/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC revision 1001 by schoenebeck, Wed Dec 27 16:17:08 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
# Line 66  namespace LinuxSampler { namespace gig { Line 44  namespace LinuxSampler { namespace gig {
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 149  namespace LinuxSampler { namespace gig { Line 98  namespace LinuxSampler { namespace gig {
98          // calculate volume          // calculate volume
99          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
100    
101          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // For 16 bit samples, we downscale by 32768 to convert from
102            // int16 value range to DSP value range (which is
103            // -1.0..1.0). For 24 bit, we downscale from int32.
104            float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
105    
106          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation;
107    
108          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
109          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 111  namespace LinuxSampler { namespace gig {
111                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
112              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
113              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
114              Volume *= attenuation;              volume *= attenuation;
115          }          }
116    
117          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
118          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
119            // select bit depth (16 or 24)
120            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
121    
122          // get starting crossfade volume level          // get starting crossfade volume level
123            float crossfadeVolume;
124          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
125              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
127                  break;                  break;
128              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
129                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
130                  break;                  break;
131              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
133                  break;                  break;
134              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135              default:              default:
136                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
137          }          }
138    
139          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
140          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
141    
142            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
143            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
144            VolumeSmoother.trigger(pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume, subfragmentRate);
145            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
146            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
147    
148          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
149            Pos = pDimRgn->SampleStartOffset;
150    
151          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
152          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
153          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
154    
155            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
156    
157          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
158              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
159    
160              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
161              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
162    
163              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
164                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
165                  KillImmediately();                  KillImmediately();
166                  return -1;                  return -1;
# Line 209  namespace LinuxSampler { namespace gig { Line 169  namespace LinuxSampler { namespace gig {
169          }          }
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
173              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
174          }          }
175            if (RAMLoop) {
176                loop.uiTotalCycles = pSample->LoopPlayCount;
177                loop.uiCyclesLeft  = pSample->LoopPlayCount;
178                loop.uiStart       = loopinfo.LoopStart;
179                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
180                loop.uiSize        = loopinfo.LoopLength;
181            }
182    
183          // calculate initial pitch value          // calculate initial pitch value
184          {          {
185              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
186              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
187              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
188              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
189          }          }
190    
# Line 238  namespace LinuxSampler { namespace gig { Line 200  namespace LinuxSampler { namespace gig {
200                      eg1controllervalue = 0;                      eg1controllervalue = 0;
201                      break;                      break;
202                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
203                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
204                      break;                      break;
205                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
206                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 257  namespace LinuxSampler { namespace gig { Line 219  namespace LinuxSampler { namespace gig {
219              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
220              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
221    
222              pEG1->Trigger(pDimRgn->EG1PreAttack,              EG1.trigger(pDimRgn->EG1PreAttack,
223                            pDimRgn->EG1Attack * eg1attack,                          pDimRgn->EG1Attack * eg1attack,
224                            pDimRgn->EG1Hold,                          pDimRgn->EG1Hold,
225                            pSample->LoopStart,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
226                            pDimRgn->EG1Decay1 * eg1decay * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
227                            pDimRgn->EG1Decay2 * eg1decay * velrelease,                          pDimRgn->EG1InfiniteSustain,
228                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Sustain,
229                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Release * eg1release * velrelease,
230                            pDimRgn->EG1Release * eg1release * velrelease,                          velocityAttenuation,
231                            // the SSE synthesis implementation requires                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
232                            // the vca start to be 16 byte aligned          }
233                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
234                            Delay & 0xfffffffc : Delay,  #ifdef CONFIG_INTERPOLATE_VOLUME
235                            velocityAttenuation);          // setup initial volume in synthesis parameters
236          }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
237            if (pEngineChannel->GetMute()) {
238                finalSynthesisParameters.fFinalVolumeLeft  = 0;
239                finalSynthesisParameters.fFinalVolumeRight = 0;
240            }
241            else
242    #else
243            {
244                float finalVolume = pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
245    
246                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
247                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
248            }
249    #endif
250    #endif
251    
252          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
253          {          {
# Line 283  namespace LinuxSampler { namespace gig { Line 258  namespace LinuxSampler { namespace gig {
258                      eg2controllervalue = 0;                      eg2controllervalue = 0;
259                      break;                      break;
260                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
261                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
262                      break;                      break;
263                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
264                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 299  namespace LinuxSampler { namespace gig { Line 274  namespace LinuxSampler { namespace gig {
274              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
275              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
276    
277              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
278                            pDimRgn->EG2Attack * eg2attack,                          pDimRgn->EG2Attack * eg2attack,
279                            false,                          false,
280                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay1 * eg2decay * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
282                            pDimRgn->EG2Decay2 * eg2decay * velrelease,                          pDimRgn->EG2InfiniteSustain,
283                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
284                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
285                            pDimRgn->EG2Release * eg2release * velrelease,                          velocityAttenuation,
286                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
287          }          }
288    
289    
290          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
291          {          {
292            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
293            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
294                float eg3depth = (bPortamento)
295                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
296                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
297                float eg3time = (bPortamento)
298                                    ? pEngineChannel->PortamentoTime
299                                    : pDimRgn->EG3Attack;
300                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
301                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
302          }          }
303    
304    
# Line 354  namespace LinuxSampler { namespace gig { Line 336  namespace LinuxSampler { namespace gig {
336                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
337                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
338              }              }
339              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) {
340                                               lfo1_internal_depth,                  pLFO1->trigger(pDimRgn->LFO1Frequency,
341                                               pDimRgn->LFO1ControlDepth,                                 start_level_min,
342                                               pEngineChannel->ControllerTable[pLFO1->ExtController],                                 lfo1_internal_depth,
343                                               pDimRgn->LFO1FlipPhase,                                 pDimRgn->LFO1ControlDepth,
344                                               pEngine->SampleRate,                                 pDimRgn->LFO1FlipPhase,
345                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
346                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
347                }
348          }          }
349    
350    
# Line 398  namespace LinuxSampler { namespace gig { Line 382  namespace LinuxSampler { namespace gig {
382                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
383                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
384              }              }
385              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) {
386                                               lfo2_internal_depth,                  pLFO2->trigger(pDimRgn->LFO2Frequency,
387                                               pDimRgn->LFO2ControlDepth,                                 start_level_max,
388                                               pEngineChannel->ControllerTable[pLFO2->ExtController],                                 lfo2_internal_depth,
389                                               pDimRgn->LFO2FlipPhase,                                 pDimRgn->LFO2ControlDepth,
390                                               pEngine->SampleRate,                                 pDimRgn->LFO2FlipPhase,
391                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
392                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
393                }
394          }          }
395    
396    
# Line 424  namespace LinuxSampler { namespace gig { Line 410  namespace LinuxSampler { namespace gig {
410                      break;                      break;
411                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
412                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
413                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
414                      bLFO3Enabled         = false; // see TODO comment in line above                      bLFO3Enabled         = true;
415                      break;                      break;
416                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
# Line 434  namespace LinuxSampler { namespace gig { Line 420  namespace LinuxSampler { namespace gig {
420                      break;                      break;
421                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
422                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
423                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
424                      bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above                      bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
425                      break;                      break;
426                  default:                  default:
427                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
428                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
429                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
430              }              }
431              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) {
432                                               lfo3_internal_depth,                  pLFO3->trigger(pDimRgn->LFO3Frequency,
433                                               pDimRgn->LFO3ControlDepth,                                 start_level_mid,
434                                               pEngineChannel->ControllerTable[pLFO3->ExtController],                                 lfo3_internal_depth,
435                                               false,                                 pDimRgn->LFO3ControlDepth,
436                                               pEngine->SampleRate,                                 false,
437                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
438                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
439                }
440          }          }
441    
442    
# Line 490  namespace LinuxSampler { namespace gig { Line 478  namespace LinuxSampler { namespace gig {
478                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
479                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
480                      break;                      break;
481                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
482                        VCFCutoffCtrl.controller = 128;
483                        break;
484                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
485                  default:                  default:
486                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 521  namespace LinuxSampler { namespace gig { Line 511  namespace LinuxSampler { namespace gig {
511              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
512    
513              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
514              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
515              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
516              #else // override filter type              #else // override filter type
517              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
518              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
# Line 532  namespace LinuxSampler { namespace gig { Line 522  namespace LinuxSampler { namespace gig {
522              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
523    
524              // calculate cutoff frequency              // calculate cutoff frequency
525              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
526              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
527                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
528              }              }
529              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
530    
531              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
532              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
533                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
534                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
535                    // VCFVelocityScale in this case means Minimum cutoff
536                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
537                }
538                else {
539                    cvalue = pDimRgn->VCFCutoff;
540                }
541                cutoff *= float(cvalue);
542                if (cutoff > 127.0f) cutoff = 127.0f;
543    
544              FilterUpdateCounter = -1;              // calculate resonance
545                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
546    
547                VCFCutoffCtrl.fvalue    = cutoff;
548                VCFResonanceCtrl.fvalue = resonance;
549          }          }
550          else {          else {
551              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 570  namespace LinuxSampler { namespace gig { Line 569  namespace LinuxSampler { namespace gig {
569      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
570    
571          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
572          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
573    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
574          switch (this->PlaybackState) {          switch (this->PlaybackState) {
575    
576              case playback_state_init:              case playback_state_init:
# Line 617  namespace LinuxSampler { namespace gig { Line 585  namespace LinuxSampler { namespace gig {
585    
586                      if (DiskVoice) {                      if (DiskVoice) {
587                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
588                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
589                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
590                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
591                          }                          }
592                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
593                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
594                      }                      }
595                  }                  }
# Line 637  namespace LinuxSampler { namespace gig { Line 604  namespace LinuxSampler { namespace gig {
604                              KillImmediately();                              KillImmediately();
605                              return;                              return;
606                          }                          }
607                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
608                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
609                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
610                      }                      }
611    
# Line 654  namespace LinuxSampler { namespace gig { Line 621  namespace LinuxSampler { namespace gig {
621                          }                          }
622                      }                      }
623    
624                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
625    
626                      // render current audio fragment                      // render current audio fragment
627                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
628    
629                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
630                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
631                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
632                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
633    
634                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
635                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 677  namespace LinuxSampler { namespace gig { Line 644  namespace LinuxSampler { namespace gig {
644                  break;                  break;
645          }          }
646    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
647          // Reset delay          // Reset delay
648          Delay = 0;          Delay = 0;
649    
650          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
651    
652          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
653          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
654      }      }
655    
656      /**      /**
# Line 696  namespace LinuxSampler { namespace gig { Line 658  namespace LinuxSampler { namespace gig {
658       *  suspended / not running.       *  suspended / not running.
659       */       */
660      void Voice::Reset() {      void Voice::Reset() {
661          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
662          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
663          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
664          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
665          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 711  namespace LinuxSampler { namespace gig { Line 670  namespace LinuxSampler { namespace gig {
670      }      }
671    
672      /**      /**
673       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
674       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
675       *       *
676       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
677         * @param End     - youngest time stamp where processing should be stopped
678       */       */
679      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
680            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
681                if (itEvent->Type == Event::type_release) {
682                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
683                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684                } else if (itEvent->Type == Event::type_cancel_release) {
685                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
686                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687                }
688            }
689        }
690    
691          // dispatch control change events      /**
692          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
693          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
694              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;       *
695          }       * @param itEvent - iterator pointing to the next event to be processed
696          while (itCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
697              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller       */
698                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
699                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
700                  }              if (itEvent->Type == Event::type_control_change &&
701                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
702                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;                  if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
703                        processCutoffEvent(itEvent);
704                    }
705                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
706                        processResonanceEvent(itEvent);
707                  }                  }
708                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
709                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
710                  }                  }
711                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
712                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
713                  }                  }
714                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
715                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
716                  }                  }
717                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
718                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
719                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
720                  }                  }
721                    if (itEvent->Param.CC.Controller == 7) { // volume
722                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
723                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
724                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
725                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
726                    }
727                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
728                    processPitchEvent(itEvent);
729              }              }
730            }
731        }
732    
733        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
734            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
735            finalSynthesisParameters.fFinalPitch *= pitch;
736            PitchBend = pitch;
737        }
738    
739        void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
740            int ccvalue = itEvent->Param.CC.Value;
741            if (VCFCutoffCtrl.value == ccvalue) return;
742            VCFCutoffCtrl.value == ccvalue;
743            if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
744            if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
745            float cutoff = CutoffBase * float(ccvalue);
746            if (cutoff > 127.0f) cutoff = 127.0f;
747    
748              ++itCCEvent;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
749            fFinalCutoff = cutoff;
750        }
751    
752        void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
753            // convert absolute controller value to differential
754            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
755            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
756            const float resonancedelta = (float) ctrldelta;
757            fFinalResonance += resonancedelta;
758            // needed for initialization of parameter
759            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
760        }
761    
762        /**
763         *  Synthesizes the current audio fragment for this voice.
764         *
765         *  @param Samples - number of sample points to be rendered in this audio
766         *                   fragment cycle
767         *  @param pSrc    - pointer to input sample data
768         *  @param Skip    - number of sample points to skip in output buffer
769         */
770        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
771            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
772            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
773            finalSynthesisParameters.pSrc      = pSrc;
774    
775            RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
776            RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
777    
778            if (Skip) { // skip events that happened before this voice was triggered
779                while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
780                while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
781          }          }
782    
783            uint killPos;
784            if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
785    
786          // process pitch events          uint i = Skip;
787          {          while (i < Samples) {
788              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
789              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
790              if (Delay) { // skip events that happened before this voice was triggered              // initialize all final synthesis parameters
791                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
792              }              fFinalCutoff    = VCFCutoffCtrl.fvalue;
793              // apply old pitchbend value until first pitch event occurs              fFinalResonance = VCFResonanceCtrl.fvalue;
794              if (this->PitchBend != 1.0) {  
795                  uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;              // process MIDI control change and pitchbend events for this subfragment
796                  for (uint i = Delay; i < end; i++) {              processCCEvents(itCCEvent, iSubFragmentEnd);
797                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
798                  }              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
799    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
800                if (pEngineChannel->GetMute()) fFinalVolume = 0;
801    #endif
802    
803                // process transition events (note on, note off & sustain pedal)
804                processTransitionEvents(itNoteEvent, iSubFragmentEnd);
805    
806                // if the voice was killed in this subfragment, or if the
807                // filter EG is finished, switch EG1 to fade out stage
808                if ((itKillEvent && killPos <= iSubFragmentEnd) ||
809                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
810                     EG2.getSegmentType() == EGADSR::segment_end)) {
811                    EG1.enterFadeOutStage();
812                    itKillEvent = Pool<Event>::Iterator();
813              }              }
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
814    
815                  itVCOEvent = itNextVCOEvent;              // process envelope generators
816                switch (EG1.getSegmentType()) {
817                    case EGADSR::segment_lin:
818                        fFinalVolume *= EG1.processLin();
819                        break;
820                    case EGADSR::segment_exp:
821                        fFinalVolume *= EG1.processExp();
822                        break;
823                    case EGADSR::segment_end:
824                        fFinalVolume *= EG1.getLevel();
825                        break; // noop
826              }              }
827              if (!pVCOEventList->isEmpty()) {              switch (EG2.getSegmentType()) {
828                  this->PitchBend = pitch;                  case EGADSR::segment_lin:
829                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);                      fFinalCutoff *= EG2.processLin();
830                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);                      break;
831                    case EGADSR::segment_exp:
832                        fFinalCutoff *= EG2.processExp();
833                        break;
834                    case EGADSR::segment_end:
835                        fFinalCutoff *= EG2.getLevel();
836                        break; // noop
837              }              }
838          }              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
839    
840          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)              // process low frequency oscillators
841          {              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
842              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
843              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
844    
845                  itVCAEvent = itNextVCAEvent;              // if filter enabled then update filter coefficients
846                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
847                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
848                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
849              }              }
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
850    
851          // process filter cutoff events              // do we need resampling?
852          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
853              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
854              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
855              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
856                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
857    
858                  itCutoffEvent = itNextCutoffEvent;              // prepare final synthesis parameters structure
859              }              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
860              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  #ifdef CONFIG_INTERPOLATE_VOLUME
861          }              finalSynthesisParameters.fFinalVolumeDeltaLeft  =
862                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
863                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
864                finalSynthesisParameters.fFinalVolumeDeltaRight =
865                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
866                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
867    #else
868                finalSynthesisParameters.fFinalVolumeLeft  =
869                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
870                finalSynthesisParameters.fFinalVolumeRight =
871                    fFinalVolume * VolumeRight * PanRightSmoother.render();
872    #endif
873                // render audio for one subfragment
874                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
875    
876          // process filter resonance events              // stop the rendering if volume EG is finished
877          {              if (EG1.getSegmentType() == EGADSR::segment_end) break;
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
878    
879                  itResonanceEvent = itNextResonanceEvent;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     }  
880    
881      /**              // increment envelopes' positions
882       * Calculate all necessary, final biquad filter parameters.              if (EG1.active()) {
883       *  
884       * @param Samples - number of samples to be rendered in this audio fragment cycle                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
885       */                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
886      void Voice::CalculateBiquadParameters(uint Samples) {                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
887                  }                  }
888    
889                    EG1.increment(1);
890                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
891              }              }
892                if (EG2.active()) {
893                    EG2.increment(1);
894                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
895                }
896                EG3.increment(1);
897                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
898    
899              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
900              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
901          }          }
902      }      }
903    
904      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
905       *       *
906       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
907       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
908       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
909       *  @param Skip    - number of sample points to skip in output buffer       *
910         * @param itNoteOffEvent - event which causes this voice to die soon
911       */       */
912      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
913          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
914            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
915      }      }
916    
917      /**      /**

Legend:
Removed from v.696  
changed lines
  Added in v.1001

  ViewVC Help
Powered by ViewVC