/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 323 by schoenebeck, Tue Dec 14 00:32:21 2004 UTC revision 2055 by persson, Sat Jan 30 10:30:02 2010 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 - 2010 Christian Schoenebeck and Grigor Iliev      *
8   *                                                                         *   *                                                                         *
9   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
10   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 22 
22   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
23   ***************************************************************************/   ***************************************************************************/
24    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
25  #include "../../common/Features.h"  #include "../../common/Features.h"
26  #include "Synthesizer.h"  #include "Synthesizer.h"
27    #include "Profiler.h"
28    #include "Engine.h"
29    #include "EngineChannel.h"
30    
31  #include "Voice.h"  #include "Voice.h"
32    
33  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
34    
35      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      Voice::Voice() {
36            pEngine = NULL;
37            pEG1 = &EG1;
38        }
39    
40      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());      Voice::~Voice() {
41        }
42    
43      float Voice::CalculateFilterCutoffCoeff() {      EngineChannel* Voice::GetGigEngineChannel() {
44          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);          return static_cast<EngineChannel*>(pEngineChannel);
45      }      }
46    
47      int Voice::CalculateFilterUpdateMask() {      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
48          if (FILTER_UPDATE_PERIOD <= 0) return 0;          Engine* engine = static_cast<Engine*>(pEngine);
49          int power_of_two;          this->pEngine     = engine;
50          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);          this->pDiskThread = engine->pDiskThread;
51          return (1 << power_of_two) - 1;          dmsg(6,("Voice::SetEngine()\n"));
52      }      }
53    
54      Voice::Voice() {      Voice::SampleInfo Voice::GetSampleInfo() {
55          pEngine     = NULL;          SampleInfo si;
56          pDiskThread = NULL;          si.SampleRate       = pSample->SamplesPerSecond;
57          PlaybackState = playback_state_end;          si.ChannelCount     = pSample->Channels;
58          pEG1   = NULL;          si.FrameSize        = pSample->FrameSize;
59          pEG2   = NULL;          si.BitDepth         = pSample->BitDepth;
60          pEG3   = NULL;          si.TotalFrameCount  = pSample->SamplesTotal;
61          pVCAManipulator  = NULL;  
62          pVCFCManipulator = NULL;          si.HasLoops       = pRegion->SampleLoops;
63          pVCOManipulator  = NULL;          si.LoopStart      = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopStart  : 0;
64          pLFO1  = NULL;          si.LoopLength     = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopLength : 0;
65          pLFO2  = NULL;          si.LoopPlayCount  = pSample->LoopPlayCount;
66          pLFO3  = NULL;          si.Unpitched      = !pRegion->PitchTrack;
         KeyGroup = 0;  
67    
68          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          return si;
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());  
69      }      }
70    
71      Voice::~Voice() {      Voice::RegionInfo Voice::GetRegionInfo() {
72          if (pEG1)  delete pEG1;          RegionInfo ri;
73          if (pEG2)  delete pEG2;          ri.UnityNote = pRegion->UnityNote;
74          if (pEG3)  delete pEG3;          ri.FineTune  = pRegion->FineTune;
75          if (pLFO1) delete pLFO1;          ri.Pan       = pRegion->Pan;
76          if (pLFO2) delete pLFO2;          ri.SampleStartOffset = pRegion->SampleStartOffset;
         if (pLFO3) delete pLFO3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetEngine(Engine* pEngine) {  
         this->pEngine = pEngine;  
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
77    
78          this->pDiskThread = pEngine->pDiskThread;          ri.EG1PreAttack        = pRegion->EG1PreAttack;
79          dmsg(6,("Voice::SetEngine()\n"));          ri.EG1Attack           = pRegion->EG1Attack;
80            ri.EG1Hold             = pRegion->EG1Hold;
81            ri.EG1Decay1           = pRegion->EG1Decay1;
82            ri.EG1Decay2           = pRegion->EG1Decay2;
83            ri.EG1Sustain          = pRegion->EG1Sustain;
84            ri.EG1InfiniteSustain  = pRegion->EG1InfiniteSustain;
85            ri.EG1Release          = pRegion->EG1Release;
86    
87            ri.EG2PreAttack        = pRegion->EG2PreAttack;
88            ri.EG2Attack           = pRegion->EG2Attack;
89            ri.EG2Decay1           = pRegion->EG2Decay1;
90            ri.EG2Decay2           = pRegion->EG2Decay2;
91            ri.EG2Sustain          = pRegion->EG2Sustain;
92            ri.EG2InfiniteSustain  = pRegion->EG2InfiniteSustain;
93            ri.EG2Release          = pRegion->EG2Release;
94    
95            ri.EG3Attack     = pRegion->EG3Attack;
96            ri.EG3Depth      = pRegion->EG3Depth;
97            ri.VCFEnabled    = pRegion->VCFEnabled;
98            ri.VCFType       = pRegion->VCFType;
99            ri.VCFResonance  = pRegion->VCFResonance;
100    
101            ri.ReleaseTriggerDecay = pRegion->ReleaseTriggerDecay;
102    
103            return ri;
104      }      }
105    
106      /**      Voice::InstrumentInfo Voice::GetInstrumentInfo() {
107       *  Initializes and triggers the voice, a disk stream will be launched if          InstrumentInfo ii;
108       *  needed.          ii.FineTune = GetGigEngineChannel()->pInstrument->FineTune;
109       *          ii.PitchbendRange = GetGigEngineChannel()->pInstrument->PitchbendRange;
      *  @param itNoteOnEvent       - event that caused triggering of this voice  
      *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)  
      *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data  
      *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)  
      *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)  
      *  @param VoiceStealing       - wether the voice is allowed to steal voices for further subvoices  
      *  @returns 0 on success, a value < 0 if something failed  
      */  
     int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice, bool VoiceStealing) {  
         if (!pInstrument) {  
            dmsg(1,("voice::trigger: !pInstrument\n"));  
            exit(EXIT_FAILURE);  
         }  
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // FIXME: should be removed before the final release (purpose: just a sanity check for debugging)  
             dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));  
         }  
110    
111          Type            = type_normal;          return ii;
112          MIDIKey         = itNoteOnEvent->Param.Note.Key;      }
113          pRegion         = pInstrument->GetRegion(MIDIKey);  
114          PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed      double Voice::GetSampleAttenuation() {
115          Delay           = itNoteOnEvent->FragmentPos();          return pRegion->SampleAttenuation;
116          itTriggerEvent  = itNoteOnEvent;      }
         itKillEvent     = Pool<Event>::Iterator();  
         itChildVoice    = Pool<Voice>::Iterator();  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
117    
118          KeyGroup = pRegion->KeyGroup;      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
119            return pRegion->GetVelocityAttenuation(MIDIKeyVelocity);
120        }
121    
122        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
123            return pRegion->GetVelocityRelease(MIDIKeyVelocity);
124        }
125    
126          // get current dimension values to select the right dimension region      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
127          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
128          uint DimValues[5] = {0,0,0,0,0};              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
129          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
130              switch (pRegion->pDimensionDefinitions[i].dimension) {                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice, VoiceStealing);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
131              }              }
132          }          }
133          pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);      }
134    
135          pSample = pDimRgn->pSample; // sample won't change until the voice is finished      void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
136            int ccvalue = itEvent->Param.CC.Value;
137            if (VCFCutoffCtrl.value == ccvalue) return;
138            VCFCutoffCtrl.value == ccvalue;
139            if (pRegion->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
140            if (ccvalue < pRegion->VCFVelocityScale) ccvalue = pRegion->VCFVelocityScale;
141            float cutoff = CutoffBase * float(ccvalue);
142            if (cutoff > 127.0f) cutoff = 127.0f;
143    
144          // select channel mode (mono or stereo)          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
145          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          fFinalCutoff = cutoff;
146        }
147    
148          // get starting crossfade volume level      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
149          switch (pDimRgn->AttenuationController.type) {          float crossfadeVolume;
150            switch (pRegion->AttenuationController.type) {
151              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
152                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[128])];
153                  break;                  break;
154              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
155                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
156                  break;                  break;
157              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
158                  CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
159                  break;                  break;
160              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
161              default:              default:
162                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
         }  
   
         PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;  
         PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;  
   
         Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
   
         // Check if the sample needs disk streaming or is too short for that  
         long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;  
         DiskVoice          = cachedsamples < pSample->SamplesTotal;  
   
         if (DiskVoice) { // voice to be streamed from disk  
             MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)  
   
             // check if there's a loop defined which completely fits into the cached (RAM) part of the sample  
             if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
   
             if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {  
                 dmsg(1,("Disk stream order failed!\n"));  
                 KillImmediately();  
                 return -1;  
             }  
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             if (pSample->Loops) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));  
163          }          }
164    
165            return crossfadeVolume;
166        }
167    
168          // calculate initial pitch value      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
169          {          double eg1controllervalue = 0;
170              double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];          switch (pRegion->EG1Controller.type) {
171              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;              case ::gig::eg1_ctrl_t::type_none: // no controller defined
172              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));                  eg1controllervalue = 0;
173              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents                  break;
174                case ::gig::eg1_ctrl_t::type_channelaftertouch:
175                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[128];
176                    break;
177                case ::gig::eg1_ctrl_t::type_velocity:
178                    eg1controllervalue = MIDIKeyVelocity;
179                    break;
180                case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
181                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
182                    break;
183          }          }
184            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
185    
186          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          return eg1controllervalue;
187        }
         // setup EG 1 (VCA EG)  
         {  
             // get current value of EG1 controller  
             double eg1controllervalue;  
             switch (pDimRgn->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
   
             // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)  
             double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;  
             double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;  
             double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;  
   
             pEG1->Trigger(pDimRgn->EG1PreAttack,  
                           pDimRgn->EG1Attack + eg1attack,  
                           pDimRgn->EG1Hold,  
                           pSample->LoopStart,  
                           pDimRgn->EG1Decay1 + eg1decay,  
                           pDimRgn->EG1Decay2 + eg1decay,  
                           pDimRgn->EG1InfiniteSustain,  
                           pDimRgn->EG1Sustain,  
                           pDimRgn->EG1Release + eg1release,  
                           Delay);  
         }  
188    
189        Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
190            EGInfo eg;
191            // (eg1attack is different from the others)
192            eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
193                1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
194                                      1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
195            eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
196            eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
197    
198          // setup EG 2 (VCF Cutoff EG)          return eg;
199          {      }
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pDimRgn->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
200    
201              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)      double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
202              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;          double eg2controllervalue = 0;
203              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;          switch (pRegion->EG2Controller.type) {
204              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              case ::gig::eg2_ctrl_t::type_none: // no controller defined
205                    eg2controllervalue = 0;
206              pEG2->Trigger(pDimRgn->EG2PreAttack,                  break;
207                            pDimRgn->EG2Attack + eg2attack,              case ::gig::eg2_ctrl_t::type_channelaftertouch:
208                            false,                  eg2controllervalue = GetGigEngineChannel()->ControllerTable[128];
209                            pSample->LoopStart,                  break;
210                            pDimRgn->EG2Decay1 + eg2decay,              case ::gig::eg2_ctrl_t::type_velocity:
211                            pDimRgn->EG2Decay2 + eg2decay,                  eg2controllervalue = MIDIKeyVelocity;
212                            pDimRgn->EG2InfiniteSustain,                  break;
213                            pDimRgn->EG2Sustain,              case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
214                            pDimRgn->EG2Release + eg2release,                  eg2controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
215                            Delay);                  break;
216          }          }
217            if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
218    
219            return eg2controllervalue;
220        }
221    
222          // setup EG 3 (VCO EG)      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
223          {          EGInfo eg;
224            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);          eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
225            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);          eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
226          }          eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
227    
228            return eg;
229        }
230    
231          // setup LFO 1 (VCA LFO)      void Voice::InitLFO1() {
232          {          uint16_t lfo1_internal_depth;
233              uint16_t lfo1_internal_depth;          switch (pRegion->LFO1Controller) {
234              switch (pDimRgn->LFO1Controller) {              case ::gig::lfo1_ctrl_internal:
235                  case ::gig::lfo1_ctrl_internal:                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
236                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                  pLFO1->ExtController = 0; // no external controller
237                      pLFO1->ExtController = 0; // no external controller                  bLFO1Enabled         = (lfo1_internal_depth > 0);
238                      break;                  break;
239                  case ::gig::lfo1_ctrl_modwheel:              case ::gig::lfo1_ctrl_modwheel:
240                      lfo1_internal_depth  = 0;                  lfo1_internal_depth  = 0;
241                      pLFO1->ExtController = 1; // MIDI controller 1                  pLFO1->ExtController = 1; // MIDI controller 1
242                      break;                  bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
243                  case ::gig::lfo1_ctrl_breath:                  break;
244                      lfo1_internal_depth  = 0;              case ::gig::lfo1_ctrl_breath:
245                      pLFO1->ExtController = 2; // MIDI controller 2                  lfo1_internal_depth  = 0;
246                      break;                  pLFO1->ExtController = 2; // MIDI controller 2
247                  case ::gig::lfo1_ctrl_internal_modwheel:                  bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
248                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                  break;
249                      pLFO1->ExtController = 1; // MIDI controller 1              case ::gig::lfo1_ctrl_internal_modwheel:
250                      break;                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
251                  case ::gig::lfo1_ctrl_internal_breath:                  pLFO1->ExtController = 1; // MIDI controller 1
252                      lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;                  bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
253                      pLFO1->ExtController = 2; // MIDI controller 2                  break;
254                      break;              case ::gig::lfo1_ctrl_internal_breath:
255                  default:                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
256                      lfo1_internal_depth  = 0;                  pLFO1->ExtController = 2; // MIDI controller 2
257                      pLFO1->ExtController = 0; // no external controller                  bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
258              }                  break;
259              pLFO1->Trigger(pDimRgn->LFO1Frequency,              default:
260                            lfo1_internal_depth,                  lfo1_internal_depth  = 0;
261                            pDimRgn->LFO1ControlDepth,                  pLFO1->ExtController = 0; // no external controller
262                            pEngine->ControllerTable[pLFO1->ExtController],                  bLFO1Enabled         = false;
263                            pDimRgn->LFO1FlipPhase,          }
264                            pEngine->SampleRate,          if (bLFO1Enabled) {
265                            Delay);              pLFO1->trigger(pRegion->LFO1Frequency,
266                               start_level_min,
267                               lfo1_internal_depth,
268                               pRegion->LFO1ControlDepth,
269                               pRegion->LFO1FlipPhase,
270                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
271                pLFO1->update(pLFO1->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO1->ExtController] : 0);
272          }          }
273        }
274    
275        void Voice::InitLFO2() {
276          // setup LFO 2 (VCF Cutoff LFO)          uint16_t lfo2_internal_depth;
277          {          switch (pRegion->LFO2Controller) {
278              uint16_t lfo2_internal_depth;              case ::gig::lfo2_ctrl_internal:
279              switch (pDimRgn->LFO2Controller) {                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
280                  case ::gig::lfo2_ctrl_internal:                  pLFO2->ExtController = 0; // no external controller
281                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                  bLFO2Enabled         = (lfo2_internal_depth > 0);
282                      pLFO2->ExtController = 0; // no external controller                  break;
283                      break;              case ::gig::lfo2_ctrl_modwheel:
284                  case ::gig::lfo2_ctrl_modwheel:                  lfo2_internal_depth  = 0;
285                      lfo2_internal_depth  = 0;                  pLFO2->ExtController = 1; // MIDI controller 1
286                      pLFO2->ExtController = 1; // MIDI controller 1                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
287                      break;                  break;
288                  case ::gig::lfo2_ctrl_foot:              case ::gig::lfo2_ctrl_foot:
289                      lfo2_internal_depth  = 0;                  lfo2_internal_depth  = 0;
290                      pLFO2->ExtController = 4; // MIDI controller 4                  pLFO2->ExtController = 4; // MIDI controller 4
291                      break;                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
292                  case ::gig::lfo2_ctrl_internal_modwheel:                  break;
293                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;              case ::gig::lfo2_ctrl_internal_modwheel:
294                      pLFO2->ExtController = 1; // MIDI controller 1                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
295                      break;                  pLFO2->ExtController = 1; // MIDI controller 1
296                  case ::gig::lfo2_ctrl_internal_foot:                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
297                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;                  break;
298                      pLFO2->ExtController = 4; // MIDI controller 4              case ::gig::lfo2_ctrl_internal_foot:
299                      break;                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
300                  default:                  pLFO2->ExtController = 4; // MIDI controller 4
301                      lfo2_internal_depth  = 0;                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
302                      pLFO2->ExtController = 0; // no external controller                  break;
303              }              default:
304              pLFO2->Trigger(pDimRgn->LFO2Frequency,                  lfo2_internal_depth  = 0;
305                            lfo2_internal_depth,                  pLFO2->ExtController = 0; // no external controller
306                            pDimRgn->LFO2ControlDepth,                  bLFO2Enabled         = false;
307                            pEngine->ControllerTable[pLFO2->ExtController],          }
308                            pDimRgn->LFO2FlipPhase,          if (bLFO2Enabled) {
309                            pEngine->SampleRate,              pLFO2->trigger(pRegion->LFO2Frequency,
310                            Delay);                             start_level_max,
311                               lfo2_internal_depth,
312                               pRegion->LFO2ControlDepth,
313                               pRegion->LFO2FlipPhase,
314                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
315                pLFO2->update(pLFO2->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO2->ExtController] : 0);
316          }          }
317        }
318    
319        void Voice::InitLFO3() {
320          // setup LFO 3 (VCO LFO)          uint16_t lfo3_internal_depth;
321          {          switch (pRegion->LFO3Controller) {
322              uint16_t lfo3_internal_depth;              case ::gig::lfo3_ctrl_internal:
323              switch (pDimRgn->LFO3Controller) {                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
324                  case ::gig::lfo3_ctrl_internal:                  pLFO3->ExtController = 0; // no external controller
325                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                  bLFO3Enabled         = (lfo3_internal_depth > 0);
326                      pLFO3->ExtController = 0; // no external controller                  break;
327                      break;              case ::gig::lfo3_ctrl_modwheel:
328                  case ::gig::lfo3_ctrl_modwheel:                  lfo3_internal_depth  = 0;
329                      lfo3_internal_depth  = 0;                  pLFO3->ExtController = 1; // MIDI controller 1
330                      pLFO3->ExtController = 1; // MIDI controller 1                  bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);
331                      break;                  break;
332                  case ::gig::lfo3_ctrl_aftertouch:              case ::gig::lfo3_ctrl_aftertouch:
333                      lfo3_internal_depth  = 0;                  lfo3_internal_depth  = 0;
334                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                  pLFO3->ExtController = 128;
335                      break;                  bLFO3Enabled         = true;
336                  case ::gig::lfo3_ctrl_internal_modwheel:                  break;
337                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;              case ::gig::lfo3_ctrl_internal_modwheel:
338                      pLFO3->ExtController = 1; // MIDI controller 1                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
339                      break;                  pLFO3->ExtController = 1; // MIDI controller 1
340                  case ::gig::lfo3_ctrl_internal_aftertouch:                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
341                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                  break;
342                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet              case ::gig::lfo3_ctrl_internal_aftertouch:
343                      break;                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
344                  default:                  pLFO1->ExtController = 128;
345                      lfo3_internal_depth  = 0;                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
346                      pLFO3->ExtController = 0; // no external controller                  break;
347              }              default:
348              pLFO3->Trigger(pDimRgn->LFO3Frequency,                  lfo3_internal_depth  = 0;
349                            lfo3_internal_depth,                  pLFO3->ExtController = 0; // no external controller
350                            pDimRgn->LFO3ControlDepth,                  bLFO3Enabled         = false;
351                            pEngine->ControllerTable[pLFO3->ExtController],          }
352                            false,          if (bLFO3Enabled) {
353                            pEngine->SampleRate,              pLFO3->trigger(pRegion->LFO3Frequency,
354                            Delay);                             start_level_mid,
355                               lfo3_internal_depth,
356                               pRegion->LFO3ControlDepth,
357                               false,
358                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
359                pLFO3->update(pLFO3->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO3->ExtController] : 0);
360          }          }
361        }
362    
363        float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
364          #if FORCE_FILTER_USAGE          float cutoff = pRegion->GetVelocityCutoff(MIDIKeyVelocity);
365          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, true);          if (pRegion->VCFKeyboardTracking) {
366          #else // use filter only if instrument file told so              cutoff *= exp((MIDIKeyVelocity - pRegion->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
367          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, pDimRgn->VCFEnabled);          }
368          #endif // FORCE_FILTER_USAGE          return cutoff;
369          if (pDimRgn->VCFEnabled) {      }
370              #ifdef OVERRIDE_FILTER_CUTOFF_CTRL  
371              VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;      float Voice::CalculateFinalCutoff(float cutoffBase) {
372              #else // use the one defined in the instrument file          int cvalue;
373              switch (pDimRgn->VCFCutoffController) {          if (VCFCutoffCtrl.controller) {
374                  case ::gig::vcf_cutoff_ctrl_modwheel:              cvalue = GetGigEngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
375                      VCFCutoffCtrl.controller = 1;              if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
376                      break;              // VCFVelocityScale in this case means Minimum cutoff
377                  case ::gig::vcf_cutoff_ctrl_effect1:              if (cvalue < pRegion->VCFVelocityScale) cvalue = pRegion->VCFVelocityScale;
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // OVERRIDE_FILTER_CUTOFF_CTRL  
   
             #ifdef OVERRIDE_FILTER_RES_CTRL  
             VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // OVERRIDE_FILTER_RES_CTRL  
   
             #ifndef OVERRIDE_FILTER_TYPE  
             FilterLeft.SetType(pDimRgn->VCFType);  
             FilterRight.SetType(pDimRgn->VCFType);  
             #else // override filter type  
             FilterLeft.SetType(OVERRIDE_FILTER_TYPE);  
             FilterRight.SetType(OVERRIDE_FILTER_TYPE);  
             #endif // OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = (!VCFCutoffCtrl.controller)  
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
             if (pDimRgn->VCFKeyboardTracking) {  
                 resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;  
             }  
             Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)  
   
             VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;  
             VCFResonanceCtrl.fvalue = resonance;  
   
             FilterUpdateCounter = -1;  
378          }          }
379          else {          else {
380              VCFCutoffCtrl.controller    = 0;              cvalue = pRegion->VCFCutoff;
             VCFResonanceCtrl.controller = 0;  
381          }          }
382            float fco = cutoffBase * float(cvalue);
383            if (fco > 127.0f) fco = 127.0f;
384    
385          return 0; // success          return fco;
386      }      }
387    
388      /**      uint8_t Voice::GetVCFCutoffCtrl() {
389       *  Renders the audio data for this voice for the current audio fragment.          uint8_t ctrl;
390       *  The sample input data can either come from RAM (cached sample or sample          switch (pRegion->VCFCutoffController) {
391       *  part) or directly from disk. The output signal will be rendered by              case ::gig::vcf_cutoff_ctrl_modwheel:
392       *  resampling / interpolation. If this voice is a disk streaming voice and                  ctrl = 1;
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
   
         // select default values for synthesis mode bits  
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
         SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);  
   
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
                 CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
         switch (this->PlaybackState) {  
   
             case playback_state_ram: {  
                     if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping  
   
                     // render current fragment  
                     Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
   
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (Pos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     }  
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));  
                         Pos -= int(Pos);  
                     }  
   
                     const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end) {  
                         const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm  
                         if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {  
                             DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);  
                         }  
                     }  
   
                     sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
   
                     // render current audio fragment  
                     Synthesize(Samples, ptr, Delay);  
   
                     const int iPos = (int) Pos;  
                     const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read  
                     DiskStreamRef.pStream->IncrementReadPos(readSampleWords);  
                     Pos -= iPos; // just keep fractional part of Pos  
   
                     // change state of voice to 'end' if we really reached the end of the sample data  
                     if (DiskStreamRef.State == Stream::state_end && readSampleWords >= sampleWordsLeftToRead) this->PlaybackState = playback_state_end;  
                 }  
393                  break;                  break;
394                case ::gig::vcf_cutoff_ctrl_effect1:
395              case playback_state_end:                  ctrl = 12;
396                  std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;                  break;
397                case ::gig::vcf_cutoff_ctrl_effect2:
398                    ctrl = 13;
399                    break;
400                case ::gig::vcf_cutoff_ctrl_breath:
401                    ctrl = 2;
402                    break;
403                case ::gig::vcf_cutoff_ctrl_foot:
404                    ctrl = 4;
405                    break;
406                case ::gig::vcf_cutoff_ctrl_sustainpedal:
407                    ctrl = 64;
408                    break;
409                case ::gig::vcf_cutoff_ctrl_softpedal:
410                    ctrl = 67;
411                    break;
412                case ::gig::vcf_cutoff_ctrl_genpurpose7:
413                    ctrl = 82;
414                    break;
415                case ::gig::vcf_cutoff_ctrl_genpurpose8:
416                    ctrl = 83;
417                    break;
418                case ::gig::vcf_cutoff_ctrl_aftertouch:
419                    ctrl = 128;
420                    break;
421                case ::gig::vcf_cutoff_ctrl_none:
422                default:
423                    ctrl = 0;
424                  break;                  break;
425          }          }
426    
427          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)          return ctrl;
         pEngine->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
         // Reset delay  
         Delay = 0;  
   
         itTriggerEvent = Pool<Event>::Iterator();  
   
         // If sample stream or release stage finished, kill the voice  
         if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();  
     }  
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         PlaybackState = playback_state_end;  
         itTriggerEvent = Pool<Event>::Iterator();  
         itKillEvent    = Pool<Event>::Iterator();  
     }  
   
     /**  
      *  Process the control change event lists of the engine for the current  
      *  audio fragment. Event values will be applied to the synthesis parameter  
      *  matrix.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::ProcessEvents(uint Samples) {  
   
         // dispatch control change events  
         RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();  
         if (Delay) { // skip events that happened before this voice was triggered  
             while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;  
         }  
         while (itCCEvent) {  
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
             }  
   
             ++itCCEvent;  
         }  
   
   
         // process pitch events  
         {  
             RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 itVCOEvent = itNextVCOEvent;  
             }  
             if (!pVCOEventList->isEmpty()) {  
                 this->PitchBend = pitch;  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
   
                 itVCAEvent = itNextVCAEvent;  
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
   
         // process filter cutoff events  
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
   
                 itCutoffEvent = itNextCutoffEvent;  
             }  
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
   
         // process filter resonance events  
         {  
             RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
   
                 itResonanceEvent = itNextResonanceEvent;  
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
428      }      }
429    
430      /**      uint8_t Voice::GetVCFResonanceCtrl() {
431       * Calculate all necessary, final biquad filter parameters.          uint8_t ctrl;
432       *          switch (pRegion->VCFResonanceController) {
433       * @param Samples - number of samples to be rendered in this audio fragment cycle              case ::gig::vcf_res_ctrl_genpurpose3:
434       */                  ctrl = 18;
435      void Voice::CalculateBiquadParameters(uint Samples) {                  break;
436          biquad_param_t bqbase;              case ::gig::vcf_res_ctrl_genpurpose4:
437          biquad_param_t bqmain;                  ctrl = 19;
438          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                  break;
439          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];              case ::gig::vcf_res_ctrl_genpurpose5:
440          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  ctrl = 80;
441          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  break;
442          pEngine->pBasicFilterParameters[0] = bqbase;              case ::gig::vcf_res_ctrl_genpurpose6:
443          pEngine->pMainFilterParameters[0]  = bqmain;                  ctrl = 81;
444                    break;
445          float* bq;              case ::gig::vcf_res_ctrl_none:
446          for (int i = 1; i < Samples; i++) {              default:
447              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  ctrl = 0;
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);  
                 }  
             }  
   
             //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'  
             bq    = (float*) &pEngine->pBasicFilterParameters[i];  
             bq[0] = bqbase.a1;  
             bq[1] = bqbase.a2;  
             bq[2] = bqbase.b0;  
             bq[3] = bqbase.b1;  
             bq[4] = bqbase.b2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.a1;  
             bq[1] = bqmain.a2;  
             bq[2] = bqmain.b0;  
             bq[3] = bqmain.b1;  
             bq[4] = bqmain.b2;  
448          }          }
     }  
449    
450      /**          return ctrl;
      *  Synthesizes the current audio fragment for this voice.  
      *  
      *  @param Samples - number of sample points to be rendered in this audio  
      *                   fragment cycle  
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Synthesize(uint Samples, sample_t* pSrc, int Skip) {  
         UpdateSynthesisMode();  
         SynthesizeFragment_Fn* f = (SynthesizeFragment_Fn*) SynthesizeFragmentFnPtr;  
         f(*this, Samples, pSrc, Skip);  
     }  
   
     /**  
      *  Determine the respective synthesis function for the given synthesis  
      *  mode.  
      */  
     void Voice::UpdateSynthesisMode() {  
         SynthesizeFragmentFnPtr = GetSynthesisFunction(SynthesisMode);  
     }  
   
     /**  
      *  Immediately kill the voice. This method should not be used to kill  
      *  a normal, active voice, because it doesn't take care of things like  
      *  fading down the volume level to avoid clicks and regular processing  
      *  until the kill event actually occured!  
      *  
      *  @see Kill()  
      */  
     void Voice::KillImmediately() {  
         if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {  
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef);  
         }  
         Reset();  
451      }      }
452    
453      /**      void Voice::TriggerEG1(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
454       *  Kill the voice in regular sense. Let the voice render audio until          EG1.trigger(uint(RgnInfo.EG1PreAttack),
455       *  the kill event actually occured and then fade down the volume level                      RgnInfo.EG1Attack * egInfo.Attack,
456       *  very quickly and let the voice die finally. Unlike a normal release                      RgnInfo.EG1Hold,
457       *  of a voice, a kill process cannot be cancalled and is therefore                      RgnInfo.EG1Decay1 * egInfo.Decay * velrelease,
458       *  usually used for voice stealing and key group conflicts.                      RgnInfo.EG1Decay2 * egInfo.Decay * velrelease,
459       *                      RgnInfo.EG1InfiniteSustain,
460       *  @param itKillEvent - event which caused the voice to be killed                      uint(RgnInfo.EG1Sustain),
461       */                      RgnInfo.EG1Release * egInfo.Release * velrelease,
462      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {                      velocityAttenuation,
463          //FIXME: just two sanity checks for debugging, can be removed                      sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
         if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));  
         if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));  
   
         if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;  
         this->itKillEvent = itKillEvent;  
464      }      }
   
465  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.323  
changed lines
  Added in v.2055

  ViewVC Help
Powered by ViewVC