/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 696 by persson, Sat Jul 16 19:37:52 2005 UTC revision 1895 by persson, Sun May 3 12:15:40 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (asm core is not supported ATM)
42          #if CONFIG_ASM && ARCH_X86          #if 0 // CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 130  namespace LinuxSampler { namespace gig { Line 79  namespace LinuxSampler { namespace gig {
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          this->pDimRgn        = pDimRgn;          this->pDimRgn        = pDimRgn;
82            Orphan = false;
83    
84          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
85          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
# Line 149  namespace LinuxSampler { namespace gig { Line 99  namespace LinuxSampler { namespace gig {
99          // calculate volume          // calculate volume
100          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101    
102          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // For 16 bit samples, we downscale by 32768 to convert from
103            // int16 value range to DSP value range (which is
104            // -1.0..1.0). For 24 bit, we downscale from int32.
105            float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106    
107          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108    
109          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
110          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 112  namespace LinuxSampler { namespace gig {
112                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
115              Volume *= attenuation;              volume *= attenuation;
116          }          }
117    
118          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
119          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
160                    MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
161                } else {
162                    // The cache is too small to fit a max sample buffer.
163                    // Setting MaxRAMPos to 0 will probably cause a click
164                    // in the audio, but it's better than not handling
165                    // this case at all, which would have caused the
166                    // unsigned MaxRAMPos to be set to a negative number.
167                    MaxRAMPos = 0;
168                }
169    
170              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
171              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172    
173              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
174                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
175                  KillImmediately();                  KillImmediately();
176                  return -1;                  return -1;
# Line 209  namespace LinuxSampler { namespace gig { Line 179  namespace LinuxSampler { namespace gig {
179          }          }
180          else { // RAM only voice          else { // RAM only voice
181              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
182              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
183              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
184          }          }
185            if (RAMLoop) {
186                loop.uiTotalCycles = pSample->LoopPlayCount;
187                loop.uiCyclesLeft  = pSample->LoopPlayCount;
188                loop.uiStart       = loopinfo.LoopStart;
189                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
190                loop.uiSize        = loopinfo.LoopLength;
191            }
192    
193          // calculate initial pitch value          // calculate initial pitch value
194          {          {
195              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
196              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
197              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              // GSt behaviour: maximum transpose up is 40 semitones. If
198              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              // MIDI key is more than 40 semitones above unity note,
199                // the transpose is not done.
200                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
201    
202                this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
203                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
204          }          }
205    
206          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
# Line 238  namespace LinuxSampler { namespace gig { Line 215  namespace LinuxSampler { namespace gig {
215                      eg1controllervalue = 0;                      eg1controllervalue = 0;
216                      break;                      break;
217                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
218                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
219                      break;                      break;
220                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
221                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 257  namespace LinuxSampler { namespace gig { Line 234  namespace LinuxSampler { namespace gig {
234              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
235              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
236    
237              pEG1->Trigger(pDimRgn->EG1PreAttack,              EG1.trigger(pDimRgn->EG1PreAttack,
238                            pDimRgn->EG1Attack * eg1attack,                          pDimRgn->EG1Attack * eg1attack,
239                            pDimRgn->EG1Hold,                          pDimRgn->EG1Hold,
240                            pSample->LoopStart,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
241                            pDimRgn->EG1Decay1 * eg1decay * velrelease,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
242                            pDimRgn->EG1Decay2 * eg1decay * velrelease,                          pDimRgn->EG1InfiniteSustain,
243                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Sustain,
244                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Release * eg1release * velrelease,
245                            pDimRgn->EG1Release * eg1release * velrelease,                          velocityAttenuation,
246                            // the SSE synthesis implementation requires                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
247                            // the vca start to be 16 byte aligned          }
248                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
249                            Delay & 0xfffffffc : Delay,  #ifdef CONFIG_INTERPOLATE_VOLUME
250                            velocityAttenuation);          // setup initial volume in synthesis parameters
251          }  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
252            if (pEngineChannel->GetMute()) {
253                finalSynthesisParameters.fFinalVolumeLeft  = 0;
254                finalSynthesisParameters.fFinalVolumeRight = 0;
255            }
256            else
257    #else
258            {
259                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
260    
261                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
262                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
263            }
264    #endif
265    #endif
266    
267          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
268          {          {
# Line 283  namespace LinuxSampler { namespace gig { Line 273  namespace LinuxSampler { namespace gig {
273                      eg2controllervalue = 0;                      eg2controllervalue = 0;
274                      break;                      break;
275                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
276                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
277                      break;                      break;
278                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
279                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 299  namespace LinuxSampler { namespace gig { Line 289  namespace LinuxSampler { namespace gig {
289              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
290              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
291    
292              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
293                            pDimRgn->EG2Attack * eg2attack,                          pDimRgn->EG2Attack * eg2attack,
294                            false,                          false,
295                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
296                            pDimRgn->EG2Decay1 * eg2decay * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
297                            pDimRgn->EG2Decay2 * eg2decay * velrelease,                          pDimRgn->EG2InfiniteSustain,
298                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
299                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
300                            pDimRgn->EG2Release * eg2release * velrelease,                          velocityAttenuation,
301                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
302          }          }
303    
304    
305          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
306          {          {
307            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
308            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
309                float eg3depth = (bPortamento)
310                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
311                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
312                float eg3time = (bPortamento)
313                                    ? pEngineChannel->PortamentoTime
314                                    : pDimRgn->EG3Attack;
315                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
316                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
317          }          }
318    
319    
# Line 354  namespace LinuxSampler { namespace gig { Line 351  namespace LinuxSampler { namespace gig {
351                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
352                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
353              }              }
354              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) {
355                                               lfo1_internal_depth,                  pLFO1->trigger(pDimRgn->LFO1Frequency,
356                                               pDimRgn->LFO1ControlDepth,                                 start_level_min,
357                                               pEngineChannel->ControllerTable[pLFO1->ExtController],                                 lfo1_internal_depth,
358                                               pDimRgn->LFO1FlipPhase,                                 pDimRgn->LFO1ControlDepth,
359                                               pEngine->SampleRate,                                 pDimRgn->LFO1FlipPhase,
360                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
361                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
362                }
363          }          }
364    
365    
# Line 398  namespace LinuxSampler { namespace gig { Line 397  namespace LinuxSampler { namespace gig {
397                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
398                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
399              }              }
400              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) {
401                                               lfo2_internal_depth,                  pLFO2->trigger(pDimRgn->LFO2Frequency,
402                                               pDimRgn->LFO2ControlDepth,                                 start_level_max,
403                                               pEngineChannel->ControllerTable[pLFO2->ExtController],                                 lfo2_internal_depth,
404                                               pDimRgn->LFO2FlipPhase,                                 pDimRgn->LFO2ControlDepth,
405                                               pEngine->SampleRate,                                 pDimRgn->LFO2FlipPhase,
406                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
407                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
408                }
409          }          }
410    
411    
# Line 424  namespace LinuxSampler { namespace gig { Line 425  namespace LinuxSampler { namespace gig {
425                      break;                      break;
426                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
427                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
428                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
429                      bLFO3Enabled         = false; // see TODO comment in line above                      bLFO3Enabled         = true;
430                      break;                      break;
431                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
432                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
# Line 434  namespace LinuxSampler { namespace gig { Line 435  namespace LinuxSampler { namespace gig {
435                      break;                      break;
436                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
437                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
438                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
439                      bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above                      bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
440                      break;                      break;
441                  default:                  default:
442                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
443                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
444                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
445              }              }
446              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) {
447                                               lfo3_internal_depth,                  pLFO3->trigger(pDimRgn->LFO3Frequency,
448                                               pDimRgn->LFO3ControlDepth,                                 start_level_mid,
449                                               pEngineChannel->ControllerTable[pLFO3->ExtController],                                 lfo3_internal_depth,
450                                               false,                                 pDimRgn->LFO3ControlDepth,
451                                               pEngine->SampleRate,                                 false,
452                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
453                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
454                }
455          }          }
456    
457    
# Line 490  namespace LinuxSampler { namespace gig { Line 493  namespace LinuxSampler { namespace gig {
493                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
494                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
495                      break;                      break;
496                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
497                        VCFCutoffCtrl.controller = 128;
498                        break;
499                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
500                  default:                  default:
501                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 521  namespace LinuxSampler { namespace gig { Line 526  namespace LinuxSampler { namespace gig {
526              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
527    
528              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
529              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
530              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
531              #else // override filter type              #else // override filter type
532              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
533              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
534              #endif // CONFIG_OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
535    
536              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
537              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
538    
539              // calculate cutoff frequency              // calculate cutoff frequency
540              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
541              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
542                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
543              }              }
544              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
545    
546              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
547              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
548                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
549                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
550                    // VCFVelocityScale in this case means Minimum cutoff
551                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
552                }
553                else {
554                    cvalue = pDimRgn->VCFCutoff;
555                }
556                cutoff *= float(cvalue);
557                if (cutoff > 127.0f) cutoff = 127.0f;
558    
559                // calculate resonance
560                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
561    
562              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
563                VCFResonanceCtrl.fvalue = resonance;
564          }          }
565          else {          else {
566              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 570  namespace LinuxSampler { namespace gig { Line 584  namespace LinuxSampler { namespace gig {
584      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
585    
586          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
587          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
588    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
589          switch (this->PlaybackState) {          switch (this->PlaybackState) {
590    
591              case playback_state_init:              case playback_state_init:
# Line 617  namespace LinuxSampler { namespace gig { Line 600  namespace LinuxSampler { namespace gig {
600    
601                      if (DiskVoice) {                      if (DiskVoice) {
602                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
603                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
604                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
605                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
606                          }                          }
607                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
608                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
609                      }                      }
610                  }                  }
# Line 637  namespace LinuxSampler { namespace gig { Line 619  namespace LinuxSampler { namespace gig {
619                              KillImmediately();                              KillImmediately();
620                              return;                              return;
621                          }                          }
622                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
623                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
624                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
625                      }                      }
626    
# Line 654  namespace LinuxSampler { namespace gig { Line 636  namespace LinuxSampler { namespace gig {
636                          }                          }
637                      }                      }
638    
639                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
640    
641                      // render current audio fragment                      // render current audio fragment
642                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
643    
644                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
645                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
646                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
647                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
648    
649                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
650                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 677  namespace LinuxSampler { namespace gig { Line 659  namespace LinuxSampler { namespace gig {
659                  break;                  break;
660          }          }
661    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
662          // Reset delay          // Reset delay
663          Delay = 0;          Delay = 0;
664    
665          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
666    
667          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
668          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
669      }      }
670    
671      /**      /**
# Line 696  namespace LinuxSampler { namespace gig { Line 673  namespace LinuxSampler { namespace gig {
673       *  suspended / not running.       *  suspended / not running.
674       */       */
675      void Voice::Reset() {      void Voice::Reset() {
676          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
677          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
678          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
679          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
680          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 711  namespace LinuxSampler { namespace gig { Line 685  namespace LinuxSampler { namespace gig {
685      }      }
686    
687      /**      /**
688       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
689       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
690       *       *
691       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
692         * @param End     - youngest time stamp where processing should be stopped
693       */       */
694      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
695            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
696          // dispatch control change events              if (itEvent->Type == Event::type_release) {
697          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
698          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
699              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
700                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
701                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
702                }
703          }          }
704          while (itCCEvent) {      }
705              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
706                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      /**
707                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * Process given list of MIDI control change and pitch bend events for
708                  }       * the given time.
709                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       *
710                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param itEvent - iterator pointing to the next event to be processed
711         * @param End     - youngest time stamp where processing should be stopped
712         */
713        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
714            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
715                if (itEvent->Type == Event::type_control_change &&
716                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
717                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
718                        processCutoffEvent(itEvent);
719                    }
720                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
721                        processResonanceEvent(itEvent);
722                  }                  }
723                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
724                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
725                  }                  }
726                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
727                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
728                  }                  }
729                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
730                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
731                  }                  }
732                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
733                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
734                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
735                    }
736                    if (itEvent->Param.CC.Controller == 7) { // volume
737                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
738                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
739                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
740                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
741                  }                  }
742                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
743                    processPitchEvent(itEvent);
744              }              }
   
             ++itCCEvent;  
745          }          }
746        }
747    
748        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
749            PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange);
750        }
751    
752          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
753          {          int ccvalue = itEvent->Param.CC.Value;
754              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
755              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
756              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
757                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
758              }          float cutoff = CutoffBase * float(ccvalue);
759              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
760    
761                  // calculate the influence length of this event (in sample points)          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
762                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;          fFinalCutoff = cutoff;
763        }
764    
765                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
766            // convert absolute controller value to differential
767            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
768            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
769            const float resonancedelta = (float) ctrldelta;
770            fFinalResonance += resonancedelta;
771            // needed for initialization of parameter
772            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
773        }
774    
775                  // apply pitch value to the pitch parameter sequence      /**
776                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {       *  Synthesizes the current audio fragment for this voice.
777                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;       *
778                  }       *  @param Samples - number of sample points to be rendered in this audio
779         *                   fragment cycle
780         *  @param pSrc    - pointer to input sample data
781         *  @param Skip    - number of sample points to skip in output buffer
782         */
783        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
784            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
785            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
786            finalSynthesisParameters.pSrc      = pSrc;
787    
788                  itVCOEvent = itNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
789              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
790              if (!pVCOEventList->isEmpty()) {  
791                  this->PitchBend = pitch;          if (itTriggerEvent) { // skip events that happened before this voice was triggered
792                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
793                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);              // we can't simply compare the timestamp here, because note events
794                // might happen on the same time stamp, so we have to deal on the
795                // actual sequence the note events arrived instead (see bug #112)
796                for (; itNoteEvent; ++itNoteEvent) {
797                    if (itTriggerEvent == itNoteEvent) {
798                        ++itNoteEvent;
799                        break;
800                    }
801              }              }
802          }          }
803    
804          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
805          {          if (itKillEvent) {
806              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
807              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (maxFadeOutPos < 0) {
808              if (Delay) { // skip events that happened before this voice was triggered                  // There's not enough space in buffer to do a fade out
809                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;                  // from max volume (this can only happen for audio
810                    // drivers that use Samples < MaxSamplesPerCycle).
811                    // End the EG1 here, at pos 0, with a shorter max fade
812                    // out time.
813                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
814                    itKillEvent = Pool<Event>::Iterator();
815                } else {
816                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
817              }              }
818              float crossfadevolume;          }
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
819    
820                  // calculate the influence length of this event (in sample points)          uint i = Skip;
821                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
822                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
823    
824                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);              // initialize all final synthesis parameters
825                fFinalCutoff    = VCFCutoffCtrl.fvalue;
826                fFinalResonance = VCFResonanceCtrl.fvalue;
827    
828                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
829                processCCEvents(itCCEvent, iSubFragmentEnd);
830    
831                  // apply volume value to the volume parameter sequence              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
832                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
833                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
834                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
835    #endif
836    
837                  itVCAEvent = itNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
838              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
839    
840          // process filter cutoff events              // if the voice was killed in this subfragment, or if the
841          {              // filter EG is finished, switch EG1 to fade out stage
842              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
843              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();                  (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
844              if (Delay) { // skip events that happened before this voice was triggered                   EG2.getSegmentType() == EGADSR::segment_end)) {
845                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                  EG1.enterFadeOutStage();
846                    itKillEvent = Pool<Event>::Iterator();
847              }              }
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
848    
849                  // calculate the influence length of this event (in sample points)              // process envelope generators
850                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;              switch (EG1.getSegmentType()) {
851                    case EGADSR::segment_lin:
852                        fFinalVolume *= EG1.processLin();
853                        break;
854                    case EGADSR::segment_exp:
855                        fFinalVolume *= EG1.processExp();
856                        break;
857                    case EGADSR::segment_end:
858                        fFinalVolume *= EG1.getLevel();
859                        break; // noop
860                }
861                switch (EG2.getSegmentType()) {
862                    case EGADSR::segment_lin:
863                        fFinalCutoff *= EG2.processLin();
864                        break;
865                    case EGADSR::segment_exp:
866                        fFinalCutoff *= EG2.processExp();
867                        break;
868                    case EGADSR::segment_end:
869                        fFinalCutoff *= EG2.getLevel();
870                        break; // noop
871                }
872                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
873    
874                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;              // process low frequency oscillators
875                if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
876                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
877                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
878    
879                  // apply cutoff frequency to the cutoff parameter sequence              // limit the pitch so we don't read outside the buffer
880                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
881    
882                  itCutoffEvent = itNextCutoffEvent;              // if filter enabled then update filter coefficients
883                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
884                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
885                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
886              }              }
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
887    
888          // process filter resonance events              // do we need resampling?
889          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
890              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
891              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
892              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
893                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
894              }  
895              while (itResonanceEvent) {              // prepare final synthesis parameters structure
896                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
897                  ++itNextResonanceEvent;  #ifdef CONFIG_INTERPOLATE_VOLUME
898                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
899                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
900                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
901                finalSynthesisParameters.fFinalVolumeDeltaRight =
902                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
903                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
904    #else
905                finalSynthesisParameters.fFinalVolumeLeft  =
906                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
907                finalSynthesisParameters.fFinalVolumeRight =
908                    fFinalVolume * VolumeRight * PanRightSmoother.render();
909    #endif
910                // render audio for one subfragment
911                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
912    
913                  // calculate the influence length of this event (in sample points)              // stop the rendering if volume EG is finished
914                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              if (EG1.getSegmentType() == EGADSR::segment_end) break;
915    
916                  // convert absolute controller value to differential              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
917    
918                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // increment envelopes' positions
919                if (EG1.active()) {
920    
921                  // apply cutoff frequency to the cutoff parameter sequence                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
922                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
923                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
924                  }                  }
925    
926                  itResonanceEvent = itNextResonanceEvent;                  EG1.increment(1);
927                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
928              }              }
929              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
930          }                  EG2.increment(1);
931      }                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
   
     /**  
      * Calculate all necessary, final biquad filter parameters.  
      *  
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
932              }              }
933                EG3.increment(1);
934                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
935    
936              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
937              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
938          }          }
939      }      }
940    
941      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
942       *       *
943       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
944       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
945       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
946       *  @param Skip    - number of sample points to skip in output buffer       *
947         * @param itNoteOffEvent - event which causes this voice to die soon
948       */       */
949      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
950          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
951            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
952      }      }
953    
954      /**      /**
# Line 941  namespace LinuxSampler { namespace gig { Line 957  namespace LinuxSampler { namespace gig {
957       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
958       *  until the kill event actually occured!       *  until the kill event actually occured!
959       *       *
960       *  @see Kill()       * If it's necessary to know when the voice's disk stream was actually
961         * deleted, then one can set the optional @a bRequestNotification
962         * parameter and this method will then return the handle of the disk
963         * stream (unique identifier) and one can use this handle to poll the
964         * disk thread if this stream has been deleted. In any case this method
965         * will return immediately and will not block until the stream actually
966         * was deleted.
967         *
968         * @param bRequestNotification - (optional) whether the disk thread shall
969         *                                provide a notification once it deleted
970         *                               the respective disk stream
971         *                               (default=false)
972         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
973         *          if the voice did not use a disk stream at all
974         * @see Kill()
975       */       */
976      void Voice::KillImmediately() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
977            Stream::Handle hStream = Stream::INVALID_HANDLE;
978          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
979              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
980                hStream = DiskStreamRef.hStream;
981          }          }
982          Reset();          Reset();
983            return hStream;
984      }      }
985    
986      /**      /**

Legend:
Removed from v.696  
changed lines
  Added in v.1895

  ViewVC Help
Powered by ViewVC