDimRgn->VCFType);  
             FilterRight.SetType(pDimRgn->VCFType);  
             #else // override filter type  
             FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             #endif // CONFIG_OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);  
             if (pDimRgn->VCFKeyboardTracking) {  
                 cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)  
             }  
             CutoffBase = cutoff;  
   
             int cvalue;  
             if (VCFCutoffCtrl.controller) {  
                 cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
                 if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;  
                 if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;  
             }  
             else {  
                 cvalue = pDimRgn->VCFCutoff;  
             }  
             cutoff *= float(cvalue) * 0.00787402f; // (1 / 127)  
             if (cutoff > 1.0) cutoff = 1.0;  
             cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
             if (pDimRgn->VCFKeyboardTracking) {  
                 resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;  
             }  
             Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)  
   
             VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;  
             VCFResonanceCtrl.fvalue = resonance;  
174    
175              FilterUpdateCounter = -1;      // This is called on any cutoff controller changes, however not when the
176          }      // voice is triggered. So the initial cutoff value is retrieved by a call
177          else {      // to CalculateFinalCutoff() instead.
178              VCFCutoffCtrl.controller    = 0;      void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
179              VCFResonanceCtrl.controller = 0;          if (VCFCutoffCtrl.value == itEvent->Param.CC.Value) return;
180          }          float ccvalue = VCFCutoffCtrl.value = itEvent->Param.CC.Value;
   
         return 0; // success  
     }  
   
     /**  
      *  Renders the audio data for this voice for the current audio fragment.  
      *  The sample input data can either come from RAM (cached sample or sample  
      *  part) or directly from disk. The output signal will be rendered by  
      *  resampling / interpolation. If this voice is a disk streaming voice and  
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
   
         // select default values for synthesis mode bits  
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
         SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);  
   
         // Reset the synthesis parameter matrix  
   
         #if CONFIG_PROCESS_MUTED_CHANNELS  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume));  
         #else  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         #endif  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
181    
182          if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))          // if the selected filter type is an official GigaStudio filter type
183              CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters          // then we preserve the original (no matter how odd) historical GSt
184            // behaviour identically; for our own filter types though we deviate to
185            // more meaningful behaviours where appropriate
186            const bool isGStFilter = isGStFilterType(pRegion->VCFType);
187    
188          switch (this->PlaybackState) {          if (pRegion->VCFCutoffControllerInvert) ccvalue = 127 - ccvalue;
189            // interpret "minimum cutoff" not simply as hard limit, rather
190            // restrain it to min_cutoff..127 range, but spanned / remapped over
191            // the entire controller range (0..127) to avoid a "dead" lower
192            // controller zone (that is to avoid a certain CC value range where
193            // the controller would not change the cutoff frequency)
194            ccvalue = MinCutoff() + (ccvalue / 127.f) * float(127 - MinCutoff());
195    
196              case playback_state_init:          float cutoff = CutoffBase * ccvalue;
197                  this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed          if (cutoff > 127.0f) cutoff = 127.0f;
                 // no break - continue with playback_state_ram  
   
             case playback_state_ram: {  
                     if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping  
   
                     // render current fragment  
                     Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
   
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (Pos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     }  
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));  
                         Pos -= int(Pos);  
                         RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet  
                     }  
   
                     const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end) {  
                         const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm  
                         if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {  
                             // remember how many sample words there are before any silence has been added  
                             if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;  
                             DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);  
                         }  
                     }  
   
                     sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
   
                     // render current audio fragment  
                     Synthesize(Samples, ptr, Delay);  
   
                     const int iPos = (int) Pos;  
                     const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read  
                     DiskStreamRef.pStream->IncrementReadPos(readSampleWords);  
                     Pos -= iPos; // just keep fractional part of Pos  
   
                     // change state of voice to 'end' if we really reached the end of the sample data  
                     if (RealSampleWordsLeftToRead >= 0) {  
                         RealSampleWordsLeftToRead -= readSampleWords;  
                         if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_end:  
                 std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;  
                 break;  
         }  
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
         // Reset delay  
         Delay = 0;  
   
         itTriggerEvent = Pool<Event>::Iterator();  
   
         // If sample stream or release stage finished, kill the voice  
         if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();  
     }  
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         PlaybackState = playback_state_end;  
         itTriggerEvent = Pool<Event>::Iterator();  
         itKillEvent    = Pool<Event>::Iterator();  
     }  
   
     /**  
      *  Process the control change event lists of the engine for the current  
      *  audio fragment. Event values will be applied to the synthesis parameter  
      *  matrix.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::ProcessEvents(uint Samples) {  
   
         // dispatch control change events  
         RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();  
         if (Delay) { // skip events that happened before this voice was triggered  
             while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;  
         }  
         while (itCCEvent) {  
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
             }  
198    
199              ++itCCEvent;          // the filter implementations of the original GSt filter types take an
200            // abstract cutoff parameter range of 0..127, whereas our own filter
201            // types take a cutoff parameter in Hz, so remap here:
202            // 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
203            if (!isGStFilter) {
204                cutoff = (cutoff + 29.f) / (127.f + 29.f);
205                cutoff = cutoff * cutoff * cutoff * cutoff * 18000.f;
206                if (cutoff > 0.49f * pEngine->SampleRate)
207                    cutoff = 0.49f * pEngine->SampleRate;
208          }          }
209    
210            fFinalCutoff = VCFCutoffCtrl.fvalue = cutoff;
211        }
212    
213          // process pitch events      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
214          {          float crossfadeVolume;
215              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          switch (pRegion->AttenuationController.type) {
216              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
217              if (Delay) { // skip events that happened before this voice was triggered                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[128])];
218                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;                  break;
219              }              case ::gig::attenuation_ctrl_t::type_velocity:
220              // apply old pitchbend value until first pitch event occurs                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
221              if (this->PitchBend != 1.0) {                  break;
222                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
223                  for (uint i = Delay; i < end; i++) {                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
224                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;                  break;
225                  }              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
226              }              default:
227              float pitch;                  crossfadeVolume = 1.0f;
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 itVCOEvent = itNextVCOEvent;  
             }  
             if (!pVCOEventList->isEmpty()) {  
                 this->PitchBend = pitch;  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
228          }          }
229    
230          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          return crossfadeVolume;
231          {      }
             RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 #if CONFIG_PROCESS_MUTED_CHANNELS  
                 float effective_volume = crossfadevolume * this->Volume * (pEngineChannel->GetMute() ? 0 : pEngineChannel->GlobalVolume);  
                 #else  
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
                 #endif  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
232    
233                  itVCAEvent = itNextVCAEvent;      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
234              }          double eg1controllervalue = 0;
235              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;          switch (pRegion->EG1Controller.type) {
236                case ::gig::eg1_ctrl_t::type_none: // no controller defined
237                    eg1controllervalue = 0;
238                    break;
239                case ::gig::eg1_ctrl_t::type_channelaftertouch:
240                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[128];
241                    break;
242                case ::gig::eg1_ctrl_t::type_velocity:
243                    eg1controllervalue = MIDIKeyVelocity;
244                    break;
245                case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
246                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
247                    break;
248          }          }
249            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
250    
251          // process filter cutoff events          return eg1controllervalue;
252          {      }
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 int cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
                 if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;  
                 if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;  
                 cutoff = CutoffBase * float(cvalue) * 0.00787402f; // (1 / 127)  
                 if (cutoff > 1.0) cutoff = 1.0;  
                 cutoff = exp(cutoff * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MIN - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
253    
254                  itCutoffEvent = itNextCutoffEvent;      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
255              }          EGInfo eg;
256              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time          // (eg1attack is different from the others)
257            if (pRegion->EG1Attack < 1e-8 && // attack in gig == 0
258                (pRegion->EG1ControllerAttackInfluence == 0 ||
259                 eg1ControllerValue <= 10)) { // strange GSt special case
260                eg.Attack = 0; // this will force the attack to be 0 in the call to EG1.trigger
261            } else {
262                eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
263                    1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
264                                          1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
265            }
266            eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
267            eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
268    
269            return eg;
270        }
271    
272        double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
273            double eg2controllervalue = 0;
274            switch (pRegion->EG2Controller.type) {
275                case ::gig::eg2_ctrl_t::type_none: // no controller defined
276                    eg2controllervalue = 0;
277                    break;
278                case ::gig::eg2_ctrl_t::type_channelaftertouch:
279                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[128];
280                    break;
281                case ::gig::eg2_ctrl_t::type_velocity:
282                    eg2controllervalue = MIDIKeyVelocity;
283                    break;
284                case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
285                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
286                    break;
287          }          }
288            if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
289    
290          // process filter resonance events          return eg2controllervalue;
291          {      }
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
292    
293                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
294            EGInfo eg;
295            eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
296            eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
297            eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
298    
299                  // apply cutoff frequency to the cutoff parameter sequence          return eg;
300                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {      }
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
301    
302                  itResonanceEvent = itNextResonanceEvent;      void Voice::InitLFO1() {
303              }          uint16_t lfo1_internal_depth;
304              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time          switch (pRegion->LFO1Controller) {
305                case ::gig::lfo1_ctrl_internal:
306                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
307                    pLFO1->ExtController = 0; // no external controller
308                    bLFO1Enabled         = (lfo1_internal_depth > 0);
309                    break;
310                case ::gig::lfo1_ctrl_modwheel:
311                    lfo1_internal_depth  = 0;
312                    pLFO1->ExtController = 1; // MIDI controller 1
313                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
314                    break;
315                case ::gig::lfo1_ctrl_breath:
316                    lfo1_internal_depth  = 0;
317                    pLFO1->ExtController = 2; // MIDI controller 2
318                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
319                    break;
320                case ::gig::lfo1_ctrl_internal_modwheel:
321                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
322                    pLFO1->ExtController = 1; // MIDI controller 1
323                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
324                    break;
325                case ::gig::lfo1_ctrl_internal_breath:
326                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
327                    pLFO1->ExtController = 2; // MIDI controller 2
328                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
329                    break;
330                default:
331                    lfo1_internal_depth  = 0;
332                    pLFO1->ExtController = 0; // no external controller
333                    bLFO1Enabled         = false;
334            }
335            if (bLFO1Enabled) {
336                pLFO1->trigger(fromGigLfoWave(pRegion->LFO1WaveForm),
337                               pRegion->LFO1Frequency,
338                               pRegion->LFO1Phase,
339                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
340                               lfo1_internal_depth,
341                               pRegion->LFO1ControlDepth,
342                               pRegion->LFO1FlipPhase,
343                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
344                pLFO1->updateByMIDICtrlValue(pLFO1->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO1->ExtController] : 0);
345                pLFO1->setScriptDepthFactor(
346                    pNote->Override.AmpLFODepth.Value,
347                    pNote->Override.AmpLFODepth.Final
348                );
349                if (pNote->Override.AmpLFOFreq.isFinal())
350                    pLFO1->setScriptFrequencyFinal(
351                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
352                    );
353                else
354                    pLFO1->setScriptFrequencyFactor(
355                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
356                    );
357          }          }
358      }      }
359    
360      /**      void Voice::InitLFO2() {
361       * Calculate all necessary, final biquad filter parameters.          uint16_t lfo2_internal_depth;
362       *          switch (pRegion->LFO2Controller) {
363       * @param Samples - number of samples to be rendered in this audio fragment cycle              case ::gig::lfo2_ctrl_internal:
364       */                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
365      void Voice::CalculateBiquadParameters(uint Samples) {                  pLFO2->ExtController = 0; // no external controller
366          biquad_param_t bqbase;                  bLFO2Enabled         = (lfo2_internal_depth > 0);
367          biquad_param_t bqmain;                  break;
368          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              case ::gig::lfo2_ctrl_modwheel:
369          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  lfo2_internal_depth  = 0;
370          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  pLFO2->ExtController = 1; // MIDI controller 1
371          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
372          pEngine->pBasicFilterParameters[0] = bqbase;                  break;
373          pEngine->pMainFilterParameters[0]  = bqmain;              case ::gig::lfo2_ctrl_foot:
374                    lfo2_internal_depth  = 0;
375          float* bq;                  pLFO2->ExtController = 4; // MIDI controller 4
376          for (int i = 1; i < Samples; i++) {                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
377              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  break;
378              if (!(i & FILTER_UPDATE_MASK)) {              case ::gig::lfo2_ctrl_internal_modwheel:
379                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
380                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)                  pLFO2->ExtController = 1; // MIDI controller 1
381                  {                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
382                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  break;
383                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              case ::gig::lfo2_ctrl_internal_foot:
384                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
385                      FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  pLFO2->ExtController = 4; // MIDI controller 4
386                  }                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
387              }                  break;
388                default:
389                    lfo2_internal_depth  = 0;
390                    pLFO2->ExtController = 0; // no external controller
391                    bLFO2Enabled         = false;
392            }
393            if (bLFO2Enabled) {
394                pLFO2->trigger(fromGigLfoWave(pRegion->LFO2WaveForm),
395                               pRegion->LFO2Frequency,
396                               pRegion->LFO2Phase,
397                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
398                               lfo2_internal_depth,
399                               pRegion->LFO2ControlDepth,
400                               pRegion->LFO2FlipPhase,
401                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
402                pLFO2->updateByMIDICtrlValue(pLFO2->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO2->ExtController] : 0);
403                pLFO2->setScriptDepthFactor(
404                    pNote->Override.CutoffLFODepth.Value,
405                    pNote->Override.CutoffLFODepth.Final
406                );
407                if (pNote->Override.CutoffLFOFreq.isFinal())
408                    pLFO2->setScriptFrequencyFinal(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
409                else
410                    pLFO2->setScriptFrequencyFactor(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
411            }
412        }
413    
414              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'      void Voice::InitLFO3() {
415              bq    = (float*) &pEngine->pBasicFilterParameters[i];          uint16_t lfo3_internal_depth;
416              bq[0] = bqbase.b0;          switch (pRegion->LFO3Controller) {
417              bq[1] = bqbase.b1;              case ::gig::lfo3_ctrl_internal:
418              bq[2] = bqbase.b2;                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
419              bq[3] = bqbase.a1;                  pLFO3->ExtController = 0; // no external controller
420              bq[4] = bqbase.a2;                  bLFO3Enabled         = (lfo3_internal_depth > 0);
421                    break;
422              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              case ::gig::lfo3_ctrl_modwheel:
423              bq    = (float*) &pEngine->pMainFilterParameters[i];                  lfo3_internal_depth  = 0;
424              bq[0] = bqmain.b0;                  pLFO3->ExtController = 1; // MIDI controller 1
425              bq[1] = bqmain.b1;                  bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);
426              bq[2] = bqmain.b2;                  break;
427              bq[3] = bqmain.a1;              case ::gig::lfo3_ctrl_aftertouch:
428              bq[4] = bqmain.a2;                  lfo3_internal_depth  = 0;
429                    pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
430                    bLFO3Enabled         = true;
431                    break;
432                case ::gig::lfo3_ctrl_internal_modwheel:
433                    lfo3_internal_depth  = pRegion->LFO3InternalDepth;
434                    pLFO3->ExtController = 1; // MIDI controller 1
435                    bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
436                    break;
437                case ::gig::lfo3_ctrl_internal_aftertouch:
438                    lfo3_internal_depth  = pRegion->LFO3InternalDepth;
439                    pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
440                    bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
441                    break;
442                default:
443                    lfo3_internal_depth  = 0;
444                    pLFO3->ExtController = 0; // no external controller
445                    bLFO3Enabled         = false;
446            }
447            if (bLFO3Enabled) {
448                pLFO3->trigger(fromGigLfoWave(pRegion->LFO3WaveForm),
449                               pRegion->LFO3Frequency,
450                               pRegion->LFO3Phase,
451                               LFO::start_level_max, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
452                               lfo3_internal_depth,
453                               pRegion->LFO3ControlDepth,
454                               pRegion->LFO3FlipPhase,
455                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
456                pLFO3->updateByMIDICtrlValue(pLFO3->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO3->ExtController] : 0);
457                pLFO3->setScriptDepthFactor(
458                    pNote->Override.PitchLFODepth.Value,
459                    pNote->Override.PitchLFODepth.Final
460                );
461                if (pNote->Override.PitchLFOFreq.isFinal())
462                    pLFO3->setScriptFrequencyFinal(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
463                else
464                    pLFO3->setScriptFrequencyFactor(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
465            }
466        }
467    
468        float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
469            float cutoff = pRegion->GetVelocityCutoff(MIDIKeyVelocity);
470            if (pRegion->VCFKeyboardTracking) {
471                cutoff *= RTMath::CentsToFreqRatioUnlimited((MIDIKey() - pRegion->VCFKeyboardTrackingBreakpoint) * 100);
472            }
473            return cutoff;
474        }
475    
476        // This is just called when the voice is triggered. On any subsequent cutoff
477        // controller changes ProcessCutoffEvent() is called instead.
478        float Voice::CalculateFinalCutoff(float cutoffBase) {
479            // if the selected filter type is an official GigaStudio filter type
480            // then we preserve the original (no matter how odd) historical GSt
481            // behaviour identically; for our own filter types though we deviate to
482            // more meaningful behaviours where appropriate
483            const bool isGStFilter = isGStFilterType(pRegion->VCFType);
484    
485            // get current cutoff CC or velocity value (always 0..127)
486            float cvalue;
487            if (VCFCutoffCtrl.controller) {
488                cvalue = GetGigEngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
489                if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
490                if (isGStFilter) {
491                    // VCFVelocityScale in this case means "minimum cutoff" for GSt
492                    if (cvalue < MinCutoff()) cvalue = MinCutoff();
493                } else {
494                    // for our own filter types we interpret "minimum cutoff"
495                    // differently: GSt handles this as a simple hard limit with the
496                    // consequence that a certain range of the controller is simply
497                    // dead; so for our filter types we rather remap that to
498                    // restrain within the min_cutoff..127 range as well, but
499                    // effectively spanned over the entire controller range (0..127)
500                    // to avoid such a "dead" lower controller zone
501                    cvalue = MinCutoff() + (cvalue / 127.f) * float(127 - MinCutoff());
502                }
503            } else {
504                // in case of velocity, VCFVelocityScale parameter is already
505                // handled on libgig side (so by calling
506                // pRegion->GetVelocityCutoff(velo) in CalculateCutoffBase() above)
507                cvalue = pRegion->VCFCutoff;
508            }
509    
510            float fco = cutoffBase * cvalue;
511            if (fco > 127.0f) fco = 127.0f;
512    
513            // the filter implementations of the original GSt filter types take an
514            // abstract cutoff parameter range of 0..127, ...
515            if (isGStFilter)
516                return fco;
517    
518            // ... whereas our own filter types take a cutoff parameter in Hz, so
519            // remap here 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
520            fco = (fco + 29.f) / (127.f + 29.f);
521            fco = fco * fco * fco * fco * 18000.f;
522            if (fco > 0.49f * pEngine->SampleRate)
523                fco = 0.49f * pEngine->SampleRate;
524            return fco;
525        }
526    
527        uint8_t Voice::GetVCFCutoffCtrl() {
528            uint8_t ctrl;
529            switch (pRegion->VCFCutoffController) {
530                case ::gig::vcf_cutoff_ctrl_modwheel:
531                    ctrl = 1;
532                    break;
533                case ::gig::vcf_cutoff_ctrl_effect1:
534                    ctrl = 12;
535                    break;
536                case ::gig::vcf_cutoff_ctrl_effect2:
537                    ctrl = 13;
538                    break;
539                case ::gig::vcf_cutoff_ctrl_breath:
540                    ctrl = 2;
541                    break;
542                case ::gig::vcf_cutoff_ctrl_foot:
543                    ctrl = 4;
544                    break;
545                case ::gig::vcf_cutoff_ctrl_sustainpedal:
546                    ctrl = 64;
547                    break;
548                case ::gig::vcf_cutoff_ctrl_softpedal:
549                    ctrl = 67;
550                    break;
551                case ::gig::vcf_cutoff_ctrl_genpurpose7:
552                    ctrl = 82;
553                    break;
554                case ::gig::vcf_cutoff_ctrl_genpurpose8:
555                    ctrl = 83;
556                    break;
557                case ::gig::vcf_cutoff_ctrl_aftertouch:
558                    ctrl = CTRL_TABLE_IDX_AFTERTOUCH;
559                    break;
560                case ::gig::vcf_cutoff_ctrl_none:
561                default:
562                    ctrl = 0;
563                    break;
564          }          }
565    
566            return ctrl;
567      }      }
568    
569      /**      uint8_t Voice::GetVCFResonanceCtrl() {
570       *  Synthesizes the current audio fragment for this voice.          uint8_t ctrl;
571       *          switch (pRegion->VCFResonanceController) {
572       *  @param Samples - number of sample points to be rendered in this audio              case ::gig::vcf_res_ctrl_genpurpose3:
573       *                   fragment cycle                  ctrl = 18;
574       *  @param pSrc    - pointer to input sample data                  break;
575       *  @param Skip    - number of sample points to skip in output buffer              case ::gig::vcf_res_ctrl_genpurpose4:
576       */                  ctrl = 19;
577      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {                  break;
578          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);              case ::gig::vcf_res_ctrl_genpurpose5:
579      }                  ctrl = 80;
580                    break;
581      /**              case ::gig::vcf_res_ctrl_genpurpose6:
582       *  Immediately kill the voice. This method should not be used to kill                  ctrl = 81;
583       *  a normal, active voice, because it doesn't take care of things like                  break;
584       *  fading down the volume level to avoid clicks and regular processing              case ::gig::vcf_res_ctrl_none:
585       *  until the kill event actually occured!              default:
586       *                  ctrl = 0;
587       *  @see Kill()          }
588       */  
589      void Voice::KillImmediately() {          return ctrl;
590          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {      }
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef);  
         }  
         Reset();  
     }  
   
     /**  
      *  Kill the voice in regular sense. Let the voice render audio until  
      *  the kill event actually occured and then fade down the volume level  
      *  very quickly and let the voice die finally. Unlike a normal release  
      *  of a voice, a kill process cannot be cancalled and is therefore  
      *  usually used for voice stealing and key group conflicts.  
      *  
      *  @param itKillEvent - event which caused the voice to be killed  
      */  
     void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {  
         #if CONFIG_DEVMODE  
         if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));  
         if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));  
         #endif // CONFIG_DEVMODE  
591    
592          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;      void Voice::TriggerEG1(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
593          this->itKillEvent = itKillEvent;          EG1.setStateOptions(
594                pRegion->EG1Options.AttackCancel,
595                pRegion->EG1Options.AttackHoldCancel,
596                pRegion->EG1Options.Decay1Cancel,
597                pRegion->EG1Options.Decay2Cancel,
598                pRegion->EG1Options.ReleaseCancel
599            );
600            EG1.trigger(pRegion->EG1PreAttack,
601                        (pNote && pNote->Override.Attack.isFinal()) ?
602                            pNote->Override.Attack.Value :
603                            RTMath::Max(pRegion->EG1Attack, 0.0316) * egInfo.Attack,
604                        pRegion->EG1Hold,
605                        (pNote && pNote->Override.Decay.isFinal()) ?
606                            pNote->Override.Decay.Value :
607                            pRegion->EG1Decay1 * egInfo.Decay * velrelease,
608                        (pNote && pNote->Override.Decay.isFinal()) ?
609                            pNote->Override.Decay.Value :
610                            pRegion->EG1Decay2 * egInfo.Decay * velrelease,
611                        pRegion->EG1InfiniteSustain,
612                        (pNote && pNote->Override.Sustain.Final) ?
613                            uint(pNote->Override.Sustain.Value * 1000.f) :
614                            pRegion->EG1Sustain * (pNote ? pNote->Override.Sustain.Value : 1.f),
615                        (pNote && pNote->Override.Release.isFinal()) ?
616                            pNote->Override.Release.Value :
617                            RTMath::Max(pRegion->EG1Release * velrelease, 0.014) * egInfo.Release,
618                        velocityAttenuation,
619                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
620        }
621    
622        void Voice::TriggerEG2(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
623            EG2.setStateOptions(
624                pRegion->EG2Options.AttackCancel,
625                pRegion->EG2Options.AttackHoldCancel,
626                pRegion->EG2Options.Decay1Cancel,
627                pRegion->EG2Options.Decay2Cancel,
628                pRegion->EG2Options.ReleaseCancel
629            );
630            EG2.trigger(uint(RgnInfo.EG2PreAttack),
631                        (pNote && pNote->Override.CutoffAttack.isFinal()) ?
632                            pNote->Override.CutoffAttack.Value :
633                            RgnInfo.EG2Attack * egInfo.Attack,
634                        false,
635                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
636                            pNote->Override.CutoffDecay.Value :
637                            RgnInfo.EG2Decay1 * egInfo.Decay * velrelease,
638                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
639                            pNote->Override.CutoffDecay.Value :
640                            RgnInfo.EG2Decay2 * egInfo.Decay * velrelease,
641                        RgnInfo.EG2InfiniteSustain,
642                        (pNote && pNote->Override.CutoffSustain.Final) ?
643                            uint(pNote->Override.CutoffSustain.Value * 1000.f) :
644                            uint(RgnInfo.EG2Sustain),
645                        (pNote && pNote->Override.CutoffRelease.isFinal()) ?
646                            pNote->Override.CutoffRelease.Value :
647                            RgnInfo.EG2Release * egInfo.Release * velrelease,
648                        velocityAttenuation,
649                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
650        }
651    
652        void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
653            dmsg(4,("Voice %p processGroupEvents event type=%d", (void*)this, itEvent->Type));
654    
655            // TODO: The SustainPedal condition could be wrong, maybe the
656            // check should be if this Voice is in release stage or is a
657            // release sample instead. Need to test this in GSt.
658            // -- Andreas
659            //
660            // Commented sustain pedal check out. I don't think voices of the same
661            // note should be stopped at all, because it doesn't sound naturally
662            // with a drumkit.
663            // -- Christian, 2013-01-08
664            if (itEvent->Param.Note.Key != HostKey() /*||
665                !GetGigEngineChannel()->SustainPedal*/) {
666                dmsg(4,("Voice %p - kill", (void*)this));
667    
668                // kill the voice fast
669                pEG1->enterFadeOutStage();
670            }
671        }
672    
673        void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
674            EG1.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
675        }
676    
677        int Voice::CalculatePan(uint8_t pan) {
678            int p;
679            // Gst behaviour: -64 and 63 are special cases
680            if (RgnInfo.Pan == -64)     p = pan * 2 - 127;
681            else if (RgnInfo.Pan == 63) p = pan * 2;
682            else                        p = pan + RgnInfo.Pan;
683    
684            if (p < 0) return 0;
685            if (p > 127) return 127;
686            return p;
687        }
688    
689        release_trigger_t Voice::GetReleaseTriggerFlags() {
690            release_trigger_t flags =
691                (pRegion->NoNoteOffReleaseTrigger) ?
692                    release_trigger_none : release_trigger_noteoff; //HACK: currently this method is actually only called by EngineBase if it already knows that this voice requires release trigger, so I took the short way instead of checking (again) the existence of a ::gig::dimension_releasetrigger
693            switch (pRegion->SustainReleaseTrigger) {
694                case ::gig::sust_rel_trg_none:
695                    break;
696                case ::gig::sust_rel_trg_maxvelocity:
697                    flags |= release_trigger_sustain_maxvelocity;
698                    break;
699                case ::gig::sust_rel_trg_keyvelocity:
700                    flags |= release_trigger_sustain_keyvelocity;
701                    break;
702            }
703            return flags;
704      }      }
705    
706  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.729  
changed lines
  Added in v.3721

  ViewVC Help
Powered by ViewVC