/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 687 by schoenebeck, Tue Jul 12 22:37:21 2005 UTC revision 1857 by schoenebeck, Sat Mar 7 19:23:10 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (asm core is not supported ATM)
42          #if CONFIG_ASM && ARCH_X86          #if 0 // CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 130  namespace LinuxSampler { namespace gig { Line 79  namespace LinuxSampler { namespace gig {
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          this->pDimRgn        = pDimRgn;          this->pDimRgn        = pDimRgn;
82            Orphan = false;
83    
84          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
85          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
# Line 149  namespace LinuxSampler { namespace gig { Line 99  namespace LinuxSampler { namespace gig {
99          // calculate volume          // calculate volume
100          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101    
102          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // For 16 bit samples, we downscale by 32768 to convert from
103            // int16 value range to DSP value range (which is
104            // -1.0..1.0). For 24 bit, we downscale from int32.
105            float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106    
107          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108    
109          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
110          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 112  namespace LinuxSampler { namespace gig {
112                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
115              Volume *= attenuation;              volume *= attenuation;
116          }          }
117    
118          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
119          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
160    
161              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
162              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
163    
164              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
165                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
166                  KillImmediately();                  KillImmediately();
167                  return -1;                  return -1;
# Line 209  namespace LinuxSampler { namespace gig { Line 170  namespace LinuxSampler { namespace gig {
170          }          }
171          else { // RAM only voice          else { // RAM only voice
172              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
173              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
174              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
175          }          }
176            if (RAMLoop) {
177                loop.uiTotalCycles = pSample->LoopPlayCount;
178                loop.uiCyclesLeft  = pSample->LoopPlayCount;
179                loop.uiStart       = loopinfo.LoopStart;
180                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
181                loop.uiSize        = loopinfo.LoopLength;
182            }
183    
184          // calculate initial pitch value          // calculate initial pitch value
185          {          {
186              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];
187              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
188              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              // GSt behaviour: maximum transpose up is 40 semitones. If
189                // MIDI key is more than 40 semitones above unity note,
190                // the transpose is not done.
191                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
192    
193                this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
194              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents
195          }          }
196    
# Line 238  namespace LinuxSampler { namespace gig { Line 206  namespace LinuxSampler { namespace gig {
206                      eg1controllervalue = 0;                      eg1controllervalue = 0;
207                      break;                      break;
208                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
209                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
210                      break;                      break;
211                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
212                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 249  namespace LinuxSampler { namespace gig { Line 217  namespace LinuxSampler { namespace gig {
217              }              }
218              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
219    
220              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
221              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
222              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
223              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
224                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
225              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
226                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
227                            pDimRgn->EG1Hold,  
228                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
229                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
230                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
231                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
232                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
233                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
234                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
235                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
236                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
237                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
238                            velocityAttenuation);          }
239          }  
240    #ifdef CONFIG_INTERPOLATE_VOLUME
241            // setup initial volume in synthesis parameters
242    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
243            if (pEngineChannel->GetMute()) {
244                finalSynthesisParameters.fFinalVolumeLeft  = 0;
245                finalSynthesisParameters.fFinalVolumeRight = 0;
246            }
247            else
248    #else
249            {
250                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
251    
252                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
253                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
254            }
255    #endif
256    #endif
257    
258          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
259          {          {
# Line 280  namespace LinuxSampler { namespace gig { Line 264  namespace LinuxSampler { namespace gig {
264                      eg2controllervalue = 0;                      eg2controllervalue = 0;
265                      break;                      break;
266                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
267                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
268                      break;                      break;
269                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
270                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 291  namespace LinuxSampler { namespace gig { Line 275  namespace LinuxSampler { namespace gig {
275              }              }
276              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
277    
278              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
279              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
280              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
281              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
282    
283              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
284                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
285                            false,                          false,
286                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
287                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
288                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
289                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
290                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
291                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
292                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
293          }          }
294    
295    
296          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
297          {          {
298            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
299            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
300                float eg3depth = (bPortamento)
301                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
302                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
303                float eg3time = (bPortamento)
304                                    ? pEngineChannel->PortamentoTime
305                                    : pDimRgn->EG3Attack;
306                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
307                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
308          }          }
309    
310    
# Line 351  namespace LinuxSampler { namespace gig { Line 342  namespace LinuxSampler { namespace gig {
342                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
343                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
344              }              }
345              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) {
346                                               lfo1_internal_depth,                  pLFO1->trigger(pDimRgn->LFO1Frequency,
347                                               pDimRgn->LFO1ControlDepth,                                 start_level_min,
348                                               pEngineChannel->ControllerTable[pLFO1->ExtController],                                 lfo1_internal_depth,
349                                               pDimRgn->LFO1FlipPhase,                                 pDimRgn->LFO1ControlDepth,
350                                               pEngine->SampleRate,                                 pDimRgn->LFO1FlipPhase,
351                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
352                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
353                }
354          }          }
355    
356    
# Line 395  namespace LinuxSampler { namespace gig { Line 388  namespace LinuxSampler { namespace gig {
388                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
389                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
390              }              }
391              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) {
392                                               lfo2_internal_depth,                  pLFO2->trigger(pDimRgn->LFO2Frequency,
393                                               pDimRgn->LFO2ControlDepth,                                 start_level_max,
394                                               pEngineChannel->ControllerTable[pLFO2->ExtController],                                 lfo2_internal_depth,
395                                               pDimRgn->LFO2FlipPhase,                                 pDimRgn->LFO2ControlDepth,
396                                               pEngine->SampleRate,                                 pDimRgn->LFO2FlipPhase,
397                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
398                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
399                }
400          }          }
401    
402    
# Line 421  namespace LinuxSampler { namespace gig { Line 416  namespace LinuxSampler { namespace gig {
416                      break;                      break;
417                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
418                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
419                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
420                      bLFO3Enabled         = false; // see TODO comment in line above                      bLFO3Enabled         = true;
421                      break;                      break;
422                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
423                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
# Line 431  namespace LinuxSampler { namespace gig { Line 426  namespace LinuxSampler { namespace gig {
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
428                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
429                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
430                      bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above                      bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
431                      break;                      break;
432                  default:                  default:
433                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
434                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
435                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
436              }              }
437              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) {
438                                               lfo3_internal_depth,                  pLFO3->trigger(pDimRgn->LFO3Frequency,
439                                               pDimRgn->LFO3ControlDepth,                                 start_level_mid,
440                                               pEngineChannel->ControllerTable[pLFO3->ExtController],                                 lfo3_internal_depth,
441                                               false,                                 pDimRgn->LFO3ControlDepth,
442                                               pEngine->SampleRate,                                 false,
443                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
444                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
445                }
446          }          }
447    
448    
# Line 487  namespace LinuxSampler { namespace gig { Line 484  namespace LinuxSampler { namespace gig {
484                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
485                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
486                      break;                      break;
487                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
488                        VCFCutoffCtrl.controller = 128;
489                        break;
490                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
491                  default:                  default:
492                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 518  namespace LinuxSampler { namespace gig { Line 517  namespace LinuxSampler { namespace gig {
517              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
518    
519              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
520              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
521              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
522              #else // override filter type              #else // override filter type
523              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
524              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
525              #endif // CONFIG_OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
526    
527              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
528              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
529    
530              // calculate cutoff frequency              // calculate cutoff frequency
531              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
532              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
533                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
534              }              }
535              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
536    
537              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
538              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
539                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
540                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
541                    // VCFVelocityScale in this case means Minimum cutoff
542                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
543                }
544                else {
545                    cvalue = pDimRgn->VCFCutoff;
546                }
547                cutoff *= float(cvalue);
548                if (cutoff > 127.0f) cutoff = 127.0f;
549    
550                // calculate resonance
551                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
552    
553              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
554                VCFResonanceCtrl.fvalue = resonance;
555          }          }
556          else {          else {
557              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 567  namespace LinuxSampler { namespace gig { Line 575  namespace LinuxSampler { namespace gig {
575      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
576    
577          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
578          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
579    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
580          switch (this->PlaybackState) {          switch (this->PlaybackState) {
581    
582              case playback_state_init:              case playback_state_init:
# Line 614  namespace LinuxSampler { namespace gig { Line 591  namespace LinuxSampler { namespace gig {
591    
592                      if (DiskVoice) {                      if (DiskVoice) {
593                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
594                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
595                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
596                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
597                          }                          }
598                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
599                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
600                      }                      }
601                  }                  }
# Line 634  namespace LinuxSampler { namespace gig { Line 610  namespace LinuxSampler { namespace gig {
610                              KillImmediately();                              KillImmediately();
611                              return;                              return;
612                          }                          }
613                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
614                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
615                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
616                      }                      }
617    
# Line 651  namespace LinuxSampler { namespace gig { Line 627  namespace LinuxSampler { namespace gig {
627                          }                          }
628                      }                      }
629    
630                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
631    
632                      // render current audio fragment                      // render current audio fragment
633                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
634    
635                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
636                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
637                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
638                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
639    
640                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
641                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 674  namespace LinuxSampler { namespace gig { Line 650  namespace LinuxSampler { namespace gig {
650                  break;                  break;
651          }          }
652    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
653          // Reset delay          // Reset delay
654          Delay = 0;          Delay = 0;
655    
656          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
657    
658          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
659          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
660      }      }
661    
662      /**      /**
# Line 693  namespace LinuxSampler { namespace gig { Line 664  namespace LinuxSampler { namespace gig {
664       *  suspended / not running.       *  suspended / not running.
665       */       */
666      void Voice::Reset() {      void Voice::Reset() {
667          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
668          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
669          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
670          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
671          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 708  namespace LinuxSampler { namespace gig { Line 676  namespace LinuxSampler { namespace gig {
676      }      }
677    
678      /**      /**
679       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
680       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
681       *       *
682       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
683         * @param End     - youngest time stamp where processing should be stopped
684       */       */
685      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
686            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
687          // dispatch control change events              if (itEvent->Type == Event::type_release) {
688          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
689          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
690              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
691                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
692                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
693                }
694          }          }
695          while (itCCEvent) {      }
696              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
697                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      /**
698                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * Process given list of MIDI control change and pitch bend events for
699                  }       * the given time.
700                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       *
701                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param itEvent - iterator pointing to the next event to be processed
702         * @param End     - youngest time stamp where processing should be stopped
703         */
704        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
705            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
706                if (itEvent->Type == Event::type_control_change &&
707                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
708                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
709                        processCutoffEvent(itEvent);
710                    }
711                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
712                        processResonanceEvent(itEvent);
713                  }                  }
714                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
715                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
716                  }                  }
717                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
718                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
719                  }                  }
720                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
721                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
722                  }                  }
723                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
724                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
725                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
726                  }                  }
727                    if (itEvent->Param.CC.Controller == 7) { // volume
728                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
729                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
730                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
731                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
732                    }
733                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
734                    processPitchEvent(itEvent);
735              }              }
   
             ++itCCEvent;  
736          }          }
737        }
738    
739        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
740            const float pitch = RTMath::CentsToFreqRatio(((double) itEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents
741            finalSynthesisParameters.fFinalPitch *= pitch;
742            PitchBend = pitch;
743        }
744    
745          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
746          {          int ccvalue = itEvent->Param.CC.Value;
747              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
748              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
749              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
750                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
751              }          float cutoff = CutoffBase * float(ccvalue);
752              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
753    
754                  // calculate the influence length of this event (in sample points)          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
755                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;          fFinalCutoff = cutoff;
756        }
757    
758                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
759            // convert absolute controller value to differential
760            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
761            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
762            const float resonancedelta = (float) ctrldelta;
763            fFinalResonance += resonancedelta;
764            // needed for initialization of parameter
765            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
766        }
767    
768                  // apply pitch value to the pitch parameter sequence      /**
769                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {       *  Synthesizes the current audio fragment for this voice.
770                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;       *
771                  }       *  @param Samples - number of sample points to be rendered in this audio
772         *                   fragment cycle
773         *  @param pSrc    - pointer to input sample data
774         *  @param Skip    - number of sample points to skip in output buffer
775         */
776        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
777            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
778            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
779            finalSynthesisParameters.pSrc      = pSrc;
780    
781                  itVCOEvent = itNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
782              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
783              if (!pVCOEventList->isEmpty()) {  
784                  this->PitchBend = pitch;          if (itTriggerEvent) { // skip events that happened before this voice was triggered
785                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
786                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);              // we can't simply compare the timestamp here, because note events
787                // might happen on the same time stamp, so we have to deal on the
788                // actual sequence the note events arrived instead (see bug #112)
789                for (; itNoteEvent; ++itNoteEvent) {
790                    if (itTriggerEvent == itNoteEvent) {
791                        ++itNoteEvent;
792                        break;
793                    }
794              }              }
795          }          }
796    
797          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
798          {          if (itKillEvent) {
799              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
800              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (maxFadeOutPos < 0) {
801              if (Delay) { // skip events that happened before this voice was triggered                  // There's not enough space in buffer to do a fade out
802                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;                  // from max volume (this can only happen for audio
803                    // drivers that use Samples < MaxSamplesPerCycle).
804                    // End the EG1 here, at pos 0, with a shorter max fade
805                    // out time.
806                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
807                    itKillEvent = Pool<Event>::Iterator();
808                } else {
809                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
810              }              }
811              float crossfadevolume;          }
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
812    
813                  // calculate the influence length of this event (in sample points)          uint i = Skip;
814                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
815                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
816    
817                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);              // initialize all final synthesis parameters
818                finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
819                fFinalCutoff    = VCFCutoffCtrl.fvalue;
820                fFinalResonance = VCFResonanceCtrl.fvalue;
821    
822                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
823                processCCEvents(itCCEvent, iSubFragmentEnd);
824    
825                  // apply volume value to the volume parameter sequence              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
826                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
827                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;              if (pEngineChannel->GetMute()) fFinalVolume = 0;
828                  }  #endif
829    
830                  itVCAEvent = itNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
831              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
832    
833          // process filter cutoff events              // if the voice was killed in this subfragment, or if the
834          {              // filter EG is finished, switch EG1 to fade out stage
835              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
836              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();                  (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
837              if (Delay) { // skip events that happened before this voice was triggered                   EG2.getSegmentType() == EGADSR::segment_end)) {
838                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                  EG1.enterFadeOutStage();
839                    itKillEvent = Pool<Event>::Iterator();
840              }              }
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
841    
842                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;              // process envelope generators
843                switch (EG1.getSegmentType()) {
844                    case EGADSR::segment_lin:
845                        fFinalVolume *= EG1.processLin();
846                        break;
847                    case EGADSR::segment_exp:
848                        fFinalVolume *= EG1.processExp();
849                        break;
850                    case EGADSR::segment_end:
851                        fFinalVolume *= EG1.getLevel();
852                        break; // noop
853                }
854                switch (EG2.getSegmentType()) {
855                    case EGADSR::segment_lin:
856                        fFinalCutoff *= EG2.processLin();
857                        break;
858                    case EGADSR::segment_exp:
859                        fFinalCutoff *= EG2.processExp();
860                        break;
861                    case EGADSR::segment_end:
862                        fFinalCutoff *= EG2.getLevel();
863                        break; // noop
864                }
865                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
866    
867                  // apply cutoff frequency to the cutoff parameter sequence              // process low frequency oscillators
868                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {              if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
869                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;              if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
870                  }              if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
871    
872                  itCutoffEvent = itNextCutoffEvent;              // if filter enabled then update filter coefficients
873                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
874                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
875                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
876              }              }
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
877    
878          // process filter resonance events              // do we need resampling?
879          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
880              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
881              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
882              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
883                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
884              }  
885              while (itResonanceEvent) {              // prepare final synthesis parameters structure
886                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
887                  ++itNextResonanceEvent;  #ifdef CONFIG_INTERPOLATE_VOLUME
888                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
889                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
890                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
891                finalSynthesisParameters.fFinalVolumeDeltaRight =
892                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
893                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
894    #else
895                finalSynthesisParameters.fFinalVolumeLeft  =
896                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
897                finalSynthesisParameters.fFinalVolumeRight =
898                    fFinalVolume * VolumeRight * PanRightSmoother.render();
899    #endif
900                // render audio for one subfragment
901                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
902    
903                  // calculate the influence length of this event (in sample points)              // stop the rendering if volume EG is finished
904                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              if (EG1.getSegmentType() == EGADSR::segment_end) break;
905    
906                  // convert absolute controller value to differential              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
907    
908                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // increment envelopes' positions
909                if (EG1.active()) {
910    
911                  // apply cutoff frequency to the cutoff parameter sequence                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
912                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
913                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
914                  }                  }
915    
916                  itResonanceEvent = itNextResonanceEvent;                  EG1.increment(1);
917                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
918              }              }
919              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
920          }                  EG2.increment(1);
921      }                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
   
     /**  
      * Calculate all necessary, final biquad filter parameters.  
      *  
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
922              }              }
923                EG3.increment(1);
924                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
925    
926              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
927              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
928          }          }
929      }      }
930    
931      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
932       *       *
933       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
934       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
935       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
936       *  @param Skip    - number of sample points to skip in output buffer       *
937         * @param itNoteOffEvent - event which causes this voice to die soon
938       */       */
939      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
940          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
941            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
942      }      }
943    
944      /**      /**
# Line 938  namespace LinuxSampler { namespace gig { Line 947  namespace LinuxSampler { namespace gig {
947       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
948       *  until the kill event actually occured!       *  until the kill event actually occured!
949       *       *
950       *  @see Kill()       * If it's necessary to know when the voice's disk stream was actually
951         * deleted, then one can set the optional @a bRequestNotification
952         * parameter and this method will then return the handle of the disk
953         * stream (unique identifier) and one can use this handle to poll the
954         * disk thread if this stream has been deleted. In any case this method
955         * will return immediately and will not block until the stream actually
956         * was deleted.
957         *
958         * @param bRequestNotification - (optional) whether the disk thread shall
959         *                                provide a notification once it deleted
960         *                               the respective disk stream
961         *                               (default=false)
962         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
963         *          if the voice did not use a disk stream at all
964         * @see Kill()
965       */       */
966      void Voice::KillImmediately() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
967            Stream::Handle hStream = Stream::INVALID_HANDLE;
968          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
969              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
970                hStream = DiskStreamRef.hStream;
971          }          }
972          Reset();          Reset();
973            return hStream;
974      }      }
975    
976      /**      /**

Legend:
Removed from v.687  
changed lines
  Added in v.1857

  ViewVC Help
Powered by ViewVC