/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 80 by schoenebeck, Sun May 23 19:16:33 2004 UTC revision 1001 by schoenebeck, Wed Dec 27 16:17:08 2006 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005, 2006 Christian Schoenebeck                        *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
24  #include "EGADSR.h"  #include "../../common/Features.h"
25  #include "Manipulator.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     // FIXME: no support for layers (nor crossfades) yet  
   
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (FILTER_UPDATE_PERIOD <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          Active = false;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
39          pVCAManipulator  = NULL;          KeyGroup = 0;
40          pVCFCManipulator = NULL;          SynthesisMode = 0; // set all mode bits to 0 first
41          pVCOManipulator  = NULL;          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))
42          pLFO1  = NULL;          #if CONFIG_ASM && ARCH_X86
43          pLFO2  = NULL;          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          pLFO3  = NULL;          #else
45            SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46            #endif
47            SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49            finalSynthesisParameters.filterLeft.Reset();
50            finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetOutput(AudioOutputDevice* pAudioOutputDevice) {  
         this->pOutputLeft        = pAudioOutputDevice->Channel(0)->Buffer();  
         this->pOutputRight       = pAudioOutputDevice->Channel(1)->Buffer();  
         this->MaxSamplesPerCycle = pAudioOutputDevice->MaxSamplesPerCycle();  
         this->SampleRate         = pAudioOutputDevice->SampleRate();  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 111  namespace LinuxSampler { namespace gig { Line 66  namespace LinuxSampler { namespace gig {
66       *  Initializes and triggers the voice, a disk stream will be launched if       *  Initializes and triggers the voice, a disk stream will be launched if
67       *  needed.       *  needed.
68       *       *
69       *  @param pNoteOnEvent - event that caused triggering of this voice       *  @param pEngineChannel - engine channel on which this voice was ordered
70       *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)       *  @param itNoteOnEvent  - event that caused triggering of this voice
71       *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data       *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)
72       *  @returns            0 on success, a value < 0 if something failed       *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data
73         *  @param VoiceType      - type of this voice
74         *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of
75         *  @returns 0 on success, a value < 0 if the voice wasn't triggered
76         *           (either due to an error or e.g. because no region is
77         *           defined for the given key)
78       */       */
79      int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          if (!pInstrument) {          this->pEngineChannel = pEngineChannel;
81             dmsg(1,("voice::trigger: !pInstrument\n"));          this->pDimRgn        = pDimRgn;
82             exit(EXIT_FAILURE);  
83          }          #if CONFIG_DEVMODE
84            if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
85          Active          = true;              dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));
86          MIDIKey         = pNoteOnEvent->Key;          }
87          pRegion         = pInstrument->GetRegion(MIDIKey);          #endif // CONFIG_DEVMODE
88          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
89          Pos             = 0;          Type            = VoiceType;
90          Delay           = pNoteOnEvent->FragmentPos();          MIDIKey         = itNoteOnEvent->Param.Note.Key;
91          pTriggerEvent   = pNoteOnEvent;          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
92            Delay           = itNoteOnEvent->FragmentPos();
93          if (!pRegion) {          itTriggerEvent  = itNoteOnEvent;
94              std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;          itKillEvent     = Pool<Event>::Iterator();
95              Kill();          KeyGroup        = iKeyGroup;
96              return -1;          pSample         = pDimRgn->pSample; // sample won't change until the voice is finished
97          }  
98            // calculate volume
99          //TODO: current MIDI controller values are not taken into account yet          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
100          ::gig::DimensionRegion* pDimRgn = NULL;  
101          for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split          // For 16 bit samples, we downscale by 32768 to convert from
102              if (pRegion->pDimensionDefinitions[i].dimension == ::gig::dimension_velocity) {          // int16 value range to DSP value range (which is
103                  uint DimValues[5] = {0,0,0,0,0};          // -1.0..1.0). For 24 bit, we downscale from int32.
104                      DimValues[i] = pNoteOnEvent->Velocity;          float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
105                  pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
106            volume *= pDimRgn->SampleAttenuation;
107    
108            // the volume of release triggered samples depends on note length
109            if (Type == type_release_trigger) {
110                float noteLength = float(pEngine->FrameTime + Delay -
111                                         pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
112                float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
113                if (attenuation <= 0) return -1;
114                volume *= attenuation;
115            }
116    
117            // select channel mode (mono or stereo)
118            SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
119            // select bit depth (16 or 24)
120            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
121    
122            // get starting crossfade volume level
123            float crossfadeVolume;
124            switch (pDimRgn->AttenuationController.type) {
125                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
126                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
127                  break;                  break;
128              }              case ::gig::attenuation_ctrl_t::type_velocity:
129          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
130          if (!pDimRgn) { // if there was no velocity split                  break;
131              pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0);              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
132          }                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
133                    break;
134                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
135                default:
136                    crossfadeVolume = 1.0f;
137            }
138    
139            VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
140            VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
141    
142            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
143            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
144            VolumeSmoother.trigger(pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume, subfragmentRate);
145            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
146            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
147    
148          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
149            Pos = pDimRgn->SampleStartOffset;
150    
151          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
152          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
153          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
154    
155            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
156    
157          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
158              MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
159    
160              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
161              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
162    
163              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
164                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
165                  Kill();                  KillImmediately();
166                  return -1;                  return -1;
167              }              }
168              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
169          }          }
170          else { // RAM only voice          else { // RAM only voice
171              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
172              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
173              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
174          }          }
175            if (RAMLoop) {
176                loop.uiTotalCycles = pSample->LoopPlayCount;
177                loop.uiCyclesLeft  = pSample->LoopPlayCount;
178                loop.uiStart       = loopinfo.LoopStart;
179                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
180                loop.uiSize        = loopinfo.LoopLength;
181            }
182    
183          // calculate initial pitch value          // calculate initial pitch value
184          {          {
185              double pitchbasecents = pDimRgn->FineTune * 10;              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
186              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
187              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents);              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
188              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
189          }          }
190    
191            // the length of the decay and release curves are dependent on the velocity
192          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
   
193    
194          // setup EG 1 (VCA EG)          // setup EG 1 (VCA EG)
195          {          {
# Line 205  namespace LinuxSampler { namespace gig { Line 200  namespace LinuxSampler { namespace gig {
200                      eg1controllervalue = 0;                      eg1controllervalue = 0;
201                      break;                      break;
202                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
203                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
204                      break;                      break;
205                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
206                      eg1controllervalue = pNoteOnEvent->Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
207                      break;                      break;
208                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
209                      eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];                      eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];
210                      break;                      break;
211              }              }
212              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
213    
214              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
215              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
216              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
217              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
218                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
219              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
220                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
221                            pDimRgn->EG1Hold,  
222                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
223                            pDimRgn->EG1Decay1 + eg1decay,                          pDimRgn->EG1Attack * eg1attack,
224                            pDimRgn->EG1Decay2 + eg1decay,                          pDimRgn->EG1Hold,
225                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
226                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
227                            pDimRgn->EG1Release + eg1release,                          pDimRgn->EG1InfiniteSustain,
228                            Delay);                          pDimRgn->EG1Sustain,
229                            pDimRgn->EG1Release * eg1release * velrelease,
230                            velocityAttenuation,
231                            pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
232            }
233    
234    #ifdef CONFIG_INTERPOLATE_VOLUME
235            // setup initial volume in synthesis parameters
236    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
237            if (pEngineChannel->GetMute()) {
238                finalSynthesisParameters.fFinalVolumeLeft  = 0;
239                finalSynthesisParameters.fFinalVolumeRight = 0;
240          }          }
241            else
242    #else
243            {
244                float finalVolume = pEngineChannel->GlobalVolume * pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
245    
246                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
247                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
248            }
249    #endif
250    #endif
251    
     #if ENABLE_FILTER  
252          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
253          {          {
254              // get current value of EG2 controller              // get current value of EG2 controller
# Line 244  namespace LinuxSampler { namespace gig { Line 258  namespace LinuxSampler { namespace gig {
258                      eg2controllervalue = 0;                      eg2controllervalue = 0;
259                      break;                      break;
260                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
261                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
262                      break;                      break;
263                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
264                      eg2controllervalue = pNoteOnEvent->Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
265                      break;                      break;
266                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller                  case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
267                      eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];                      eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];
268                      break;                      break;
269              }              }
270              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
271    
272              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
273              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
274              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
275              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
276    
277              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
278                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
279                            false,                          false,
280                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
281                            pDimRgn->EG2Decay1 + eg2decay,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
282                            pDimRgn->EG2Decay2 + eg2decay,                          pDimRgn->EG2InfiniteSustain,
283                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
284                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
285                            pDimRgn->EG2Release + eg2release,                          velocityAttenuation,
286                            Delay);                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
287          }          }
     #endif // ENABLE_FILTER  
288    
289    
290          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
291          {          {
292            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
293            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
294                float eg3depth = (bPortamento)
295                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
296                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
297                float eg3time = (bPortamento)
298                                    ? pEngineChannel->PortamentoTime
299                                    : pDimRgn->EG3Attack;
300                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
301                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
302          }          }
303    
304    
# Line 288  namespace LinuxSampler { namespace gig { Line 309  namespace LinuxSampler { namespace gig {
309                  case ::gig::lfo1_ctrl_internal:                  case ::gig::lfo1_ctrl_internal:
310                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
311                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
312                        bLFO1Enabled         = (lfo1_internal_depth > 0);
313                      break;                      break;
314                  case ::gig::lfo1_ctrl_modwheel:                  case ::gig::lfo1_ctrl_modwheel:
315                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
316                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
317                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
318                      break;                      break;
319                  case ::gig::lfo1_ctrl_breath:                  case ::gig::lfo1_ctrl_breath:
320                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
321                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
322                        bLFO1Enabled         = (pDimRgn->LFO1ControlDepth > 0);
323                      break;                      break;
324                  case ::gig::lfo1_ctrl_internal_modwheel:                  case ::gig::lfo1_ctrl_internal_modwheel:
325                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
326                      pLFO1->ExtController = 1; // MIDI controller 1                      pLFO1->ExtController = 1; // MIDI controller 1
327                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
328                      break;                      break;
329                  case ::gig::lfo1_ctrl_internal_breath:                  case ::gig::lfo1_ctrl_internal_breath:
330                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;
331                      pLFO1->ExtController = 2; // MIDI controller 2                      pLFO1->ExtController = 2; // MIDI controller 2
332                        bLFO1Enabled         = (lfo1_internal_depth > 0 || pDimRgn->LFO1ControlDepth > 0);
333                      break;                      break;
334                  default:                  default:
335                      lfo1_internal_depth  = 0;                      lfo1_internal_depth  = 0;
336                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
337                        bLFO1Enabled         = false;
338                }
339                if (bLFO1Enabled) {
340                    pLFO1->trigger(pDimRgn->LFO1Frequency,
341                                   start_level_min,
342                                   lfo1_internal_depth,
343                                   pDimRgn->LFO1ControlDepth,
344                                   pDimRgn->LFO1FlipPhase,
345                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
346                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
347              }              }
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           this->SampleRate,  
                           Delay);  
348          }          }
349    
350      #if ENABLE_FILTER  
351          // setup LFO 2 (VCF Cutoff LFO)          // setup LFO 2 (VCF Cutoff LFO)
352          {          {
353              uint16_t lfo2_internal_depth;              uint16_t lfo2_internal_depth;
# Line 326  namespace LinuxSampler { namespace gig { Line 355  namespace LinuxSampler { namespace gig {
355                  case ::gig::lfo2_ctrl_internal:                  case ::gig::lfo2_ctrl_internal:
356                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
357                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
358                        bLFO2Enabled         = (lfo2_internal_depth > 0);
359                      break;                      break;
360                  case ::gig::lfo2_ctrl_modwheel:                  case ::gig::lfo2_ctrl_modwheel:
361                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
362                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
363                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
364                      break;                      break;
365                  case ::gig::lfo2_ctrl_foot:                  case ::gig::lfo2_ctrl_foot:
366                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
367                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
368                        bLFO2Enabled         = (pDimRgn->LFO2ControlDepth > 0);
369                      break;                      break;
370                  case ::gig::lfo2_ctrl_internal_modwheel:                  case ::gig::lfo2_ctrl_internal_modwheel:
371                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
372                      pLFO2->ExtController = 1; // MIDI controller 1                      pLFO2->ExtController = 1; // MIDI controller 1
373                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
374                      break;                      break;
375                  case ::gig::lfo2_ctrl_internal_foot:                  case ::gig::lfo2_ctrl_internal_foot:
376                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;
377                      pLFO2->ExtController = 4; // MIDI controller 4                      pLFO2->ExtController = 4; // MIDI controller 4
378                        bLFO2Enabled         = (lfo2_internal_depth > 0 || pDimRgn->LFO2ControlDepth > 0);
379                      break;                      break;
380                  default:                  default:
381                      lfo2_internal_depth  = 0;                      lfo2_internal_depth  = 0;
382                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
383                        bLFO2Enabled         = false;
384                }
385                if (bLFO2Enabled) {
386                    pLFO2->trigger(pDimRgn->LFO2Frequency,
387                                   start_level_max,
388                                   lfo2_internal_depth,
389                                   pDimRgn->LFO2ControlDepth,
390                                   pDimRgn->LFO2FlipPhase,
391                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
392                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
393              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           this->SampleRate,  
                           Delay);  
394          }          }
395      #endif // ENABLE_FILTER  
396    
397          // setup LFO 3 (VCO LFO)          // setup LFO 3 (VCO LFO)
398          {          {
# Line 364  namespace LinuxSampler { namespace gig { Line 401  namespace LinuxSampler { namespace gig {
401                  case ::gig::lfo3_ctrl_internal:                  case ::gig::lfo3_ctrl_internal:
402                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
403                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
404                        bLFO3Enabled         = (lfo3_internal_depth > 0);
405                      break;                      break;
406                  case ::gig::lfo3_ctrl_modwheel:                  case ::gig::lfo3_ctrl_modwheel:
407                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
408                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
409                        bLFO3Enabled         = (pDimRgn->LFO3ControlDepth > 0);
410                      break;                      break;
411                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
412                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
413                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
414                        bLFO3Enabled         = true;
415                      break;                      break;
416                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
417                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
418                      pLFO3->ExtController = 1; // MIDI controller 1                      pLFO3->ExtController = 1; // MIDI controller 1
419                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
420                      break;                      break;
421                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
422                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
423                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
424                        bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
425                      break;                      break;
426                  default:                  default:
427                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
428                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
429                        bLFO3Enabled         = false;
430                }
431                if (bLFO3Enabled) {
432                    pLFO3->trigger(pDimRgn->LFO3Frequency,
433                                   start_level_mid,
434                                   lfo3_internal_depth,
435                                   pDimRgn->LFO3ControlDepth,
436                                   false,
437                                   pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
438                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
439              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           this->SampleRate,  
                           Delay);  
440          }          }
441    
442      #if ENABLE_FILTER  
443          #if FORCE_FILTER_USAGE          #if CONFIG_FORCE_FILTER
444          FilterLeft.Enabled = FilterRight.Enabled = true;          const bool bUseFilter = true;
445          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
446          FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;          const bool bUseFilter = pDimRgn->VCFEnabled;
447          #endif // FORCE_FILTER_USAGE          #endif // CONFIG_FORCE_FILTER
448          if (pDimRgn->VCFEnabled) {          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);
449              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL          if (bUseFilter) {
450              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;              #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL
451                VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;
452              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
453              switch (pDimRgn->VCFCutoffController) {              switch (pDimRgn->VCFCutoffController) {
454                  case ::gig::vcf_cutoff_ctrl_modwheel:                  case ::gig::vcf_cutoff_ctrl_modwheel:
# Line 432  namespace LinuxSampler { namespace gig { Line 478  namespace LinuxSampler { namespace gig {
478                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
479                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
480                      break;                      break;
481                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
482                        VCFCutoffCtrl.controller = 128;
483                        break;
484                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
485                  default:                  default:
486                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
487                      break;                      break;
488              }              }
489              #endif // OVERRIDE_FILTER_CUTOFF_CTRL              #endif // CONFIG_OVERRIDE_CUTOFF_CTRL
490    
491              #ifdef OVERRIDE_FILTER_RES_CTRL              #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL
492              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;              VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;
493              #else // use the one defined in the instrument file              #else // use the one defined in the instrument file
494              switch (pDimRgn->VCFResonanceController) {              switch (pDimRgn->VCFResonanceController) {
495                  case ::gig::vcf_res_ctrl_genpurpose3:                  case ::gig::vcf_res_ctrl_genpurpose3:
# Line 460  namespace LinuxSampler { namespace gig { Line 508  namespace LinuxSampler { namespace gig {
508                  default:                  default:
509                      VCFResonanceCtrl.controller = 0;                      VCFResonanceCtrl.controller = 0;
510              }              }
511              #endif // OVERRIDE_FILTER_RES_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
512    
513              #ifndef OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
514              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
515              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
516              #else // override filter type              #else // override filter type
517              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
518              FilterRight.SetType(OVERRIDE_FILTER_TYPE);              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
519              #endif // OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
520    
521              VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
522              VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
523    
524              // calculate cutoff frequency              // calculate cutoff frequency
525              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
526              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
527                  resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
528              }              }
529              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
530    
531              VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;              int cvalue;
532              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
533                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
534                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
535                    // VCFVelocityScale in this case means Minimum cutoff
536                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
537                }
538                else {
539                    cvalue = pDimRgn->VCFCutoff;
540                }
541                cutoff *= float(cvalue);
542                if (cutoff > 127.0f) cutoff = 127.0f;
543    
544              FilterLeft.SetParameters(cutoff,  resonance, SampleRate);              // calculate resonance
545              FilterRight.SetParameters(cutoff, resonance, SampleRate);              float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
546    
547              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
548                VCFResonanceCtrl.fvalue = resonance;
549          }          }
550          else {          else {
551              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
552              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
553          }          }
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
554    
555          return 0; // success          return 0; // success
556      }      }
# Line 519  namespace LinuxSampler { namespace gig { Line 568  namespace LinuxSampler { namespace gig {
568       */       */
569      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
570    
571          // Reset the synthesis parameter matrix          // select default values for synthesis mode bits
572          pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
573    
574          switch (this->PlaybackState) {          switch (this->PlaybackState) {
575    
576                case playback_state_init:
577                    this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed
578                    // no break - continue with playback_state_ram
579    
580              case playback_state_ram: {              case playback_state_ram: {
581                      if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);                      if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping
582                      else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
583                        // render current fragment
584                        Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);
585    
586                      if (DiskVoice) {                      if (DiskVoice) {
587                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
588                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
589                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
590                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
591                          }                          }
592                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
593                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
594                      }                      }
595                  }                  }
# Line 574  namespace LinuxSampler { namespace gig { Line 601  namespace LinuxSampler { namespace gig {
601                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);                          DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);
602                          if (!DiskStreamRef.pStream) {                          if (!DiskStreamRef.pStream) {
603                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;                              std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;
604                              Kill();                              KillImmediately();
605                              return;                              return;
606                          }                          }
607                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
608                          Pos -= RTMath::DoubleToInt(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
609                            RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
610                      }                      }
611    
612                        const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();
613    
614                      // add silence sample at the end if we reached the end of the stream (for the interpolator)                      // add silence sample at the end if we reached the end of the stream (for the interpolator)
615                      if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {                      if (DiskStreamRef.State == Stream::state_end) {
616                          DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);                          const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm
617                          this->PlaybackState = playback_state_end;                          if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {
618                                // remember how many sample words there are before any silence has been added
619                                if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;
620                                DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);
621                            }
622                      }                      }
623    
624                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
625                      Interpolate(Samples, ptr, Delay);  
626                      DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);                      // render current audio fragment
627                      Pos -= RTMath::DoubleToInt(Pos);                      Synthesize(Samples, ptr, Delay);
628    
629                        const int iPos = (int) finalSynthesisParameters.dPos;
630                        const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
631                        DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
632                        finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
633    
634                        // change state of voice to 'end' if we really reached the end of the sample data
635                        if (RealSampleWordsLeftToRead >= 0) {
636                            RealSampleWordsLeftToRead -= readSampleWords;
637                            if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;
638                        }
639                  }                  }
640                  break;                  break;
641    
642              case playback_state_end:              case playback_state_end:
643                  Kill(); // free voice                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;
644                  break;                  break;
645          }          }
646    
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
647          // Reset delay          // Reset delay
648          Delay = 0;          Delay = 0;
649    
650          pTriggerEvent = NULL;          itTriggerEvent = Pool<Event>::Iterator();
651    
652          // If release stage finished, let the voice be killed          // If sample stream or release stage finished, kill the voice
653          if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
654      }      }
655    
656      /**      /**
# Line 620  namespace LinuxSampler { namespace gig { Line 658  namespace LinuxSampler { namespace gig {
658       *  suspended / not running.       *  suspended / not running.
659       */       */
660      void Voice::Reset() {      void Voice::Reset() {
661          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
662          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
663          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
664          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
665          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
666          DiskStreamRef.OrderID = 0;          DiskStreamRef.OrderID = 0;
667          Active = false;          PlaybackState = playback_state_end;
668            itTriggerEvent = Pool<Event>::Iterator();
669            itKillEvent    = Pool<Event>::Iterator();
670      }      }
671    
672      /**      /**
673       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
674       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
675       *       *
676       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
677         * @param End     - youngest time stamp where processing should be stopped
678       */       */
679      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
680            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
681                if (itEvent->Type == Event::type_release) {
682                    EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
683                    EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
684                } else if (itEvent->Type == Event::type_cancel_release) {
685                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
686                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
687                }
688            }
689        }
690    
691          // dispatch control change events      /**
692          Event* pCCEvent = pEngine->pCCEvents->first();       * Process given list of MIDI control change and pitch bend events for
693          if (Delay) { // skip events that happened before this voice was triggered       * the given time.
694              while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();       *
695          }       * @param itEvent - iterator pointing to the next event to be processed
696          while (pCCEvent) {       * @param End     - youngest time stamp where processing should be stopped
697              if (pCCEvent->Controller) { // if valid MIDI controller       */
698                  #if ENABLE_FILTER      void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
699                  if (pCCEvent->Controller == VCFCutoffCtrl.controller) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
700                      pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);              if (itEvent->Type == Event::type_control_change &&
701                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
702                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
703                        processCutoffEvent(itEvent);
704                  }                  }
705                  if (pCCEvent->Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
706                      pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);                      processResonanceEvent(itEvent);
707                  }                  }
708                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
709                  if (pCCEvent->Controller == pLFO1->ExtController) {                      pLFO1->update(itEvent->Param.CC.Value);
                     pLFO1->SendEvent(pCCEvent);  
710                  }                  }
711                  #if ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
712                  if (pCCEvent->Controller == pLFO2->ExtController) {                      pLFO2->update(itEvent->Param.CC.Value);
                     pLFO2->SendEvent(pCCEvent);  
713                  }                  }
714                  #endif // ENABLE_FILTER                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
715                  if (pCCEvent->Controller == pLFO3->ExtController) {                      pLFO3->update(itEvent->Param.CC.Value);
                     pLFO3->SendEvent(pCCEvent);  
716                  }                  }
717              }                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
718                        itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
719              pCCEvent = pEngine->pCCEvents->next();                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
         }  
   
   
         // process pitch events  
         {  
             RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             Event* pVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
720                  }                  }
721              }                  if (itEvent->Param.CC.Controller == 7) { // volume
722              float pitch;                      VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
723              while (pVCOEvent) {                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
724                  Event* pNextVCOEvent = pVCOEventList->next();                      PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
725                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
726                  }                  }
727                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
728                  pVCOEvent = pNextVCOEvent;                  processPitchEvent(itEvent);
729              }              }
             if (pVCOEventList->last()) this->PitchBend = pitch;  
730          }          }
731        }
732    
733        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
734            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
735            finalSynthesisParameters.fFinalPitch *= pitch;
736            PitchBend = pitch;
737        }
738    
739      #if ENABLE_FILTER      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
740          // process filter cutoff events          int ccvalue = itEvent->Param.CC.Value;
741          {          if (VCFCutoffCtrl.value == ccvalue) return;
742              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];          VCFCutoffCtrl.value == ccvalue;
743              Event* pCutoffEvent = pCutoffEventList->first();          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
744              if (Delay) { // skip events that happened before this voice was triggered          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
745                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();          float cutoff = CutoffBase * float(ccvalue);
746              }          if (cutoff > 127.0f) cutoff = 127.0f;
             float cutoff;  
             while (pCutoffEvent) {  
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 pCutoffEvent = pNextCutoffEvent;  
             }  
             if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
747    
748                  pResonanceEvent = pNextResonanceEvent;          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
749              }          fFinalCutoff = cutoff;
             if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
750      }      }
751    
752      #if ENABLE_FILTER      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
753      /**          // convert absolute controller value to differential
754       * Calculate all necessary, final biquad filter parameters.          const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
755       *          VCFResonanceCtrl.value = itEvent->Param.CC.Value;
756       * @param Samples - number of samples to be rendered in this audio fragment cycle          const float resonancedelta = (float) ctrldelta;
757       */          fFinalResonance += resonancedelta;
758      void Voice::CalculateBiquadParameters(uint Samples) {          // needed for initialization of parameter
759          if (!FilterLeft.Enabled) return;          VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
   
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                                                pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {  
                 prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                 prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                 FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, SampleRate);  
             }  
             pEngine->pBasicFilterParameters[i] = bqbase;  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
         }  
760      }      }
     #endif // ENABLE_FILTER  
761    
762      /**      /**
763       *  Interpolates the input audio data (no loop).       *  Synthesizes the current audio fragment for this voice.
764       *       *
765       *  @param Samples - number of sample points to be rendered in this audio       *  @param Samples - number of sample points to be rendered in this audio
766       *                   fragment cycle       *                   fragment cycle
767       *  @param pSrc    - pointer to input sample data       *  @param pSrc    - pointer to input sample data
768       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
769       */       */
770      void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
771          int i = Skip;          finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
772            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
773            finalSynthesisParameters.pSrc      = pSrc;
774    
775          // FIXME: assuming either mono or stereo          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
776          if (this->pSample->Channels == 2) { // Stereo Sample          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
777              while (i < Samples) {  
778                  InterpolateOneStep_Stereo(pSrc, i,          if (Skip) { // skip events that happened before this voice was triggered
779                                            pEngine->pSynthesisParameters[Event::destination_vca][i],              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
780                                            pEngine->pSynthesisParameters[Event::destination_vco][i],              while (itNoteEvent && itNoteEvent->FragmentPos() <= Skip) ++itNoteEvent;
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
781          }          }
     }  
782    
783      /**          uint killPos;
784       *  Interpolates the input audio data, this method honors looping.          if (itKillEvent) killPos = RTMath::Min(itKillEvent->FragmentPos(), pEngine->MaxFadeOutPos);
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
785    
786          // FIXME: assuming either mono or stereo          uint i = Skip;
787          if (pSample->Channels == 2) { // Stereo Sample          while (i < Samples) {
788              if (pSample->LoopPlayCount) {              int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
789                  // render loop (loop count limited)  
790                  while (i < Samples && LoopCyclesLeft) {              // initialize all final synthesis parameters
791                      InterpolateOneStep_Stereo(pSrc, i,              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
792                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              fFinalCutoff    = VCFCutoffCtrl.fvalue;
793                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              fFinalResonance = VCFResonanceCtrl.fvalue;
794                                                pEngine->pBasicFilterParameters[i],  
795                                                pEngine->pMainFilterParameters[i]);              // process MIDI control change and pitchbend events for this subfragment
796                      if (Pos > pSample->LoopEnd) {              processCCEvents(itCCEvent, iSubFragmentEnd);
797                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
798                          LoopCyclesLeft--;              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
799                      }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
800                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
801                  // render on without loop  #endif
802                  while (i < Samples) {  
803                      InterpolateOneStep_Stereo(pSrc, i,              // process transition events (note on, note off & sustain pedal)
804                                                pEngine->pSynthesisParameters[Event::destination_vca][i],              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
805                                                pEngine->pSynthesisParameters[Event::destination_vco][i],  
806                                                pEngine->pBasicFilterParameters[i],              // if the voice was killed in this subfragment, or if the
807                                                pEngine->pMainFilterParameters[i]);              // filter EG is finished, switch EG1 to fade out stage
808                  }              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
809                    (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
810                     EG2.getSegmentType() == EGADSR::segment_end)) {
811                    EG1.enterFadeOutStage();
812                    itKillEvent = Pool<Event>::Iterator();
813              }              }
814              else { // render loop (endless loop)  
815                  while (i < Samples) {              // process envelope generators
816                      InterpolateOneStep_Stereo(pSrc, i,              switch (EG1.getSegmentType()) {
817                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  case EGADSR::segment_lin:
818                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                      fFinalVolume *= EG1.processLin();
819                                                pEngine->pBasicFilterParameters[i],                      break;
820                                                pEngine->pMainFilterParameters[i]);                  case EGADSR::segment_exp:
821                      if (Pos > pSample->LoopEnd) {                      fFinalVolume *= EG1.processExp();
822                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                      break;
823                      }                  case EGADSR::segment_end:
824                  }                      fFinalVolume *= EG1.getLevel();
825                        break; // noop
826              }              }
827          }              switch (EG2.getSegmentType()) {
828          else { // Mono Sample                  case EGADSR::segment_lin:
829              if (pSample->LoopPlayCount) {                      fFinalCutoff *= EG2.processLin();
830                  // render loop (loop count limited)                      break;
831                  while (i < Samples && LoopCyclesLeft) {                  case EGADSR::segment_exp:
832                      InterpolateOneStep_Mono(pSrc, i,                      fFinalCutoff *= EG2.processExp();
833                                              pEngine->pSynthesisParameters[Event::destination_vca][i],                      break;
834                                              pEngine->pSynthesisParameters[Event::destination_vco][i],                  case EGADSR::segment_end:
835                                              pEngine->pBasicFilterParameters[i],                      fFinalCutoff *= EG2.getLevel();
836                                              pEngine->pMainFilterParameters[i]);                      break; // noop
                     if (Pos > pSample->LoopEnd) {  
                         Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;  
                         LoopCyclesLeft--;  
                     }  
                 }  
                 // render on without loop  
                 while (i < Samples) {  
                     InterpolateOneStep_Mono(pSrc, i,  
                                             pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                             pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                             pEngine->pBasicFilterParameters[i],  
                                             pEngine->pMainFilterParameters[i]);  
                 }  
837              }              }
838              else { // render loop (endless loop)              if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
839                  while (i < Samples) {  
840                      InterpolateOneStep_Mono(pSrc, i,              // process low frequency oscillators
841                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
842                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
843                                              pEngine->pBasicFilterParameters[i],              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
844                                              pEngine->pMainFilterParameters[i]);  
845                      if (Pos > pSample->LoopEnd) {              // if filter enabled then update filter coefficients
846                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
847                      }                  finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
848                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
849                }
850    
851                // do we need resampling?
852                const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
853                const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
854                const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
855                                                   finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
856                SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
857    
858                // prepare final synthesis parameters structure
859                finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
860    #ifdef CONFIG_INTERPOLATE_VOLUME
861                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
862                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
863                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
864                finalSynthesisParameters.fFinalVolumeDeltaRight =
865                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
866                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
867    #else
868                finalSynthesisParameters.fFinalVolumeLeft  =
869                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
870                finalSynthesisParameters.fFinalVolumeRight =
871                    fFinalVolume * VolumeRight * PanRightSmoother.render();
872    #endif
873                // render audio for one subfragment
874                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
875    
876                // stop the rendering if volume EG is finished
877                if (EG1.getSegmentType() == EGADSR::segment_end) break;
878    
879                const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
880    
881                // increment envelopes' positions
882                if (EG1.active()) {
883    
884                    // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
885                    if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
886                        EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
887                  }                  }
888    
889                    EG1.increment(1);
890                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
891                }
892                if (EG2.active()) {
893                    EG2.increment(1);
894                    if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
895              }              }
896                EG3.increment(1);
897                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
898    
899                Pos = newPos;
900                i = iSubFragmentEnd;
901          }          }
902      }      }
903    
904        /** @brief Update current portamento position.
905         *
906         * Will be called when portamento mode is enabled to get the final
907         * portamento position of this active voice from where the next voice(s)
908         * might continue to slide on.
909         *
910         * @param itNoteOffEvent - event which causes this voice to die soon
911         */
912        void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
913            const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
914            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
915        }
916    
917      /**      /**
918       *  Immediately kill the voice.       *  Immediately kill the voice. This method should not be used to kill
919         *  a normal, active voice, because it doesn't take care of things like
920         *  fading down the volume level to avoid clicks and regular processing
921         *  until the kill event actually occured!
922         *
923         *  @see Kill()
924       */       */
925      void Voice::Kill() {      void Voice::KillImmediately() {
926          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
927              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);
928          }          }
929          Reset();          Reset();
930      }      }
931    
932        /**
933         *  Kill the voice in regular sense. Let the voice render audio until
934         *  the kill event actually occured and then fade down the volume level
935         *  very quickly and let the voice die finally. Unlike a normal release
936         *  of a voice, a kill process cannot be cancalled and is therefore
937         *  usually used for voice stealing and key group conflicts.
938         *
939         *  @param itKillEvent - event which caused the voice to be killed
940         */
941        void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {
942            #if CONFIG_DEVMODE
943            if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));
944            if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));
945            #endif // CONFIG_DEVMODE
946    
947            if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;
948            this->itKillEvent = itKillEvent;
949        }
950    
951  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.80  
changed lines
  Added in v.1001

  ViewVC Help
Powered by ViewVC